forked from traveler-framework/TraveLER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
345 lines (300 loc) · 9.91 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
Datasets for TraveLER.
"""
import os
from typing import List
import cv2
import pandas as pd
import torchvision.transforms as T
from PIL.ImageFile import ImageFile
from torch.utils.data import Dataset
from vidobj import VideoObj
class BaseDataset(Dataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = 100,
evaluation: bool = False,
):
"""
Base class for our Datasets.
Args:
data_path (str): file path of the videos
query_file (str): file path of the query file
image_transforms: image transforms to apply to the frames
start_sample (int): start index of the query file
max_samples (int): maximum number of samples to read from query file
evaluation (bool): if true, no correct answer known (test set)
Returns:
None
"""
self.path = data_path
self.query_file = query_file
self.start_sample = start_sample
self.max_samples = max_samples
self.evaluation = evaluation
with open(self.query_file) as f:
self.df = pd.read_csv(f, index_col=None, keep_default_na=False)
if self.max_samples is not None:
self.df = self.df[start_sample : start_sample + self.max_samples]
self.length = len(self.df)
self.segment = False # only true for STAR
self.reasons = False # only true for CausalVidQA
def __getitem__(self, index):
row_dict = self.df.iloc[index].to_dict()
sample_path = self.get_sample_path(index)
# get segment of video instead of full video
if self.segment:
start = self.df.iloc[index]["start"]
end = self.df.iloc[index]["end"]
video = self.get_video(
sample_path, start=start, end=end
)
else:
# get full video
video = self.get_video(sample_path)
row_dict["video"] = video
video = None
row_dict["index"] = index
return row_dict
def __len__(self):
return self.length
def get_sample_path(self, index: int) -> str:
"""
Get file path for a sample video.
Args:
index (int): index of query file to read
Returns:
str: the file path for sample video
"""
return os.path.join(self.path, self.df.iloc[index]["video_name"])
def get_video(
self,
video_path,
fps=30,
sample_freq=None,
start=0,
end=0,
) -> List[ImageFile]:
"""
Get a list of PIL images or transformed frames from file path of video.
We interpolate the input video such that we get 10fps by default.
Args:
video_path (str): file path to the video
fps: target fps to sample the video
sample_freq: frequency of sampling the video frames.
sample_freq=10 means every 10th frame is sampled.
if None, all frames are sampled
Returns:
list: A list containing
- PIL.Image: the frame
"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise IOError("Could not open video file.")
original_fps = cap.get(cv2.CAP_PROP_FPS)
vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
ratio = original_fps / fps
if self.segment:
start_frame = int(start * original_fps)
end_frame = min(int(end * original_fps), vlen)
else:
start_frame = 0
end_frame = vlen
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
transformed_video = []
frame_id = start_frame # Start from the first frame of interest
while frame_id < end_frame:
ret = cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_id)) # Jump to the frame
if not ret:
print(
f"Skipping invalid frame at position {frame_id} for video {video_path}."
)
frame_id += ratio if sample_freq is None else sample_freq
continue
ret, frame = cap.read() # Read the frame
if not ret:
print(
f"Failed to read frame at position {frame_id} for video {video_path}."
)
break
if sample_freq is None or (frame_id - start_frame) % sample_freq == 0:
# Convert to PIL Image without any other transform
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert to RGB
transformed_frame = T.ToPILImage()(frame)
transformed_video.append(transformed_frame)
frame_id += (
ratio if sample_freq is None else sample_freq
) # Adjust frame_id increment based on fps and sample_freq
cap.release()
return transformed_video
def construct_video(self, item) -> VideoObj:
"""
Constructs a video object from a item dictionary
representing a row in the query file.
"""
if self.segment and "start" in item and "end" in item:
# for star
video_obj = VideoObj(
images=item["video"],
question=item["query"],
choices=item["possible_answers"],
vid_id=item["video_name"],
answer=item["answer"],
query_type=item["query_type"],
start=item["start"],
end=item["end"],
)
elif self.reasons:
# for causalvidqa
video_obj = VideoObj(
images=item["video"],
question=item["query"],
choices=item["possible_answers"],
vid_id=item["video_name"],
query_type=item["query_type"],
reasons=item["possible_reasons"],
)
elif self.evaluation:
video_obj = VideoObj(
images=item["video"],
question=item["query"],
choices=item["possible_answers"],
vid_id=item["video_name"],
)
elif "key_region" in item:
video_obj = VideoObj(
images=item["video"],
question=item["query"],
choices=item["possible_answers"],
vid_id=item["video_name"],
answer=item["answer"],
query_type=item["query_type"],
key_region=item["key_region"],
)
else:
video_obj = VideoObj(
images=item["video"],
question=item["query"],
choices=item["possible_answers"],
vid_id=item["video_name"],
answer=item["answer"],
query_type=item["query_type"],
)
return video_obj
class NextQADataset(BaseDataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = 5000,
evaluation: bool = False,
):
"""
Dataset for NExT-QA.
"""
super().__init__(
data_path,
query_file,
start_sample,
max_samples,
evaluation,
)
class PerceptionTestDataset(BaseDataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = 20000,
evaluation: bool = True,
):
"""
Dataset for Perception Test.
"""
super().__init__(
data_path,
query_file,
start_sample,
max_samples,
evaluation,
)
class STARDataset(BaseDataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = None,
evaluation: bool = False,
):
"""
Dataset for STAR.
"""
super().__init__(
data_path,
query_file,
start_sample,
max_samples,
evaluation,
)
self.segment = True
class EgoSchemaDataset(BaseDataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = None,
evaluation: bool = True,
):
"""
Dataset for EgoSchema.
"""
super().__init__(
data_path,
query_file,
start_sample,
max_samples,
evaluation,
)
def get_video(self, video_path, fps=30, sample_freq=None):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise IOError("Could not open video file.")
original_fps = cap.get(cv2.CAP_PROP_FPS)
vlen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
ratio = original_fps / fps
start_frame = 0
end_frame = vlen
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frame_ids = []
frame_id = start_frame # Start from the first frame of interest
while frame_id < end_frame:
frame_ids.append(frame_id)
frame_id += ratio if sample_freq is None else sample_freq # Adjust frame_id increment based on fps and sample_freq
cap.release()
return frame_ids
class CausalVidQADataset(BaseDataset):
def __init__(
self,
data_path: str,
query_file: str,
start_sample: int = 0,
max_samples: int = None,
evaluation: bool = True,
):
"""
Dataset for Causal-VidQA.
"""
super().__init__(
data_path,
query_file,
start_sample,
max_samples,
evaluation,
)
self.reasons = True