diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 80e7c890..90c19126 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -15,7 +15,7 @@ jobs: strategy: matrix: - python-version: ["3.8", "3.9", "3.10"] + python-version: ["3.9", "3.10", "3.11", "3.12"] steps: - uses: "actions/checkout@v2" @@ -49,4 +49,4 @@ jobs: - name: "Upload coverage to Codecov" uses: "codecov/codecov-action@v4" with: - fail_ci_if_error: true \ No newline at end of file + fail_ci_if_error: true diff --git a/.gitignore b/.gitignore index b6e47617..1b77d315 100644 --- a/.gitignore +++ b/.gitignore @@ -127,3 +127,4 @@ dmypy.json # Pyre type checker .pyre/ +.vscode/settings.json diff --git a/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb b/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb index f286f23b..78c4e1a9 100644 --- a/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb +++ b/docs/notebooks/neuralnet/auto-thermal-reformer-relu.ipynb @@ -50,7 +50,7 @@ "- `pandas`: used for data import and management
\n", "- `tensorflow`: the machine learning language we use to train our neural network\n", "- `pyomo`: the algebraic modeling language for Python, it is used to define the optimization model passed to the solver\n", - "- `onnx`: used to express trained neural network models\n", + "- `onnx`: used to express trained neural network models\n", "- `omlt`: The package this notebook demonstates. OMLT can formulate machine learning models (such as neural networks) within Pyomo\n", "\n", "**NOTE:** This notebook also assumes you have a working MIP solver executable (e.g., CBC, Gurobi) to solve optimization problems in Pyomo. The open-source solver CBC is called by default." @@ -64,7 +64,18 @@ "name": "#%%\n" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: Declaring class 'OmltBlockData' derived from\n", + "'_BlockData'. The class '_BlockData' has been renamed to 'BlockData'.\n", + "(deprecated in 6.7.2) (called from\n", + "/home/codespace/.python/current/lib/python3.10/site-packages/omlt/block.py:33)\n" + ] + } + ], "source": [ "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress CUDA warnings from tensorflow\n", @@ -167,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" @@ -199,7 +210,16 @@ "name": "#%%\n" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/codespace/.python/current/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "# create our Keras Sequential model\n", "nn = Sequential(name='reformer_relu_4_20')\n", @@ -225,205 +245,205 @@ "output_type": "stream", "text": [ "Epoch 1/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.8370\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - loss: 0.9315\n", "Epoch 2/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.4563\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.6021 \n", "Epoch 3/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.2696\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 0.2147\n", "Epoch 4/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.1227\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 962us/step - loss: 0.0938\n", "Epoch 5/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0698\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 972us/step - loss: 0.0583\n", "Epoch 6/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0440\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0440\n", "Epoch 7/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0258\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 934us/step - loss: 0.0354\n", "Epoch 8/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0154\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0265 \n", "Epoch 9/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0103\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 939us/step - loss: 0.0208\n", "Epoch 10/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0076\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0171\n", "Epoch 11/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0061\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 948us/step - loss: 0.0149\n", "Epoch 12/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0051\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 917us/step - loss: 0.0121\n", "Epoch 13/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 0.0043\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0102\n", "Epoch 14/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0038\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 879us/step - loss: 0.0084\n", "Epoch 15/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0035\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 930us/step - loss: 0.0074\n", "Epoch 16/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0031\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 911us/step - loss: 0.0061\n", "Epoch 17/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0028\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 951us/step - loss: 0.0055\n", "Epoch 18/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0026\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 919us/step - loss: 0.0050\n", "Epoch 19/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0023\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 912us/step - loss: 0.0046\n", "Epoch 20/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0022\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 917us/step - loss: 0.0044\n", "Epoch 21/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0020\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 923us/step - loss: 0.0038\n", "Epoch 22/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 0.0018\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 938us/step - loss: 0.0037\n", "Epoch 23/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0017\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 931us/step - loss: 0.0033\n", "Epoch 24/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0016\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 940us/step - loss: 0.0030\n", "Epoch 25/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0015\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 894us/step - loss: 0.0028\n", "Epoch 26/100\n", - "88/88 [==============================] - ETA: 0s - loss: 0.001 - 0s 3ms/step - loss: 0.0014\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 940us/step - loss: 0.0027\n", "Epoch 27/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0013\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0026\n", "Epoch 28/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0012\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 933us/step - loss: 0.0026\n", "Epoch 29/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0012\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 946us/step - loss: 0.0024\n", "Epoch 30/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0011\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0022\n", "Epoch 31/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0010\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 944us/step - loss: 0.0022\n", "Epoch 32/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 9.5515e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 953us/step - loss: 0.0021\n", "Epoch 33/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 9.2159e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 940us/step - loss: 0.0019\n", "Epoch 34/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 8.7369e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 986us/step - loss: 0.0018\n", "Epoch 35/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 8.0810e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0017\n", "Epoch 36/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 7.7885e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 969us/step - loss: 0.0017\n", "Epoch 37/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 7.4054e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 956us/step - loss: 0.0016\n", "Epoch 38/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 7.2014e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 945us/step - loss: 0.0015\n", "Epoch 39/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.8355e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 945us/step - loss: 0.0014\n", "Epoch 40/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 6.6854e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0014 \n", "Epoch 41/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.2248e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0014\n", "Epoch 42/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 6.2566e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 905us/step - loss: 0.0014\n", "Epoch 43/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.8445e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0013 \n", "Epoch 44/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.5951e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 952us/step - loss: 0.0013\n", "Epoch 45/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.3668e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 914us/step - loss: 0.0013\n", "Epoch 46/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.3497e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 951us/step - loss: 0.0012\n", "Epoch 47/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.2125e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 953us/step - loss: 0.0012\n", "Epoch 48/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 4.9190e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 934us/step - loss: 0.0011 \n", "Epoch 49/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.7993e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011 \n", "Epoch 50/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.6690e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 961us/step - loss: 0.0011\n", "Epoch 51/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 4.5492e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011 \n", "Epoch 52/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 4.3848e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 998us/step - loss: 0.0010 \n", "Epoch 53/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 4.4862e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0010\n", "Epoch 54/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.3271e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0010 \n", "Epoch 55/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.9621e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 933us/step - loss: 0.0010\n", "Epoch 56/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.7816e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 943us/step - loss: 9.7793e-04\n", "Epoch 57/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 3.6440e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 9.5539e-04 \n", "Epoch 58/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 3.6122e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 951us/step - loss: 9.8643e-04\n", "Epoch 59/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.4262e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 964us/step - loss: 9.5467e-04\n", "Epoch 60/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.3973e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 9.5569e-04\n", "Epoch 61/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.4042e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 937us/step - loss: 8.9545e-04\n", "Epoch 62/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.4183e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 959us/step - loss: 8.9153e-04\n", "Epoch 63/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.0932e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 991us/step - loss: 8.8198e-04\n", "Epoch 64/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 3.1305e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 953us/step - loss: 8.7606e-04\n", "Epoch 65/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 2.9894e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - loss: 8.2828e-04\n", "Epoch 66/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.9626e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 8.4195e-04\n", "Epoch 67/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.8854e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - loss: 8.8572e-04\n", "Epoch 68/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.8529e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.8402e-04 \n", "Epoch 69/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.6655e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 993us/step - loss: 7.8691e-04\n", "Epoch 70/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.6622e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 919us/step - loss: 8.2283e-04\n", "Epoch 71/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.7927e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 945us/step - loss: 7.8774e-04\n", "Epoch 72/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.5607e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 937us/step - loss: 7.3661e-04\n", "Epoch 73/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.7671e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 940us/step - loss: 7.9336e-04\n", "Epoch 74/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.5296e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 993us/step - loss: 7.3721e-04\n", "Epoch 75/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.5474e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 942us/step - loss: 7.4315e-04\n", "Epoch 76/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.3464e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.2666e-04\n", "Epoch 77/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.4455e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1000us/step - loss: 7.2654e-04\n", "Epoch 78/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.2040e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.9702e-04\n", "Epoch 79/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.1218e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.8081e-04\n", "Epoch 80/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.5060e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.0167e-04\n", "Epoch 81/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.2401e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 923us/step - loss: 7.1075e-04\n", "Epoch 82/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.1947e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 947us/step - loss: 6.6085e-04\n", "Epoch 83/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.0758e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 912us/step - loss: 6.5808e-04\n", "Epoch 84/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.0181e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 896us/step - loss: 6.1667e-04\n", "Epoch 85/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9040e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 918us/step - loss: 6.0925e-04\n", "Epoch 86/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9628e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 921us/step - loss: 6.3800e-04\n", "Epoch 87/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.1624e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.2445e-04 \n", "Epoch 88/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.2154e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 993us/step - loss: 6.2050e-04\n", "Epoch 89/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 1.9279e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 5.9191e-04\n", "Epoch 90/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.0530e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 928us/step - loss: 6.0064e-04\n", "Epoch 91/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 1.8791e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 950us/step - loss: 5.6989e-04\n", "Epoch 92/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9119e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - loss: 6.0071e-04\n", "Epoch 93/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.7840e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 938us/step - loss: 5.7475e-04\n", "Epoch 94/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 1.8819e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 927us/step - loss: 5.8762e-04\n", "Epoch 95/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9525e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 5.9248e-04\n", "Epoch 96/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.0329e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 962us/step - loss: 5.6154e-04\n", "Epoch 97/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.7023e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 5.5977e-04\n", "Epoch 98/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9264e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 5.5252e-04\n", "Epoch 99/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.7761e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 948us/step - loss: 5.4744e-04\n", "Epoch 100/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.9651e-04\n" + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 933us/step - loss: 5.6862e-04\n" ] } ], @@ -443,20 +463,12 @@ "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: reformer_nn_relu/assets\n" - ] - } - ], + "outputs": [], "source": [ "# save the model to disk\n", "# While not technically necessary, this shows how we can load a previously saved model into\n", "# our optimization formulation)\n", - "nn.save('reformer_nn_relu')" + "nn.save('reformer_nn_relu.keras')" ] }, { @@ -501,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" @@ -510,7 +522,7 @@ "outputs": [], "source": [ "# load the Keras model\n", - "nn_reformer = keras.models.load_model('reformer_nn_relu', compile=False)\n", + "nn_reformer = keras.models.load_model('reformer_nn_relu.keras', compile=False)\n", "\n", "# Note: The neural network is in the scaled space. We want access to the\n", "# variables in the unscaled space. Therefore, we need to tell OMLT about the\n", @@ -533,7 +545,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": { "pycharm": { "name": "#%%\n" @@ -550,7 +562,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": { "pycharm": { "name": "#%%\n" @@ -565,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": { "pycharm": { "name": "#%%\n" @@ -577,8 +589,8 @@ "output_type": "stream", "text": [ "Bypass Fraction: 0.1\n", - "NG Steam Ratio: 1.1186717\n", - "H2 Concentration: 0.33157189\n", + "NG Steam Ratio: 1.1404918\n", + "H2 Concentration: 0.33255362\n", "N2 Concentration: 0.34\n" ] } @@ -607,7 +619,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/auto-thermal-reformer.ipynb b/docs/notebooks/neuralnet/auto-thermal-reformer.ipynb index 8e65296b..650f5700 100644 --- a/docs/notebooks/neuralnet/auto-thermal-reformer.ipynb +++ b/docs/notebooks/neuralnet/auto-thermal-reformer.ipynb @@ -50,7 +50,7 @@ "- `pandas`: used for data import and management
\n", "- `tensorflow`: the machine learning language we use to train our neural network\n", "- `pyomo`: the algebraic modeling language for Python, it is used to define the optimization model passed to the solver\n", - "- `onnx`: used to express trained neural network models\n", + "- `onnx`: used to express trained neural network models\n", "- `omlt`: The package this notebook demonstates. OMLT can formulate machine learning models (such as neural networks) within Pyomo\n", "\n", "**NOTE:** This notebook also assumes you have a working MIP solver executable (e.g., CBC, Gurobi) to solve optimization problems in Pyomo. The open-source solver IPOPT is called by default." @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "metadata": { "pycharm": { "name": "#%%\n" @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 23, "metadata": { "pycharm": { "name": "#%%\n" @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 24, "metadata": { "pycharm": { "name": "#%%\n" @@ -167,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 25, "metadata": { "pycharm": { "name": "#%%\n" @@ -193,13 +193,22 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 26, "metadata": { "pycharm": { "name": "#%%\n" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/codespace/.python/current/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "# create our Keras Sequential model\n", "nn = Sequential(name='reformer_sigmoid_4_20')\n", @@ -213,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" @@ -225,205 +234,205 @@ "output_type": "stream", "text": [ "Epoch 1/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.0341\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 988us/step - loss: 1.1144\n", "Epoch 2/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.9957\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 914us/step - loss: 0.9900\n", "Epoch 3/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.9706\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.9766\n", "Epoch 4/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.7485\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.8390 \n", "Epoch 5/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.2584\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 930us/step - loss: 0.2823\n", "Epoch 6/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.1501\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1576 \n", "Epoch 7/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.1265\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 891us/step - loss: 0.1403\n", "Epoch 8/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.1111\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 933us/step - loss: 0.1267\n", "Epoch 9/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0998\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 898us/step - loss: 0.1145\n", "Epoch 10/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0907\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 886us/step - loss: 0.1074\n", "Epoch 11/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0828\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1041\n", "Epoch 12/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0741\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 934us/step - loss: 0.1006\n", "Epoch 13/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0640\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 982us/step - loss: 0.0973\n", "Epoch 14/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0511\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 909us/step - loss: 0.0939\n", "Epoch 15/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0374\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 870us/step - loss: 0.0898\n", "Epoch 16/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0266\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 949us/step - loss: 0.0862\n", "Epoch 17/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0196\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0843\n", "Epoch 18/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0153\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0815\n", "Epoch 19/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0124\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - loss: 0.0789\n", "Epoch 20/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0102\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0765\n", "Epoch 21/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0086\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0726\n", "Epoch 22/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0072\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - loss: 0.0720\n", "Epoch 23/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0062\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0754\n", "Epoch 24/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0054\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0705\n", "Epoch 25/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0047\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0714\n", "Epoch 26/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0041\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0713\n", "Epoch 27/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0037\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0709\n", "Epoch 28/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0033\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0679\n", "Epoch 29/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0029\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0686\n", "Epoch 30/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0027\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - loss: 0.0672\n", "Epoch 31/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0024\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0657\n", "Epoch 32/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0022\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0654\n", "Epoch 33/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0020\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - loss: 0.0631\n", "Epoch 34/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0019\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - loss: 0.0578\n", "Epoch 35/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0017\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - loss: 0.0485\n", "Epoch 36/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0016\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0336\n", "Epoch 37/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0016\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0203\n", "Epoch 38/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0014\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0147\n", "Epoch 39/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0014\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0113\n", "Epoch 40/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0013\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0086 \n", "Epoch 41/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0012\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 879us/step - loss: 0.0071\n", "Epoch 42/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 0.0011\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 908us/step - loss: 0.0059\n", "Epoch 43/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0011\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 