-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFASTA_add_metadata.py
executable file
·361 lines (301 loc) · 18 KB
/
FASTA_add_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
"""
Purpose: Add tabular metadata to FASTA sequence headers
Author : Chase W. Nelson <[email protected]>
Cite : https://github.com/chasewnelson/
Date : 2022-01-06
Details: Outputs a modified FASTA file with metadata added to headers
IN: /Users/cwnelson88/Desktop/NCI/research/HPV16
DO: FASTA_add_metadata.py --seq_file=seq/HPV16_PAP_20200813.N-30.fasta --meta_file=seq_metadata/Lisa_hpv16meth.20190723.tsv
"""
import argparse
import os
import pandas as pd
import re
import sys
from Bio import SeqIO
from collections import defaultdict
from datetime import datetime
from numpy import nan as NA
from typing import Dict, List, NamedTuple, TextIO
usage = """# -----------------------------------------------------------------------------
FASTA_add_metadata.py - Add tabular metadata to FASTA sequence headers
# -----------------------------------------------------------------------------
For DOCUMENTATION, run:
$ FASTA_add_metadata.py --help
$ pydoc ./FASTA_add_metadata.py
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
EXAMPLE:
$ FASTA_add_metadata.py --seq_file=PAP.fasta --meta_file=metadata.tsv --join_key=MERGE_ID --out_file=PAP_meta.fasta > FASTA_add_metadata_PAP.out
# -----------------------------------------------------------------------------
"""
class Args(NamedTuple):
""" Command-line arguments """
seq_fh: TextIO
meta_file: TextIO
join_key: str
out_file: str
meta_label: str
# -----------------------------------------------------------------------------
def get_args() -> Args:
""" Get command-line arguments """
parser = argparse.ArgumentParser(
description='PROGRAM: Add tabular metadata to FASTA sequence headers. HELP: FASTA_add_metadata.py --help',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Rename "optional" arguments
parser._optionals.title = 'Named arguments'
parser.add_argument('-i',
'--seq_file',
metavar='FILE',
help='FASTA file containing a multiple sequence alignment [REQUIRED]',
required=True,
nargs=1, # makes it a list
type=argparse.FileType('rt'))
parser.add_argument('-m',
'--meta_file',
metavar='FILE',
help='TSV file containing metadata [REQUIRED]',
required=True,
type=argparse.FileType('rt'))
parser.add_argument('-j',
'--join_key',
metavar='str',
help='Column name from --meta_file containing key for data joining, expected at start of '
'FASTA header. May provide multiple comma-separated columns names to be searched in '
'order. Value cannot be "nan" or "NA" [REQUIRED]',
required=True,
type=str)
parser.add_argument('-o',
'--out_file',
metavar='str',
help='Name of output FASTA file, with metadata added to headers [REQUIRED]',
required=True,
type=str)
parser.add_argument('-l',
'--meta_label',
metavar='str',
help='Label to be used for the new text block in the FASTA header [OPTIONAL]',
required=False,
type=str,
default='METADATA')
args = parser.parse_args()
# -------------------------------------------------------------------------
# VALIDATE arguments
# DIE if output file already exists
if os.path.isfile(args.out_file):
parser.error(f'\n### ERROR: out_file="{args.out_file}" already exists')
return Args(seq_fh=args.seq_file[0],
meta_file=args.meta_file,
join_key=args.join_key,
out_file=args.out_file,
meta_label=args.meta_label)
# -----------------------------------------------------------------------------
def main() -> None:
""" Tell them they are walking around shining like the sun """
# -------------------------------------------------------------------------
# GATHER arguments
args = get_args()
seq_fh = args.seq_fh
meta_fh = args.meta_file
join_key = args.join_key
out_file = args.out_file
meta_label = args.meta_label
# -------------------------------------------------------------------------
# REGEX
# define regex for matching *BAD* PAP IDs, to be reported and excluded if encountered
# regex_validID = re.compile(r'([ACDIPRSX]+)(\d+)_(\w+)') # when there was a '*_HPV16' suffix to rec.id
regex_validID = re.compile(r'([ACDIPRSX]+)(\d+)')
