-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathThesis_draft0.2.aux
300 lines (300 loc) · 29.7 KB
/
Thesis_draft0.2.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\abx@aux@refcontext{anyvt/global//global/global}
\abx@aux@nociteall
\babel@aux{british}{}
\@writefile{toc}{\contentsline {section}{\numberline {0.1}Forewords and Acknowledgements}{iii}{section.0.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {0.2}Declaration of Independent Work}{iv}{section.0.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {0.3}Abbreviations}{6}{section.0.3}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{7}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{Intro}{{1}{7}{Introduction}{chapter.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Data contribution of buildings and highway in all and humanitarian settings within OSM (Herfort et al., 2021)}}{10}{figure.1.1}\protected@file@percent }
\newlabel{fig:data_inequality}{{1.1}{10}{Data contribution of buildings and highway in all and humanitarian settings within OSM (Herfort et al., 2021)}{figure.1.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Literature Review}{12}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{LitReview}{{2}{12}{Literature Review}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Remote Sensing of Informal Settlements}{12}{section.2.1}\protected@file@percent }
\newlabel{RSofInformalSettlement}{{2.1}{12}{Remote Sensing of Informal Settlements}{section.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Deep Learning in Urban Remote Sensing}{13}{section.2.2}\protected@file@percent }
\newlabel{DLinRS}{{2.2}{13}{Deep Learning in Urban Remote Sensing}{section.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Computer Vision and a brief review of Convolutional Neural Networks}{13}{subsection.2.2.1}\protected@file@percent }
\newlabel{CVinBS}{{2.2.1}{13}{Computer Vision and a brief review of Convolutional Neural Networks}{subsection.2.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The four main types of Computer Vision tasks (Stanford University, 2022)}}{15}{figure.2.1}\protected@file@percent }
\newlabel{fig:CV_tasks}{{2.1}{15}{The four main types of Computer Vision tasks (Stanford University, 2022)}{figure.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Deep Learning and Convolutional Neural Networks}{15}{subsection.2.2.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Schematic analogy diagram between a biological neuron and an artificial perceptron (Fumo D., 2017).}}{16}{figure.2.2}\protected@file@percent }
\newlabel{fig:NeuronPerceptron}{{2.2}{16}{Schematic analogy diagram between a biological neuron and an artificial perceptron (Fumo D., 2017)}{figure.2.2}{}}
\newlabel{weights&bias}{{2.1}{16}{Deep Learning and Convolutional Neural Networks}{equation.2.2.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Schematic diagram of a CNN (Stanford University, 2022).}}{17}{figure.2.3}\protected@file@percent }
\newlabel{fig:ConvNet}{{2.3}{17}{Schematic diagram of a CNN (Stanford University, 2022)}{figure.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Convolution and Pooling}{17}{subsubsection*.4}\protected@file@percent }
\newlabel{Conv&Pool}{{2.2.2}{17}{Convolution and Pooling}{subsubsection*.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces 3 x 3 Convolution (Stanford University, 2022).}}{18}{figure.2.4}\protected@file@percent }
\newlabel{fig:Conv}{{2.4}{18}{3 x 3 Convolution (Stanford University, 2022)}{figure.2.4}{}}
\newlabel{nn.Conv2d}{{2.2.2}{18}{Convolution and Pooling}{equation.2.2.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Max pooling (Stanford University, 2022).}}{19}{figure.2.5}\protected@file@percent }
\newlabel{fig:maxpool}{{2.5}{19}{Max pooling (Stanford University, 2022)}{figure.2.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{Optimiser and the Binary Cross Entropy Loss function}{19}{subsubsection*.5}\protected@file@percent }
\newlabel{Optim&BCE}{{2.2.2}{19}{Optimiser and the Binary Cross Entropy Loss function}{subsubsection*.5}{}}
\newlabel{BCELoss}{{2.2.2}{20}{Optimiser and the Binary Cross Entropy Loss function}{equation.2.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Backpropagation and the chain rule}{20}{subsubsection*.6}\protected@file@percent }
\newlabel{Backprop&Chain}{{2.2.2}{20}{Backpropagation and the chain rule}{subsubsection*.6}{}}
\newlabel{cost_derivative}{{2.4}{20}{Backpropagation and the chain rule}{equation.2.2.4}{}}
\newlabel{Sum_cost_derivative}{{2.5}{21}{Backpropagation and the chain rule}{equation.2.2.5}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Data and Methodologies}{22}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{DataandMethods}{{3}{22}{Data and Methodologies}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Study Areas of Interest}{22}{section.3.1}\protected@file@percent }
\newlabel{AOI}{{3.1}{22}{Study Areas of Interest}{section.3.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces The Kalobeyei and Dzaleka camps respective location in East Africa,}}{22}{figure.3.1}\protected@file@percent }
\newlabel{fig:AOI}{{3.1}{22}{The Kalobeyei and Dzaleka camps respective location in East Africa,}{figure.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Kalobeyei, Kakuma, Turkana, Kenya}{22}{subsection.3.1.1}\protected@file@percent }