945us/step - loss: 0.0052\n", "Epoch 44/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 0.0010\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 883us/step - loss: 0.0042\n", "Epoch 45/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 9.7936e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 886us/step - loss: 0.0037\n", "Epoch 46/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 9.2880e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 901us/step - loss: 0.0035\n", "Epoch 47/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 9.0375e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 886us/step - loss: 0.0030\n", "Epoch 48/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 8.6779e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 912us/step - loss: 0.0027\n", "Epoch 49/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 8.5856e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 891us/step - loss: 0.0027\n", "Epoch 50/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 8.0145e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 913us/step - loss: 0.0023\n", "Epoch 51/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 8.0115e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0021 \n", "Epoch 52/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 7.9738e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 942us/step - loss: 0.0020\n", "Epoch 53/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.9619e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 913us/step - loss: 0.0019\n", "Epoch 54/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 6.7135e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 963us/step - loss: 0.0017\n", "Epoch 55/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.5336e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 903us/step - loss: 0.0016\n", "Epoch 56/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.6119e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 966us/step - loss: 0.0015\n", "Epoch 57/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 6.0447e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 919us/step - loss: 0.0015\n", "Epoch 58/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.9642e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 890us/step - loss: 0.0014\n", "Epoch 59/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 5.8340e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 910us/step - loss: 0.0012\n", "Epoch 60/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 5.9287e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 931us/step - loss: 0.0012\n", "Epoch 61/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.4710e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 871us/step - loss: 0.0012 \n", "Epoch 62/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 5.1789e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 946us/step - loss: 0.0011 \n", "Epoch 63/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.9301e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 919us/step - loss: 0.0011 \n", "Epoch 64/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.8124e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 933us/step - loss: 9.5829e-04\n", "Epoch 65/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.6044e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 910us/step - loss: 9.6994e-04\n", "Epoch 66/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.3224e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 906us/step - loss: 9.0896e-04\n", "Epoch 67/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.2608e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 906us/step - loss: 9.1381e-04\n", "Epoch 68/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.0868e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 896us/step - loss: 8.5913e-04\n", "Epoch 69/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.9811e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 994us/step - loss: 9.0463e-04\n", "Epoch 70/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.9089e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 8.8907e-04\n", "Epoch 71/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 4.0310e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 925us/step - loss: 7.9675e-04\n", "Epoch 72/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.6990e-04A: 0s - loss: 3.5289e-0\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.2875e-04\n", "Epoch 73/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.7645e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 900us/step - loss: 7.3307e-04\n", "Epoch 74/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.2927e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.3824e-04\n", "Epoch 75/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.3896e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.3988e-04 \n", "Epoch 76/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 3.3238e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.4647e-04\n", "Epoch 77/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 3.2586e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 898us/step - loss: 5.9410e-04\n", "Epoch 78/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 3.0942e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 889us/step - loss: 5.9625e-04\n", "Epoch 79/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.8561e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 931us/step - loss: 5.2871e-04\n", "Epoch 80/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 2.8161e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 5.6454e-04\n", "Epoch 81/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.6297e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 941us/step - loss: 5.6161e-04\n", "Epoch 82/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.6181e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 890us/step - loss: 5.1684e-04\n", "Epoch 83/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.6130e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 935us/step - loss: 5.1329e-04\n", "Epoch 84/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.4854e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 881us/step - loss: 4.4305e-04\n", "Epoch 85/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 2.6028e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 902us/step - loss: 4.8435e-04\n", "Epoch 86/100\n", - "88/88 [==============================] - 0s 4ms/step - loss: 2.3970e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 922us/step - loss: 4.2593e-04\n", "Epoch 87/100\n", - "88/88 [==============================] - 1s 6ms/step - loss: 2.2274e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 4.2300e-04 \n", "Epoch 88/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 2.2896e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 4.4135e-04\n", "Epoch 89/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 2.3039e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 922us/step - loss: 4.1130e-04\n", "Epoch 90/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 2.4000e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 3.9683e-04\n", "Epoch 91/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 1.8690e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 904us/step - loss: 3.9107e-04\n", "Epoch 92/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 1.9249e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 896us/step - loss: 3.5425e-04\n", "Epoch 93/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 2.0807e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 897us/step - loss: 3.7474e-04\n", "Epoch 94/100\n", - "88/88 [==============================] - 1s 6ms/step - loss: 1.8234e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 905us/step - loss: 3.5553e-04\n", "Epoch 95/100\n", - "88/88 [==============================] - 1s 7ms/step - loss: 1.8770e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 942us/step - loss: 3.5410e-04\n", "Epoch 96/100\n", - "88/88 [==============================] - 1s 6ms/step - loss: 1.6957e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 3.3268e-04 \n", "Epoch 97/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 1.6235e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 878us/step - loss: 3.1562e-04\n", "Epoch 98/100\n", - "88/88 [==============================] - 0s 5ms/step - loss: 1.7383e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 3.0199e-04\n", "Epoch 99/100\n", - "88/88 [==============================] - 0s 2ms/step - loss: 1.7169e-04\n", + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 907us/step - loss: 2.9183e-04\n", "Epoch 100/100\n", - "88/88 [==============================] - 0s 3ms/step - loss: 1.6411e-04\n" + "\u001b[1m88/88\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 907us/step - loss: 2.9824e-04\n" ] } ], @@ -437,26 +446,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 28, "metadata": { "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: reformer_nn/assets\n" - ] - } - ], + "outputs": [], "source": [ "# save the model to disk\n", "# While not technically necessary, this shows how we can load a previously saved model into\n", "# our optimization formulation)\n", - "nn.save('reformer_nn')" + "nn.save('reformer_nn.keras')" ] }, { @@ -473,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 29, "metadata": { "pycharm": { "name": "#%%\n" @@ -487,7 +488,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 30, "metadata": { "pycharm": { "name": "#%%\n" @@ -501,7 +502,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 31, "metadata": { "pycharm": { "name": "#%%\n" @@ -510,7 +511,7 @@ "outputs": [], "source": [ "# load the Keras model\n", - "nn_reformer = keras.models.load_model('reformer_nn', compile=False)\n", + "nn_reformer = keras.models.load_model('reformer_nn.keras', compile=False)\n", "\n", "# Note: The neural network is in the scaled space. We want access to the\n", "# variables in the unscaled space. Therefore, we need to tell OMLT about the\n", @@ -533,7 +534,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 32, "metadata": { "pycharm": { "name": "#%%\n" @@ -550,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 33, "metadata": { "pycharm": { "name": "#%%\n" @@ -561,7 +562,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.13.3: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -569,7 +570,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.13.3, running with linear solver ma27.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 1812\n", "Number of nonzeros in inequality constraint Jacobian.: 1\n", @@ -586,80 +587,101 @@ " inequality constraints with only upper bounds: 1\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 -0.0000000e+00 2.32e+04 3.68e-04 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -2.6030116e-03 2.29e+04 1.06e+00 -1.0 7.05e+03 - 5.34e-03 1.11e-02f 1\n", - " 2 -6.0669949e-03 2.27e+04 1.96e+00 -1.0 1.59e+04 - 1.18e-02 9.02e-03f 1\n", - " 3 -6.2596751e-03 2.27e+04 4.65e+01 -1.0 2.84e+04 - 6.23e-03 4.77e-04h 1\n", - " 4 -6.2616127e-03 2.27e+04 6.65e+03 -1.0 1.47e+04 - 4.48e-03 2.90e-05h 1\n", - " 5 -6.2581094e-03 2.27e+04 6.22e+05 -1.0 2.50e+04 - 3.05e-03 3.23e-05h 1\n", - " 6r-6.2581094e-03 2.27e+04 9.99e+02 2.5 0.00e+00 - 0.00e+00 1.97e-07R 2\n", - " 7r-5.9558091e-03 2.20e+04 2.14e+03 2.5 2.66e+04 - 1.15e-02 3.11e-04f 1\n", - " 8r-7.6598374e-03 2.09e+02 2.07e+03 1.1 8.43e+04 - 4.26e-04 3.31e-03f 1\n", - " 9 -7.7647208e-03 2.09e+02 1.36e+00 -1.0 9.30e+03 - 6.42e-04 3.06e-04h 1\n", + " 0 -0.0000000e+00 2.32e+04 3.10e-04 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -3.1527294e-03 2.29e+04 1.04e+00 -1.0 1.12e+03 - 6.41e-03 1.32e-02f 1\n", + " 2 -6.2152944e-03 2.27e+04 5.37e+00 -1.0 2.29e+04 - 1.61e-02 8.91e-03f 1\n", + " 3 -6.2618863e-03 2.27e+04 2.13e+02 -1.0 7.53e+03 - 1.53e-02 2.94e-04h 1\n", + " 4 -6.2980596e-03 2.26e+04 9.10e+02 -1.0 1.95e+01 - 2.38e-03 4.06e-04h 1\n", + " 5 -6.3144679e-03 2.26e+04 6.08e+04 -1.0 2.09e+04 - 2.93e-03 4.46e-05h 1\n", + " 6 -6.3198672e-03 2.26e+04 1.26e+07 -1.0 2.32e+04 - 2.81e-03 1.37e-05h 1\n", + " 7r-6.3198672e-03 2.26e+04 9.99e+02 2.5 0.00e+00 - 0.00e+00 7.31e-08R 2\n", + " 8r-6.0332788e-03 2.19e+04 1.92e+03 2.5 3.55e+04 - 1.19e-02 2.52e-04f 1\n", + " 9r-8.0808049e-03 2.08e+02 1.76e+03 1.1 5.87e+04 - 7.19e-04 4.73e-03f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -8.1576012e-03 2.08e+02 4.95e+00 -1.0 1.79e+04 - 1.23e-03 2.37e-04h 1\n", + " 11 -8.1674126e-03 2.08e+02 2.15e+03 -1.0 4.50e+03 - 1.60e-02 6.30e-05h 1\n", + " 12 -8.1719233e-03 2.08e+02 1.11e+06 -1.0 1.83e+04 - 6.31e-03 1.19e-05h 1\n", + " 13r-8.1719233e-03 2.08e+02 9.99e+02 0.4 0.00e+00 - 0.00e+00 2.36e-07R 2\n", + " 14r-3.6071845e-02 1.98e+00 1.00e+03 0.4 5.28e+03 - 1.04e-04 1.00e-03f 1\n", + " 15r-3.6071845e-02 1.98e+00 9.99e+02 0.3 0.00e+00 - 0.00e+00 3.75e-07R 5\n", + " 16r-6.1605099e-02 1.96e+00 9.98e+02 0.3 6.30e+03 - 1.02e-03 8.08e-04f 1\n", + " 17r-1.2559031e-01 1.90e+00 9.97e+02 0.3 6.27e+03 - 7.32e-04 2.51e-03f 1\n", + " 18 -1.2871206e-01 1.85e+00 9.78e-01 -1.0 1.02e+04 - 2.09e-02 2.20e-02f 1\n", + " 19 -1.3332528e-01 1.81e+00 1.24e+01 -1.0 2.11e+04 - 6.42e-02 