forked from rotem-shalev/Ham2Pose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
281 lines (232 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from typing import List
import torch
from torch import nn
import torch.nn.functional as F
import pytorch_lightning as pl
import numpy as np
from torch.optim import optimizer, Adam
EPSILON = 1e-4
START_LEARNING_RATE = 1e-3
MAX_SEQ_LEN = 200
def masked_mse_loss(pose: torch.Tensor, pose_hat: torch.Tensor, confidence: torch.Tensor, model_num_steps: int = 10):
# Loss by confidence. If missing joint, no loss. If less likely joint, less gradients.
sq_error = torch.pow(pose - pose_hat, 2).sum(-1)
num_steps_norm = np.log(model_num_steps) ** 2 if model_num_steps != 1 else 1 # normalization of the loss by the
# model's step number
return (sq_error * confidence).mean() * num_steps_norm
class IterativeTextGuidedPoseGenerationModel(pl.LightningModule):
def __init__(
self,
tokenizer,
pose_dims: (int, int) = (137, 2),
hidden_dim: int = 128,
text_encoder_depth: int = 2,
pose_encoder_depth: int = 4,
encoder_heads: int = 2,
encoder_dim_feedforward: int = 2048,
max_seq_size: int = MAX_SEQ_LEN,
min_seq_size: int = 20,
num_steps: int = 10,
tf_p: float = 0.5,
lr: float = START_LEARNING_RATE,
noise_epsilon: float = EPSILON,
seq_len_weight: float = 2e-5,
optimizer_fn: optimizer = torch.optim.Adam,
separate_positional_embedding: bool = False,
num_pose_projection_layers: int = 1,
concat: bool = True,
blend: bool = True
):
super().__init__()
self.lr = lr
self.noise_epsilon = noise_epsilon
self.tf_p = tf_p
self.seq_len_weight = seq_len_weight
self.tokenizer = tokenizer
self.max_seq_size = max_seq_size
self.min_seq_size = min_seq_size
self.num_steps = num_steps
self.hidden_dim = hidden_dim
self.pose_dims = pose_dims
self.optimizer_fn = optimizer_fn
self.separate_positional_embedding = separate_positional_embedding
self.best_loss = np.inf
self.concat = concat
self.blend = blend
pose_dim = int(np.prod(pose_dims))
# Embedding layers
self.embedding = nn.Embedding(
num_embeddings=len(tokenizer),
embedding_dim=hidden_dim,
padding_idx=tokenizer.pad_token_id,
)
self.step_embedding = nn.Embedding(
num_embeddings=num_steps, embedding_dim=hidden_dim
)
if separate_positional_embedding:
self.pos_positional_embeddings = nn.Embedding(
num_embeddings=max_seq_size, embedding_dim=hidden_dim
)
self.text_positional_embeddings = nn.Embedding(
num_embeddings=max_seq_size, embedding_dim=hidden_dim
)
else:
self.positional_embeddings = nn.Embedding(
num_embeddings=max_seq_size, embedding_dim=hidden_dim
)
# positional embedding scalars
self.alpha_pose = nn.Parameter(torch.randn(1))
self.alpha_text = nn.Parameter(torch.randn(1))
if num_pose_projection_layers == 1:
self.pose_projection = nn.Linear(pose_dim, hidden_dim)
else: # Currently only supports 1 or 2 layers
self.pose_projection = nn.Sequential(
nn.Linear(pose_dim, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, hidden_dim),
)
# encoding layers
encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=encoder_heads,
dim_feedforward=encoder_dim_feedforward)
self.text_encoder = nn.TransformerEncoder(encoder_layer, num_layers=text_encoder_depth)
self.pose_encoder = nn.TransformerEncoder(encoder_layer, num_layers=pose_encoder_depth)
# step encoder
self.step_encoder = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU()
)
# Predict sequence length
self.seq_length = nn.Linear(hidden_dim, 1)
# Predict pose difference
self.pose_diff_projection = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, pose_dim),
)
def encode_text(self, texts: List[str]):
tokenized = self.tokenizer(texts, device=self.device)
if self.separate_positional_embedding:
positional_embedding = self.text_positional_embeddings(tokenized["positions"])
else:
positional_embedding = self.alpha_text * self.positional_embeddings(tokenized["positions"])
embedding = self.embedding(tokenized["tokens_ids"]) + positional_embedding
encoded = self.text_encoder(embedding.transpose(0, 1),
src_key_padding_mask=tokenized["attention_mask"]).transpose(0, 1)
seq_length = self.seq_length(encoded).mean(axis=1)
return {"data": encoded, "mask": tokenized["attention_mask"]}, seq_length
def forward(self, text: str, first_pose: torch.Tensor, sequence_length: int = -1):
text_encoding, seq_len = self.encode_text([text])
seq_len = round(float(seq_len))
seq_len = max(min(seq_len, self.max_seq_size), self.min_seq_size)
sequence_length = seq_len if sequence_length == -1 else sequence_length
pose_sequence = {
"data": first_pose.expand(1, sequence_length, *self.pose_dims),
"mask": torch.zeros([1, sequence_length], dtype=torch.bool, device=self.device),
}
if self.num_steps == 1:
pred = self.refine_pose_sequence(pose_sequence, text_encoding)
yield pred
else:
step_num = 0