\newlabel{Kalobeyei}{{3.1.1}{22}{Kalobeyei, Kakuma, Turkana, Kenya}{subsection.3.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces The Kakuma-Kalobeyei land use and planning areas (UN-HABITAT, 2018)}}{24}{figure.3.2}\protected@file@percent }
\newlabel{fig:KU_KALO_LU}{{3.2}{24}{The Kakuma-Kalobeyei land use and planning areas (UN-HABITAT, 2018)}{figure.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces RGB UAV imagery of the Kalobeyei settlements in rural Turkana from OpenAerialMap}}{25}{figure.3.3}\protected@file@percent }
\newlabel{fig:KBY_overview}{{3.3}{25}{RGB UAV imagery of the Kalobeyei settlements in rural Turkana from OpenAerialMap}{figure.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Dzaleka, Dowa, Malawi}{25}{section.3.2}\protected@file@percent }
\newlabel{Dzaleka}{{3.2}{25}{Dzaleka, Dowa, Malawi}{section.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces The main Dzaleka Refugee Camp and the Katubza extension plan (Dzaleka North) designed by Urban Design Advisor to the UNHCR Werner Schnellenberg (Gross G., 2021).}}{26}{figure.3.4}\protected@file@percent }
\newlabel{fig:DZ_KA_PLAN}{{3.4}{26}{The main Dzaleka Refugee Camp and the Katubza extension plan (Dzaleka North) designed by Urban Design Advisor to the UNHCR Werner Schnellenberg (Gross G., 2021)}{figure.3.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Digitised rooftop of the Dzaleka and Dzaleka North camps by HOT volunteers}}{27}{figure.3.5}\protected@file@percent }
\newlabel{fig:Overview_DZK}{{3.5}{27}{Digitised rooftop of the Dzaleka and Dzaleka North camps by HOT volunteers}{figure.3.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Data}{27}{section.3.3}\protected@file@percent }
\newlabel{Data}{{3.3}{27}{Data}{section.3.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Vector pre-processing}{27}{subsubsection*.7}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Motion artefacts unique to UAV imagery}}{28}{figure.3.6}\protected@file@percent }
\newlabel{fig:UAV_motion}{{3.6}{28}{Motion artefacts unique to UAV imagery}{figure.3.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Raster pre-processing}{29}{subsection.3.3.1}\protected@file@percent }
\newlabel{z-score}{{3.1}{29}{Raster pre-processing}{equation.3.3.1}{}}
\newlabel{png_norm}{{3.2}{29}{Raster pre-processing}{equation.3.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Data Augmentation}{30}{subsection.3.3.2}\protected@file@percent }
\newlabel{DataAug}{{3.3.2}{30}{Data Augmentation}{subsection.3.3.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Perhaps geometric augmentation of horizontal flipping shall not be applied on the MNIST number of 5}}{31}{figure.3.7}\protected@file@percent }
\newlabel{fig:MNIST5}{{3.7}{31}{Perhaps geometric augmentation of horizontal flipping shall not be applied on the MNIST number of 5}{figure.3.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces An example of Inverse RGB augmentation applied to the Train dataset.}}{32}{figure.3.8}\protected@file@percent }
\newlabel{fig:InRGB}{{3.8}{32}{An example of Inverse RGB augmentation applied to the Train dataset}{figure.3.8}{}}
\newlabel{table:data_count)}{{3.3.2}{32}{Data Augmentation}{figure.3.8}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Resulted image and label pair for each dataset input configuration}}{32}{table.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{Pre-trained weights and transfer-learning}{32}{subsubsection*.8}\protected@file@percent }
\newlabel{pretrained_weights}{{3.3.2}{32}{Pre-trained weights and transfer-learning}{subsubsection*.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Research Questions and experiment design}{33}{section.3.4}\protected@file@percent }
\newlabel{RQ}{{3.4}{33}{Research Questions and experiment design}{section.3.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Collections of diverse and heterogeneous rooftops from the Kalobeyei, Dzaleka, and Dzaleka North datasets.}}{34}{figure.3.9}\protected@file@percent }
\newlabel{fig:rooftops}{{3.9}{34}{Collections of diverse and heterogeneous rooftops from the Kalobeyei, Dzaleka, and Dzaleka North datasets}{figure.3.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Architecture and hyperparameter selection}{34}{section.3.5}\protected@file@percent }
\newlabel{Arch&Hyperparam}{{3.5}{34}{Architecture and hyperparameter selection}{section.3.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.5.1}The U-Net and U-Net variants}{35}{subsection.3.5.1}\protected@file@percent }
\newlabel{Unet}{{3.5.1}{35}{The U-Net and U-Net variants}{subsection.3.5.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The Encoder-Decoder U-Net architecture (Ronneberger et al., 2015, Seale et al., 2022)}}{35}{figure.3.10}\protected@file@percent }
\newlabel{fig:U-Net}{{3.10}{35}{The Encoder-Decoder U-Net architecture (Ronneberger et al., 2015, Seale et al., 2022)}{figure.3.10}{}}
\@writefile{toc}{\contentsline {subsubsection}{Changing the encoder architecture and the EfficientNet family}{35}{subsubsection*.9}\protected@file@percent }
\newlabel{EffNet}{{3.5.1}{35}{Changing the encoder architecture and the EfficientNet family}{subsubsection*.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces EfficientNet family Top 1\% Accuracy Assessment in ImageNet (Tan \& Le, 2020).}}{36}{figure.3.11}\protected@file@percent }
\newlabel{fig:Eff_perform}{{3.11}{36}{EfficientNet family Top 1\% Accuracy Assessment in ImageNet (Tan \& Le, 2020)}{figure.3.11}{}}
