-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathclasses.lisp
380 lines (309 loc) · 11.1 KB
/
classes.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
(coalton-library/utils:defstdlib-package #:coalton-library/classes
(:use
#:coalton)
(:local-nicknames
(#:types #:coalton-library/types))
(:export
#:Signalable
#:error
#:Tuple
#:Optional #:Some #:None
#:Result #:Ok #:Err
#:Eq #:==
#:Ord #:LT #:EQ #:GT
#:<=> #:> #:< #:>= #:<=
#:max
#:min
#:Num #:+ #:- #:* #:fromInt
#:Semigroup #:<>
#:Monoid #:mempty
#:Functor #:map
#:Applicative #:pure #:liftA2
#:Monad #:>>=
#:>> #:join
#:MonadFail #:fail
#:Alternative #:alt #:empty
#:Foldable #:fold #:foldr #:mconcat #:mconcatmap
#:mcommute?
#:Traversable #:traverse
#:Bifunctor #:bimap #:map-fst #:map-snd
#:sequence
#:Into
#:TryInto
#:Iso
#:Unwrappable #:unwrap-or-else #:with-default #:unwrap #:unwrap-into #:expect #:as-optional
#:default #:defaulting-unwrap #:default?))
(in-package #:coalton-library/classes)
(named-readtables:in-readtable coalton:coalton)
#+coalton-release
(cl:declaim #.coalton-impl/settings:*coalton-optimize-library*)
;;;
;;; Signaling errors and warnings
;;;
(coalton-toplevel
;;
;; Signalling errors on supported types
;;
(define-class (Signalable :a)
"Signals errors or warnings by calling their respective lisp conditions."
(error "Signal an error with a type-specific error string." (:a -> :b)))
(define-instance (Signalable String)
(define (error str)
(lisp :a (str)
(cl:error str)))))
(coalton-toplevel
;;
;; Base Types
;;
(define-struct (Tuple :a :b)
"A heterogeneous collection of items."
(first :a)
(second :b))
(define-type (Optional :a)
"Represents something that may not have a value."
(Some :a)
None)
(define-type (Result :bad :good)
"Represents something that may have failed."
;; We write (Result :bad :good) instead of (Result :good :bad)
;; because of the limitations of how we deal with higher-kinded
;; types; we want to implement Functor on this.
(Ok :good)
(Err :bad))
;;
;; Eq
;;
(define-class (Eq :a)
"Types which have equality defined."
(== (:a -> :a -> Boolean)))
(define-instance (Eq types:LispType)
(define (== a b)
(lisp Boolean (a b)
(cl:equalp a b))))
(define-class (Eq :a => Num :a)
"Types which have numeric operations defined."
(+ (:a -> :a -> :a))
(- (:a -> :a -> :a))
(* (:a -> :a -> :a))
(fromInt (Integer -> :a)))
(define-instance (Eq Unit)
(define (== _ _) True))
;;
;; Ord
;;
(repr :enum)
(define-type Ord
"The result of an ordered comparison."
LT "Less than"
EQ "Equal to"
GT "Greater than")
(define-instance (Eq Ord)
(define (== a b)
(match (Tuple a b)
((Tuple (LT) (LT)) True)
((Tuple (EQ) (EQ)) True)
((Tuple (GT) (GT)) True)
(_ False))))
(define-instance (Ord Ord)
(define (<=> a b)
(match (Tuple a b)
((Tuple (LT) (LT)) EQ)
((Tuple (LT) (EQ)) LT)
((Tuple (LT) (GT)) LT)
((Tuple (EQ) (LT)) GT)
((Tuple (EQ) (EQ)) EQ)
((Tuple (EQ) (GT)) LT)
((Tuple (GT) (LT)) GT)
((Tuple (GT) (EQ)) GT)
((Tuple (GT) (GT)) EQ))))
(define-class (Eq :a => Ord :a)
"Types whose values can be ordered."
(<=> (:a -> :a -> Ord)))
(declare > (Ord :a => :a -> :a -> Boolean))
(define (> x y)
"Is `x` greater than `y`?"
