-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.py
359 lines (323 loc) · 15 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import tensorflow as tf
import gpflow as gpf
from gpflow.config import default_float
gpf.config.set_default_float(tf.float64)
# benchmarks, relevant references can be found in our paper
# dim: input dimension
# p: number of constraints
# name: problem's name with dim and p
# opt: global minimal value
# x: global minimum
# lb, ub: input domain
# all query points will first be re-scaled into [0, 1]^dim
# please do not directly query the given global minimum as they are not re-scaled
class Gardner():
def __init__(self, dim = 2, p = 2):
self.dim = dim
self.p = p
self.name = f'Gardner(d=2,p={self.p})'
self.opt = np.arcsin(0.95) - 1
self.x = np.array([[4.71238898, 1.2532359]])
self.lb = np.array([[0, 0]])
self.ub = np.array([[2*np.pi, 2*np.pi]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.sin(x[:,0]) + x[:,1]
else:
ans = np.sin(x[:,0]) * np.sin(x[:,1]) + 0.95
return ans
class Gramacy():
def __init__(self, dim = 2, p = 2):
self.dim = dim
self.p = p
self.name = f'Gramacy(d={self.dim},p={self.p})'
self.opt = 0.5998
self.x = np.array([[0.1954, 0.4044]])
self.lb = np.array([[0, 0]])
self.ub = np.array([[1, 1]])
def __call__(self, x, index):
if index == 0:
ans = x[:,0] + x[:,1]
elif index == 1:
ans = 1.5 - x[:, 0] - 2. * x[:,1] - 0.5 * np.sin(2. * np.pi * (x[:,0] ** 2 - 2. * x[:,1]))
elif index == 2:
ans = x[:,0] ** 2 + x[:,1] ** 2 - 1.5
return ans
class Sasena():
def __init__(self, dim = 2, p = 3):
self.dim = dim
self.p = p
self.name = f'Sasena(d={self.dim},p={self.p})'
self.opt = - 0.7483
self.x = np.array([[0.2017, 0.8332]])
self.lb = np.array([[0., 0.]])
self.ub = np.array([[1., 1.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = - np.square(x[:,0] - 1.) - np.square(x[:,1] - 0.5)
elif index == 1:
ans = (np.square(x[:,0] - 3.) + np.square(x[:,1] + 2.)) * np.exp(- np.power(x[:,1], 7)) - 12.
elif index == 2:
ans = 10. * x[:,0] + x[:,1] - 7.
elif index == 3:
ans = np.square(x[:,0] - 0.5) + np.square(x[:,1] - 0.5) - 0.2
return ans
class G4():
def __init__(self, dim = 5, p = 6):
self.dim = dim
self.p = p
self.name = f'G4(d={self.dim},p={self.p})'
self.opt = - 30665.539
self.x = np.array([[78., 33., 29.995256025682, 45., 36.775812905788]])
self.lb = np.array([[78., 33., 27., 27., 27.]])
self.ub = np.array([[102., 45., 45., 45., 45.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = 5.3578547 * np.square(x[:,2]) + 0.8356891 * x[:,0] * x[:,4] + 37.293239 * x[:,0] - 40792.141
elif index in [1, 2]:
ans = 85.334407 + 0.0056858 * x[:,1] * x[:,4] + 0.0006262 * x[:,0] * x[:,3] - 0.0022053 * x[:,2] * x[:,4]
if index == 1:
return ans - 92.
else:
return - ans
elif index in [3, 4]:
ans = 80.51249 + 0.0071317 * x[:,1] * x[:,4] + 0.0029955 * x[:,0] * x[:,1] + 0.0021813 * np.square(x[:,2])
if index == 3:
return ans - 110.
else:
return 90. - ans
else:
ans = 9.300961 + 0.0047026 * x[:,2] * x[:,4] + 0.0012547 * x[:,0] * x[:,2] + 0.0019085 * x[:,2] * x[:,3]
if index == 5:
return ans - 25.
else:
return 20. - ans
return ans
class G6():
def __init__(self, dim = 2, p = 2):
self.dim = dim
self.p = p
self.name = f'G6(d={self.dim},p={self.p})'
self.x = np.array([[14.095, 0.84296]])
self.opt = - 6961.81388
self.lb = np.array([[13.5, 0.5]])
self.ub = np.array([[14.5, 1.5]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.power(x[:,0] - 10., 3) + np.power(x[:,1] - 20., 3)
elif index == 1:
ans = - np.square(x[:,0] - 5.) - np.square(x[:,1] - 5.) + 100.