\newlabel{table:setup}{{3.5.1}{37}{Changing the encoder architecture and the EfficientNet family}{figure.3.11}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces The U-Nets and the variations thereof selected for this study}}{37}{table.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.6}Hyperparameters and baseline model perforamce}{37}{section.3.6}\protected@file@percent }
\newlabel{table:hyperparameters}{{3.6}{39}{Hyperparameters and baseline model perforamce}{section.3.6}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces The hyperparameters and respective values to be held constant for every experiment in this study.}}{39}{table.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.7}Accuracy Assessment}{40}{section.3.7}\protected@file@percent }
\newlabel{AccAss}{{3.7}{40}{Accuracy Assessment}{section.3.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces The Confusion Matrix}}{40}{figure.3.12}\protected@file@percent }
\newlabel{fig:cmatrix}{{3.12}{40}{The Confusion Matrix}{figure.3.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.7.1}Binary classification metrics}{41}{subsection.3.7.1}\protected@file@percent }
\newlabel{1storder}{{3.7.1}{41}{Binary classification metrics}{subsection.3.7.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Examples of theoretical binary building classification.}}{41}{figure.3.13}\protected@file@percent }
\newlabel{fig:grids}{{3.13}{41}{Examples of theoretical binary building classification}{figure.3.13}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.7.2}Statistical analysis metrics}{43}{subsection.3.7.2}\protected@file@percent }
\newlabel{2ndorder}{{3.7.2}{43}{Statistical analysis metrics}{subsection.3.7.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Intersection-over-Union}{44}{subsubsection*.10}\protected@file@percent }
\newlabel{IoU}{{3.7.2}{44}{Intersection-over-Union}{subsubsection*.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.14}{\ignorespaces Schematic diagram of Intersection-over-Union}}{44}{figure.3.14}\protected@file@percent }
\newlabel{fig:IoU}{{3.14}{44}{Schematic diagram of Intersection-over-Union}{figure.3.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.7.3}Project workflow}{45}{subsection.3.7.3}\protected@file@percent }
\newlabel{ProjWorkflow}{{3.7.3}{45}{Project workflow}{subsection.3.7.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.15}{\ignorespaces Project workflow}}{45}{figure.3.15}\protected@file@percent }
\newlabel{fig:ETL_flow}{{3.15}{45}{Project workflow}{figure.3.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.16}{\ignorespaces Simplified 5 steps project workflow with reference to \ref {fig:ETL_flow}}}{46}{figure.3.16}\protected@file@percent }
\newlabel{fig:simp_ETL}{{3.16}{46}{Simplified 5 steps project workflow with reference to \ref {fig:ETL_flow}}{figure.3.16}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Findings and Discussion}{47}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{find&discuss}{{4}{47}{Findings and Discussion}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Findings}{47}{section.4.1}\protected@file@percent }
\newlabel{Findings}{{4.1}{47}{Findings}{section.4.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Sample of binary segmentation output of various combinations of tested architecture and experiment setup.}}{48}{figure.4.1}\protected@file@percent }
\newlabel{fig:output}{{4.1}{48}{Sample of binary segmentation output of various combinations of tested architecture and experiment setup}{figure.4.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Class-based Accuracy Assesment metrics for respective CNN architectures and experiment input dataset.}}{49}{figure.4.2}\protected@file@percent }
\newlabel{fig:Cat_CAA}{{4.2}{49}{Class-based Accuracy Assesment metrics for respective CNN architectures and experiment input dataset}{figure.4.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Discission}{51}{section.4.2}\protected@file@percent }
\newlabel{Discussion}{{4.2}{51}{Discission}{section.4.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Depth-wise Precision and Recall change}{51}{section.4.3}\protected@file@percent }
\newlabel{depth_change}{{4.3}{51}{Depth-wise Precision and Recall change}{section.4.3}{}}
\newlabel{table:depth-wise_change}{{4.3}{51}{Depth-wise Precision and Recall change}{section.4.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Changes with architectures that had a depth-wise increased for each setup.}}{51}{table.4.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Regression plot for \textit {Precision} and \textit {Recall} change in relation to architectural depth-wise change.}}{51}{figure.4.3}\protected@file@percent }
\newlabel{fig:depth_regplot}{{4.3}{51}{Regression plot for \textit {Precision} and \textit {Recall} change in relation to architectural depth-wise change}{figure.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Dataset-wise Precision and Recall change}{52}{section.4.4}\protected@file@percent }
\newlabel{data_change}{{4.4}{52}{Dataset-wise Precision and Recall change}{section.4.4}{}}
\newlabel{table:data-wise_change}{{4.4}{52}{Dataset-wise Precision and Recall change}{section.4.4}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces Changes when the Dzaleka and Dzaleka North datasets were introduced to each setup.}}{52}{table.4.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Detailed strip plot for \textit {Precision} and \textit {Recall} change in relation to dataset input change.}}{53}{figure.4.4}\protected@file@percent }