(match (<=> x y)
((GT) True)
(_ False)))
(declare < (Ord :a => :a -> :a -> Boolean))
(define (< x y)
"Is `x` less than `y`?"
(match (<=> x y)
((LT) True)
(_ False)))
(declare >= (Ord :a => :a -> :a -> Boolean))
(define (>= x y)
"Is `x` greater than or equal to `y`?"
(match (<=> x y)
((LT) False)
(_ True)))
(declare <= (Ord :a => :a -> :a -> Boolean))
(define (<= x y)
"Is `x` less than or equal to `y`?"
(match (<=> x y)
((GT) False)
(_ True)))
(declare max (Ord :a => :a -> :a -> :a))
(define (max x y)
"Returns the greater element of `x` and `y`."
(if (> x y)
x
y))
(declare min (Ord :a => :a -> :a -> :a))
(define (min x y)
"Returns the lesser element of `x` and `y`."
(if (< x y)
x
y))
;;
;; Haskell
;;
(define-class (Semigroup :a)
"Types with an associative binary operation defined."
(<> (:a -> :a -> :a)))
(define-class (Semigroup :a => Monoid :a)
"Types with an associative binary operation and identity defined."
(mempty :a))
(define-class (Functor :f)
"Types which can map an inner type where the mapping adheres to the identity and composition laws."
(map ((:a -> :b) -> :f :a -> :f :b)))
(define-class (Functor :f => Applicative :f)
"Types which are a functor which can embed pure expressions and sequence operations."
(pure (:a -> (:f :a)))
(liftA2 ((:a -> :b -> :c) -> :f :a -> :f :b -> :f :c)))
(define-class (Applicative :m => Monad :m)
"Types which are monads as defined in Haskell. See https://wiki.haskell.org/Monad for more information."
(>>= (:m :a -> (:a -> :m :b) -> :m :b)))
(declare >> (Monad :m => (:m :a) -> (:m :b) -> (:m :b)))
(define (>> a b)
"Equivalent to `(>>= a (fn (_) b))`."
(>>= a (fn (_) b)))
(declare join (Monad :m => :m (:m :a) -> :m :a))
(define (join m)
"Equivalent to `(>>= m id)`."
(>>= m (fn (x) x)))
(define-class (Monad :m => MonadFail :m)
(fail (String -> :m :a)))
(define-class (Applicative :f => Alternative :f)
"Types which are monoids on applicative functors."
(alt (:f :a -> :f :a -> :f :a))
(empty (:f :a)))
(define-class (Foldable :container)
"Types which can be folded into a single element."
(fold "A left tail-recursive fold." ((:accum -> :elt -> :accum) -> :accum -> :container :elt -> :accum))
(foldr "A right non-tail-recursive fold." ((:elt -> :accum -> :accum) -> :accum -> :container :elt -> :accum)))
(declare mconcat ((Foldable :f) (Monoid :a) => :f :a -> :a))
(define (mconcat a)
"Fold a container of monoids into a single element."
(fold <> mempty a))
(declare mconcatmap ((Foldable :f) (Monoid :a) => (:b -> :a) -> :f :b -> :a))
(define (mconcatmap f a)
"Map a container to a container of monoids, and then fold that container into a single element."
(fold (fn (a b) (<> a (f b))) mempty a))
(declare mcommute? ((Eq :a) (Semigroup :a) => :a -> :a -> Boolean))
(define (mcommute? a b)
"Does `a <> b` equal `b <> a`?"
(== (<> a b) (<> b a)))
(define-class (Traversable :t)
(traverse (Applicative :f => (:a -> :f :b) -> :t :a -> :f (:t :b))))
(declare sequence ((Traversable :t) (Applicative :f) => :t (:f :b) -> :f (:t :b)))
(define sequence (traverse (fn (x) x)))
(define-class (Bifunctor :f)
"Types which take two type arguments and are functors on both."