elif index == 2:
ans = np.square(x[:,0] - 6.) + np.square(x[:,1] - 5.) - 82.81
return ans
class G7():
def __init__(self, dim = 10, p = 8):
self.dim = dim
self.p = p
self.name = f'G7(d={self.dim},p={self.p})'
self.opt = 24.3062091
self.x = np.array([[2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927]])
self.lb = -10. * np.ones([1, self.dim])
self.ub = 10. * np.ones([1, self.dim])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.square(x[:,0]) + np.square(x[:,1]) + x[:,0] * x[:,1] - 14. * x[:,0] - 16. * x[:,1] + np.square(x[:,2] - 10.) + 4. * np.square(x[:,3] - 5.) + np.square(x[:,4] - 3.) + 2. * np.square(x[:,5] - 1.) + 5. * np.square(x[:,6]) + 7. * np.square(x[:,7] - 11.) + 2. * np.square(x[:,8] - 10.) + np.square(x[:,9] - 7.) + 45.
elif index == 1:
ans = (4. * x[:,0] + 5. * x[:,1] - 3. * x[:,6] + 9. * x[:,7] - 105.) / 10.
elif index == 2:
ans = (10. * x[:,0] - 8. * x[:,1] - 17. * x[:,6] + 2. * x[:,7]) / 10.
elif index == 3:
ans = (- 8. * x[:,0] + 2. * x[:,1] + 5. * x[:,8] - 2. * x[:,9] - 12.) / 10.
elif index == 4:
ans = (3. * np.square(x[:,0] - 2.) + 4. * np.square(x[:,1] - 3) + 2. * np.square(x[:,2]) - 7. * x[:,3] - 120.) / 100.
elif index == 5:
ans = (5. * np.square(x[:,0]) + 8. * x[:,1] + np.square(x[:,2] - 6.) - 2. * x[:,3] - 40.) / 100.
elif index == 6:
ans = (0.5 * np.square(x[:,0] - 8.) + 2. * np.square(x[:,1] - 4.) + 3. * np.square(x[:,4]) - x[:,5] - 30.) / 100.
elif index == 7:
ans = (np.square(x[:,0]) + 2. * np.square(x[:,1] - 2.) - 2. * x[:,0] * x[:,1] + 14. * x[:,4] - 6. * x[:,5]) / 100.
elif index == 8:
ans = (- 3. * x[:,0] + 6. * x[:,1] + 12. * np.square(x[:,8] - 8.) - 7. * x[:, 9]) / 100.
return ans
class G8():
def __init__(self, dim = 2, p = 2):
self.dim = dim
self.p = p
self.name = f'G8(d={self.dim},p={self.p})'
self.opt = - 0.095825
self.x = np.array([[1.2279713, 4.2453733]])
self.lb = np.array([[0.5, 0.5]])
self.ub = np.array([[10., 10.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.power(np.sin(2. * np.pi * x[:,0]), 3) * np.sin(2. * np.pi * x[:,1]) / (np.power(x[:,0], 3) * (x[:,0] + x[:,1]))
ans = - ans
elif index == 1:
ans = np.square(x[:,0]) - x[:,1] + 1.
elif index == 2:
ans = 1. - x[:,0] + np.square(x[:,1] - 4)
return ans
class G9():
def __init__(self, dim = 7, p = 4):
self.dim = dim
self.p = p
self.name = f'G9(d={self.dim},p={self.p})'
self.opt = 680.6300573
self.x = np.array([[2.330499, 1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227]])
self.lb = - 10. * np.ones([1, self.dim])
self.ub = 10. * np.ones([1, self.dim])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.square(x[:,0] - 10.) + 5. * np.square(x[:,1] - 12.) + np.power(x[:,2], 4) + 3. * np.square(x[:,3] - 11.) + 10. * np.power(x[:,4], 6) + 7. * np.square(x[:,5]) + np.power(x[:,6], 4) - 4. * x[:,5] * x[:,6] - 10. * x[:,5] - 8. * x[:,6]
elif index == 1:
ans = ( 2. * np.square(x[:,0]) + 3. * np.power(x[:,1], 4) + x[:,2] + 4. * np.square(x[:,3]) + 5. * x[:,4] - 127. ) / 10000.