\newlabel{fig:data_stripplot}{{4.4}{53}{Detailed strip plot for \textit {Precision} and \textit {Recall} change in relation to dataset input change}{figure.4.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Initialised weight Precision and Recall change}{54}{section.4.5}\protected@file@percent }
\newlabel{weight_change}{{4.5}{54}{Initialised weight Precision and Recall change}{section.4.5}{}}
\newlabel{table:weight-wise_change}{{4.5}{54}{Initialised weight Precision and Recall change}{section.4.5}{}}
\@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Initalised weight change in available CNNs and their effects on the metrics}}{54}{table.4.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Regression plot for \textit {Precision} and \textit {Recall} change in relation to architectures' initalised weight change.}}{54}{figure.4.5}\protected@file@percent }
\newlabel{fig:weight_regplot}{{4.5}{54}{Regression plot for \textit {Precision} and \textit {Recall} change in relation to architectures' initalised weight change}{figure.4.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Ambiguity which arise from labelling could cause a $True\ Positive$ prediction to be classified as $False\ Positive$.}}{56}{figure.4.6}\protected@file@percent }
\newlabel{fig:ambiguity}{{4.6}{56}{Ambiguity which arise from labelling could cause a $True\ Positive$ prediction to be classified as $False\ Positive$}{figure.4.6}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Conclusion}{57}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{Conclude}{{5}{57}{Conclusion}{chapter.5}{}}
\@writefile{toc}{\contentsline {chapter}{Bibliography}{59}{chapter*.11}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Appendix}{74}{chapter.6}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{Appen}{{6}{74}{Appendix}{chapter.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.0.1}Adam optimiser}{74}{subsection.6.0.1}\protected@file@percent }
\newlabel{Adam}{{6.0.1}{74}{Adam optimiser}{subsection.6.0.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces The algorithm of Adam (Kingma \& Ba., 2017).}}{74}{figure.6.1}\protected@file@percent }
\newlabel{app:Adam}{{6.1}{74}{The algorithm of Adam (Kingma \& Ba., 2017)}{figure.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.0.2}EfficientNet}{75}{subsection.6.0.2}\protected@file@percent }
\newlabel{Eff-Net}{{6.0.2}{75}{EfficientNet}{subsection.6.0.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces Compound scaling of the EfficientNet (Tan \& Le, 2020)}}{75}{figure.6.2}\protected@file@percent }
\newlabel{app:EfficientNet}{{6.2}{75}{Compound scaling of the EfficientNet (Tan \& Le, 2020)}{figure.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.0.3}Mean class-based accuracy assessments per experiment}{76}{subsection.6.0.3}\protected@file@percent }
\newlabel{app:mean_data}{{6.0.3}{76}{Mean class-based accuracy assessments per experiment}{subsection.6.0.3}{}}
\abx@aux@read@bbl@mdfivesum{298B9463A6C218817E04E4909ED5B810}
\abx@aux@defaultrefcontext{0}{ahmed_learning_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{alix-garcia_refugee_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{anderson_corporate_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{audebert_deep_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{azimi_automatic_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{bengio_practical_2012}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{bengio_deep_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{bischl_hyperparameter_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{blaschke_object_2010}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{blaschke_geographic_2014}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{bolstad_gis_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{bruno_evaluating_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{carrivick_structure_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{chen_geomorphological_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{cities_alliance_dynamics_2022}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{congalton_assessing_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{noauthor_cs231n_nodate}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{deng_imagenet_2009}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{drivendata_open_nodate}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{elsken_neural_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{gevaert_evaluating_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{gonzalez_igital_2002}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{gross_dzaleka_nodate}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{un-habitat_kakuma_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{he_control_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{he_mask_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{herfort_mapping_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{herfort_evolution_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hoeser_object_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hoeser_object_2020-1}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hofmann_monitoring_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