-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrie-functions.agda
114 lines (89 loc) · 4.63 KB
/
trie-functions.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
open import trie-core
open import string
open import maybe
module trie-functions (trie-lookup : ∀{A : Set} → trie A → string → maybe A)
(trie-insert : ∀{A : Set} → trie A → string → A → trie A)
(trie-remove : ∀{A : Set} → trie A → string → trie A) where
open import bool
open import char
open import list
open import product
open import unit
open import eq
open import nat
trie-contains : ∀{A : Set} → trie A → string → 𝔹
trie-contains t s with trie-lookup t s
trie-contains t s | nothing = ff
trie-contains t s | just _ = tt
trie-map : ∀{A B : Set} → (A → B) → trie A → trie B
trie-cal-map : ∀{A B : Set} → (A → B) → cal (trie A) → cal (trie B)
trie-map f (Node x x₁) = Node (maybe-map f x) (trie-cal-map f x₁)
trie-cal-map f [] = []
trie-cal-map f ((c , t) :: cs) =
(c , trie-map f t) :: trie-cal-map f cs
trie-to-string-h : ∀{A : Set} → string → (A → string) → trie A → 𝕃 char → string
trie-cal-to-string-h : ∀{A : Set} → string → (A → string) → cal (trie A) → 𝕃 char → string
trie-to-string-h sep d (Node (just x) c) prev-str =
(𝕃char-to-string (reverse prev-str)) ^ sep ^ (d x) ^ "\n" ^ (trie-cal-to-string-h sep d c prev-str)
trie-to-string-h sep d (Node nothing c) prev-str = trie-cal-to-string-h sep d c prev-str
trie-cal-to-string-h sep d [] prev-str = ""
trie-cal-to-string-h sep d ((c , t) :: cs) prev-str =
(trie-to-string-h sep d t (c :: prev-str)) ^ (trie-cal-to-string-h sep d cs prev-str)
{- trie-to-string sep d t returns a string representation of the trie t,
where each mapping from string s to data x is printed as
s sep d x
where sep is a string and d returns a string for any element A of the trie. -}
trie-to-string : ∀{A : Set} → string → (A → string) → trie A → string
trie-to-string sep d t = trie-to-string-h sep d t []
trie-mappings-h : ∀{A : Set} → trie A → 𝕃 char → 𝕃 (string × A)
trie-cal-mappings-h : ∀{A : Set} → cal (trie A) → 𝕃 char → 𝕃 (string × A)
trie-mappings-h (Node (just x) c) prev-str = (𝕃char-to-string (reverse prev-str) , x) :: (trie-cal-mappings-h c prev-str)
trie-mappings-h (Node nothing c) prev-str = (trie-cal-mappings-h c prev-str)
trie-cal-mappings-h [] prev-str = []
trie-cal-mappings-h ((c , t) :: cs) prev-str = trie-mappings-h t (c :: prev-str) ++ (trie-cal-mappings-h cs prev-str)
trie-mappings : ∀{A : Set} → trie A → 𝕃 (string × A)
trie-mappings t = trie-mappings-h t []
-- return a list of all the strings which have associated data in the trie
trie-strings : ∀{A : Set} → trie A → 𝕃 string
trie-strings t = map fst (trie-mappings t)
trie-size : ∀{A : Set} → trie A → ℕ
trie-size t = length (trie-strings t)
trie-nonempty : ∀{A : Set} → trie A → 𝔹
trie-cal-nonempty : ∀{A : Set} → cal (trie A) → 𝔹
trie-nonempty (Node (just x) t) = tt
trie-nonempty (Node nothing c) = trie-cal-nonempty c
trie-cal-nonempty [] = ff
trie-cal-nonempty ((a , t) :: c) = trie-nonempty t || trie-cal-nonempty c
----------------------------------------------------------------------
-- list-tries, which map strings to lists of values
----------------------------------------------------------------------
𝕃trie : Set → Set
𝕃trie A = trie (𝕃 A)
𝕃trie-lookup : ∀{A : Set} → 𝕃trie A → string → 𝕃 A
𝕃trie-lookup t s with trie-lookup t s
... | nothing = []
... | just l = l
𝕃trie-add : ∀{A : Set} → trie (𝕃 A) → string → A → trie (𝕃 A)
𝕃trie-add t s a = trie-insert t s (a :: 𝕃trie-lookup t s)
𝕃trie-add* : ∀{A : Set} → trie (𝕃 A) → string → 𝕃 A → trie (𝕃 A)
𝕃trie-add* t s aa = trie-insert t s (aa ++ 𝕃trie-lookup t s)
----------------------------------------------------------------------
-- stringset
----------------------------------------------------------------------
stringset : Set
stringset = trie ⊤
stringset-contains : stringset → string → 𝔹
stringset-contains ss s = trie-contains ss s
stringset-insert : stringset → string → stringset
stringset-insert ss s = trie-insert ss s triv
stringset-remove : stringset → string → stringset
stringset-remove ss s = trie-remove ss s
stringset-insert𝕃 : stringset → 𝕃 char → stringset
stringset-insert𝕃 ss s = trie-insert-h ss s triv
empty-stringset : stringset
empty-stringset = empty-trie
stringset-insert* : stringset → 𝕃 string → stringset
stringset-insert* s [] = s
stringset-insert* s (x :: xs) = stringset-insert (stringset-insert* s xs) x
stringset-strings : ∀{A : Set} → trie A → 𝕃 string
stringset-strings t = map fst (trie-mappings t)