-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathmain.py
147 lines (126 loc) · 6.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import scipy.misc
import numpy as np
import json
from model import DCGAN
from utils import pp, visualize, to_json, show_all_variables, expand_path, timestamp
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_integer("epoch", 25, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_float("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped). [108]")
flags.DEFINE_integer("input_width", None, "The size of image to use (will be center cropped). If None, same value as input_height [None]")
flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("output_width", None, "The size of the output images to produce. If None, same value as output_height [None]")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]")
flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]")
flags.DEFINE_string("data_dir", "./data", "path to datasets [e.g. $HOME/data]")
flags.DEFINE_string("out_dir", "./out", "Root directory for outputs [e.g. $HOME/out]")
flags.DEFINE_string("out_name", "", "Folder (under out_root_dir) for all outputs. Generated automatically if left blank []")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Folder (under out_root_dir/out_name) to save checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "samples", "Folder (under out_root_dir/out_name) to save samples [samples]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
flags.DEFINE_boolean("export", False, "True for exporting with new batch size")
flags.DEFINE_boolean("freeze", False, "True for exporting with new batch size")
flags.DEFINE_integer("max_to_keep", 1, "maximum number of checkpoints to keep")
flags.DEFINE_integer("sample_freq", 200, "sample every this many iterations")
flags.DEFINE_integer("ckpt_freq", 200, "save checkpoint every this many iterations")
flags.DEFINE_integer("z_dim", 100, "dimensions of z")
flags.DEFINE_string("z_dist", "uniform_signed", "'normal01' or 'uniform_unsigned' or uniform_signed")
flags.DEFINE_boolean("G_img_sum", False, "Save generator image summaries in log")
#flags.DEFINE_integer("generate_test_images", 100, "Number of images to generate during test. [100]")
FLAGS = flags.FLAGS
def main(_):
pp.pprint(flags.FLAGS.__flags)
# expand user name and environment variables
FLAGS.data_dir = expand_path(FLAGS.data_dir)
FLAGS.out_dir = expand_path(FLAGS.out_dir)
FLAGS.out_name = expand_path(FLAGS.out_name)
FLAGS.checkpoint_dir = expand_path(FLAGS.checkpoint_dir)
FLAGS.sample_dir = expand_path(FLAGS.sample_dir)
if FLAGS.output_height is None: FLAGS.output_height = FLAGS.input_height
if FLAGS.input_width is None: FLAGS.input_width = FLAGS.input_height
if FLAGS.output_width is None: FLAGS.output_width = FLAGS.output_height
# output folders
if FLAGS.out_name == "":
FLAGS.out_name = '{} - {} - {}'.format(timestamp(), FLAGS.data_dir.split('/')[-1], FLAGS.dataset) # penultimate folder of path
if FLAGS.train:
FLAGS.out_name += ' - x{}.z{}.{}.y{}.b{}'.format(FLAGS.input_width, FLAGS.z_dim, FLAGS.z_dist, FLAGS.output_width, FLAGS.batch_size)
FLAGS.out_dir = os.path.join(FLAGS.out_dir, FLAGS.out_name)
FLAGS.checkpoint_dir = os.path.join(FLAGS.out_dir, FLAGS.checkpoint_dir)
FLAGS.sample_dir = os.path.join(FLAGS.out_dir, FLAGS.sample_dir)
if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.sample_dir): os.makedirs(FLAGS.sample_dir)
with open(os.path.join(FLAGS.out_dir, 'FLAGS.json'), 'w') as f:
flags_dict = {k:FLAGS[k].value for k in FLAGS}
json.dump(flags_dict, f, indent=4, sort_keys=True, ensure_ascii=False)
#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth=True
with tf.Session(config=run_config) as sess:
if FLAGS.dataset == 'mnist':
dcgan = DCGAN(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
sample_num=FLAGS.batch_size,
y_dim=10,
z_dim=FLAGS.z_dim,
dataset_name=FLAGS.dataset,
input_fname_pattern=FLAGS.input_fname_pattern,
crop=FLAGS.crop,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
data_dir=FLAGS.data_dir,
out_dir=FLAGS.out_dir,
max_to_keep=FLAGS.max_to_keep)
else:
dcgan = DCGAN(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
sample_num=FLAGS.batch_size,
z_dim=FLAGS.z_dim,
dataset_name=FLAGS.dataset,
input_fname_pattern=FLAGS.input_fname_pattern,
crop=FLAGS.crop,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
data_dir=FLAGS.data_dir,
out_dir=FLAGS.out_dir,
max_to_keep=FLAGS.max_to_keep)
show_all_variables()
if FLAGS.train:
dcgan.train(FLAGS)
else:
load_success, load_counter = dcgan.load(FLAGS.checkpoint_dir)
if not load_success:
raise Exception("Checkpoint not found in " + FLAGS.checkpoint_dir)
# to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
# [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
# [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
# [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
# [dcgan.h4_w, dcgan.h4_b, None])
# Below is codes for visualization
if FLAGS.export:
export_dir = os.path.join(FLAGS.checkpoint_dir, 'export_b'+str(FLAGS.batch_size))
dcgan.save(export_dir, load_counter, ckpt=True, frozen=False)
if FLAGS.freeze:
export_dir = os.path.join(FLAGS.checkpoint_dir, 'frozen_b'+str(FLAGS.batch_size))
dcgan.save(export_dir, load_counter, ckpt=False, frozen=True)
if FLAGS.visualize:
OPTION = 1
visualize(sess, dcgan, FLAGS, OPTION, FLAGS.sample_dir)
if __name__ == '__main__':
tf.app.run()