2.50e-02f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 -1.3461035e-01 1.79e+00 5.73e+01 -1.0 1.41e+04 - 6.22e-02 1.16e-02h 1\n", + " 21 -1.3467457e-01 1.79e+00 3.24e+03 -1.0 1.34e+04 - 4.47e-02 4.13e-04h 1\n", + " 22 -1.3484205e-01 1.78e+00 8.30e+04 -1.0 4.52e+03 - 2.40e-02 9.45e-04h 1\n", + " 23 -1.3484927e-01 1.78e+00 2.78e+07 -1.0 5.88e+02 - 1.33e-02 4.05e-05h 1\n", + " 24r-1.3484927e-01 1.78e+00 9.99e+02 0.2 0.00e+00 - 0.00e+00 2.10e-07R 2\n", + " 25r-1.4779559e-01 1.76e+00 9.98e+02 0.2 1.43e+05 - 1.55e-03 9.11e-04f 1\n", + " 26r-1.9083218e-01 1.67e+00 9.94e+02 0.2 1.43e+05 - 3.50e-03 3.83e-03f 1\n", + " 27 -2.3722606e-01 7.32e-01 4.81e+03 -1.0 1.68e+04 - 1.29e-02 5.61e-01f 1\n", + " 28 -2.3903999e-01 4.88e-01 2.89e+03 -1.0 1.73e+00 2.0 1.36e-02 3.33e-01f 1\n", + " 29 -2.3894926e-01 4.79e-01 2.87e+03 -1.0 1.29e+00 1.5 3.00e-01 2.03e-02h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -7.7729541e-03 2.09e+02 2.65e+03 -1.0 1.75e+04 - 2.10e-02 3.24e-05h 1\n", - " 11 -7.7716836e-03 2.09e+02 3.58e+05 -1.0 2.09e+04 - 1.54e-03 1.11e-05h 1\n", - " 12r-7.7716836e-03 2.09e+02 9.99e+02 0.4 0.00e+00 - 0.00e+00 2.22e-07R 2\n", - " 13r-2.5415884e-02 8.08e+01 9.99e+02 0.4 2.65e+03 - 2.04e-04 6.20e-04f 1\n", - " 14r-2.5415884e-02 8.08e+01 9.99e+02 0.4 0.00e+00 - 0.00e+00 2.54e-07R 5\n", - " 15r-3.9234936e-02 6.38e+01 9.99e+02 0.4 5.96e+02 - 6.52e-04 4.72e-04f 1\n", - " 16r-8.3935109e-02 2.62e+01 9.97e+02 0.4 4.70e+02 - 5.99e-04 1.71e-03f 1\n", - " 17r-1.3934552e-01 5.58e+00 9.95e+02 0.4 2.45e+02 - 1.67e-03 2.76e-03f 1\n", - " 18 -1.4363902e-01 5.40e+00 3.72e+00 -1.0 3.92e+03 - 6.89e-03 3.28e-02f 1\n", - " 19 -1.6446259e-01 4.80e+00 8.56e+00 -1.0 1.60e+04 - 8.07e-02 1.11e-01f 1\n", + " 30 -2.3851472e-01 4.74e-01 5.90e+04 -1.0 3.67e+00 1.0 3.11e-01 1.02e-02h 1\n", + " 31 -2.3168898e-01 3.98e-01 4.74e+04 -1.0 3.70e+00 0.6 4.40e-01 1.59e-01h 1\n", + " 32 -2.2358201e-01 1.15e-01 2.59e+04 -1.0 3.45e+02 - 4.72e-01 7.11e-01h 1\n", + " 33 -2.1064898e-01 7.56e-02 1.41e+04 -1.0 2.37e+03 - 4.40e-01 3.44e-01h 1\n", + " 34 -2.1047547e-01 7.53e-02 1.38e+04 -1.0 2.38e+03 - 1.08e-02 4.64e-03h 1\n", + " 35 -2.0536031e-01 5.73e-02 1.98e+04 -1.0 2.26e+03 - 2.46e-02 2.39e-01f 1\n", + " 36 -2.0531335e-01 5.70e-02 1.83e+04 -1.0 2.21e+03 - 2.35e-02 3.90e-03h 1\n", + " 37 -2.0667730e-01 7.73e-02 2.31e+04 -1.0 2.13e+03 - 7.16e-02 4.18e-01f 1\n", + " 38 -2.0667907e-01 7.73e-02 5.57e+03 -1.0 1.36e+03 - 2.17e-01 2.13e-04h 6\n", + " 39 -2.0674307e-01 7.64e-02 6.46e+03 -1.0 8.11e+01 - 1.94e-03 1.25e-02f 2\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 -1.7215140e-01 4.48e+00 7.06e+01 -1.0 6.18e+03 - 2.94e-01 6.74e-02h 1\n", - " 21 -1.7784726e-01 4.23e+00 6.31e+02 -1.0 9.08e+03 - 4.03e-01 5.47e-02h 1\n", - " 22 -1.8642388e-01 3.85e+00 8.97e+02 -1.0 7.01e+03 - 3.33e-01 9.04e-02h 1\n", - " 23 -2.3017104e-01 2.09e+00 8.13e+04 -1.0 1.22e+04 - 2.45e-03 4.58e-01f 1\n", - " 24 -2.7788252e-01 3.25e-02 1.62e+04 -1.0 8.46e+03 - 2.03e-03 1.00e+00f 1\n", - " 25 -2.7625877e-01 3.29e-04 1.28e+02 -1.0 9.08e-02 2.0 8.50e-01 1.00e+00f 1\n", - " 26 -2.7633917e-01 7.21e-07 1.04e-01 -1.0 1.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 -2.7678608e-01 8.97e-06 2.15e-03 -2.5 7.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 -2.8773008e-01 4.94e-03 2.06e-02 -3.8 1.77e+03 - 7.86e-01 1.00e+00h 1\n", - " 29 -3.0628413e-01 1.68e-02 6.62e-04 -3.8 3.63e+03 - 9.95e-01 1.00e+00h 1\n", + " 40 -2.1130252e-01 3.51e-03 1.28e+03 -1.0 7.01e+02 - 1.41e-01 1.00e+00f 1\n", + " 41 -2.1107713e-01 3.05e-03 1.20e+02 -1.0 1.69e+02 - 4.83e-01 1.00e+00f 1\n", + " 42 -2.1118142e-01 4.58e-03 3.62e+01 -1.0 2.69e+02 - 7.13e-01 1.00e+00f 1\n", + " 43 -2.2385213e-01 5.24e-03 2.45e+01 -1.0 9.72e+02 - 1.70e-01 1.00e+00f 1\n", + " 44 -2.4208782e-01 1.30e-02 1.17e+01 -1.0 1.46e+03 - 6.06e-01 1.00e+00f 1\n", + " 45 -2.7496917e-01 5.99e-02 3.53e+00 -1.0 3.32e+03 - 6.81e-01 1.00e+00f 1\n", + " 46 -2.8094542e-01 5.97e-03 4.74e-02 -1.0 1.89e+03 - 1.00e+00 1.00e+00f 1\n", + " 47 -2.8143139e-01 9.21e-05 2.35e-01 -2.5 2.25e+02 - 9.43e-01 1.00e+00h 1\n", + " 48 -2.8471889e-01 5.06e-04 1.52e-03 -2.5 5.87e+02 - 1.00e+00 1.00e+00h 1\n", + " 49 -2.9285237e-01 3.11e-03 1.78e-02 -3.8 1.51e+03 - 8.18e-01 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 -3.1281609e-01 4.16e-02 1.09e-01 -3.8 2.12e+03 - 6.47e-01 4.46e-01h 1\n", - " 31 -3.2328324e-01 2.01e-02 8.47e-02 -3.8 3.96e+03 - 1.00e+00 7.31e-01h 1\n", - " 32 -3.2676931e-01 3.50e-02 2.48e+00 -3.8 4.58e+03 - 5.28e-02 1.00e+00H 1\n", - " 33 -3.2673051e-01 7.54e-03 1.58e-03 -3.8 5.36e+02 - 9.98e-01 1.00e+00h 1\n", - " 34 -3.2769712e-01 1.87e-02 1.82e-03 -3.8 1.82e+03 - 5.30e-01 5.19e-01h 1\n", - " 35 -3.2579448e-01 5.47e-03 1.41e-04 -3.8 1.83e+03 - 1.00e+00 1.00e+00f 1\n", - " 36 -3.2581048e-01 1.50e-03 5.66e-06 -3.8 3.23e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 -3.2778102e-01 1.39e-02 2.44e-02 -5.7 4.01e+03 - 4.61e-01 5.40e-01h 1\n", - " 38 -3.3081682e-01 6.98e-02 3.75e-02 -5.7 5.65e+03 - 5.42e-01 8.01e-01h 1\n", - " 39 -3.3146434e-01 5.19e-02 3.12e-02 -5.7 4.30e+03 - 2.86e-02 2.85e-01h 1\n", + " 50 -3.1047007e-01 1.68e-02 6.69e-04 -3.8 3.61e+03 - 1.00e+00 9.82e-01h 1\n", + " 51 -3.1805376e-01 7.91e-03 3.86e-03 -3.8 3.08e+03 - 1.00e+00 1.00e+00h 1\n", + " 52 -3.2496988e-01 1.07e-02 2.10e-01 -3.8 4.72e+03 - 1.00e+00 4.42e-01h 1\n", + " 53 -3.2596317e-01 1.38e-02 1.13e+00 -3.8 2.85e+03 - 4.77e-01 1.00e+00h 1\n", + " 54 -3.2609714e-01 2.18e-03 1.21e-04 -3.8 8.58e+02 - 1.00e+00 1.00e+00h 1\n", + " 55 -3.2634535e-01 2.20e-05 3.62e-07 -3.8 1.59e+02 - 1.00e+00 1.00e+00h 1\n", + " 56 -3.2840186e-01 5.71e-03 4.99e-02 -5.7 4.39e+03 - 6.38e-01 4.96e-01h 1\n", + " 57 -3.3229603e-01 2.85e-02 7.58e-03 -5.7 7.33e+03 - 6.50e-01 7.37e-01h 1\n", + " 58 -3.3222233e-01 2.04e-02 2.60e-02 -5.7 8.51e+01 - 5.17e-01 2.82e-01h 1\n", + " 59 -3.3182603e-01 2.03e-04 2.60e-01 -5.7 3.64e+02 - 6.85e-02 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 -3.3127607e-01 6.17e-04 9.41e-02 -5.7 7.26e+00 - 3.83e-01 1.00e+00h 1\n", - " 41 -3.3130748e-01 3.54e-04 3.08e-02 -5.7 1.29e+02 - 1.00e+00 4.35e-01h 1\n", - " 42 -3.3129128e-01 1.51e-06 9.28e-03 -5.7 2.63e+01 - 7.55e-01 1.00e+00f 1\n", - " 43 -3.3129839e-01 2.97e-07 9.66e-07 -5.7 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 44 -3.3130682e-01 1.84e-07 1.60e-03 -8.6 1.25e+01 - 1.00e+00 8.58e-01h 1\n", - " 45 -3.3130710e-01 9.64e-10 1.06e-01 -8.6 2.73e-01 - 1.69e-01 1.00e+00h 1\n", - " 46 -3.3130710e-01 3.66e-15 2.50e-14 -8.6 1.29e-03 - 1.00e+00 1.00e+00h 1\n", + " 60 -3.3184336e-01 2.96e-05 2.87e-02 -5.7 3.19e+01 - 1.00e+00 8.56e-01h 1\n", + " 61 -3.3183702e-01 5.23e-08 6.23e+01 -5.7 9.02e+00 - 3.66e-04 1.00e+00f 1\n", + " 62 -3.3183667e-01 1.66e-10 1.84e-11 -5.7 4.99e-01 - 1.00e+00 1.00e+00h 1\n", + " 63 -3.3184437e-01 3.06e-08 6.72e-04 -8.6 8.36e+00 - 1.00e+00 9.15e-01h 1\n", + " 64 -3.3184455e-01 9.27e-11 2.88e-02 -8.6 1.50e-01 - 4.59e-01 1.00e+00f 1\n", + " 65 -3.3184455e-01 1.89e-15 2.51e-14 -8.6 5.16e-04 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 46\n", + "Number of Iterations....: 65\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -3.3130709928730723e-01 -3.3130709928730723e-01\n", - "Dual infeasibility......: 2.5035529205297280e-14 2.5035529205297280e-14\n", - "Constraint violation....: 3.6637359812630166e-15 3.6637359812630166e-15\n", - "Complementarity.........: 2.7713235776435301e-09 2.7713235776435301e-09\n", - "Overall NLP error.......: 2.7713235776435301e-09 2.7713235776435301e-09\n", + "Objective...............: -3.3184454733260904e-01 -3.3184454733260904e-01\n", + "Dual infeasibility......: 2.5091040356528538e-14 2.5091040356528538e-14\n", + "Constraint violation....: 1.8873791418627661e-15 1.8873791418627661e-15\n", + "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 2.6249489091631699e-09 2.6249489091631699e-09\n", + "Overall NLP error.......: 2.6249489091631699e-09 2.6249489091631699e-09\n", "\n", "\n", - "Number of objective function evaluations = 58\n", - "Number of objective gradient evaluations = 44\n", - "Number of equality constraint evaluations = 58\n", - "Number of inequality constraint evaluations = 58\n", - "Number of equality constraint Jacobian evaluations = 50\n", - "Number of inequality constraint Jacobian evaluations = 50\n", - "Number of Lagrangian Hessian evaluations = 46\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.015\n", - "Total CPU secs in NLP function evaluations = 0.001\n", + "Number of objective function evaluations = 83\n", + "Number of objective gradient evaluations = 63\n", + "Number of equality constraint evaluations = 83\n", + "Number of inequality constraint evaluations = 83\n", + "Number of equality constraint Jacobian evaluations = 70\n", + "Number of inequality constraint Jacobian evaluations = 70\n", + "Number of Lagrangian Hessian evaluations = 65\n", + "Total seconds in IPOPT = 0.094\n", "\n", "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + "\b" ] } ], @@ -671,7 +693,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 34, "metadata": { "pycharm": { "name": "#%%\n" @@ -682,10 +704,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Bypass Fraction: 0.10000025307452928\n", - "NG Steam Ratio: 1.1197517732543654\n", - "H2 Concentration: 0.3313070992873072\n", - "N2 Concentration: 0.34000000393182694\n" + "Bypass Fraction: 0.1000002111229052\n", + "NG Steam Ratio: 1.1131313973800456\n", + "H2 Concentration: 0.33184454733260904\n", + "N2 Concentration: 0.3400000044198399\n" ] } ], @@ -713,7 +735,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/graph_neural_network_formulation.ipynb b/docs/notebooks/neuralnet/graph_neural_network_formulation.ipynb index dd1e74dd..69cb9675 100644 --- a/docs/notebooks/neuralnet/graph_neural_network_formulation.ipynb +++ b/docs/notebooks/neuralnet/graph_neural_network_formulation.ipynb @@ -39,9 +39,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:32:39.757240: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-05-16 17:32:39.808990: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "import numpy as np\n", "import torch\n", @@ -161,10 +171,10 @@ "output_type": "stream", "text": [ "Welcome to the CBC MILP Solver \n", - "Version: 2.9.9 \n", - "Build Date: Oct 13 2018 \n", + "Version: 2.10.10 \n", + "Build Date: Apr 19 2023 \n", "\n", - "command line - /rds/general/user/sz421/home/anaconda3/envs/OMLT_test/bin/cbc -printingOptions all -import /var/tmp/pbs.8259409.pbs/tmpp27h4a9g.pyomo.lp -stat=1 -solve -solu /var/tmp/pbs.8259409.pbs/tmpp27h4a9g.pyomo.soln (default strategy 1)\n", + "command line - /opt/conda/bin/cbc -printingOptions all -import /tmp/tmpwsv2x1xb.pyomo.lp -stat=1 -solve -solu /tmp/tmpwsv2x1xb.pyomo.soln (default strategy 1)\n", "Option for printingOptions changed from normal to all\n", "Presolve 172 (-222) rows, 111 (-75) columns and 608 (-267) elements\n", "Statistics for presolved model\n", @@ -197,80 +207,81 @@ "Continuous objective value is 0.315152 - 0.00 seconds\n", "Cgl0003I 0 fixed, 0 tightened bounds, 2 strengthened rows, 0 substitutions\n", "Cgl0004I processed model has 166 rows, 105 columns (25 integer (25 of which binary)) and 670 elements\n", - "Cbc0038I Initial state - 5 integers unsatisfied sum - 0.191951\n", - "Cbc0038I Pass 1: suminf. 0.00000 (0) obj. 0.317969 iterations 17\n", + "Cbc0038I Initial state - 5 integers unsatisfied sum - 0.124759\n", + "Cbc0038I Pass 1: suminf. 0.00000 (0) obj. 0.317969 iterations 41\n", "Cbc0038I Solution found of 0.317969\n", "Cbc0038I Relaxing continuous gives 0.317969\n", - "Cbc0038I Before mini branch and bound, 19 integers at bound fixed and 48 continuous\n", - "Cbc0038I Full problem 166 rows 105 columns, reduced to 49 rows 27 columns\n", - "Cbc0038I Mini branch and bound did not improve solution (0.01 seconds)\n", + "Cbc0038I Before mini branch and bound, 20 integers at bound fixed and 63 continuous\n", + "Cbc0038I Full problem 166 rows 105 columns, reduced to 17 rows 13 columns\n", + "Cbc0038I Mini branch and bound did not improve solution (0.02 seconds)\n", "Cbc0038I Round again with cutoff of 0.317791\n", - "Cbc0038I Pass 2: suminf. 0.00876 (1) obj. 0.317791 iterations 1\n", - "Cbc0038I Pass 3: suminf. 0.18897 (1) obj. 0.317791 iterations 25\n", - "Cbc0038I Pass 4: suminf. 0.00876 (1) obj. 0.317791 iterations 45\n", - "Cbc0038I Pass 5: suminf. 0.18897 (1) obj. 0.317791 iterations 10\n", - "Cbc0038I Pass 6: suminf. 0.00876 (1) obj. 0.317791 iterations 9\n", - "Cbc0038I Pass 7: suminf. 0.00876 (1) obj. 0.317791 iterations 20\n", - "Cbc0038I Pass 8: suminf. 0.18897 (1) obj. 0.317791 iterations 11\n", - "Cbc0038I Pass 9: suminf. 0.00876 (1) obj. 0.317791 iterations 11\n", - "Cbc0038I Pass 10: suminf. 0.00876 (1) obj. 0.317791 iterations 4\n", - "Cbc0038I Pass 11: suminf. 0.18897 (1) obj. 0.317791 iterations 10\n", - "Cbc0038I Pass 12: suminf. 0.00876 (1) obj. 0.317791 iterations 8\n", - "Cbc0038I Pass 13: suminf. 0.00876 (1) obj. 0.317791 iterations 6\n", - "Cbc0038I Pass 14: suminf. 0.18897 (1) obj. 0.317791 iterations 9\n", - "Cbc0038I Pass 15: suminf. 0.00876 (1) obj. 0.317791 iterations 9\n", - "Cbc0038I Pass 16: suminf. 0.00876 (1) obj. 0.317791 iterations 6\n", - "Cbc0038I Pass 17: suminf. 0.18897 (1) obj. 0.317791 iterations 17\n", - "Cbc0038I Pass 18: suminf. 0.00876 (1) obj. 0.317791 iterations 18\n", - "Cbc0038I Pass 19: suminf. 0.00876 (1) obj. 0.317791 iterations 8\n", - "Cbc0038I Pass 20: suminf. 