elif index == 2:
ans = (7. * x[:,0] + 3. * x[:,1] + 10. * np.square(x[:,2]) + x[:,3] - x[:,4] - 282.)/100.
elif index == 3:
ans = (23. * x[:,0] + np.square(x[:,1]) + 6. * np.square(x[:,5]) - 8.* x[:,6] - 196.)/100.
elif index == 4:
ans = (4. * np.square(x[:,0]) + np.square(x[:,1]) - 3. * x[:,0] * x[:,1] + 2. * np.square(x[:,2]) + 5. * x[:,5] - 11. * x[:,6]) / 100.
return ans
class G10():
def __init__(self, dim = 8, p = 6):
self.dim = dim
self.p = p
self.name = f'G10(d={self.dim},p={self.p})'
self.opt = 7049.3307
self.x = np.array([[579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979]])
self.lb = np.array([[100., 1000., 1000., 10., 10., 10., 10., 10.]])
self.ub = np.array([[10000., 10000., 10000., 1000., 1000., 1000., 1000., 1000.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = x[:,0] + x[:,1] + x[:,2]
elif index == 1:
ans = - 1. + 0.0025 * (x[:,3] + x[:,5])
elif index == 2:
ans = - 1. + 0.0025 * (- x[:,3] + x[:,4] + x[:,6])
elif index == 3:
ans = - 1. + 0.01 * (- x[:,4] + x[:,7])
elif index == 4:
ans = (100. * x[:,0] - x[:,0] * x[:,5] + 833.33252 * x[:,3] - 83333.333) / 1e6
elif index == 5:
ans = (x[:,1] * x[:,3] - x[:,1] * x[:,6] - 1250. * x[:,3] + 1250. * x[:,4]) / 1e6
elif index == 6:
ans = (x[:,2] * x[:,4] - x[:,2] * x[:,7] - 2500. * x[:,4] + 1250000.) / 1e6
return ans
class Tension_Compression():
def __init__(self, dim = 3, p = 4):
self.dim = dim
self.p = p
self.name = f'Tension_Compression(d={self.dim},p={self.p})'
self.opt = 0.012666
self.x = np.array([[11.21390736278739, 0.35800478345599, 0.05174250340926]])
self.lb = np.array([[2., 0.25, 0.05]])
self.ub = np.array([[15., 1.3, 2.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = np.square(x[:,2]) * x[:,1] * (x[:,0] + 2.)
elif index == 1:
ans = 1. - np.power(x[:,1], 3) * x[:,0] / (71785. * np.power(x[:,2], 4))
elif index == 2:
ans = (4. * np.square(x[:,1]) - x[:,2] * x[:,1]) / (12566. * np.power(x[:,2], 3) * (x[:,1] - x[:,2])) + 1. / (5108. * np.square(x[:,2])) - 1.
elif index == 3:
ans = 1. - 140.45 * x[:,2] / (x[:,0] * np.square(x[:,1]))
elif index == 4:
ans = (x[:,1] + x[:,2]) / 1.5 - 1.
return ans
class Pressure_Vessel():
def __init__(self, dim = 4, p = 3):
self.dim = dim
self.p = p
self.name = f'Pressure_Vessel(d={self.dim},p={self.p})'
self.x = np.array([[0.8125, 0.4375, 42.0984, 176.6368]])
self.opt = 6059.715
self.lb = np.array([[0., 0., 10., 150.]])
self.ub = np.array([[10., 10., 50., 200.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
x[:,0] = np.round(x[:,0] / 0.0625) * 0.0625
x[:,1] = np.round(x[:,1] / 0.0625) * 0.0625
if index == 0:
ans = 0.6224 * x[:,0] * x[:,2] * x[:,3] + 1.7781 * x[:,1] * np.square(x[:,2]) + 3.1661 * np.square(x[:,0]) * x[:,3] + 19.84 * np.square(x[:,0]) * x[:,2]
elif index == 1:
ans = - x[:,0] + 0.0193 * x[:,2]
elif index == 2:
ans = - x[:,1] + 0.00954 * x[:,2]
elif index == 3:
ans = (- np.pi * np.square(x[:,2]) * x[:,3] - 4. * np.pi / 3. * np.power(x[:,2], 3) + 1296000) / 1000000.
