forked from surajpaib/dense-depth-body-parts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification_demo.m
67 lines (50 loc) · 2.02 KB
/
classification_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
addpath(genpath('./models/'));
addpath(genpath('./ubc3vtoolkit'));
% Update this if you already have a matconvnet on your computer.
% It requires compilation.
run ./matconvnet/matlab/vl_setupnn.m
%% Load and prepare the image.
depth_image = importdata('sample.png');
% Find the boundaries of the person in the depth image.
margin_1 = sum(depth_image.alpha, 1);
margin_2 = sum(depth_image.alpha, 2);
top = find(margin_2, 1, 'first');
bottom = find(margin_2, 1, 'last');
left = find(margin_1, 1, 'first');
right = find(margin_1, 1, 'last');
assert(top<bottom && left<right, 'Top/Bottom & Left/Right are not consistent');
width = right-left+1;
height = bottom-top+1;
% Crop the image
depth_image.cdata = depth_image.cdata(top:bottom, left:right, 1);
depth_image.alpha = depth_image.alpha(top:bottom, left:right);
target_window = 190;
margin = 30;
if height > width,
scaler = [target_window NaN];
else
scaler = [NaN target_window];
end
% Scale the image
depth_im = imresize(depth_image.cdata, scaler, 'lanczos2');
depth_mask = imresize(depth_image.alpha, scaler, 'nearest') == 255;
average_depth = mean(depth_im(depth_mask));
depth_im(depth_mask) = uint8(int64(depth_im(depth_mask)) + int64(55-average_depth));
depth_im(~depth_mask) = 255;
depth_im = single(depth_im)/255;
[height, width] = size(depth_im);
final_depth_image = ones(target_window + 2*margin, target_window + 2*margin, 'single');
final_depth_mask = zeros([target_window + 2*margin, target_window + 2*margin], 'uint8');
loc_x = floor((target_window + 2*margin - width)/2)+1;
loc_y = floor((target_window + 2*margin - height)/2)+1;
final_depth_image(loc_y:loc_y+height-1, loc_x:loc_x+width-1) = depth_im;
final_depth_mask(loc_y:loc_y+height-1, loc_x:loc_x+width-1) = depth_mask*255;
%% Load and prepare the network.
net = load('hardpose_69k_dag');
net = dagnn.DagNN.loadobj(net);
net.eval({'data', final_depth_image});
prediction = net.getVar('prob').value;
%% Visualize the predcitions
[~, classes] = max(prediction, [], 3);
classes(~final_depth_mask) = 0;
imagesc(classes);