0.18897 (1) obj. 0.317791 iterations 15\n", - "Cbc0038I Pass 21: suminf. 0.00876 (1) obj. 0.317791 iterations 19\n", - "Cbc0038I Pass 22: suminf. 0.00876 (1) obj. 0.317791 iterations 25\n", + "Cbc0038I Pass 2: suminf. 0.00876 (1) obj. 0.317791 iterations 11\n", + "Cbc0038I Pass 3: suminf. 0.18897 (1) obj. 0.317791 iterations 20\n", + "Cbc0038I Pass 4: suminf. 0.00876 (1) obj. 0.317791 iterations 58\n", + "Cbc0038I Pass 5: suminf. 0.18897 (1) obj. 0.317791 iterations 13\n", + "Cbc0038I Pass 6: suminf. 0.00876 (1) obj. 0.317791 iterations 21\n", + "Cbc0038I Pass 7: suminf. 0.00876 (1) obj. 0.317791 iterations 32\n", + "Cbc0038I Pass 8: suminf. 0.18897 (1) obj. 0.317791 iterations 16\n", + "Cbc0038I Pass 9: suminf. 0.00876 (1) obj. 0.317791 iterations 19\n", + "Cbc0038I Pass 10: suminf. 0.00876 (1) obj. 0.317791 iterations 57\n", + "Cbc0038I Pass 11: suminf. 0.18897 (1) obj. 0.317791 iterations 7\n", + "Cbc0038I Pass 12: suminf. 0.00876 (1) obj. 0.317791 iterations 7\n", + "Cbc0038I Pass 13: suminf. 0.00876 (1) obj. 0.317791 iterations 5\n", + "Cbc0038I Pass 14: suminf. 0.18897 (1) obj. 0.317791 iterations 7\n", + "Cbc0038I Pass 15: suminf. 0.00876 (1) obj. 0.317791 iterations 7\n", + "Cbc0038I Pass 16: suminf. 0.00876 (1) obj. 0.317791 iterations 10\n", + "Cbc0038I Pass 17: suminf. 0.18897 (1) obj. 0.317791 iterations 9\n", + "Cbc0038I Pass 18: suminf. 0.00876 (1) obj. 0.317791 iterations 8\n", + "Cbc0038I Pass 19: suminf. 0.00876 (1) obj. 0.317791 iterations 22\n", + "Cbc0038I Pass 20: suminf. 0.18897 (1) obj. 0.317791 iterations 6\n", + "Cbc0038I Pass 21: suminf. 0.00876 (1) obj. 0.317791 iterations 9\n", + "Cbc0038I Pass 22: suminf. 0.00876 (1) obj. 0.317791 iterations 17\n", "Cbc0038I Pass 23: suminf. 0.18897 (1) obj. 0.317791 iterations 6\n", "Cbc0038I Pass 24: suminf. 0.00876 (1) obj. 0.317791 iterations 5\n", - "Cbc0038I Pass 25: suminf. 0.00876 (1) obj. 0.317791 iterations 12\n", + "Cbc0038I Pass 25: suminf. 0.00876 (1) obj. 0.317791 iterations 10\n", "Cbc0038I Pass 26: suminf. 0.18897 (1) obj. 0.317791 iterations 6\n", "Cbc0038I Pass 27: suminf. 0.00876 (1) obj. 0.317791 iterations 5\n", - "Cbc0038I Pass 28: suminf. 0.00876 (1) obj. 0.317791 iterations 13\n", - "Cbc0038I Pass 29: suminf. 0.18897 (1) obj. 0.317791 iterations 6\n", - "Cbc0038I Pass 30: suminf. 0.00876 (1) obj. 0.317791 iterations 15\n", - "Cbc0038I Pass 31: suminf. 0.00876 (1) obj. 0.317791 iterations 6\n", + "Cbc0038I Pass 28: suminf. 0.00876 (1) obj. 0.317791 iterations 30\n", + "Cbc0038I Pass 29: suminf. 0.18897 (1) obj. 0.317791 iterations 5\n", + "Cbc0038I Pass 30: suminf. 0.00876 (1) obj. 0.317791 iterations 6\n", + "Cbc0038I Pass 31: suminf. 0.00876 (1) obj. 0.317791 iterations 3\n", "Cbc0038I No solution found this major pass\n", - "Cbc0038I Before mini branch and bound, 1 integers at bound fixed and 46 continuous\n", + "Cbc0038I Before mini branch and bound, 1 integers at bound fixed and 47 continuous\n", "Cbc0038I Full problem 166 rows 105 columns, reduced to 48 rows 27 columns\n", - "Cbc0038I Mini branch and bound did not improve solution (0.02 seconds)\n", - "Cbc0038I After 0.02 seconds - Feasibility pump exiting with objective of 0.317969 - took 0.02 seconds\n", - "Cbc0012I Integer solution of 0.31796885 found by feasibility pump after 0 iterations and 0 nodes (0.02 seconds)\n", - "Cbc0038I Full problem 166 rows 105 columns, reduced to 49 rows 27 columns\n", - "Cbc0031I 6 added rows had average density of 5.5\n", - "Cbc0013I At root node, 25 cuts changed objective from 0.31628066 to 0.31796885 in 1 passes\n", - "Cbc0014I Cut generator 0 (Probing) - 11 row cuts average 3.0 elements, 1 column cuts (1 active) in 0.000 seconds - new frequency is 1\n", - "Cbc0014I Cut generator 1 (Gomory) - 2 row cuts average 13.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", + "Cbc0038I Mini branch and bound did not improve solution (0.04 seconds)\n", + "Cbc0038I After 0.04 seconds - Feasibility pump exiting with objective of 0.317969 - took 0.03 seconds\n", + "Cbc0012I Integer solution of 0.31796885 found by feasibility pump after 0 iterations and 0 nodes (0.05 seconds)\n", + "Cbc0038I Full problem 166 rows 105 columns, reduced to 48 rows 27 columns\n", + "Cbc0031I 3 added rows had average density of 3.3333333\n", + "Cbc0013I At root node, 31 cuts changed objective from 0.31628066 to 0.31796885 in 1 passes\n", + "Cbc0014I Cut generator 0 (Probing) - 19 row cuts average 3.0 elements, 1 column cuts (1 active) in 0.000 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 1 (Gomory) - 3 row cuts average 8.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", "Cbc0014I Cut generator 2 (Knapsack) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is -100\n", "Cbc0014I Cut generator 3 (Clique) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 4 row cuts average 3.2 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 3 row cuts average 3.3 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", "Cbc0014I Cut generator 5 (FlowCover) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 6 (TwoMirCuts) - 8 row cuts average 6.8 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", - "Cbc0001I Search completed - best objective 0.3179688539269278, took 31 iterations and 0 nodes (0.02 seconds)\n", + "Cbc0014I Cut generator 6 (TwoMirCuts) - 6 row cuts average 6.2 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is 1\n", + "Cbc0001I Search completed - best objective 0.3179688539269278, took 17 iterations and 0 nodes (0.06 seconds)\n", "Cbc0035I Maximum depth 0, 0 variables fixed on reduced cost\n", "Cuts at root node changed objective from 0.316281 to 0.317969\n", - "Probing was tried 1 times and created 12 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", - "Gomory was tried 1 times and created 2 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "Probing was tried 1 times and created 20 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "Gomory was tried 1 times and created 3 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "Knapsack was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "Clique was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", - "MixedIntegerRounding2 was tried 1 times and created 4 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "MixedIntegerRounding2 was tried 1 times and created 3 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "FlowCover was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", - "TwoMirCuts was tried 1 times and created 8 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "TwoMirCuts was tried 1 times and created 6 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "ZeroHalf was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "\n", "Result - Optimal solution found\n", "\n", "Objective value: 0.31796885\n", "Enumerated nodes: 0\n", - "Total iterations: 31\n", - "Time (CPU seconds): 0.03\n", + "Total iterations: 17\n", + "Time (CPU seconds): 0.06\n", "Time (Wallclock seconds): 0.03\n", "\n", - "Total time (CPU seconds): 0.03 (Wallclock seconds): 0.03\n", + "Total time (CPU seconds): 0.07 (Wallclock seconds): 0.04\n", "\n" ] } @@ -343,7 +354,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.14.12: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -351,7 +362,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.14.12, running with linear solver MUMPS 5.2.1.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 395\n", "Number of nonzeros in inequality constraint Jacobian.: 276\n", @@ -388,66 +399,43 @@ " 16 4.8086057e-01 1.98e-06 3.65e+05 -1.0 1.21e-05 - 1.00e+00 6.18e-01h 1\n", " 17 4.8086191e-01 6.64e-07 6.79e+05 -1.0 4.84e-06 - 1.00e+00 6.65e-01h 1\n", " 18 4.8086192e-01 6.47e-07 3.49e+06 -1.0 1.54e-06 - 1.00e+00 2.47e-02f 6\n", - " 19 4.8086258e-01 1.04e-10 1.00e-06 -1.0 1.52e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.8086253e-01 1.78e-10 4.52e+02 -8.6 7.22e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 4.8001913e-01 2.86e-02 2.80e+02 -8.6 1.17e+00 - 5.24e-01 1.00e+00f 1\n", - " 22 4.8001744e-01 1.08e-02 2.14e+01 -8.6 2.16e-01 - 9.00e-01 6.57e-01h 1\n", - " 23 4.8001271e-01 1.79e-03 2.28e+01 -8.6 3.03e-01 - 8.31e-01 1.00e+00h 1\n", - " 24 4.8000768e-01 1.81e-04 4.39e+01 -8.6 9.74e-02 - 7.32e-01 1.00e+00h 1\n", - " 25 4.8000768e-01 1.80e-04 5.02e+01 -8.6 1.67e-02 - 5.11e-01 4.80e-03h 1\n", - " 26 4.8000768e-01 1.80e-04 7.68e+01 -8.6 1.72e-02 - 2.92e-01 2.94e-04f 2\n", - " 27 4.8000768e-01 1.80e-04 1.18e+02 -8.6 1.73e-02 - 6.38e-01 2.96e-04h 1\n", - " 28 4.8000768e-01 1.80e-04 1.25e+02 -8.6 1.76e-02 - 3.09e-01 6.58e-05h 2\n", - " 29 4.8000768e-01 1.80e-04 1.41e+02 -8.6 1.76e-02 - 1.00e+00 2.94e-04h 1\n", + " 19 4.8086258e-01 3.98e-10 1.00e-06 -1.0 1.52e-06 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.8000669e-01 5.04e-06 2.97e+00 -8.6 1.77e-02 - 2.99e-01 1.00e+00f 1\n", - " 31 4.8000669e-01 5.04e-06 8.32e+01 -8.6 4.66e-05 - 5.89e-01 2.35e-04h 1\n", - " 32 4.8000669e-01 5.04e-06 1.14e+02 -8.6 5.90e-05 - 5.27e-01 3.92e-05h 1\n", - " 33 4.8000669e-01 5.04e-06 1.25e+02 -8.6 6.02e-05 - 3.88e-01 6.73e-06f 2\n", - " 34 4.8000669e-01 5.04e-06 1.25e+02 -8.6 6.06e-05 - 5.49e-02 2.21e-05h 1\n", - " 35 4.8000669e-01 5.04e-06 1.27e+02 -8.6 4.61e-04 - 8.33e-02 7.28e-08f 2\n", - " 36 4.8000669e-01 5.04e-06 1.34e+02 -8.6 6.09e-05 - 4.80e-01 7.71e-05f 2\n", - " 37 4.8000669e-01 5.04e-06 1.35e+02 -8.6 6.11e-05 - 1.75e-01 1.36e-05h 1\n", - " 38 4.8000669e-01 5.04e-06 1.36e+02 -8.6 1.27e-04 - 9.83e-02 1.38e-07f 2\n", - " 39 4.8000669e-01 5.04e-06 1.37e+02 -8.6 6.12e-05 - 2.54e-01 9.45e-04h 1\n", + " 20 4.8086253e-01 2.78e-09 4.52e+02 -8.6 7.22e-05 - 1.00e+00 1.00e+00h 1\n", + " 21 4.8001912e-01 2.86e-02 2.80e+02 -8.6 1.17e+00 - 5.23e-01 1.00e+00f 1\n", + " 22 4.8001743e-01 1.08e-02 2.14e+01 -8.6 2.15e-01 - 9.00e-01 6.57e-01h 1\n", + " 23 4.8001271e-01 1.79e-03 2.27e+01 -8.6 3.03e-01 - 8.31e-01 1.00e+00h 1\n", + " 24 4.8000768e-01 1.81e-04 4.21e+01 -8.6 9.74e-02 - 7.43e-01 1.00e+00h 1\n", + " 25 4.8000767e-01 1.79e-04 5.50e+02 -8.6 1.68e-02 - 1.00e+00 9.31e-03h 1\n", + " 26 4.8000669e-01 5.00e-06 9.43e-09 -8.6 1.76e-02 - 1.00e+00 1.00e+00f 1\n", + " 27 4.8000670e-01 7.87e-11 8.32e+01 -8.6 7.60e-05 - 4.17e-01 1.00e+00h 1\n", + " 28 4.8000670e-01 7.86e-11 1.41e+02 -8.6 8.40e-06 - 1.00e+00 1.93e-04h 1\n", + " 29 4.8000670e-01 3.40e-10 1.73e+02 -8.6 7.68e-06 - 6.59e-02 1.00e+00f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.8000669e-01 4.94e-06 1.35e+02 -8.6 6.12e-05 - 1.83e-01 1.89e-02f 1\n", - " 41 4.8000669e-01 4.94e-06 1.36e+02 -8.6 2.85e-04 - 9.97e-02 1.10e-07f 2\n", - " 42 4.8000669e-01 4.94e-06 1.37e+02 -8.6 6.00e-05 - 1.72e-01 4.40e-05h 1\n", - " 43 4.8000669e-01 4.94e-06 1.37e+02 -8.6 1.41e-04 - 9.04e-02 1.49e-06f 2\n", - " 44 4.8000669e-01 4.94e-06 1.38e+02 -8.6 6.01e-05 - 1.71e-01 5.97e-06f 2\n", - " 45 4.8000670e-01 2.65e-11 6.17e+01 -8.6 6.01e-05 - 1.56e-01 1.00e+00h 1\n", - " 46 4.8000670e-01 2.64e-11 5.65e+01 -8.6 3.45e-06 - 5.27e-02 4.42e-04h 1\n", - " 47 4.8000670e-01 2.26e-11 7.42e+01 -8.6 1.45e-07 - 6.61e-01 1.47e-01f 2\n", - " 48 4.8000670e-01 2.25e-11 8.82e+01 -8.6 7.27e-06 - 2.11e-01 1.18e-03h 1\n", - " 49 4.8000670e-01 2.25e-11 1.30e+02 -8.6 8.86e-06 - 7.86e-01 1.57e-04f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.8000670e-01 2.25e-11 1.33e+02 -8.6 4.24e-05 - 2.54e-01 1.00e-04h 1\n", - " 51 4.8000670e-01 2.25e-11 1.41e+02 -8.6 6.81e-05 - 1.00e+00 2.59e-05f 2\n", - " 52 4.8000670e-01 3.10e-11 2.08e+00 -8.6 1.27e-07 - 2.54e-01 1.00e+00h 1\n", - " 53 4.8000670e-01 3.19e-09 1.41e+02 -8.6 3.37e-05 - 1.00e+00 4.73e-04h 1\n", - " 54 4.8000670e-01 9.74e-11 7.50e-11 -8.6 1.65e-08 - 1.00e+00 1.00e+00f 1\n", + " 30 4.8000670e-01 3.40e-10 1.74e+02 -8.6 2.35e-05 - 1.00e+00 2.85e-04h 1\n", + " 31 4.8000670e-01 5.51e-09 1.32e+00 -8.6 3.08e-08 - 2.22e-01 1.00e+00f 1\n", + " 32 4.8000670e-01 9.70e-11 1.23e+02 -8.6 1.11e-04 - 8.72e-01 1.82e-04h 2\n", + " 33 4.8000670e-01 1.52e-10 1.76e-10 -8.6 1.50e-08 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 54\n", + "Number of Iterations....: 33\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 4.8000669509937166e-01 4.8000669509937166e-01\n", - "Dual infeasibility......: 7.5043113584813605e-11 7.5043113584813605e-11\n", - "Constraint violation....: 9.7397756526618195e-11 9.7397756526618195e-11\n", + "Objective...............: 4.8000669509919508e-01 4.8000669509919508e-01\n", + "Dual infeasibility......: 1.7627861836399183e-10 1.7627861836399183e-10\n", + "Constraint violation....: 1.5176976342345938e-10 1.5176976342345938e-10\n", "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 2.5636037643218892e-09 2.5636037643218892e-09\n", - "Overall NLP error.......: 9.7397756526618195e-11 2.5636037643218892e-09\n", + "Complementarity.........: 3.0531777979505568e-09 3.0531777979505568e-09\n", + "Overall NLP error.......: 1.5176976342345938e-10 3.0531777979505568e-09\n", "\n", "\n", - "Number of objective function evaluations = 72\n", - "Number of objective gradient evaluations = 55\n", - "Number of equality constraint evaluations = 72\n", - "Number of inequality constraint evaluations = 72\n", - "Number of equality constraint Jacobian evaluations = 55\n", - "Number of inequality constraint Jacobian evaluations = 55\n", - "Number of Lagrangian Hessian evaluations = 54\n", - "Total seconds in IPOPT = 0.125\n", + "Number of objective function evaluations = 40\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 40\n", + "Number of inequality constraint evaluations = 40\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total seconds in IPOPT = 0.052\n", "\n", "EXIT: Optimal Solution Found.