(bimap ((:a -> :b) -> (:c -> :d) -> :f :a :c -> :f :b :d)))
(declare map-fst (Bifunctor :f => (:a -> :b) -> :f :a :c -> :f :b :c))
(define (map-fst f b)
"Map over the first argument of a `Bifunctor`."
(bimap f (fn (x) x) b))
(declare map-snd (Bifunctor :f => (:b -> :c) -> :f :a :b -> :f :a :c))
(define (map-snd f b)
"Map over the second argument of a `Bifunctor`."
(bimap (fn (x) x) f b))
;;
;; Conversions
;;
(define-class (Into :a :b)
"`INTO` imples *every* element of `:a` can be represented by an element of `:b`. This conversion might not be bijective (i.e., there may be elements in `:b` that don't correspond to any in `:a`)."
(into (:a -> :b)))
(define-class ((Into :a :b) (Into :b :a) => Iso :a :b)
"Opting into this marker typeclass imples that the instances for `(Into :a :b)` and `(Into :b :a)` form a bijection.")
(define-instance (Into :a :a)
(define (into x) x))
(define-class (TryInto :a :b :c (:a :b -> :c))
"`TRY-INTO` implies some elements of `:a` can be represented exactly by an element of `:b`, but sometimes not. If not, an error of type `:c` is returned."
(tryInto (:a -> (Result :c :b))))
(define-instance (Iso :a :a))
;;
;; Unwrappable for fallible unboxing
;;
(define-class (Unwrappable :container)
"Containers which can be unwrapped to get access to their contents.
`(unwrap-or-else succeed fail container)` should invoke the `succeed` continuation on the unwrapped contents of
`container` when successful, or invoke the `fail` continuation with no arguments (i.e., with `Unit` as an argument)
when unable to unwrap a value.
The `succeed` continuation will often, but not always, be the identity function. `as-optional` passes `Some` to
construct an `Optional`.
Typical `fail` continuations are:
- Return a default value, or
- Signal an error."
(unwrap-or-else ((:elt -> :result)
-> (Unit -> :result)
-> (:container :elt)
-> :result)))
(declare expect ((Unwrappable :container) =>
String
-> (:container :element)
-> :element))
(define (expect reason container)
"Unwrap `container`, signaling an error with the description `reason` on failure."
(unwrap-or-else (fn (elt) elt)
(fn () (error reason))
container))
(declare unwrap ((Unwrappable :container) =>
(:container :element)
-> :element))
(define (unwrap container)
"Unwrap `container`, signaling an error on failure."
(unwrap-or-else (fn (elt) elt)
(fn () (error (lisp String (container)
(cl:format cl:nil "Unexpected ~a in UNWRAP"
container))))
container))
(declare unwrap-into ((Unwrappable (Result :c)) (TryInto :a :b :c) => :a -> :b))
(define (unwrap-into x)
"Same as `tryInto` followed by `unwrap`."
(unwrap (tryinto x)))
(declare with-default ((Unwrappable :container) =>
:element
-> (:container :element)
-> :element))
(define (with-default default container)
"Unwrap `container`, returning `default` on failure."
(unwrap-or-else (fn (elt) elt)
(fn () default)
container))
(declare as-optional ((Unwrappable :container) => (:container :elt) -> (Optional :elt)))
(define (as-optional container)
"Convert any Unwrappable container into an `Optional`, constructing Some on a successful unwrap and None on a failed unwrap."
(unwrap-or-else Some
(fn () None)
container))
;;
;; Default
;;
(define-class (Default :a)
"Types which have default values."
(default (Unit -> :a)))
(declare defaulting-unwrap ((Unwrappable :container) (Default :element) =>
(:container :element) -> :element))
(define (defaulting-unwrap container)
"Unwrap an `unwrappable`, returning `(default)` of the wrapped type on failure. "
(unwrap-or-else (fn (elt) elt)
(fn () (default))
container))
(declare default? ((Default :a) (Eq :a) => :a -> Boolean))
(define (default? x)
"Is `x` the default item of its type?"
(== x (default))))
#+sb-package-locks
(sb-ext:lock-package "COALTON-LIBRARY/CLASSES")