Skip to content

Latest commit

 

History

History
91 lines (79 loc) · 3.54 KB

README.md

File metadata and controls

91 lines (79 loc) · 3.54 KB

Updates

  • Nov 11, 2022: starting 10-nov-2022 all updates will be reflected here
  • Nov 8, 2022: init

Getting Started

Dependency

  • Tested with PyTorch 1.3.1, CUDA 10.1, python 3.6 and Ubuntu 16.04.
    pip3 install torch==1.3.1.
  • requirements : lmdb, pillow, torchvision, nltk, natsort
    pip3 install lmdb pillow torchvision nltk natsort

Download dataset for traininig and evaluation from here

Run demo with pretrained model

  1. Download pretrained model from here
  • The model is trained on Devnagri
  • training details can be found here
  1. Add image files to test into demo_image/
  2. Run demo.py (add --sensitive option if you use case-sensitive model)
CUDA_VISIBLE_DEVICES=0 python3 demo.py \
--Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn \
--image_folder demo_image/ \
--saved_model <path_to_the_saved_model>

Training and evaluation

  1. Train CRNN[10] model
CUDA_VISIBLE_DEVICES=0 python3 train.py \
--train_data data_lmdb_release/training --valid_data data_lmdb_release/validation \
--select_data 1 --batch_ratio / \
--Transformation None --FeatureExtraction VGG --SequenceModeling BiLSTM --Prediction CTC
  1. Test CRNN[10] model.
CUDA_VISIBLE_DEVICES=0 python3 test.py \
--eval_data data_lmdb_release/evaluation --benchmark_all_eval \
--Transformation None --FeatureExtraction VGG --SequenceModeling BiLSTM --Prediction CTC \
--saved_model saved_models/None-VGG-BiLSTM-CTC-Seed1111/best_accuracy.pth

Arguments

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data. default is MJ-ST, which means MJ and ST used as training data.
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --data_filtering_off: skip data filtering when creating LmdbDataset.
  • --Transformation: select Transformation module [None | TPS].
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet].
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM].
  • --Prediction: select Prediction module [CTC | Attn].
  • --saved_model: assign saved model to evaluation.

When you need to train on your own language datasets.

  1. Create your own lmdb dataset.
pip3 install fire
python3 create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The structure of data folder as below. Refer for ICFHR dataset structure for better understanding.

data
├── gt.txt
└── test
    ├── word_1.png
    ├── word_2.png
    ├── word_3.png
    └── ...

At this time, gt.txt should be {imagepath}\t{label}\n
For example

test/word_1.png Tiredness
test/word_2.png kills
test/word_3.png A
...
  1. Modify --select_data, --batch_ratio, and opt.character.
  2. This procedure needs to be repeated for each single training and validation folder, for each language in ICFHR_dataset