-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
executable file
·80 lines (60 loc) · 2.11 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
###############################
#Data Loading Script and Class#
#Maintainer: Christopher Chan #
#Date: 2022-03-13 #
#Version: 0.2.2 #
###############################
import os
import torch
import PIL
import torchvision
import torchvision.transforms.functional as f
import numpy as np
from torch.utils.data import Dataset
class BuildingDataset(Dataset):
def __init__(self, png_dir, lbl_dir, transform = None):
self.png_dir = png_dir
self.lbl_dir = lbl_dir
self.transform = transform
def __len__(self):
return len(self.png_dir)
def __getitem__(self, idx):
image_iter = self.png_dir[idx]
label_iter = self.lbl_dir[idx]
P_image = PIL.Image.open(image_iter)
P_label = PIL.Image.open(label_iter)
image = f.to_tensor(P_image)
label = f.to_tensor(P_label)
if self.transform is not None:
if self.transform == "Hflip":
image = f.hflip(image)
label = f.hflip(label)
elif self.transform == "Vflip":
image = f.vflip(image)
label = f.vflip(label)
elif self.transform == "InRGB":
image = f.invert(image)
label = label
elif self.transform == "Grayscale":
image = f.rgb_to_grayscale(image)
label = label
elif self.transform == "Blur":
image = f.gaussian_blur(image, 25)
label = label
elif self.transform == "Contrast":
image = f.autocontrast(image)
label = label
elif self.transform == "Solarize":
image = f.solarize(image, 0)
label = label
return image, label
class PredictionDataset(Dataset):
def __init__(self, png_dir, transform = None):
self.png_dir = png_dir
def __len__(self):
return len(self.png_dir)
def __getitem__(self, idx):
image_iter = self.png_dir[idx]
P_image = PIL.Image.open(image_iter)
image = f.to_tensor(P_image)
return image