\n", "\b" @@ -535,10 +523,10 @@ "output_type": "stream", "text": [ "Welcome to the CBC MILP Solver \n", - "Version: 2.9.9 \n", - "Build Date: Oct 13 2018 \n", + "Version: 2.10.10 \n", + "Build Date: Apr 19 2023 \n", "\n", - "command line - /rds/general/user/sz421/home/anaconda3/envs/OMLT_test/bin/cbc -printingOptions all -import /var/tmp/pbs.8259409.pbs/tmp1n22ks_r.pyomo.lp -stat=1 -solve -solu /var/tmp/pbs.8259409.pbs/tmp1n22ks_r.pyomo.soln (default strategy 1)\n", + "command line - /opt/conda/bin/cbc -printingOptions all -import /tmp/tmp0s5lbbp6.pyomo.lp -stat=1 -solve -solu /tmp/tmp0s5lbbp6.pyomo.soln (default strategy 1)\n", "Option for printingOptions changed from normal to all\n", "Presolve 260 (-137) rows, 141 (-51) columns and 852 (-173) elements\n", "Statistics for presolved model\n", @@ -571,17 +559,16 @@ "56 of type L other, 0 of type Range 0.0->1.0, 0 of type Range other, \n", "0 of type Free \n", "Continuous objective value is 0.107106 - 0.00 seconds\n", - "Cgl0003I 0 fixed, 0 tightened bounds, 1 strengthened rows, 0 substitutions\n", "Cgl0004I processed model has 237 rows, 118 columns (29 integer (29 of which binary)) and 969 elements\n", - "Cbc0038I Initial state - 17 integers unsatisfied sum - 1.66726\n", - "Cbc0038I Pass 1: suminf. 1.01765 (9) obj. 0.107106 iterations 47\n", + "Cbc0038I Initial state - 17 integers unsatisfied sum - 1.61761\n", + "Cbc0038I Pass 1: suminf. 1.01765 (9) obj. 0.107106 iterations 46\n", "Cbc0038I Solution found of 0.107106\n", "Cbc0038I Relaxing continuous gives 0.107106\n", - "Cbc0038I Before mini branch and bound, 12 integers at bound fixed and 40 continuous\n", + "Cbc0038I Before mini branch and bound, 12 integers at bound fixed and 38 continuous\n", "Cbc0038I Mini branch and bound did not improve solution (0.01 seconds)\n", - "Cbc0038I After 0.01 seconds - Feasibility pump exiting with objective of 0.107106 - took 0.00 seconds\n", - "Cbc0012I Integer solution of 0.10710584 found by feasibility pump after 0 iterations and 0 nodes (0.01 seconds)\n", - "Cbc0001I Search completed - best objective 0.1071058437228203, took 0 iterations and 0 nodes (0.01 seconds)\n", + "Cbc0038I After 0.02 seconds - Feasibility pump exiting with objective of 0.107106 - took 0.01 seconds\n", + "Cbc0012I Integer solution of 0.10710584 found by feasibility pump after 0 iterations and 0 nodes (0.02 seconds)\n", + "Cbc0001I Search completed - best objective 0.1071058437228203, took 0 iterations and 0 nodes (0.02 seconds)\n", "Cbc0035I Maximum depth 0, 0 variables fixed on reduced cost\n", "Cuts at root node changed objective from 0.107106 to 0.107106\n", "Probing was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", @@ -591,16 +578,17 @@ "MixedIntegerRounding2 was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "FlowCover was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "TwoMirCuts was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", + "ZeroHalf was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "\n", "Result - Optimal solution found\n", "\n", "Objective value: 0.10710584\n", "Enumerated nodes: 0\n", "Total iterations: 0\n", - "Time (CPU seconds): 0.01\n", + "Time (CPU seconds): 0.03\n", "Time (Wallclock seconds): 0.02\n", "\n", - "Total time (CPU seconds): 0.01 (Wallclock seconds): 0.02\n", + "Total time (CPU seconds): 0.03 (Wallclock seconds): 0.02\n", "\n" ] } @@ -644,9 +632,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:OMLT_test]", + "display_name": "Python 3", "language": "python", - "name": "conda-env-OMLT_test-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -658,7 +646,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/import_network.ipynb b/docs/notebooks/neuralnet/import_network.ipynb index 60b48adf..3f056572 100644 --- a/docs/notebooks/neuralnet/import_network.ipynb +++ b/docs/notebooks/neuralnet/import_network.ipynb @@ -189,14 +189,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAJOCAYAAABvHKlnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiD0lEQVR4nO3de7xcdX3v/9ebixADCjGyCRAJKlrBVNQUrfizW1FBQIPnFBqKklRa9BSO0u4eCdgeUZqe6DGoxUsbhBKVizkKJQUqBMoupXKngRACEk2EkJjInaCiO3x+f6zvwDCZ2Xtua2bNzPv5eMxjZtZl5jNr1nfWZ9b3u75fRQRmZmZm1n7bdTsAMzMzs37lRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060DABJWyS9uttxmFUj6QJJf9vtOMzaJa99WtKZkr7b7te15jnRaoCkdZJ+lZKSTZL+SdIu3Y6rHSJil4j4abfjsMElaY6kWyQ9I2lzevznktTt2MyaUXHMeFzSlZKmd/D9Z0iK9P5bUjzzO/X+lnGi1bgPRsQuwFuA3wP+unympB26EpVZD5M0AnwV+L/AnsAQ8AngEOAlXQzNrFWlY8Y0YBNwThdi2C3FcBzwvyUdXrlAt49dyvRlTtKXH6oTIuJh4F+BN6Z/DCdLegB4AEDSUZJWSHpC0o8k/W5pXUlvkfRfkp6W9P8kfa90ClnSsKT1kkbSv/qNkv6kbN0j07pPSXpI0pll80r/XuZKelDSI5I+UzZ/e0lnSPpJeu87Sv+u0nqvTY93kvSl9BqbJP2DpElp3lRJV6TP9Zik/+jXwmGdIenlwOeBP4+I70fE05H5r4g4PiKerVh+nqQbK6aV77+TJC2S9DNJT0q6sWz//ZCkVWn/HZX0hrLXOE3Sw6ls3C/p0DR9O0nzU7l5VNJSSVPy3i7WXyLi18D3gQOqzZf0Z5LWpN/VZZL2Kpv3Dkm3pf35NknvKJu3n6R/T/vtcmDqODHcBKwiO26VjjWnSfo58E/j7euSdpb03TT9iRTHUJo3T9JPUwxrJR2fpr+oGrPsGLVDej4qaYGk/wR+Cbxa0u9IWp62w/2Sjm12mxeFD5BNSgnKEcB/pUlHA28DDpD0FuB84OPAK4B/BJalBOYlwGXABcAU4GLgwxUvvyfwcmBv4ETg65J2T/OeAU4AdgOOBP6HpKMr1n8n8HrgULJ/L6WDyV+S/aM5AngZ8DGynbvSF4DXAQcBr01x/O80bwRYD7yS7KzDGYDHcbJW/D6wE3B5m17vS8BbgXeQlbFPA89Jeh1ZeTuVbP+9CvgXSS+R9HrgFOD3ImJX4DBgXXq9T5KV7z8A9gIeB77eplhtQEh6KfBHwM1V5r0H+D/AsWRnvn4GXJLmTQGuBP6e7HhyNnClpFek1S8C7iBLsM4C5tZ4f0k6BDiQF45be5KVkX2Bkxh/X59LdlyanuL4BPArSZNTbB9IZecdwIoGNs1H03vvCvwCWJ4+0x5kx6tvSDqwgdcrnojwrc4b2Q/vFuAJsoLwDWASWaLxnrLlvgmcVbHu/WQ777uAhwGVzbsR+Nv0eBj4FbBD2fzNwNtrxPQV4Mvp8YwUyz5l828F5pTFMLvG6wRZUiWyZO41ZfN+H1ibHn+e7ID42m5/H771xw34CPDzimk/SuXsV6nMXFBWRuYBN1YsX9p/t0vrvKnK+/wNsLTs+XapLA6ndTcD7wV2rFhvNXBo2fNpwG/Ly6hvvlW7VRwzxoANwMw0r3yfPg/4Ytl6u6R9bAZZInJrxevelMrBq9LrTi6bdxHw3fS4dEx4gixpWg18Ms0bBn4D7Fy2bs19neyP+Y+A362IZXJ6/f8OTKqYd2Yplop4dkjPR4HPl83/I+A/Kl7jH4HPdvu7bOXmM1qNOzoidouIfSPizyPiV2n6Q2XL7AuMpNOrT0h6guxfwF7p9nCkPajKugCPRsRY2fNfkhU8JL1N0vWSfiHpSbJ/FZWnin9ebd0Uw08m+HyvBF4K3FEW+w/TdMja0KwBrkmnit2w0lr1KDBVZW1EIuIdEbFbmtfI79RUYGeq7+d7kf1BKr3Hc2Rlb++IWEN2putMYLOkS8qqbvYFLisrD6uBrWRndM0mcnTal3ciO2v675L2rFimct/cQrbv7105L/lZ2bzHI+KZinmVpkbE7hHxhoj4+7Lpv4isSrNkvH39O8DVwCWSNkj6oqQd03v/EdmxaKOyBv+/M8E2KVd57HxbxbHzeLIzbz3LiVb7VCZOC1JCVrq9NCIuBjYCe0svupKqkatQLgKWAdMj4uXAP5CdharHQ8BrJljmEbIzAgeWxf7yyBpSEln7mZGIeDXwQeAvS21ZzJp0E/AsMLvO5Z8h+zMAQMVB6xHg11TfzzeQ/ZCX1hNZ2XsYICIuioh3pmWCrAodsnLzgYryvHNk7TTN6hIRWyPiUrLE5Z0Vsyv3zclk1XMPV85LXpXmbQR2T8uXz6s7rIrnNff1iPhtRHwuIg4gqx48iqwZCxFxdUS8j+wM2H3Auen1XlRWqZ4wVR47/73i/XeJiP/RwGcqHCda+TgX+EQ6+yRJk5U1Yt+V7KCyFThF0g6SZgMHN/DauwKPRcSvJR0M/HED634LOEvS/imu3y2r5wee/5d/LvBlSXsASNpb0mHp8VGSXpsOUk+lz7K1gRjMXiQingA+R9YW4w8l7ZIa5R5EVi1R6S7gQEkHSdqZ7CxU6bWeI2sfebakvZRdAPL7knYClgJHSjpU0o5k7Q2fBX4k6fWS3pOW+zXZn43Sfv0PwAJJ+wJIemUqt2Z1S7+5s4Hdyc4UlbsI+JO0T+8E/B1wS0SsI2tL+DpJf5yOGX9E1qD+ioj4GXA78LnU1vCdZH+Am1VzX5f0bkkzJW1P9tv/W2CrpCFlF5lMJitPW3ih7KwA3iXpVcouejl9gve/In3Wj0raMd1+r6ydcU9yopWDiLgd+DPga2T14mvI6tOJiN8A/42skfsTZO1TriDbQevx58DnJT1N1kB9aQOhnZ2Wv4asoJxH1sas0mkp5pslPQVcS9a4HmD/9HwLWdL4jYgYbSAGs21ExBfJLtb4NFlbqU1kbTNOI2sXUr7sj8naCl5LdpXvi65ABP4KWAncBjxGdmZqu4i4n6y8nUN25uuDZJfe/4asWmdhmv5zsoa4Z6TX+yrZWeRrUrm7mezCF7N6/IukLWS/uQuAuRGxqnyBiLiOrA3hD8jOUr0GmJPmPUp29miErDrx08BREfFIWv2PyfbHx4DPAt9uIdbx9vU9ya6afIosUfx34LtkecQI2Zm3x8jaIv95in058D3gbrIG+1eM9+YR8TTw/vTZN5CVxS+Qlc+epRc3FbJukHQL8A8R8U/djsXMzMzax2e0ukDSH0jaM50Gngv8LlmDczMzM+sj7sW8O15PVoW3C9nVUX8YERu7G5KZmZm1m6sOzczMzHLiqkMzMzOznBSi6nDq1KkxY8aMqvOeeeYZJk+udoV3sfRCnL0QI+Qb5x133PFIRLxy4iWLp1fKSZFigWLF0yux9Go56ZUykid/zs5oqIx0u2v6iOCtb31r1HL99dfXnFckvRBnL8QYkW+cwO1RgH2+mVuvlJMixRJRrHh6JZZeLSe9Ukby5M/ZGY2UkQmrDiVNT0O+rFY26v2n0vQzlY10vyLdjihb53Rlo5DfX+ro0szMzGzQ1FN1OAaMRMSdqWfzOyQtT/O+HBFfKl9Y0gFknY0dSDYO07WSXhcR7j3czMzMBsqEZ7QiYmNE3JkeP03WI+ze46wyG7gkIp6NiLVkPYw3MsSMmZmZWV9oqDG8pBnAm4FbgEPIxus7gWyspZGIeJwsCbu5bLX1VEnMJJ0EnAQwNDTE6Oho1ffcsmVLzXlF0gtx9kKM0DtxmpmZTaTuREvSLmTjMJ0aEU9J+iZwFtnI22cBi4CPAaqy+jaddUXEYmAxwKxZs2J4eLjq+46OjlJrXpH0Qpy9ECP0TpxmZmYTqSvRSiPd/wC4MCIuBYiITWXzz+WFwSLXA9PLVt+HbHDIpqx8+Enmzb+y4fXWLTyy2bc0sz4xY/6VjMwca/g3xL8fNkhmNHGMBZeTetVz1aGA84DVEXF22fRpZYt9GLgnPV4GzJG0k6T9gP2BW9sXspmZmVlvqOeM1iHAR4GVklakaWcAx0k6iKxacB3wcYCIWCVpKXAv2RWLJ/uKQzMzMxtEEyZaEXEj1dtdXTXOOguABS3EZWZmfUTSdODbwJ7Ac8DiiPiqpDOBPwN+kRY9IyKuSuucDpwIbAU+GRFXdzxwsxYVYggeMzPre+6T0QaSB5U2a9E4oydMkbRc0gPpfveydTx6gg0U98log8pntMxaV+uf+jzguohYKGk+MB84zf/UbdC5T8b8NPM5R2aONfVe3dyevfR9OtEya1FEbAQ2psdPSyr9U58NDKfFlgCjwGmU/VMH1koq/VO/qbORm3We+2TMVzOfs5kulADWHd/Y+7RTL32fTrTM2qjin/pQSsKIiI2S9kiL1fVPPb1ez/1bL1IsIzPHGJrU+D/2vOIv0rbpRizd7JPRrFucaJm1SZV/6jUXrTJtm3/q0Jv/1osUy7zUYemilY391OX1T71I26bTsYzXJ2PpDwnb9sl4kaSzyarY3Sej9SQnWmZtUO2fOrCpdBBJHfxuTtP9T90Gkftk7DPuUb4+TrTMWlTrnzrZP/K5wMJ0f3nZdP9Tt4HiPhltUDnRMmtdrX/qC4Glkk4EHgSOAf9TNzMbJE60zFo0zj91gENrrON/6mZmA8AdlpqZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU4mTLQkTZd0vaTVklZJ+lSaPkXSckkPpPvdy9Y5XdIaSfdLOizPD2BmZmZWVPWc0RoDRiLiDcDbgZMlHQDMB66LiP2B69Jz0rw5wIHA4cA3JG2fR/BmZmZmRTZhohURGyPizvT4aWA1sDcwG1iSFlsCHJ0ezwYuiYhnI2ItsAY4uM1xm5mZmRXeDo0sLGkG8GbgFmAoIjZCloxJ2iMttjdwc9lq69O0ytc6CTgJYGhoiNHR0arvOTQJRmaONRImQM3Xy8uWLVs6/p6N6oUYoXfiNDMzm0jdiZakXYAfAKdGxFOSai5aZVpsMyFiMbAYYNasWTE8PFz1xc658HIWrWwoHwRg3fHVXy8vo6Oj1PoMRdELMULvxGlmZjaRuq46lLQjWZJ1YURcmiZvkjQtzZ8GbE7T1wPTy1bfB9jQnnDNzMzMekc9Vx0KOA9YHRFnl81aBsxNj+cCl5dNnyNpJ0n7AfsDt7YvZDMzM7PeUM8ZrUOAjwLvkbQi3Y4AFgLvk/QA8L70nIhYBSwF7gV+CJwcEVtzid7MzHqCuwqyQTVh46eIuJHq7a4ADq2xzgJgQQtxmZlZfyl1FXSnpF2BOyQtB+aRdRW0UNJ8sq6CTqvoKmgv4FpJr/Mfd+s1jbcyNzPrczPmX9n0uusWHtnGSPpHukq9dKX605LKuwoaTostAUaB0yjrKghYK6nUVdBNnY3crDVOtMzMrKO60VXQoHQb08znbKYLpVa043vope/TiZaZmXVMt7oKGpRuY5r5nPNaOIPbjHZ0v9RL36cHlTYzs45wV0E2iJxomZlZ7txVkA0qVx2aWeG10jjdCqPUVdBKSSvStDPIugZaKulE4EHgGMi6CpJU6ipoDHcVZD3KiZZZG0g6HzgK2BwRb0zTzgT+DPhFWuyMiLgqzTsdOBHYCnwyIq7ueNBmHeSugmxQ9W2i5cuzrcMuAL4GfLti+pcj4kvlE9w/kJnZ4HAbLbM2iIgbgMfqXPz5/oEiYi1Q6h/IzMz6TN+e0TIriFMknQDcTtYr9uPU2T8Q9GYfQXnE0ko/P0OTOttP0Hifvd+/JzPblhMts/x8EziLrO+fs4BFwMeos38g6M0+gvKIpZV+fkZmjrFoZed+6sbrI6jfvycz25arDs1yEhGbImJrRDwHnMsL1YPuH8jMbEA40TLLSakTxuTDwD3psfsHMjMbEK46NGsDSReTDYw7VdJ64LPAsKSDyKoF1wEfB/cPZGY2SJxombVBRBxXZfJ54yzv/oHMzAaAqw7NzMzMcuJEy8zMzCwnTrTMzMzMcuJEy8zMzCwnTrTMzMzMcuJEy8zMzCwnEyZaks6XtFnSPWXTzpT0sKQV6XZE2bzTJa2RdL+kw/IK3MzMzKzo6jmjdQFweJXpX46Ig9LtKgBJBwBzgAPTOt+QtH27gjUzMzPrJRMmWhFxA/BYna83G7gkIp6NiLXAGl4Y383MzMxsoLTSM/wpkk4AbgdGIuJxYG/g5rJl1qdp25B0EnASwNDQEKOjo1XfZGgSjMwcayHMxtWKZTxbtmxpar1O6oUYoXfiNDMzm0izidY3gbPIxnA7C1gEfAxQlWWj2gtExGJgMcCsWbNieHi46hudc+HlLFrZ2ZGC1h1fPZbxjI6OUuszFEUvxAi9E6eZmdlEmrrqMCI2RcTWiHgOOJcXqgfXA9PLFt0H2NBaiGZm1ut8YZUNqqYSLUnTyp5+GCgVnGXAHEk7SdoP2B+4tbUQzcysD1yAL6yyATRhnZyki4FhYKqk9cBngWFJB5FVC64DPg4QEaskLQXuBcaAkyNiay6Rm5lZz4iIGyTNqHPx5y+sAtZKKl1YdVNe8ZnlZcJEKyKOqzL5vHGWXwAsaCUoMzMbGB25sGpQLrJp5nP2wgVnlXrp++xsK3MzM7MXdOzCqkG5yKaZzzlv/pX5BFNDMxecVeql79ND8JiZWVf4wiobBE60zMysK3xhlQ0CVx2amVnufGGVDSonWmZmljtfWGWDylWHZmZmZjlxomVmZmaWEydaZmZmZjlxG60qZjTRp8jIzDGG2x+KmZmZ9TCf0TIzMzPLiRMtszaQdL6kzZLuKZs2RdJySQ+k+93L5p0uaY2k+yUd1p2ozcwsb060zNrjAuDwimnzgesiYn/guvQcSQcAc4AD0zrfkLR950I1M7NOcaJl1gYRcQPwWMXk2cCS9HgJcHTZ9Esi4tmIWAus4YWhR8zMrI+4MbxZfoYiYiNARGyUtEeavjdwc9ly69O0bUg6CTgJYGhoqOZo9UUayT6PWEZmjjW97tCk1tZv1Hifvd+/JzPblhMts85TlWlRbcGIWAwsBpg1a1bUGq2+SCPZ5xHLvCauBC4ZmTnGopWd+6lbd/xwzXn9/j2Z2bZcdWiWn02lQXPT/eY0fT0wvWy5fYANHY7NzMw6wGe0zPKzDJgLLEz3l5dNv0jS2cBewP7ArV2J0NpuvH74RmaO1Tw7t27hkXmFZGZd5ETLrA0kXQwMA1MlrQc+S5ZgLZV0IvAgcAxARKyStBS4FxgDTo6IrV0J3MzMcuVEy6wNIuK4GrMOrbH8AmBBfhGZmVkRuI2WmZmZWU4mTLTc47WZmZlZc+o5o3UB7vHazMzMrGETttGKiBskzaiYPJus4S9kPV6PAqdR1uM1sFZSqcfrm9oUr5mZmVUxY/6V417Zat3RbGP4jvV43elenZs1NGn8HqGLoFd6gu6VOM2sfpLOB44CNkfEG9O0KcD3gBnAOuDYiHg8zTsdOBHYCnwyIq7uQthmLWv3VYdt7/H6nAsv72ivzs0amTnGsQXvZblXeoLulTjNrCEXAF8Dvl02rdQMZaGk+en5aRXNUPYCrpX0OneDYr2o2asO3eO1mZnVzQOv26Bq9lSRe7w2M7NWDeTA63kZmTnWE81t2vE99NL3OWGi5R6vzcysw/p64PW8zEuN4Yve3Ga8gdfr1UvfZz1XHbrHazMzy8MmSdPS2Sw3Q7G+5J7hzcysW0rNUGDbZihzJO0kaT/cDMV6WLHPL5qZWV9wMxQbVE60zMwsd26GYoPKVYdmZmZmOfEZrQKY0eRwCesWHtnmSMzMzPI1aMc8n9EyMzMzy4kTLTMzM7OcONEyMzMzy4kTLTMzM7OcONEyMzMzy4kTLTMzM7OcONEyMzMzy4kTLTMzM7OcONEyMzMzy4l7hjczK4BB6y3bbFA40TLLmaR1wNPAVmAsImZJmgJ8D5gBrAOOjYjHuxWjmZnlw1WHZp3x7og4KCJmpefzgesiYn/guvTczMz6jBMts+6YDSxJj5cAR3cvFDMzy4urDs3yF8A1kgL4x4hYDAxFxEaAiNgoaY9qK0o6CTgJYGhoiNHR0apvsGXLlprzOi2PWEZmjjW97tCk1tZvpzxiaXZbF2mfMetnTrTM8ndIRGxIydRySffVu2JKyhYDzJo1K4aHh6suNzo6Sq15nZZHLPOabCgOWWKzaGUxfuryiGXd8cNNrVekfcasn7VUdShpnaSVklZIuj1NmyJpuaQH0v3u7QnVrDdFxIZ0vxm4DDgY2CRpGkC639y9CM3MLC/t+Gv17oh4pOx5qZHvQknz0/PT2vA+Zj1H0mRgu4h4Oj1+P/B5YBkwF1iY7i/vXpTWy5rtFuKCwye3ORIzqyaP8+mzgeH0eAkwihOtXDT6Azsyc4x58690vzudNQRcJgmy8nZRRPxQ0m3AUkknAg8Cx3QxRrOuchco1s9aTbRyb+RbpIas4xmaBOdc2NxJiZGZbQ6mhtK2LHoD2H5qpBsRPwXeVGX6o8ChnY/IrLBcO2J9qdVEK/dGvudceHlhGrKOp0gNbmspxdhs49lOcSNdM8O1I9YnWsoMyhv5SnpRI990NsuNfM3MbCID1QVKXkZmjvVMLVAzyr+/Xvo+m0603MjXzMzaZKC6QMnLvPlX9kTtSrPKa2N66fts5dtwI18zM2uZa0esnzWdaLmRr5mZtcq1I9bv+vP8opmZ9QrXjlhfc6JlZh3TbOea1r9cO2L9rqUheMzMzMysNidaZmZmZjlx1aGZmfW9lQ8/ybwmqq49ZJm1yme0zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLifrSsbs0On+J+aMzMbFD5jJaZmZlZTpxomZmZmeXEVYdmZmZWeOXNV0ZmjtU9pFK3m6840TIzMyuQZtvDWjE50RpALsRmZmad4TZaZmZmZjlxomVmZmaWk9yqDiUdDnwV2B74VkQszOu9zHpRO8vIyoefrLthaLlmG4mOV/3cSCNVs4n4WGKt6nYfkLkkWpK2B74OvA9YD9wmaVlE3JvH+1mxNbqTlw7U3b5SJE8uI2YTczmxfpDXGa2DgTUR8VMASZcAswEXDrOMy4jZxHq6nPjCIwNQRLT/RaU/BA6PiD9Nzz8KvC0iTilb5iTgpPT09cD9NV5uKvBI24Nsv16IsxdihHzj3DciXpnTa9etnjKSpvdiOSlSLFCseHollp4pJz1aRvLkz9kZdZeRvM5oqcq0F2V0EbEYWDzhC0m3R8SsdgWWl16IsxdihN6Js0UTlhHozXJSpFigWPE4loYN3LGkVf6cxZPXVYfrgellz/cBNuT0Xma9yGXEbGIuJ9bz8kq0bgP2l7SfpJcAc4BlOb2XWS9yGTGbmMuJ9bxcqg4jYkzSKcDVZJfknh8Rq5p8uQlPCRdEL8TZCzFC78TZtDaXESjWNitSLFCseBxLAwb0WNIqf86CyaUxvJmZmZm5Z3gzMzOz3DjRMjMzM8tJoRMtSYdLul/SGknzux1PNZLWSVopaYWk27sdT4mk8yVtlnRP2bQpkpZLeiDd717AGM+U9HDaniskHdHNGIuuCGWkWhno1L7W6H4u6fS0re6XdFiH4qm5T+cZj6Tpkq6XtFrSKkmfStO7tn26pQjlJC/dLH95KVq5bllEFPJG1vDxJ8CrgZcAdwEHdDuuKnGuA6Z2O44qcb0LeAtwT9m0LwLz0+P5wBcKGOOZwF91e/v1wq0oZaRaGejUvtbIfg4ckLbRTsB+adtt34F4qu7TeccDTAPekh7vCvw4vWfXtk83bkUpJzl+vq6Vvxw/U6HKdau3Ip/Ren7ohYj4DVAaesHqEBE3AI9VTJ4NLEmPlwBHdzKmSjVitPoVuYx0ZF9rcD+fDVwSEc9GxFpgDdk2zDueWnKNJyI2RsSd6fHTwGpgb7q4fbqkyOUkL4X6rW9U0cp1q4qcaO0NPFT2fH2aVjQBXCPpjjQURJENRcRGyH6EgT26HE8tp0i6O50+7qlT3h1WlDJSrQx0c1+r9d7d3F7V9umOxSNpBvBm4BaKuX3y1K+fq6Ro5S8vPbvfFjnRqmuIkgI4JCLeAnwAOFnSu7odUI/7JvAa4CBgI7Coq9EUW1HKSK+UgW5tr1r7dEfikbQL8APg1Ih4arxFOxFPF/Tr5yrplfKXl8J/v0VOtHpi6IWI2JDuNwOXUbBTlhU2SZoGkO43dzmebUTEpojYGhHPAedS7O3ZbYUoIzXKQDf3tVrv3ZXtNc4+nXs8knYkS7IujIhL0+RCbZ8O6NfPBRSy/OWlZ/fbIidahR96QdJkSbuWHgPvB+4Zf62uWgbMTY/nApd3MZaqSgUp+TDF3p7d1vUyMk4Z6Oa+Vuu9lwFzJO0kaT9gf+DWvIMZZ5/ONR5JAs4DVkfE2WWzCrV9OqDr5SQvBS1/eend/bbbrfHHuwFHkF0p8xPgM92Op0p8rya72uEuYFWRYgQuJqum+C1Zxn8i8ArgOuCBdD+lgDF+B1gJ3E1WgKZ1e1sW+dbtMlKrDHRqX2t0Pwc+k7bV/cAHOhRPzX06z3iAd5JVodwNrEi3I7q5fbp163Y5yfFzdbX85fi5ClWuW715CB4zMzOznBS56tDMzMyspznRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRapCkeZJurDHveEnXtOl9QtJrW3kfSWdK+m474jHrJ5JGJf1pety2cmtmVsmJVg2S3inpR5KelPSYpP+U9HvjrRMRF0bE++t47TMkbUm3X0vaWvZ81UTr1/s+Zr1K0jpJ7+3Ee7k8Wb9K5ehX6djyuKQrJU1P8y5If+g/VLHOV9L0eel5zZMLVh8nWlVIehlwBXAOMAXYG/gc8Gw7Xj8i/i4idomIXYBPADeVnkfEge14DzMzM+CD6VgzDdhEdlwr+TEwt/RE0g7AMcBPOhphn3OiVd3rACLi4ojYGhG/iohrIuLuygUl/V9JN0p6eWXmn/4VfELSA+nfxNclqYE43ltt3Srvc6Ck5enM2yZJZ1SJc0dJF0v6gaSXpGrFpZK+LelpSaskzSpbfq+07C8krZX0ybJ5B0u6XdJT6f3OTtN3lvRdSY9KekLSbZKGGvi8Zi9S2tclfSmVg7WSPlAx/6dpH14r6fg0/UXV5pJmpPK4Q633KHveark1K5yI+DXwfeCAssn/Ahwiaff0/HDgbuDnHQ6vrznRqu7HwFZJSyR9oGwnfJ6k7SSdC/wu8P6IeLLGax0F/B7wJuBY4LAG4phwXUm7AtcCPwT2Al4LXFexzCTgn8nOyB0bEb9Jsz4EXALsBiwDvlb6bGQF8C6ys3mHAqdKKr3/V4GvRsTLgNcAS9P0ucDLgenAK8jO1v2qgc9rVs3bgPuBqcAXgfOUmQz8PfCBiNgVeAewok3v2Uq5NSscSS8F/gi4uWzyr8l+++ek5ycA3+5waH3PiVYVEfEU8E4ggHOBX0haVnZ2ZkfgYrJqxQ9GxC/HebmFEfFERDwIXA8c1EAo9ax7FPDziFgUEb+OiKcj4pay+S8jS8J+AvxJRGwtm3djRFyVpn2H7KAC2QHmlRHx+Yj4TUT8lGw7lArjb4HXSpoaEVsi4uay6a8AXpvOBN6RtqVZK34WEeem/XQJWRVIqSw+B7xR0qSI2BgRE7ZxrFMr5dasSP5Z0hPAU8D7gP9bMf/bwAmSXg78AdmfcmsjJ1o1RMTqiJgXEfsAbyQ7W/SVNPu1wGzgc2Vnh2opPwX7S2CXBsKoZ93pjF+f/nays24LIyImeP2dU9XKvsBeqfrviVRIz+CFg9uJZNWr96XqwaPS9O8AVwOXSNog6YuSdpzwU5qN7/n9tOxPzS4R8QzZP/RPABtTQ9/fafd70ni5NSuSoyNiN2An4BTg3yXtWZoZETcCrwT+GrgiIlwL0WZOtOoQEfcBF5AlXACrgT8B/lXS67sVV/IQWfVdLdcA/we4roH2Ug8BayNit7LbrhFxBEBEPBARxwF7AF8Avi9pckT8NiI+FxEHkFXjHEV2KtosFxFxdUS8j+ws131kZ14BngFeWrbonpXrmg2SVMtwKbCVrMam3HeBEVxtmAsnWlVI+h1JI5L2Sc+nA8dRVrcdEReTneW5VtJ4iU7ergD2lHSqpJ0k7SrpbeULRMQXgYvIkq2pdbzmrcBTkk6TNEnS9pLeqNS9haSPSHplRDwHPJHW2Srp3ZJmStqe7DT1b8kKtVnbSRqS9KHUVutZYAsv7G8rgHdJelWqEjm9S2GaFUJq1zgb2J3sZEG5vyerVryh44ENACda1T1N1gD3FknPkCVY95Bl/M+LiCXA54F/kzSj00GmGJ4mKyAfJKvueAB4d5XlziKre79W0pQJXnNrer2DgLXAI8C3yBq6Q3ZlyipJW8gaxs9JV7TsSXZVy1NkBfnfyf4pmeVhO7IyuQF4jKx9yZ8DRMRy4HtkV1DdQfaHxGwQ/Uv6rX4KWADMrWzLGBGPRcR1VZqXWBvI29XMzMwsHz6jZWZmZpYTJ1pmZmZmOXGiZWZmZpYTJ1pmZmZmOXGiZdYjJP2w2zHYYPC+ZtY+2wyw2g1Tp06NGTNmVJ33zDPPMHny5M4GNA7HU1uRYoHq8dxxxx2PRMQr83g/SevIugbZCoxFxKzUlcb3gBnAOrKxJh9Py59O1sv+VuCTEXH1eK//spe97LBZs2ZVvUy4CNveMRQrjhZj6Mmhs3rpWFKL42yvvOJs6FgSEV2/vfWtb41arr/++przusHx1FakWCKqxwPcHjntx2SJ1NSKaV8E5qfH84EvpMcHkA3avROwH9kwStuP9/pFLyeO4QVFiKOVGPIsJ3neil5G6uE42yuvOBspI646NMvXbLKBkEn3R5dNvyQino2ItcAa4ODOh2dmZnkqRNWhWZ8I4BpJAfxjRCwGhiJiI0BEbJS0R1p2b8qGdALWp2kvIukk4CSAoaEhRkdHq77xli1bas7rFMdQrDiKEIOZOdEya6dDImJDSqaWS7pvnGVVZdo27a9SsrYYYNasWTE8PFz1xUZHR6k1r1McQ7HiKEIMZuarDs3aJiI2pPvNwGVkVYGbJE0DSPeb0+Lrgellq+9DNmafmZn1ESdaZm0gabKkXUuPgfeTDUS+DJibFpsLXJ4eLwPmSNpJ0n7A/sCtnY3azMzyVviqw5UPP8m8+Vc2vN66hUfmEI1ZTUPAZZIgK1cXRcQPJd0GLJV0IvAgcAxARKyStBS4FxgDTo6Irc2+ucuJmc1o4jcA/DuQt8InWma9ICJ+CrypyvRHgUNrrLMAWJBzaGZm1kWuOjQzMzPLiRMtMzMzs5w40TIzMzPLiRMtMzMzs5w40TIzs9xJmi7pekmrJa2S9Kk0/UxJD0takW5HlK1zuqQ1ku6XdFj3ojdrnq86NDOzThgDRiLiztTn3B2Slqd5X46IL5UvLOkAYA5wILAXcK2k17XSDYpZN/iMlpmZ5S4iNkbEnenx08BqqozvWcYDr1tf8BktMzPrKEkzgDcDtwCHAKdIOgG4neys1+P04cDr9WglzpGZY02t18z7DcL2bBcnWmZm1jGSdgF+AJwaEU9J+iZwFtmg6mcBi4CP0YcDr9ejlTibGR0CYN3xjb/fIGzPdnHVoZmZdYSkHcmSrAsj4lKAiNgUEVsj4jngXF6oHvTA69YXnGiZmVnulA0Eeh6wOiLOLps+rWyxD5MNxg4eeN36hKsOzcysEw4BPgqslLQiTTsDOE7SQWTVguuAj0P7B1436xYnWmZmlruIuJHq7a6uGmcdD7xuPc9Vh2ZmZmY5mTDRGqc33ymSlkt6IN3vXraOe/M1MzOzgVfPGa1Sb75vAN4OnJx67J0PXBcR+wPXpeeVvfkeDnxD0vZ5BG9mZmZWZBMmWuP05jsbWJIWWwIcnR67N18zMzMzGmwMX9Gb71BEbIQsGZO0R1qsrb35Dk1qrrfbvHqCLUIvs+WKFE+RYoHixWNmZoOn7kSrSm++NRetMq3p3nzPufByFq1s/OLIZnq6rUcRepktV6R4ihQLFC8eMzMbPHVddVitN19gU6mjuXS/OU13b75mZmZm1HfVYdXefMl67Z2bHs8FLi+b7t58beBI2l7Sf0m6Ij33lblmZgOunjq5Wr35LgSWSjoReBA4Btybrw20T5FdLPKy9Lx0Ze5CSfPT89MqrszdC7hW0utcTsysG2Y0MRj1yMwxhtsfSl+aMNEapzdfgENrrOPefG2gSNoHOJJsv//LNHk2PP9btAQYBU6j7MpcYK2k0pW5N3UwZDMz6wAPwWPWHl8BPg3sWjatpStzobeuzi3CVZ5FiKEocRQhBjNzomXWMklHAZsj4g5Jw/WsUmXaNlfmQm9dnVuEqzyLEENR4ihCDGbmRMusHQ4BPiTpCGBn4GWSvku6MjedzfKVuWZmA8iDSpu1KCJOj4h9ImIGWSP3f4uIj+Arc83MBp7PaJnlx1fmmpkNOCdaZm0UEaNkVxcSEY/iK3PNzAaaqw7NzMzMcuJEy8zMzCwnTrTMzCx3kqZLul7SakmrJH0qTfdQVdbXnGiZmVknjAEjEfEG4O3AyWk4qtJQVfsD16XnVAxVdTjwDUnbdyVysxa4MXwbNTNeFMC6hUe2ORIzs2JJoySURkp4WtJqshERPFSV9TUnWmZm1lGSZgBvBm6hxaGq6h2mqleGJGolzmaG4WrW0KT2DuGVlyJ87060zMysYyTtAvwAODUinpKqjUiVLVpl2jZDVdU7TFWvDEnUSpzzmqxVacbIzDGO7fPt2S5uo2VmZh0haUeyJOvCiLg0Td6UhqjCQ1VZP3KiZWZmuVN26uo8YHVEnF02y0NVWV9z1aGZmXXCIcBHgZWSVqRpZ+ChqqzPOdGqYryrB0dmjnW0HtzMrB9ExI1Ub3cFHqrK+pirDs3MzMxy4kTLzMzMLCdOtMzMzMxy4kTLzMzMLCdOtMzMzMxyMmGiJel8SZsl3VM27UxJD0takW5HlM3zaOtmZmZm1HdG6wKykdMrfTkiDkq3q8CjrZuZmZmVmzDRiogbgMfqfL3nR1uPiLVAabR1MzMzs4HTSoelp0g6AbgdGImIx6lztHWof8T1oUnNjUjeymjd471fs/GMp5VYizAyeUmRYoHixWNmZoOn2UTrm8BZZCOpnwUsAj5GnaOtQ/0jrp9z4eUsWtl4mOuOr/569Riv5/eRmWNNxTOeVmItwsjkJUWKBYoXj5mZDZ6mrjqMiE0RsTUingPO5YXqQY+2bgNH0s6SbpV0l6RVkj6Xpk+RtFzSA+l+97J1fNGImdkAaCrRkjSt7OmHgdIViR5t3QbRs8B7IuJNwEHA4ZLeDswHrouI/YHr0nNfNGJmNkAmrAOTdDEwDEyVtB74LDAs6SCyasF1wMfBo63bYIqIALakpzumW5BdHDKcpi8BRoHTKLtoBFgrqXTRyE2di9rMzDphwkQrIo6rMvm8cZb3aOs2cNIZqTuA1wJfj4hbJA1FxEaAiNgoaY+0eF9cNFKpCBcfFCGGosRRhBjMrLWrDs0sSWduD5K0G3CZpDeOs3hfXDRSqQgXHxQhhqLEUYQYzMxD8Ji1VUQ8QVZFeDiwqdSeMd1vTov5ohEzswHhRMusRZJemc5kIWkS8F7gPrKLQ+amxeYCl6fHvmjEzGxAuOrQrHXTgCWpndZ2wNKIuELSTcBSSScCDwLHgC8aMTMbJE60zFoUEXcDb64y/VHg0Brr+KIRGyiSzgeOAjZHxBvTtDOBPwN+kRY7o2zs3NOBE4GtwCcj4uqOB90lM8bpNNt6j6sOzcysEy4ga7tY6csRcVC6lZIs9zVnfcOJlpmZ5S4ibgAeq3Px5/uai4i1QKmvObOe46pDMzPrplMknQDcDoxExOPk0Ndcr/QrtmXLFkZmFr/J5tCk9vbDl5cifO9OtMzMrFu+CZxF1o/cWcAi4GPk0Ndcr/QrNjo6yqIbn+l2GBMamTnGsT2yPbv9vbvq0MzMuiIiNkXE1oh4DjiXF6oH3dec9Q0nWmZm1hWlDn2TDwP3pMfua876hqsOzcwsd5IuJhtkfaqk9cBngWFJB5FVC64DPg7ua876ixMtMzPLXUQcV2XyeeMs777mrC+46tDMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLStx2Wzph/ZbdDMDMzswE34RktSedL2izpnrJpUyQtl/RAut+9bN7pktZIul/SYXkFbmZmZlZ09VQdXgAcXjFtPnBdROwPXJeeI+kAYA5wYFrnG5K2b1u0ZmZmZj1kwkQrIm4AHquYPBtYkh4vAY4um35JRDwbEWuBNcDB7QnVzMzMrLc020ZrKCI2AkTERkl7pOl7AzeXLbc+TduGpJOAkwCGhoYYHR2t/kaTYGTmWJNhtl8e8dT67PXYsmVLS+u3U5Figc7FI2k68G1gT+A5YHFEfFXSFOB7wAxgHXBsRDye1jkdOBHYCnwyIq7OPVAzM+u4djeGV5VpUW3BiFgMLAaYNWtWDA8PV33Bcy68nEUri9Nmf2TmWNvjWXf8cNPrjo6OUmvbdVqRYoGOxjMGjETEnZJ2Be6QtByYR1bFvlDSfLIq9tMqqtj3Aq6V9LqI2NqJYM3MrHOa7d5hk6RpAOl+c5q+Hphettw+wIbmwzMrvojYGBF3psdPA6vJzuS6it3MbMA1e2pmGTAXWJjuLy+bfpGks8n+qe8P3NpqkGa9QtIM4M3ALfRAFXs7q1aLUHVchBiKEkcRYjCzOhItSRcDw8BUSeuBz5IlWEslnQg8CBwDEBGrJC0F7iWrTjnZ1SE2KCTtAvwAODUinpKq1aRni1aZ1pUq9laqrSsVoeq4CDEUJY4ixGBmdSRaEXFcjVmH1lh+AbCglaDMeo2kHcmSrAsj4tI0eZOkaelslqvYzcwGkIfgMWuRslNX5wGrI+LsslmlKnbYtop9jqSdJO2Hq9htALjzaxtUTrTMWncI8FHgPZJWpNsRZFXs75P0APC+9JyIWAWUqth/iKvYbTBcgDu/tgFUnH4TzHpURNxI9XZX4Cp2MyDr/DpdLFJuNlkbYMiuzB0FTqPsylxgraTSlbk3dSRYszZyomVmZt3SsStze+UqzC1btjAys/gnuIcmtfeq5bwU4Xt3omVmZkXT9itze+UqzNHRURbd+Ey3w5jQyMwxju2R7dnt791ttMzMrFvc+bX1PSdaZmbWLb4y1/qeqw7NzCx37vzaBpUTrQKYMf/KptZbt/DINkdiZpYPd35tg8pVh2ZmZmY5caJlZmZmlhNXHZoNMFdbm5nly2e0zMzMzHLiRMvMzMwsJ060zMzMzHLiNlpmZmbWMLfxrI/PaJmZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU6caJmZmZnlxImWmZmZWU5a6t5B0jrgaWArMBYRsyRNAb4HzADWAcdGxOOthWlmZmbWe9pxRuvdEXFQRMxKz+cD10XE/sB16bmZmZnZwMmj6nA2sCQ9XgIcncN7mBWKpPMlbZZ0T9m0KZKWS3og3e9eNu90SWsk3S/psO5EbWZmeWu1Z/gArpEUwD9GxGJgKCI2AkTERkl7VFtR0knASQBDQ0OMjo5WfYOhSTAyc6zFMNunSPGMjo6yZcuWmtuu04oUC3Q8nguArwHfLptWOru7UNL89Pw0SQcAc4ADgb2AayW9LiK2dipYMzPrjFYTrUMiYkNKppZLuq/eFVNSthhg1qxZMTw8XHW5cy68nEUrizNS0MjMscLEs+74YUZHR6m17TqtSLFAZ+OJiBskzaiYPBsoBbAEGAVOS9MviYhngbWS1gAHAzd1JFgzM+uYljKGiNiQ7jdLuozsYLFJ0rR0NmsasLkNcZr1olpnd/cGbi5bbn2ato2invmtFkcRzmgWIYaixFGEGOrlC6usnzWdaEmaDGwXEU+nx+8HPg8sA+YCC9P95e0I1KyPqMq0qLZgUc/8rjt+2ziKcEazCDEUJY4ixNCgd0fEI2XPq1a9dyc0s+a18ss8BFwmqfQ6F0XEDyXdBiyVdCLwIHBM62Ga9aRaZ3fXA9PLltsH2NDx6MyKrVbVu1lPaTrRioifAm+qMv1R4NBWgjLrE7XO7i4DLpJ0Nllj+P2BW7sSoVkx5H5hVa9UpW7ZsoWRmcW/LqaV5gqd/B6K8L0Xo1W3WY+TdDHZv++pktYDnyVLsLY5uxsRqyQtBe4FxoCTfcWhDbjcL6zqlarU0dFRFt34TLfDmFArF4ZVa3qQlyJ87060zNogIo6rMavq2d2IWAAsyC8is97hC6usn3msQzMz6xpJkyXtWnpMdmHVPbxQ9Q6+sMp6mM9omZlZN/nCKutrTrTMzKxrfGGV9TsnWmbWsBnzr9xm2sjMMeZVmV5u3cIj8wrJzKyQ3EbLzMzMLCdOtMzMzMxy4kTLzMzMLCdOtMzMzMxy4kTLzMzMLCdOtMzMzMxy4kTLzMzMLCdOtMzMzMxy4kTLzMzMLCdOtMzMzMxy4kTLzMzMLCce69DMOqbaGIn18BiJ1oua2d9HZo7hQ3N/8RktMzMzs5w4bTYzM7OOGbQz2060etiM+VcyMnOMeQ3utL26s5qZNWvlw082/FsJ/r201rnq0MzMzCwnuSVakg6XdL+kNZLm5/U+Zr3KZcRsYi4n1utyqTqUtD3wdeB9wHrgNknLIuLePN7PrNe4jDSm3jYdzVSlV+PqomJwObF+kFcbrYOBNRHxUwBJlwCzAReOAhi0hogF5TJSYM2WEXA5aTOXE3tes91lDLc/lIbklWjtDTxU9nw98Lac3sv6VJ8nhC4jfarZi1TabaIYXE5sUHT7WJJXoqUq0+JFC0gnASelp1sk3V/jtaYCj7QxtpZ8coDj0RcmXKQQ26Yszmrx7NvRYGqbsIxAb5WTIpSNIsRQlDgmimGC8twz5STvMlLH715bFWHfqccgxNmuMpJXorUemF72fB9gQ/kCEbEYWDzRC0m6PSJmtTe85jme2ooUCxQvngoTlhHorXLiGIoVRxFiaIO+PZbU4jjbqwhx5nXV4W3A/pL2k/QSYA6wLKf3MutFLiNmE3M5sZ6XyxmtiBiTdApwNbA9cH5ErMrjvcx6kcuI2cRcTqwf5NYzfERcBVzVhpea8JRwhzme2ooUCxQvnhdpYxmBYnxWx/CCIsRRhBha1sfHklocZ3t1PU5FbNP+1szMzMzawEPwmJmZmeWk0IlWN4dekDRd0vWSVktaJelTafqZkh6WtCLdjuhgTOskrUzve3uaNkXSckkPpPvdOxTL68u2wQpJT0k6tVPbR9L5kjZLuqdsWs1tIen0tB/dL+mwPGLqhk6VkXHKQ8e3uaTtJf2XpCu6GMNukr4v6b60TX6/03FI+ov0Xdwj6WJJOw9iGahHN48l42mmXHUx1rrLXTc1WjY7IiIKeSNr+PgT4NXAS4C7gAM6+P7TgLekx7sCPwYOAM4E/qpL22QdMLVi2heB+enxfOALXfqufk7Wr0hHtg/wLuAtwD0TbYv0vd0F7ATsl/ar7bvxHeaw3TtSRsYpDx3f5sBfAhcBV3TreweWAH+aHr8E2K2TcZB15LkWmJSeLwXmDVoZqHNbdfVYMkFsDZWrLsdaV7nr9q2RstmpW5HPaD0/9EJE/AYoDb3QERGxMSLuTI+fBlaT/bgVzWyyHYt0f3QXYjgU+ElE/KxTbxgRNwCPVUyutS1mA5dExLMRsRZYQ7Z/9bqOlZFxykNHt7mkfYAjgW+VTe50DC8jS/TPA4iI30TEE52Og+xipkmSdgBeSta/1KCVgXp09VgynibKVVc0WO66pomy2RFFTrSqDb3QlURH0gzgzcAtadIpku5O1VedPAUZwDWS7lDWGzLAUERshKzQAnt0MJ6SOcDFZc+7tX1qbYvC7Ett1pXPVVEeOr3NvwJ8GniubFqnY3g18Avgn1JVyrckTe5kHBHxMPAl4EFgI/BkRFzTyRh6SE989jrLVbd8hfrLXTc1WjY7osiJVl1DlOQehLQL8APg1Ih4Cvgm8BrgILIfuEUdDOeQiHgL8AHgZEnv6uB7V6WsE8EPAf8vTerm9qmlEPtSDjr+uaqUh5qLVpnWUmySjgI2R8Qd9a7S7hiSHciqrb8ZEW8GniGrjuhYHOkPzGyyasC9gMmSPtLJGHpI4T97A+Wq45ood93UaNnsiCInWnUNUZInSTuS7fwXRsSlABGxKSK2RsRzwLl08PR7RGxI95uBy9J7b5I0LcU7DdjcqXiSDwB3RsSmFFvXtg+1t0XX96WcdPRzVSsPdHabHwJ8SNI6suqf90j6bodjKL3u+ogoneH+PtmPeyfjeC+wNiJ+ERG/BS4F3tHhGHpFoT97g+WqGxotd93UaNnsiCInWl0dekGSyOp5V0fE2WXTp5Ut9mHgnsp1c4pnsqRdS4+B96f3XgbMTYvNBS7vRDxljqOs2rBb2yeptS2WAXMk7SRpP2B/4NYOxpWXjpWRWuWBDm7ziDg9IvaJiBlkn/XfIuIjnYwhxfFz4CFJr0+TDgXu7XAcDwJvl/TS9N0cSta+Z9DKQD0KO4xPE+Wq45ood13TRNnsWGCFvQFHkF2F8RPgMx1+73eSnV6+G1iRbkcA3wFWpunLgGkdiufVZFfL3AWsKm0P4BXAdcAD6X5KB7fRS4FHgZeXTevI9iFL7jYCvyX7F3PieNsC+Ezaj+4HPtDJfSnn76AjZWSc8tCVbQ4M88LVTx2Pgaxq/Pa0Pf4Z2L3TcQCfA+4j+zPzHbIrCgeuDNS5rbp2LJkgrobLVZfjravcdTnGhspmJ27uGd7MzMwsJ0WuOjQzMzPraU60zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLiRMvMzMwsJ060zMzMzHLSM4mWpH+Q9Dd1Ljsq6U/zjqlTJK2T9N70+AxJ3+p2TN0g6XhJ13Q7DjMzs3oVJtFKycSvJD0t6QlJP5L0CUnbAUTEJyLirA7E0ZYkTdKwpOckbUmf6X5Jf9Lq60bE30VEV5JISSHpmfSZtkh6Isf3mpHeb4fStIi4MCLen9d7Wu9J5fVxSTt1OxazPEiaJ2mlpF9K+rmkb0rarc51n/+Tbt1TmEQr+WBE7ArsCywETgPO625ILdkQEbsALyP7LOdKOqBbwZQnLS14U0Tskm67teH1zJoiaQbw/wEBfKi70Zi1n6QR4AvA/wJeDryd7Pi4XNJLuhmb1a9oiRYAEfFkRCwD/giYK+mNki6Q9LcAknaXdIWkX6R/s1dI2qfiZV4j6VZJT0q6XNKU0gxJb09nzJ6QdJek4TR9AdkP99fSGZuvpem/I2m5pMfSmaljy17rCEn3prNWD0v6qyqfJyLin4HHgQMkbSdpvqSfSHpU0tKK+D4q6Wdp3mfKX0vSmZK+W/b8hLJl/6aimvFMSd+X9F1JTwHzJL1c0nmSNqZ4/1bS9mWv9zFJq9N2vVrSvhN9X+nM02vLnpd/V8OS1ksakbQ5ve+flC07SdKi9BmelHSjpEnADWmRJ9J38fvpn92NZeu+Q9Jtab3bJL2jbN6opLMk/Wf6bq6RNHWiz2I95QTgZuACYG5poqRXSPoXSU+l/eJvK/abmuXZrCgkvQz4HPA/I+KHEfHbiFgHHEuWbH2k/Lc2rTMsaX16/B3gVcC/pN/QT6fp7yw7/j0kaV6a/nJJ307H1Z9J+mulGqX02/ufkr6c1vtp+v2dl15js6TyMriTpC9JelDSJmVNfyZ1ZMMVUCETrZKIuBVYT5b8lNsO+Ceyne1VwK+Ar1UscwLwMWAvYAz4ewBJewNXAn8LTAH+CviBpFdGxGeA/wBOSWdsTpE0GVgOXATsARwHfEPSgel9zgM+ns7EvRH4t8rPkRKrDwO7ASuBTwJHA3+Q4nsc+Hpa9gDgm8BH07xXAJVJJGXLfgM4HphG9o9n74rFZgPfT+99IbAkbY/XAm8G3g/8aXq9o4EzgP8GvDJti4urvXeD9iyL7UTg65J2T/O+BLwVeAfZ9/Fp4DngXWn+bum7uKn8BVNieiXZ9/oK4GzgSkmvKFvsj4E/IfveXkL2XVv/OIFsn74QOEzSUJr+deAZsv1uLi9OwiYqz2ZF8Q5gZ+DS8okRsQX4V+B9460cER8FHiSrKdolIr4o6VVp3XPIfuMPAlakVc4h+51+Ndmx6QSy38+StwF3k/3eXgRcAvwe2bHkI2QnKHZJy34BeF16/deS/fb/7wY+e18pdKKVbCA7AD8vIh6NiB9ExC8j4mlgAdmOUe47EXFPRDwD/A1wbDpz8xHgqoi4KiKei4jlwO3AETXe/yhgXUT8U0SMRcSdwA+AP0zzf0t2luplEfF4ml+yl7J2TI8AnwU+GhH3Ax8HPhMR6yPiWeBM4A+VVe39IXBFRNyQ5v0NWeJRzR8C/