forked from begeekmyfriend/tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhparams.py
52 lines (44 loc) · 1.29 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow as tf
# Default hyperparameters:
hparams = tf.contrib.training.HParams(
# Comma-separated list of cleaners to run on text prior to training and eval. For non-English
# text, you may want to use "basic_cleaners" or "transliteration_cleaners" See TRAINING_DATA.md.
cleaners='english_cleaners',
# Audio:
num_mels=160,
num_freq=1025,
sample_rate=24000,
frame_length_ms=50,
frame_shift_ms=12.5,
preemphasis=0.97,
min_level_db=-100,
ref_level_db=20,
max_frame_num=1000,
max_abs_value = 4,
fmin = 125, # for male, set 55
fmax = 7600, # for male, set 3600
# Model:
outputs_per_step=5,
embed_depth=512,
prenet_depths=[256, 256],
encoder_depth=256,
postnet_depth=512,
attention_depth=128,
decoder_depth=1024,
# Training:
batch_size=32,
adam_beta1=0.9,
adam_beta2=0.999,
reg_weight = 1e-6,
initial_learning_rate=0.001,
decay_learning_rate=True,
use_cmudict=False, # Use CMUDict during training to learn pronunciation of ARPAbet phonemes
# Eval:
max_iters=300,
griffin_lim_iters=60,
power=1.2, # Power to raise magnitudes to prior to Griffin-Lim
)
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)