return ans
class Welded_Beam():
def __init__(self, dim = 4, p = 5):
self.dim = dim
self.p = p
self.name = f'Welded_Beam(d={self.dim},p={self.p})'
self.opt = 2.381065
self.x = np.array([[0.24435257, 6.2157922, 8.2939046, 0.24435257]])
self.lb = np.array([[0.125, 0.1, 0.1, 0.1]])
self.ub = np.array([[10., 10., 10., 10.]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = 1.10471 * np.square(x[:,0]) * x[:,1] + 0.04811 * x[:,2] * x[:,3] * (14. + x[:,1])
elif index == 1:
tau1 = 6000. / (np.sqrt(2.) * x[:,0] * x[:,1])
tau21 = 6000. * (14. + 0.5 * x[:,1]) * np.sqrt(0.25 * (np.square(x[:,1]) + np.square(x[:,0] + x[:,2])))
tau22 = 2. * (0.707 * x[:,0] * x[:,1] * (np.square(x[:,1]) / 12. + 0.25 * np.square(x[:,0] + x[:,2])))
tau2 = tau21 / tau22
tau = np.square(tau1) + np.square(tau2) + x[:,1] * tau1 * tau2 / np.sqrt(0.25 * (np.square(x[:,1]) + np.square(x[:,0] + x[:,2])))
ans = np.sqrt(tau) - 13000
elif index == 2:
ans = 504000. / (np.square(x[:,2]) * x[:,3]) - 30000.
elif index == 3:
ans = x[:,0] - x[:,3]
elif index == 4:
ans = 6000. - 64746.022 * (1. - 0.0282346 * x[:,2]) * x[:,2] * np.power(x[:,3], 3)
elif index == 5:
ans = 2.1952 / (np.power(x[:,2], 3) * x[:,3]) - 0.25
return ans
class Speed_Reducer():
def __init__(self, dim = 7, p = 11):
self.dim = dim
self.p = p
self.name = f'Speed_Reducer(d={self.dim},p={self.p})'
self.opt = 2996.3482
self.x = np.array([[3.5, 0.7, 17., 7.3, 7.8, 3.350215, 5.286683]])
self.lb = np.array([[2.6, 0.7, 17., 7.3, 7.8, 2.9, 4.9]])
self.ub = np.array([[3.6, 0.8, 28., 8.3, 8.3, 3.9, 5.9]])
def __call__(self, x0, index):
x = x0 * (self.ub - self.lb) + self.lb
if index == 0:
ans = 0.7854 * x[:,0] * np.square(x[:,1]) * (3.3333 * np.square(x[:,2]) + 14.9334 * x[:,2] - 43.0934) - 1.508 * x[:,0] * (np.square(x[:,5]) + np.square(x[:,6])) + 7.4777 * (np.power(x[:,5], 3) + np.power(x[:,6], 3)) + 0.7854 * (x[:,3] * np.square(x[:,5]) + x[:,4] * np.square(x[:,6]))
elif index == 1:
ans = 27. / (x[:,0] * np.square(x[:,1]) * x[:,2]) - 1.
elif index == 2:
ans = 397.5 / (x[:,0] * np.square(x[:,1]) * np.square(x[:,2])) - 1
elif index == 3:
ans = 1.93 * np.power(x[:,3], 3) / (x[:,1] * x[:,2] * np.power(x[:,5], 4)) - 1.
elif index == 4:
ans = 1.93 * np.power(x[:,4], 3) / (x[:,1] * x[:,2] * np.power(x[:,6], 4)) - 1.
elif index == 5:
ans = np.sqrt(np.square(745. * x[:,3] / (x[:,1] * x[:,2])) + 16900000.) / np.power(x[:,5], 3) - 110.
elif index == 6:
ans = np.sqrt(np.square(745. * x[:,4] / (x[:,1] * x[:,2])) + 157500000.) / np.power(x[:,6], 3) - 85.
elif index == 7:
ans = x[:,1] * x[:,2] - 40.
elif index == 8:
ans = - x[:,0] / x[:,1] + 5.
elif index == 9:
ans = x[:,0] / x[:,1] - 12.
elif index == 10:
ans = (1.5 * x[:,5] + 1.9) / x[:,3] - 1.
elif index == 11:
ans = (1.1 * x[:,6] + 1.9) / x[:,4] - 1.
return ans