-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprototype-gatherscatterbased-v3.py
134 lines (96 loc) · 4.46 KB
/
prototype-gatherscatterbased-v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# This example demonstrates a case where a user function creates partial tensors for each row.
# These partial tensors are aggregated into tensors before evaluating the model.
# The aggregation should result in more efficient use of the AI machinery.
# The model function is then evaluated for each row to create results for the row.
################################################################################################################################
# Everything here would be part of a DH library
################################################################################################################################
from deephaven import QueryScope
import jpy
class Input:
def __init__(self, columns, gather):
if type(columns) is list:
self.columns = columns
else:
self.columns = [columns]
self.gather = gather
class Output:
def __init__(self, column, scatter, col_type="java.lang.Object"):
self.column = column
self.scatter = scatter
self.col_type = col_type
def __gather_input(table, input):
# TODO: for real time, this list creation should happen exactly once. No reason to redo this every tick
cols = [ table.getColumnSource(col) for col in input.columns ]
#TODO: need efficient index handling for hist and real time. This is just a quick hack for hist.
# An efficient implementation is probably an iterator over multiple index sets, implemented in Java -- if one doesn't exist.
idx = range(table.size())
return input.gather(idx, cols)
#TODO: clearly in production code there would need to be extensive testing of inputs and outputs (e.g. no null, correct size, ...)
#TODO: ths is a static example, real time requires more work
#TODO: this is not written in an efficient way. it is written quickly to get something to look at
def ai_eval(table=None, model=None, inputs=[], outputs=[]):
print("SETUP")
# columns = [ table.getColumn(col) for col in inputs ]
print("GATHER")
gathered = [ __gather_input(table, input) for input in inputs ]
print("COMPUTE NEW DATA")
output_values = model(*gathered)
print("POPULATE OUTPUT TABLE")
rst = table.by()
n = table.size()
for output in outputs:
print(f"GENERATING OUTPUT: {output.column}")
#TODO: maybe we can infer the type?
data = jpy.array(output.col_type, n)
#TODO: python looping is slow. should avoid or numba it
for i in range(n):
data[i] = output.scatter(output_values, i)
QueryScope.addParam("__temp", data)
rst = rst.update(f"{output.column} = __temp")
return rst.ungroup()
################################################################################################################################
# Everything here would be user created -- or maybe part of a DH library if it is common functionality
################################################################################################################################
import random
import numpy as np
from math import sqrt
from deephaven.TableTools import emptyTable
class ZNugget:
def __init__(self, payload):
self.payload = payload
def make_z(x):
return ZNugget([random.randint(4,11)+x for z in range(5)])
def gather_2d(idx, cols):
rst = np.empty([len(idx), len(cols)], dtype=np.float64)
for (i,kk) in enumerate(idx):
for (j,col) in enumerate(cols):
rst[i,j] = col.get(kk)
return rst
def gather_znugget(idx, cols):
if len(cols) != 1:
raise Exception("Expected 1 column")
col = cols[0]
n = 5
rst = np.empty([len(idx), n], dtype=np.float64)
for (i,kk) in enumerate(idx):
val = col.get(kk).payload
for j in range(n):
rst[i,j] = val[j]
return rst
def scatter_a(data, i):
return int(data[0][i])
def scatter_b(data, i):
return float(data[1][i,1])
def scatter_c(data, i):
return float(sqrt(data[2][i,1] + data[1][i,1]))
def model_func(a,b,c):
return 3*a, b+11, b + 32
t = emptyTable(10).update("X = i", "Y = sqrt(X)")
t2 = t.update("Z = make_z(X)")
t3 = ai_eval(table=t2, model=model_func, inputs=[Input("X", gather_2d), Input(["X", "Y"], gather_2d), Input("Z", gather_znugget)], outputs=[Output("A",scatter_a, col_type="int"), Output("B",scatter_b), Output("C",scatter_c)])
#TODO: dropping weird column types to avoid some display bugs
meta2 = t2.getMeta()
t2 = t2.dropColumns("Z")
meta3 = t3.getMeta()
t3 = t3.dropColumns("Z", "B", "C")