-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpredict.py
53 lines (41 loc) · 1.52 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
from prepare import prep_env as global_prep_env
import sys, os
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
print(path, 'added')
def remove_path(path):
if path in sys.path:
sys.path.remove(path)
global_args = global_prep_env()
model_dirs = global_args['model_dirs'] #
model_args = []
model_forecasts = []
path = os.path.dirname(os.path.abspath(__file__))
for model_dir in model_dirs:
model_path = os.path.join(path, model_dir)
add_path(model_path)
model_path_src = os.path.join(model_path, 'src')
if model_dir == 'rnn':
add_path(model_path_src)
arg_model = '{}.src.prepare'.format(model_dir)
model_arg = __import__(arg_model).src.prepare.prep_env()
model_args.append(model_arg)
model_predict = '{}.src.predict'.format(model_dir)
model_predict = __import__(model_predict).src.predict.forecast
model_forecasts.append(model_predict)
remove_path(model_path)
remove_path(model_path_src)
def forecast(settings):
yhats = []
for model_arg, model_forecast in zip(model_args, model_forecasts):
model_arg['path_to_test_x'] = settings['path_to_test_x']
yhat = model_forecast(model_arg)
yhats.append(yhat)
yhat = yhats[0].copy()
#yhat[:,144:,:] = yhats[0][:,144:,:]*0.5+0.5*yhats[1][:,144:,:]
yhat[:,200:,:] = yhats[0][:,200:,:]*0.5+0.5*yhats[1][:,200:,:]
return yhat
#return yhats
#return np.concatenate(yhats, axis=2).mean(axis=-1, keepdims=True)