# IRC: IRC204014_HPV16, ...
# PAP: PAP0110_HPV16, ...
# SBX|SCD: SBX1353_HPV16, SCD4176_HPV16, ...
regex_date = re.compile(r'(\d+)-(\d+)-(\d+) (\d+):(\d+):(\d+).(\d+)')
# -------------------------------------------------------------------------
# INITIALIZE OUTPUT AND LOG
date_string = str(datetime.now())
date_string = regex_date.sub(r'\1-\2-\3', date_string)
# Print output
print(usage)
print('# -----------------------------------------------------------------------------')
print(f'LOG:command="{" ".join(sys.argv)}"')
print(f'LOG:cwd="{os.getcwd()}"')
print(f'LOG:seq_file="{seq_fh.name}"')
print(f'LOG:meta_file="{meta_fh.name}"')
print(f'LOG:join_key="{join_key}"')
print(f'LOG:out_file="{out_file}"', flush=True)
# -------------------------------------------------------------------------
# IMPORT the HPV16 sequences
recs = SeqIO.parse(seq_fh, 'fasta')
# -------------------------------------------------------------------------
# IMPORT HPV sequence metadata (one row => one sequence's metadata)
meta_df = pd.read_table(meta_fh, sep='\t')
print(f'LOG:meta_file_nrows={len(meta_df)}')
"""
PID MERGE_ID PAP_ID HPV16_SET PATIENT_ID HPVSTRING ... UPDATED_CASE_STAT CYTO_DX_CGR HISTOLOGY_CGR CC_CGR TIME_TO_CASE CLEARED
0 37025735 PAP100004 PAP1000040030 2 236518 16,31,45,53,58,62,68,71,72 ... 1 2 NaN 0.0 0.0 0.0
1 31142965 PAP100016 PAP1000160030 2 691185 16 ... 1 0 NaN 0.0 0.0 0.0
2 65728770 PAP100209 PAP1002090030 2 606979 16 ... 3 5 NaN 1.0 34.0 NaN
3 30470610 PAP100223 PAP1002230030 2 404283 16,66 ... 1 1 NaN 0.0 0.0 0.0
4 38235675 PAP100309 PAP1003090030 2 254310 6,16,53 ... 3 1 NaN 1.0 1425.0 NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
3574 67588670 PAP603828 PAP6038280050 2 1037979 16,31,52,54,61 ... 0 0 NaN 0.0 256.0 1.0
3575 62589300 PAP604398 PAP6043980050 2 1023646 16 ... 2 1 NaN 1.0 43.0 NaN
3576 50601285 PAP604547 PAP6045470050 2 405059 16 ... 2 1 NaN 1.0 26.0 NaN
3577 20766695 PAP2596 PAP6059930050 1 1031688 16 ... 3 3 NaN 1.0 59.0 NaN
3578 5294620 PAP606638 PAP6066380050 2 405908 16 ... 0 0 NaN 0.0 0.0 0.0
"""
# FORM INDICES based on column names provided in input
join_key_list = join_key.split(',')
# print(f'join_key_list={join_key_list}')
indices_list: List[str] = []
join_key_count_dict: Dict[str, int] = defaultdict(int)
for i, row in meta_df.iterrows():
found_key = False
for key in join_key_list:
key_value = meta_df.at[i, key]
# If it's found, add it to indices and go to next row
if pd.notnull(key_value) and key_value is not None and key_value != NA and key_value != '' \
and key_value != 'nan' and key_value != 'NA':
# print(f'found key_value={key_value}')
# print(f'type(key_value)={type(key_value)}')
found_key = True
indices_list.append(key_value)
join_key_count_dict[key] += 1
break
if not found_key:
sys.exit(f'\n### ERROR: no acceptable --join_key={join_key_list} found in metadata at row {i}')
for key in join_key_list:
print(f'LOG:times_used={join_key_count_dict[key]} for join_key="{key}"')
# print(f'len(meta_df)={len(meta_df)}')
# print(f'len(indices_list)={len(indices_list)}')
# SET INDICES
# meta_df.index = meta_df[join_key] # this only necessary if using .at[] rather than .loc[] below?
meta_df.index = indices_list # this only necessary if using .at[] rather than .loc[] below?