hopfield_neural_1982}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hotosm_annual_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{hovil_local_2022}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{howard_deep_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{ifc_kakuma_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{jean_combining_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kavalo_environmental_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kingma_adam_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kinsley_neural_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{krizhevsky_imagenet_2012}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kuffer_development_2014}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kuffer_slums_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kuffer_extraction_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kuffer_mapping_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{kuhn_structure_1962}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{lai_deep_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{lang_geobia_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{lang_earth_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{lang_multi-feature_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{lecun_deep_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{leonita_machine_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{ma_deep_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{marmanis_deep_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{minghini_proceedings_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{national_research_council_people_1998}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{united_nations_global_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{ng_machine_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{nielsen_neural_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{pal_review_1993}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{perez_effectiveness_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{quinn_humanitarian_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{ren_faster_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{ronneberger_u-net_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{rosenblatt_perceptron_1958}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{rosenfeld_computer_1988}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{rumelhart_learning_1986}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{rummery_why_nodate}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{schmidhuber_deep_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{seale_coastline_2022}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{shorten_survey_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{simonyan_deep_2014}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{sirko_continental-scale_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{sliuzas_slum_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{smith_disciplined_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{smith_structure_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{stevens_deep_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{szeliski_computer_2010}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{tan_survey_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{tan_efficientnet_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{taubenbock_integrating_2009}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{taubenbock_morphology_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{turner_what_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{un_transforming_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{un_desa_world_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{unds_africa_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{unhcr_malawi_2014}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{unhcr_global_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{unhcr_unhcr_nodate}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{unhcr_integrated_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{vakalopoulou_building_2015}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{venables_urbanisation_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{watmough_understanding_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{watmough_socioecologically_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{wegmann_remote_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{wurm_exploitation_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{wurm_semantic_2019}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{xu_building_2018}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{yakubovyskiy_welcome_2021}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{yan-chak_chan_investigating_2022}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{yang_temporal_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{yu_hyper-parameter_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{zhang_deep_2016}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{zhao_building_2020}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{zhu_deep_2017}{anyvt/global//global/global}
\abx@aux@defaultrefcontext{0}{zoph_learning_2020}{anyvt/global//global/global}
\gdef \@abspage@last{81}