-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscrete_agent_code.py
197 lines (163 loc) · 7 KB
/
discrete_agent_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from datetime import datetime
import cv2
import numpy as np
import torch
from tqdm import tqdm
import discrete_agent
import helpers
import tensorboard_writer
from discrete_dqns import double_dqn
from environments import random_environment
from replay_buffers import fast_prioritised_rb
from tools import episode_rollout_tool
from tools.actions_visual_tool import ActionsVisualTool
import random
if __name__ == '__main__':
random_state = 816673
torch.random.manual_seed(random_state)
random.seed(random_state)
np.random.seed(random_state)
torch.manual_seed(random_state)
n_actions = 16
max_capacity = 10000
batch_size = 128
max_steps = 750 # was 750
max_episodes = 300 # was 250
epsilon = 1.
delta = 0.0000031
minimum_epsilon = 0.5
sampling_eps = 1e-7
tau = 100 # target network episode update rate
hps = helpers.Hyperparameters(gamma=0.9, lr=1.e-3)
evaluate_reached_goal_count = 0
device = torch.device('cpu')
display_game = False
display_tools = False
environment = random_environment.RandomEnvironment(display=display_game,
magnification=500)
environment.draw(environment.init_state)
dqn = double_dqn.DiscreteDoubleDQN(hps, n_actions, device)
agent = discrete_agent.DiscreteAgent(environment, dqn, n_actions, stride=0.02)
rb = fast_prioritised_rb.FastPrioritisedExperienceReplayBuffer(max_capacity, batch_size,
sampling_eps, agent, environment.init_state.shape)
rollout_tool = episode_rollout_tool.EpisodeRolloutTool(environment.renderer.image)
actions_tool = ActionsVisualTool(500, 15, n_actions, agent)
hyperparameters = {
'gamma': hps.gamma,
'lr': hps.lr,
'max_capacity': max_capacity,
'batch_size': batch_size,
'max_steps': max_steps,
'max_episodes': max_episodes,
'initial_epsilon': epsilon,
'epsilon_decay': delta,
'minimum_epsilon': minimum_epsilon,
'random_state': random_state,
'discrete_actions': True,
'weighted_replay_buffer': True,
'sampling_eps': sampling_eps,
}
def metrics(rewards):
return {'metrics/mean_reward': np.mean(rewards),
'metrics/min_reward': np.min(rewards),
'metrics/max_reward': np.max(rewards),
'metrics/std_reward': np.std(rewards),
'metrics/median_reward': np.median(rewards)}
now = datetime.now().strftime('%b%d_%H-%M-%S')
writer = tensorboard_writer.CustomSummaryWriter(log_dir=f'runs/discrete_agent_runs/{now}')
def log(main_tag, values, episode):
writer.add_scalar(f'{main_tag}/mean', np.mean(values), episode)
writer.add_scalar(f'{main_tag}/min', np.min(values), episode)
writer.add_scalar(f'{main_tag}/max', np.max(values), episode)
writer.add_scalar(f'{main_tag}/std', np.std(values), episode)
writer.add_scalar(f'{main_tag}/median', np.median(values), episode)
def log_greedy_policy(draw=True):
if draw:
rollout_tool.draw()
policy_img = cv2.cvtColor(rollout_tool.image, cv2.COLOR_BGR2RGB)
policy_img = torch.from_numpy(policy_img)
writer.add_image('greedy_policy', policy_img, episode_id,
dataformats='HWC')
def log_greedy_actions_map(draw=True):
if draw:
actions_tool.draw()
actions_img = cv2.cvtColor(actions_tool.image, cv2.COLOR_BGR2RGB)
actions_img = torch.from_numpy(actions_img)
writer.add_image('greedy_actions_map', actions_img, episode_id,
dataformats='HWC')
model_path = os.path.join('models', 'discrete_models')
if not os.path.isdir(model_path):
os.makedirs(model_path)
step_id = 0
episodes_iter = tqdm(range(max_episodes))
for episode_id in episodes_iter:
episode_loss_list = []
episode_reward_list = []
agent.reset()
agent.dqn.train()
for step_num in range(max_steps):
transition, distance_to_goal = agent.step(epsilon)
state, action, reward, next_state = transition
rb.store(state, action, reward, next_state)
episode_reward_list.append(reward)
if len(rb) > batch_size:
transitions = rb.batch_sample().to(device)
losses = dqn.train_q_network(transitions)
episode_loss_list.append(losses.sum())
if epsilon > minimum_epsilon:
epsilon -= delta
epsilon = max(epsilon, minimum_epsilon)
episodes_iter.set_description(f'Epsilon: {epsilon:.3f}')
if dqn.has_target_network and (step_id % tau == 0):
dqn.update_target_network()
step_id += 1
if distance_to_goal < 0.03:
break
agent.dqn.eval()
agent.reset()
states = [agent.state]
has_reached_goal = False
for step_num in range(max_steps):
transition, distance_to_goal = agent.step(0.0)
state, action, reward, next_state = transition
states.append(next_state)
rb.store(state, action, reward, next_state)
if distance_to_goal < 0.03:
evaluate_reached_goal_count += 1
has_reached_goal = True
break
rewards = np.array(episode_reward_list)
log('reward', rewards, episode_id)
writer.add_histogram('reward_dist', rewards, episode_id)
step_losses = np.array(episode_loss_list)
log('loss', step_losses, episode_id)
writer.add_hparams(hyperparameters, metrics(rewards))
writer.add_scalar('reached_goal', has_reached_goal, episode_id)
writer.add_scalar("reached_goal_count", evaluate_reached_goal_count, episode_id)
writer.add_scalar('epsilon', epsilon, episode_id)
rollout_tool.set_states(np.asarray(states))
if display_tools:
rollout_tool.draw()
log_greedy_policy(draw=False)
rollout_tool.show()
actions_tool.draw()
log_greedy_actions_map(draw=False)
actions_tool.show()
else:
log_greedy_policy()
log_greedy_actions_map()
torch.save(dqn.q_network.state_dict(),
os.path.join(model_path, f'q_networks_state_dict-{episode_id}.pt'))
if dqn.has_target_network:
torch.save(dqn.target_network.state_dict(),
os.path.join(model_path, f'target_networks_state_dict-{episode_id}.pt'))
actions_tool.draw()
actions_tool.save_image('actions_visualisation.png')
rollout_tool.draw()
rollout_tool.save_image('greedy_policy_reward.png')
torch.save(dqn.q_network.state_dict(),
os.path.join(model_path, 'q_networks_state_dict.pt'))
if dqn.has_target_network:
torch.save(dqn.target_network.state_dict(),
os.path.join(model_path, 'target_networks_state_dict.pt'))