while True:
yield pose_sequence["data"][0]
pose_sequence["data"] = self.refinement_step(step_num, pose_sequence, text_encoding)[0]
step_num += 1
def refinement_step(self, step_num, pose_sequence, text_encoding):
batch_size = pose_sequence["data"].shape[0]
pose_sequence["data"] = pose_sequence["data"].detach() # Detach from graph
batch_step_num = torch.repeat_interleave(torch.LongTensor([step_num]),
batch_size).unsqueeze(1).to(self.device)
step_encoding = self.step_encoder(self.step_embedding(batch_step_num))
change_pred = self.refine_pose_sequence(pose_sequence, text_encoding, step_encoding)
cur_step_size = self.get_step_size(step_num+1)
prev_step_size = self.get_step_size(step_num) if step_num > 0 else 0
step_size = cur_step_size-prev_step_size
if self.blend:
pred = (1-step_size) * pose_sequence["data"] + step_size * change_pred
else:
pred = pose_sequence["data"] + step_size * change_pred # add
return pred, cur_step_size
def embed_pose(self, pose_sequence_data):
batch_size, seq_length, _, _ = pose_sequence_data.shape
flat_pose_data = pose_sequence_data.reshape(batch_size, seq_length, -1)
positions = torch.arange(0, seq_length, dtype=torch.long, device=self.device)
if self.separate_positional_embedding:
positional_embedding = self.pos_positional_embeddings(positions)
else:
positional_embedding = self.alpha_pose * self.positional_embeddings(positions)
# Encode pose sequence
pose_embedding = self.pose_projection(flat_pose_data) + positional_embedding
return pose_embedding
def encode_pose(self, pose_sequence, text_encoding, step_encoding=None):
batch_size, seq_length, _, _ = pose_sequence["data"].shape
# Encode pose sequence
pose_embedding = self.embed_pose(pose_sequence["data"])
if step_encoding is not None:
step_mask = torch.zeros([step_encoding.size(0), 1], dtype=torch.bool, device=self.device)
pose_text_sequence = torch.cat([pose_embedding, text_encoding["data"], step_encoding], dim=1)
pose_text_mask = torch.cat(
[pose_sequence["mask"], text_encoding["mask"], step_mask], dim=1
)
pose_encoding = self.__get_text_pose_encoder()(
pose_text_sequence.transpose(0, 1), src_key_padding_mask=pose_text_mask
).transpose(0, 1)[:, :seq_length, :]
return pose_encoding
def __get_text_pose_encoder(self):
if hasattr(self, "text_pose_encoder"):
return self.text_pose_encoder
else:
return self.pose_encoder
def refine_pose_sequence(self, pose_sequence, text_encoding, step_encoding=None):
batch_size, seq_length, _, _ = pose_sequence["data"].shape
pose_encoding = self.encode_pose(pose_sequence, text_encoding, step_encoding)
# Predict desired change
flat_pose_projection = self.pose_diff_projection(pose_encoding)
return flat_pose_projection.reshape(batch_size, seq_length, *self.pose_dims)
def get_step_size(self, step_num):
if step_num < 2:
return 0.1
else:
return np.log(step_num) / np.log(self.num_steps)
def training_step(self, batch, *unused_args):
return self.step(batch, *unused_args, phase="train")
def validation_step(self, batch, *unused_args):
return self.step(batch, *unused_args, phase="validation")
def step(self, batch, *unused_args, phase: str):
"""
@param batch: data batch
@param phase: either "train" or "validation"
"""
text_encoding, sequence_length = self.encode_text(batch["text"])
pose = batch["pose"]
# Repeat the first frame for initial prediction
batch_size, pose_seq_length, num_keypoints, _ = pose["data"].shape
pose_sequence = {
"data": torch.stack([pose["data"][:, 0]] * pose_seq_length, dim=1),
"mask": torch.logical_not(pose["inverse_mask"])
}
if self.num_steps == 1:
pred = self.refine_pose_sequence(pose_sequence, text_encoding)
l1_gold = pose["data"]
refinement_loss = masked_mse_loss(l1_gold, pred, pose["confidence"], self.num_steps)
else:
refinement_loss = 0
for i in range(self.num_steps):
pred, step_size = self.refinement_step(i, pose_sequence, text_encoding)
l1_gold = step_size * pose["data"] + (1 - step_size) * pose_sequence["data"]
refinement_loss += masked_mse_loss(l1_gold, pred, pose["confidence"], self.num_steps)
teacher_forcing_step_level = np.random.rand(1)[0] < self.tf_p
pose_sequence["data"] = l1_gold if phase == "validation" or teacher_forcing_step_level else pred
if phase == "train": # add just a little noise while training
pose_sequence["data"] = pose_sequence["data"] + torch.randn_like(pose_sequence["data"]) * \
self.noise_epsilon
sequence_length_loss = F.mse_loss(sequence_length, pose["length"])
loss = refinement_loss + self.seq_len_weight * sequence_length_loss
self.log(phase + "_seq_length_loss", sequence_length_loss, batch_size=batch_size)
self.log(phase + "_refinement_loss", refinement_loss, batch_size=batch_size)
self.log(phase + "_loss", loss, batch_size=batch_size)
return loss
def configure_optimizers(self):
return Adam(self.parameters(), lr=self.lr)