# -------------------------------------------------------------------------
# CREATE new column containing metadata string for FASTA header
# # -------------------------------------------------------------------------
# # CREATE NEW COLUMN containing metadata string with semicolon-separated KEY=VALUE pairs
# # -------------------------------------------------------------------------
# # SOLUTION 1 FROM Twitter @least_recent (Jonathan)
# # (1) df.insert() <== inserts column into DataFrame; parameters are (0-based loc to insert, new col name, Series)
# # (2) len(df.columns) <== gets the number of columns (also works: df.shape[1])
# # (3) 'meta_string' <== name of new col
# # (4) [] <= a list, which is an array-like object interpreted as a Series
# # (5) df.at[i, c] <== retrieves a single value in a DataFrame, here the value at row number i, col name c
# # (6) range(len(df)) <== integers from 0 to number of rows
# # (7) [<list comp>] <== creates semicolon-separated NAME=VALUE for all columns, once for each row i
# meta_df.insert(len(meta_df.columns),
# 'meta_string',
# [';'.join([f'{c}={meta_df.at[i, c]}' for c in meta_df.columns]) for i in range(len(meta_df))])
# # run times: 1.914, 1.615, 1.688, 1.848 seconds
# -------------------------------------------------------------------------
# CREATE NEW COLUMN containing metadata string with semicolon-separated KEY=VALUE pairs
# -------------------------------------------------------------------------
# SOLUTION 2 FROM Twitter @guan (Guan)
# (1) df.items() <== returns a generator of tuples with (colname, Series)
# (2) Series.items() <== returns a generator of tuples with (index, value) [PERHAPS similar to df.iterrows()]]
# (3) df.apply() <== applies a function across rows (axis=0 or 'rows') or across columns (axis=1 or 'columns')
# (4) lambda x thus operates once for each row, across columns (axis=1)
# (5) each row is a Series, so calling .items() in the lambda function gets all the col=value pairs
meta_df['meta_string'] = meta_df.apply(lambda x: ';'.join(f'{k}="{v}"' for k, v in x.items()), axis='columns')
# run times: 1.293, 0.859, 0.849, 1.213 seconds
# # My own BULLSHIT
# # meta_df['meta_string'] = ''
# # for col_name in meta_df.columns:
# # print(f'col_name="{col_name}"')
# # # print(f'meta_df[col_name]="{meta_df[col_name]}"') # outputs 1-column DF with indices
# # # print(f'meta_df[col_name].astype(str)="{meta_df[col_name].astype(str)}"')
# # # print(f'meta_df[col_name].values="{meta_df[col_name].values}"')
# # print(f'list(meta_df[col_name].values)="{list(meta_df[col_name].values)}"')
#
# for col_name in meta_df.columns:
# meta_df['meta_string'] += list(map(str, meta_df[col_name].values))
#
# # for col_name in ['MERGE_ID', 'ENRL_AGE', 'HPVSTRING']:
# # meta_df['meta_string'] += f'{col_name}={meta_df[col_name].astype(str)};'
#
# # # HPV16_metadata['meta_string'] = f'MERGE_ID=' + HPV16_metadata['MERGE_ID'].astype(str) + ';' + \
# # f'HPVSTRING={HPV16_metadata["HPVSTRING"].astype(str)};' + \
# # f'ENRL_AGE={HPV16_metadata["ENRL_AGE"].astype(str)};' + \
# # f'RACE_ETH=' + HPV16_metadata['RACE_ETH'].astype(str) + ';' + \
# # f'STUDY_WORST_CYTO_DX=' + HPV16_metadata['STUDY_WORST_CYTO_DX'].astype(str) + ';' + \
# # f'WORST_BX_STUDY=' + HPV16_metadata['WORST_BX_STUDY'].astype(str) + ';' + \
# # f'UPDATED_CASE_STAT=' + HPV16_metadata['UPDATED_CASE_STAT'].astype(str) + ';' + \
# # f'TIME_TO_CASE=' + HPV16_metadata['TIME_TO_CASE'].astype(str) + ';' + \
# # f'CLEARED=' + HPV16_metadata['CLEARED'].astype(str)
# -------------------------------------------------------------------------
# SAVE updated DataFrame - only for debugging
# meta_df.to_csv('seq_metadata/Lisa_hpv16meth.20190723_wMetadataString.tsv', sep='\t', index=True)
# -------------------------------------------------------------------------
# JOIN METADATA to FASTA headers and PRINT
# OPEN out_file for writing, to which SeqIO.write() will append
out_fh = sys.stdout
if out_file != '':
out_fh = open(out_file, 'wt')
# initialize counters
nseqs = 0
nseqs_wMeta = 0
nseqs_woMeta = 0
recs_present: List[str] = []
recs_missing: List[str] = []
# recs_updated = []
for rec in recs: # .id's of the form 'PAP0016_HPV16', 'PAP0037_HPV16', ...
nseqs += 1
# print(rec) # Number of features: 0
# print(f'rec.id="{rec.id}"') # rec.id="PAP0016_HPV16"
# print(f'rec.name="{rec.name}"') # rec.name="PAP0016_HPV16"
# print(f'rec.description="{rec.description}"') # rec.description="PAP0016_HPV16"
# print(f'rec.seq="{rec.seq}"') # Seq('ACTACAATAATTCATGTATAAAACTAAGGGTGTAACCGAAATCGGTTGAACCGA...TAA')
# ID_LIST = rec.id.split('_')
# # print(f'ID_LIST="{ID_LIST}"') # ID_LIST="['PAP237467', 'HPV16']"
# ID = str(ID_LIST[0])
# HPV_type = str(ID_LIST[1])
# kill if unexpected format; otherwise extract ID
if not regex_validID.search(rec.id): # len(ID_LIST) != 2 or HPV_type != 'HPV16' # regex_nonPAPID.search(ID):
sys.exit(f"\n### TERMINATED: UNEXPECTED ID={rec.id}")
if rec.id in meta_df.index:
nseqs_wMeta += 1
recs_present.append(rec.id)
new_description = f'{meta_label}:source="{os.path.basename(meta_fh.name)}";date="{date_string}";{str(meta_df.at[rec.id, "meta_string"])}' # assumes ID is the INDEX
if rec.description == rec.id:
rec.description = new_description
else:
rec.description = rec.description + ' ' + new_description
# rec.description = f'{meta_label}}:source="{os.path.basename(meta_fh.name)}";date="{date_string}";{meta_df.loc[meta_df[join_key] == ID, "meta_string"].values[0]}' # .values is a 1-elt list
# LESSON: modifying will sadly NOT change the rec in the original FastaIterator
else:
nseqs_woMeta += 1
# print(f'ID="{ID}" missing from metadata="{meta_fh.name}"')
recs_missing.append(rec.id)
# KeyError: 'PAP0097'
# rec.id = ID + ' ' + str(meta_df.loc[meta_df['MERGE_ID'] == ID, 'meta_string']) # WORKS but FORMAT!!!
# rec.id = ID + ' ' + HPV16_metadata.get_value(ID, 'metadata_string') # ERROR: 'DataFrame' object has no attribute 'get_value'
# rec.id = ID + ' ' + str(HPV16_metadata.loc[HPV16_metadata['MERGE_ID'] == ID, 'metadata_string'].values[0]) # ERROR: index 0 is out of bounds for axis 0 with size 0
# rec.id = ID + ' ' + str(HPV16_metadata.loc[HPV16_metadata['MERGE_ID'] == ID, 'metadata_string'].get_value()) # ERROR: 'Series' object has no attribute 'get_value'
# rec.id = ID + ' ' + HPV16_metadata.loc[HPV16_metadata['MERGE_ID'] == ID, 'metadata_string'].get_value()) # ???
# rec.id = ID + ' ' + str(meta_df.at(meta_df['MERGE_ID'] == ID, 'meta_string']) # WORKS but FORMAT!!!
# PRINT rec
# recs_updated.append(rec)
SeqIO.write(rec, out_fh, 'fasta') # APPENDS to an open filehandle
print(f'LOG:seq_file_nseqs={nseqs}') # 3579
print(f'LOG:seq_file_nseqs_withMetadata={nseqs_wMeta} ({round(100 * nseqs_wMeta / nseqs, 1)}%)')
print(f'LOG:seq_file_nseqs_withoutMetadata={nseqs_woMeta} ({round(100 * nseqs_woMeta / nseqs, 1)}%)')
print(f'LOG:recs_with_metadata={",".join(recs_present)}')
# PRINT records missing from FASTA file
if len(recs_missing) > 0:
print(f'\n### WARNING: meta_file={meta_fh.name} is missing data for n={len(recs_missing)} sequences present in seq_file={seq_fh.name}:')
# for i, ID in enumerate(recs_missing):
# print(f'{i + 1}={ID}')
print(','.join(recs_missing))
out_fh.close() # close to flush
# # SAVE FASTA with updated metadata-containing headers
# # SeqIO.write(recs, 'seq/HPV16_PAP_20200813.N-30_mod1.fasta', 'fasta')
# SeqIO.write(recs_updated, out_file, 'fasta')
# # SeqIO.write(recs_updated, 'seq/HPV16_PAP_20200813.N-30_wMetadata.fasta', 'fasta')
# -----------------------------------------------------------------------------
# DONE message
print('\n# -----------------------------------------------------------------------------')
print('DONE')
# -----------------------------------------------------------------------------
if __name__ == '__main__':
main()