xIRN0bEb8h25KhY5qaI+OeIeI6sCvMDwKkR8UxEbAa+DMxJy34c+D8RsToixoC/Aw6qOKt1Z/pH84Skv68RV6XfAp9P/8iuArYAr0//lj4GfCoiHo6IrRHxo/S5J3Ik8EBEfCd9LxcD9wEfLFvmnyLixxHxK2ApWaG3PiDpnWR/tJZGxB3AT4A/TmX8vwOfTb8P95L9uSiZqDybFcVU4JH0W1xpY5rfqOOBayPi4vR7/GhErEjl5o+A0yPi6XTmbBHZH/6StancbAW+B0wn+11/NiKuAX4DvFaSgD8D/iIiHkvH6L/jhePMwGlHm5287Q08Vj5B0kvJEoTDgdKZkV0lbZ92AoCHylb5GbAj2Y65L3CMpPID8o7A9TXef1/gbXpxw+8dgO+kx/8d+GtgoaS7gfllZ182RES1s1H7ApdJKk+gtgJDZGexno89Ip6R9GiN2CqX/WWVZcu3w75kn3VjVhaALNl+qGz+VyUtKltHZN/Bz9Lzt0TEmhrx1PJoxY/FL4FdyL6PnckOko3aqyymkp/x4jN6P6/yntYf5gLXRMQj6flFadrFZOWzfL+vLAPjlWezongEmCpphyrJ1rQ0v1HTqf57O5XsrH/5b2rl7+mmsse/AoiIymm7kJ0peylwR9lxRsD2DKhCJ1qSfo/si76R7LRlyQjweuBtEfFzSQcB/0X2ZZZML3v8KrKzKo+Q/eh+JyL+rMbbVp4Regj494ioepo2Im4DZkvaETiF7MzJ9GrLVrzmxyLiPytnSNoIvKHs+UvJTtVWs5FsO5SWnVRl2fLP8xDwLDC1xr+kh4AFEXHhBPFX+iVZwSrZk6zKdyKPAL8GXgPcVTGv8nuotIHsoFnuVcAP63hf62FpPz8W2F5SKZneiax6fIisanwf4MdpXnl5HLc8mxXITWS/1/+N7LgCPF/9/QGyZh5vZtvf3nLVjmcHV3mvR8iOkfsC96ZprwIebiLuR8iSrgMjopn1+04hqw4lvUzSUWR1wN+NiJUVi+xK9kU+kdrqfLbKy3xE0gEpUfk88P10tuu7wAclHSZpe0k7pwaEpTNPm8jqqEuuAF6nrIH6jun2e5LeIOklyvp2enlE/BZ4iuzM1ET+AVhQqpKT9EpJs9O87wNHpQaLL0mx1/qevp8+yzvSsp/jxcnmi0TERuAaYFHaxttJeo2kUrXrPwCnl9qrpMaRx9TxeVaQqm0kHc621bi14nkOOB84W9Jeaf3fV3ap/i/IqkxfXWP1q8i+lz+WtIOkPwIOIPu+rL8dTVbODiCrDj6I7M/Jf5C1K7kUOFPSSyX9TppWUrM8dzB+swlFxJNkv+nnSDo87aszgP9H9kf2O2S/vUdImiJpT+DUipepPJ5dCLxX0rHpd/MVkg5Kx8alZMelXdOx6S/JjpeNxv0ccC7wZUl7QNY2WtJhjb5WvyhaovUvkp4my7o/Q9bAuVrfU18BJpFlzjdT/SzGd8iuRvo5WfXUJwEi4iGyBuJnkB3MHyK7dLa0Lb5K1l7qcUl/n+qX309Wv7whvd4XyP5BQ1aHvU7ZVX2fIGsDNpGvAsuAa9LnvZl0xi4iVgEnk1WFbCRrKF/17FBa9n+SJaQbgaeBzWT/gmo5gewU8b3ptb9PdhqaiLgsfbZL0ue5h+yf00Q+RdY26gmyNgD/XMc6JX9FdoHAbWRVxF8AtouIX5K1vfvP1B7s7eUrRcSjZO1tRoBHyRrRH1VWlWT9ay5Z+7sHI+LnpRvZBTHHk51ZfjlZWf0OWXXiswB1lGezwoiIL5Idq75E9kf+FrJj1qGpLet3yGoD1pH9if5exUv8H+Cv02/oX0XEg2TtkUfIfm9XAG9Ky/5PsotIfkpWi3QR2R/hZpwGrAFuTseSaymrfRk0ipiohsZ6Rbri4wlg/4hY2+VwzApB0heAPSNi7oQLm5m1WdHOaFmDJH0wVZFMJvvXs5Ls343ZQFLWT9bvKnMwWZcil3U7LjMbTE60et9ssiqQDcD+wJzwaUobbLuStdN6hqzdySLg8q5GZGYDy1WHZmZmZjnxGS0zMzOznBSiH62pU6fGjBkzAHjmmWeYPHlydwPqIH/ezrrjjjseiYhXdi2AFpSXk5Jub89m9WrcMBix92o5qVZGSor2vRUpHsdS3XixNFRGIqLrt7e+9a1Rcv3118cg8eftLOD2KMA+38ytvJyUdHt7NqtX444YjNh7tZxUKyONfvZOKVI8jqW68WJppIy46tDMzMwsJ060zMzMzHLiRMusRWkYp1sl3SVplaTPpelTJC2X9EC6371sndMlrZF0/yAPTWGDRdI6SSslrZB0e5rmcmJ9zYmWWeueBd4TEW8iG3fv8DRk0HzguojYH7guPUfSAWRDwBwIHA58Q9LAjmxvA+fdEXFQRMxKz11OrK850TJrUWobuSU93THdgqwz2SVp+hKywZBJ0y+JiGcjGyppDXBw5yI2KxSXE+trhejeYTwz5l/Z1HrrFh7Z5kjMakv/tO8AXgt8PSJukTQUERsBImJjaSR7YG+ygcRL1qdp1V73JOAkgKGhIUZHR180f8uWLYyOjrLy4Sebinvm3i9var1WleLuRY69JQFcIymAf4yIxUBL5WSiMlKy+bEnOefCxgcIyKuMFOC7eJ5jqa5dsRQ+0TLrBRGxFThI0m7AZZLeOM7iqvYSNV53MbAYYNasWTE8PPyi+aOjowwPDzOv2T8kxw9PuEweSnH3IsfekkMiYkNKppZLum+cZesqJxOVkZJzLrycRSsbP+TlVUYK8F08z7FU165YXHVo1kYR8QQwStamZJOkaQDpfnNabD0wvWy1fcjGqjTraxGxId1vJhvo+2BcTqzPOdEya5GkV6YzWUiaBLwXuA9YBsxNi83lhYGNlwFzJO0kaT+ywcBv7WjQZh0mabKkXUuPgfcD9+ByYn3OVYdmrZsGLEnttLYDlkbEFZJuApZKOhF4EDgGICJWSVoK3AuMASenqkezfjZEVq0O2bHnooj4oaTbcDmxPjZhoiVpZ+AGYKe0/Pcj4rOSpgDfA2YA64BjI+LxtM7pwInAVuCTEXF1LtGbFUBE3A28ucr0R4FDa6yzAFiQc2hmhRERPwXeVGW6y4n1tXqqDt1HkJmZmVkTJky03EeQmZmZWXPqaqOVRx9Btfo+qey3YmTmWGOfKClKPxwTKVKfIZ0waJ/XzMwGW12JVh59BNXq+6Sy34pe6x+oUUXqM6QTBu3zmpnZYGuoewf3EWRmZmZWvwkTLfcRZGZmZtaceqoO3UeQmZmZWRMmTLTcR5CZmZlZczwEj5mZmVlOnGiZmZmZ5cSJlpmZmVlOnGiZmZmZ5cSJlpmZmVlOnGiZmZmZ5cSJlpmZmVlOnGiZtUjSdEnXS1otaZWkT6XpZ0p6WNKKdDuibJ3TJa2RdL+kw7oXvZmZ5amuQaXNbFxjwEhE3ClpV+AOScvTvC9HxJfKF5Z0ADAHOBDYC7hW0us8goKZWf/xGS2zFkXExoi4Mz1+GlgN7D3OKrOBSyLi2YhYC6wBDs4/UjMz6zSf0TJrI0kzyIasugU4BDhF0gnA7WRnvR4nS8JuLlttPTUSM0knAScBDA0NMTo6+qL5W7ZsYXR0lJGZY03FW/l6nVKKuxc5djNrhBMtszaRtAvwA+DUiHhK0jeBs4BI94uAjwGqsnpUe82IWAwsBpg1a1YMDw+/aP7o6CjDw8PMm39lUzGvO354wmXyUIq7Fzl2M2uEqw7N2kDSjmRJ1oURcSlARGyKiK0R8RxwLi9UD64Hppetvg+woZPxmnWLpO0l/ZekK9LzKZKWS3og3e9etqwvGrGe50TLrEWSBJwHrI6Is8umTytb7MPAPenxMmCOpJ0k7QfsD9zaqXjNuuxTZO0YS+YD10XE/sB16XnlRSOHA9+QtH2HYzVr2YSJli9dN5vQIcBHgfdUlIcvSlop6W7g3cBfAETEKmApcC/wQ+BkX3Fog0DSPsCRwLfKJs8GlqTHS4Cjy6b7ohHrefW00fKl62bjiIgbqd7u6qpx1lkALMgtKLNi+grwaWDXsmlDEbERsit4Je2Rptd10chEF4w8/yaTaOqikbwuHijShQmOpbp2xTJhopUKQKkQPC2p7kvXgbWSSv9Cbmo5WjMz60mSjgI2R8QdkobrWaXKtG0uGpnogpGScy68nEUrG7/+K68LRop0YYJjqa5dsTS017Xz0vVa/0IqM8heu2y9UUXK3jth0D6vmT3vEOBDqVp9Z+Blkr4LbJI0LZ3NmgZsTsv7ohHrC3UnWu2+dL3Wv5DKDLLXLltvVJGy904YtM9rZpmIOB04HSCd0fqriPiIpP8LzAUWpvvL0yrLgIsknU3WDMUXjVhPqivRqnXpetn8c4Er0lP/CzEzs3otBJZKOhF4EDgGsotGJJUuGhnDF41Yj5ow0Rrv0vVSA0a2vXTd/0LMzKyqiBgFRtPjR4FDayzni0as59VzRqt06fpKSSvStDOA4yQdRFYtuA74OPhfiJmZmVlJPVcd+tJ1MzMzsya4Z3gzMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy2zFkmaLul6SaslrZL0qTR9iqTlkh5I97uXrXO6pDWS7pd0WPeiNzOzPDnRMmvdGDASEW8A3g6cLOkAYD5wXUTsD1yXnpPmzQEOBA4HviFp+65EbmZmuXKiZdaiiNgYEXemx08Dq4G9gdnAkrTYEuDo9Hg2cElEPBsRa4E1wMEdDdrMzDqinkGlzaxOkmYAbwZuAYYiYiNkyZikPdJiewM3l622Pk2r9nonAScBDA0NMTo6+qL5W7ZsYXR0lJGZY03FW/l6nVKKuxc5djNrhBMtszaRtAvwA+DUiHhKqjYWe7ZolWlRbcGIWAwsBpg1a1YMDw+/aP7o6CjDw8PMm39lUzGvO354wmXyUIq7Fzl2M2vEhFWHbuhrNjFJO5IlWRdGxKVp8iZJ09L8acDmNH09ML1s9X2ADZ2K1czMOqeeM1qlhr53StoVuEPScmAeWUPfhZLmkzX0Pa2ioe9ewLWSXhcRW/P5CNXNaPIfPsC6hUe2MRLrd8pOXZ0HrI6Is8tmLQPmAgvT/eVl0y+SdDZZGdkfuLVzEZuZWadMeEbLDX3NJnQI8FHgPZJWpNsRZAnW+yQ9ALwvPSciVgFLgXuBHwInd/qPiJmZdUZDbbTa2dC3ViPfysaazTbybUUnG4sOWuPUfvy8EXEj1dtdARxaY50FwILcgjIzs0KoO9Fqd0PfWo18KxtrNtvItxWdbCA8aI1TB+3zmpnZYKurHy039DUzs1ZI2lnSrZLuShdWfS5N94VV1tfquepwooa+sG1D3zmSdpK0H27oa2Zm8Czwnoh4E3AQcLikt+MRFKzP1XNGyw19zcysJZHZkp7umG6BL6yyPjdhGy039DUzs3ZIZ6TuAF4LfD0ibpGUy4VVlYYmNXdxVV4X7xTpwiDHUl27YnHP8GZm1hGpduMgSbsBl0l64ziLt3RhVaVzLrycRSsbP+TldXFUkS4McizVtSsWDyptZmYdFRFPAKNkba98YZX1NSdaZmaWO0mvTGeykDQJeC9wH76wyvqcqw7NzKwTpgFLUjut7YClEXGFpJuApZJOBB4EjoHswipJpQurxvCFVdajnGiZmVnuIuJuspFFKqc/ii+ssj7mqkMzMzOznDjRMjMzM8uJEy0zMzOznLiNlpmZmfWtGfOvbGq9Cw6f3Jb39xktMzMzs5z4jJZZG0g6HzgK2BwRb0zTzgT+DPhFWuyMiLgqzTsdOBHYCnwyIq7ueNA0/09v3cIj2xyJmVl/8hkts/a4gKyX60pfjoiD0q2UZB0AzAEOTOt8I/UtZGZmfcaJllkbRMQNwGN1Lj4buCQino2ItcAa4ODcgjMzs65x1aFZvk6RdAJwOzASEY8DewM3ly2zPk3bhqSTgJMAhoaGthlJvjS6/MjMsRxCr63VEe1Lcfcix25mjZgw0erVtidmBfBN4Cwg0v0i4GOAqiwb1V4gIhYDiwFmzZoVlSPJl0aXn9dkW6tmrTt+eMJlxlOKuxc5djNrRD1VhxfgtidmDYuITRGxNSKeA87lherB9cD0skX3ATZ0Oj4zM8vfhImW256YNUfStLKnHwbuSY+XAXMk7SRpP2B/4NZOx2dmZvlrpY1WLm1PKtsQdLrtCbTe/qQRg9Zmol8/r6SLgWFgqqT1wGeBYUkHkVULrgM+DhARqyQtBe4FxoCTI2JrF8I2M7OcNZto5db2pLINQafbnkDr7U8aMWhtJvr180bEcVUmnzfO8guABflFZGZmRdBU9w5ue2JmZmY2saYSLbc9MTMzM5tYPd07uO2JmZmZWRMmTLTc9sTMzMysOe4ZvgoPtGtmZmbt4LEOzcwsd5KmS7pe0mpJqyR9Kk2fImm5pAfS/e5l65wuaY2k+yUd1r3ozZrnRMvMzDphjKzPxTcAbwdOTqOJzAeui4j9gevSc480Yn3DiZaZmeUuIjZGxJ3p8dPAarIOrWcDS9JiS4Cj02OPNGJ9wW20zMysoyTNAN4M3AIMRcRGyJIxSXukxeoaaaTWKCOVhiY1N9JIXiNZFGmUjH6PpdkRZtoVixMtMzPrGEm7AD8ATo2Ip6RqA4pki1aZts1II7VGGal0zoWXs2hl44e8vEYKKdIoGf0eS7MjzFxw+OS2xOKqQzMz6whJO5IlWRdGxKVp8qZSJ9jpfnOa7pFGrC840TIzs9wpO3V1HrA6Is4um7UMmJsezwUuL5vukUas57nq0MzMOuEQ4KPASkkr0rQzgIXAUkknAg8Cx4BHGrH+4UTLzMxyFxE3Ur3dFcChNdbxSCPW81x1aGZmZpYTJ1pmbSDpfEmbJd1TNs09XpuZDTgnWmbtcQFZ79Xl3OO1mdmAc6Jl1gYRcQPwWMVk93htZjbgJmwML+l84Chgc0S8MU2bAnwPmAGsA46NiMfTvNOBE4GtwCcj4upcIjcrvpZ6vIaJe70u9VzcbM/HzWq1t+Qi9UTdKMduZo2o56rDC4CvAd8um1aqElkoaX56flpFlchewLWSXudLcs1epK4er2HiXq9LvSg32/Nxs1rtLbtIPVE3yrGbWSMmrDp0lYhZ09zjtZnZgGu2H63cqkQqT213ukqkFc2ckh+0U/kD9nlLPV4vZNsery+SdDbZmV/3eG1m1qfa3WFpy1Uilae2O10l0opmqlMG7VR+v35eSRcDw8BUSeuBz9LHPV7PaLJcrlt4ZJsjMTMrtmYTrU2SpqWzWa4SsYEXEcfVmOUer83MBliz3Tt4EFAzMzOzCdTTvcNAVYmYWX5KVY4jM8caahbgKkcz61UTJlquEjEzMzNrjnuGNzMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zM8udpPMlbZZ0T9m0KZKWS3og3e9eNu90SWsk3S/psO5EbdY6J1pmZtYJFwCHV0ybD1wXEfsD16XnSDoAmAMcmNb5hqTtOxeqWfs40TIzs9xFxA3AYxWTZwNL0uMlwNFl0y+JiGcjYi2wBji4E3GatduEQ/CYmZnlZCgiNgJExEZJe6TpewM3ly23Pk3bhqSTgJMAhoaGGB0drf5Gk7IxNhtV6/VatWXLltxeu1H9Hksz33s7Y3GiZWZmRaMq06LaghGxGFgMMGvWrBgeHq76gudceDmLVjZ+yFt3fPXXa9Xo6Ci1Yu20fo+lkQHsy11w+OS2xOKqQ7OcSVonaaWkFZJuT9NqNgI2GyCbJE0DSPeb0/T1wPSy5fYBNnQ4NrO2aOmMlqR1wNPAVmAsImZJmgJ8D5gBrAOOjYjHWwuzN8xoImsemTnGcPtDseJ5d0Q8Uva81Ah4oaT56flp3QnNrGuWAXOBhen+8rLpF0k6G9gL2B+4tSsRmrWoHVWHPoCYNW42PJ9jLwFGcTmpqZk/MQDrFh7Z5kisWZIuJtvnp0paD3yWLMFaKulE4EHgGICIWCVpKXAvMAacHBFbuxK4WYvyaKPlA4jZiwVwjaQA/jG1KanVCPhFJmroW2qs2Wxjz25ptmFyo/Jo4FukhsON6mbsEXFcjVmH1lh+AbAgv4jMOqPVRKvtB5DKH4JeO4A0amhSfle1FFEvH6RacEhEbEhlYbmk++pdcaKGvqWGo8029uyWkZljTTVMblQeDZmL1HC4Ub0cu1mvavWXru0HkMofgl47gDRqZOYYxw7QD98g/tBHxIZ0v1nSZWT9AW2SNC39GSlvBGxmZn2kpasOyw8gwIsOILDNVSRmA0fSZEm7lh4D7wfu4YVGwPDiRsBmZtZHmk60fAAxq8sQcKOku8iumroyIn5I1gj4fZIeAN6XnpuZWZ9ppepwCLhMUul1LoqIH0q6jSpXkZgNooj4KfCmKtMfpUYjYDMz6x9NJ1o+gJiZmZmNzz3Dm5mZmeXEYx2aWd9yR6dm1m0+o2VmZmaWEydaZmZmZjlx1aGZWYXxqhxHZo6N25Gyqx3NrJwTrQJwOxIzM7P+5KpDMzMzs5w40TIzMzPLiRMtMzMzs5y4jZaZWRu5zaWZlXOi1cP8g25mZlZsrjo0MzMzy4kTLTMzM7OcONEyMzMzy0luiZakwyXdL2mNpPl5vY9Zr3IZMZuYy4n1ulwaw0vaHvg68D5gPXCbpGURcW8e72eNabYRfbOabXzfz439XUasUj/v781yObF+kNdVhwcDayLipwCSLgFmAy4cA6j8ADLROHEDxGXE2qKRBK28/PVIguZyYj0vr0Rrb+ChsufrgbeVLyDpJOCk9HSLpPvT46nAIznFVTif9OdtO31h3Nn75vneDZiwjMC45aSkJ/efXt7v+yX2fikndZSRkqa+twm2UyuKtB85lire/YVxY6m7jOSVaKnKtHjRk4jFwOJtVpRuj4hZOcVVOP68A2vCMgK1y8nzL9Kj27NX4wbH3mFNH0u2eaGCffYixeNYqmtXLHk1hl8PTC97vg+wIaf3MutFLiNmE3M5sZ6XV6J1G7C/pP0kvQSYAyzL6b3MepHLiNnEXE6s5+VSdRgRY5JOAa4GtgfOj4hVda4+4SngPuPPO4BaLCPlenV79mrc4Ng7po3lBIr32YsUj2Opri2xKGKbZiFmZmZm1gbuGd7MzMwsJ060zMzMzHJSmERr0IZZkHS+pM2S7ul2LJ0gabqk6yWtlrRK0qe6HVMvqbX9JE2RtFzSA+l+927HWouk7SX9l6Qr0vOeiF3SbpK+L+m+tP1/v4di/4u0v9wj6WJJO/dK7I2Y6PihzN+n+XdLeku96+YQy/Ephrsl/UjSm8rmrZO0UtIKSbd3IJZhSU+m91sh6X/Xu24OsfyvsjjukbRV0pQ0r93bZdzjb9v3l4jo+o2skeNPgFcDLwHuAg7odlw5f+Z3AW8B7ul2LB36vNOAt6THuwI/7vfvuBPbD/giMD9Nnw98oduxjvMZ/hK4CLgiPe+J2IElwJ+mxy8BduuF2Mk6+1wLTErPlwLzeiH2Bj/nhMcP4AjgX8n65Xo7cEu96+YQyzuA3dPjD5RiSc/XAVM7uF2GS+Wx0XXbHUvF8h8E/i2P7ZJeb9zjb7v3l6Kc0Xp+mIWI+A1QGmahb0XEDcBj3Y6jUyJiY0TcmR4/DawmOxBYHcbZfrPJEgHS/dFdCXACkvYBjgS+VTa58LFLehnZj/J5ABHxm4h4gh6IPdkBmCRpB+ClZH1Q9Urs9arn+DEb+HZkbgZ2kzStznXbGktE/CgiHk9PbybrGywPrXy2jm+XCscBF7fwfuOq4/jb1v2lKIlWtWEWfBDuU5JmAG8GbulyKD2pYvsNRcRGyJIxYI8uhjaerwCfBp4rm9YLsb8a+AXwT6na81uSJtMDsUfEw8CXgAeBjcCTEXENPRB7g+o5ftRapt3HnkZf70SyMyclAVwj6Q5lQwu1ot5Yfl/SXZL+VdKBDa7b7liQ9FLgcOAHZZPbuV3q0db9pSiJVl3DkVjvk7QLWQE6NSKe6nY8vaYXt5+ko4DNEXFHt2Npwg5kVQzfjIg3A8+QVbcVXmp7NRvYD9gLmCzpI92NKhf1HD9qLdPuY0/dryfp3WSJ1mllkw+JiLeQVSmeLOldOcdyJ7BvRLwJOAf45wbWbXcsJR8E/jMiys84tXO71KOt+0tREi0PszAAJO1IliRcGBGXdjueXlNj+21Kp7RJ95u7Fd84DgE+JGkd2an290j6Lr0R+3pgfUSUzr5+nyzx6oXY3wusjYhfRMRvgUvJ2gf1QuyNqOf4UWuZdh976no9Sb9LVo0+OyIeLU2PiA3pfjNwGVlVVW6xRMRTEbElPb4K2FHS1Ho/RztjKTOHimrDNm+XerR1fylKouVhFvqcJJG1c1kdEWd3O55eM872WwbMTY/nApd3OraJRMTpEbFPRMwgK9v/FhEfoTdi/znwkKTXp0mHAvfSA7GTVRm+XdJL0/5zKFnbvl6IvRH1HD+WASekq8neTlaNurHOddsai6RXkSW9H42IH5dNnyxp19Jj4P1AK1el1xPLnmnfQNLBZDnBo/Ws2+5YUgwvB/6Asn0yh+1Sj/buL+1qxd/qjayV/4/JWvR/ptvxdODzXkzWbuK3ZFnyid2OKefP+06yU6x3AyvS7Yhux9Urt1rbD3gFcB3wQLqf0u1YJ/gcw7xw1WFPxA4cBNyetv0/A7v3UOyfA+4jOzB9B9ipV2Jv8HNuc/wAPgF8Ij0W8PU0fyUwa7x1c47lW8DjZeX49jT91WRXsd0FrOpQLKek97qLrGH+O7q1XdLzecAlFevlsV22Of7mub94CB4zMzOznBSl6tDMzMys7zjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznDjRMjMzM8uJEy0zMzOznPz/WKNoOjibKlwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAANECAYAAACQGe8uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsUElEQVR4nOzde1yUZf4//heHYQBhwFFhIIVI84DnRcVZzVDOkmXStzRTbEnLwFJKzdYDqEW5bidDrc+2YptkWWqJhoxHUvFE65pYfpQPRq0MlCwgkOPA3L8//M29jpxhhjm9no8Hj7zv+5rrfr/ncDXvue/7uh0EQRBARERERERkhxzNHQAREREREZG5sCAiIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7BYLIiIiIiIislssiIiIiIiIyG6xICKb5ODggNTUVHOHQURNSE1NhYODg7nDIKIuYq7/Jx85cgQODg44cuRIl++brAsLIiuQmZkJBwcH8c/V1RX9+/dHcnIyysrKzB0eEREAoLi4GMnJyejfvz/c3d3h7u6O4OBgJCUl4fz58+YOj4iM6O7vJg4ODvDx8cHEiRPxzTffmDu8Zs2ZM8cgZplMhuHDh+Ovf/0rNBqNucMjM3E2dwDUdqtXr0ZQUBBu3ryJY8eOYdOmTdi3bx8uXLgAd3d3c4dnUX7//Xc4O/PtTdRVsrOz8cQTT8DZ2RkzZ87E8OHD4ejoiB9//BE7d+7Epk2bUFxcjMDAQHOHSkRGpP9uIggCysrKkJmZicmTJ2PPnj146KGHzB1ek6RSKf72t78BACorK/Hll1/i5ZdfxpkzZ7B9+3YzR0fmwG+MViQ2NhajRo0CADzzzDPo0aMH3nrrLXz11VeYMWNGo/a1tbXo1q1bV4dpEVxdXc0dApHdKCoqwvTp0xEYGIiDBw/Cz8/PYPubb76JjRs3wtGRJyUQ2Zo7v5sAQGJiInx9ffHpp59abEHk7OyMp556Slx+/vnnERoais8++wxvvfUW/P39Gz1GEATcvHkTbm5uXRlqp9TX10On08HFxcXcoVg8/t/Jik2aNAnA7dNU5syZAw8PDxQVFWHy5Mnw9PTEzJkzAQA6nQ7vvPMOBg8eDFdXV/j6+uLZZ5/Ff/7zH4P+dDodUlNT4e/vD3d3d0ycOBEXL17Evffeizlz5ojt9IfJjx8/jpSUFPTq1QvdunXDo48+il9//dWgz6+++gpxcXHw9/eHVCpF3759sWbNGjQ0NBi0CwsLw5AhQ3Dx4kVMnDgR7u7uuOeee7Bu3bpGed+8eROpqano378/XF1d4efnh2nTpqGoqEhs09T5yv/+97/xpz/9Cb6+vpBKpRg8eDD+/ve/N+p/w4YNGDx4MNzd3dG9e3eMGjUKWVlZrb8gRHZq3bp1qK2txZYtWxoVQ8DtLx8vvPAC+vTp0+Tjr169CgcHB2RmZjba1txnOTExURxXgoKCMH/+fNy6dUts83//93/4f//v/0Eul8Pd3R1jx47F3r17G/Xfls97W8cOIgK8vb3h5ubW6lka//znPxEbGwuZTAYPDw+Eh4fj5MmTjdq19bP8yy+/YOrUqejWrRt8fHywaNGiNp8C5+joiLCwMAC3xyMAuPfee/HQQw9h//79GDVqFNzc3PDBBx8AuH1UaeHChejTpw+kUin69euHN998EzqdzqDf7du3IyQkBJ6enpDJZBg6dCjeffddcbtWq0VaWhruv/9+uLq6okePHhg/fjxUKpXYJiwsTIztTnPmzMG9994rLuvH0fXr1+Odd95B3759IZVKcfHiRQDAjz/+iMceewxyuRyurq4YNWoUvv766zY9P/aAR4ismL4A6NGjB4DbvwRER0dj/PjxWL9+vXga3bPPPovMzEw8/fTTeOGFF1BcXIz3338f//znP3H8+HFIJBIAwLJly7Bu3TpMmTIF0dHR+Ne//oXo6GjcvHmzyf0vWLAA3bt3x6pVq3D16lW88847SE5OxmeffSa2yczMhIeHB1JSUuDh4YFDhw5h5cqVqK6uxl/+8heD/v7zn/8gJiYG06ZNw+OPP44vvvgCS5cuxdChQxEbGwsAaGhowEMPPYSDBw9i+vTpePHFF3Hjxg2oVCpcuHABffv2bTLWsrIyjB07Fg4ODkhOTkavXr3wzTffIDExEdXV1Vi4cCEA4H/+53/wwgsv4LHHHsOLL76Imzdv4vz58zh16hSefPLJDr5SRLYtOzsb/fr1Q2hoqMn3de3aNYwZMwaVlZWYN28eBg4ciH//+9/44osvUFdXBxcXF5SVleGPf/wj6urq8MILL6BHjx7YunUrHn74YXzxxRd49NFHAbTt897WsYPIXlVVVeG3336DIAgoLy/Hhg0bUFNTY3AE5m6FhYV44IEHIJPJsGTJEkgkEnzwwQcICwvD0aNHxbGkrZ/l33//HeHh4SgpKcELL7wAf39//OMf/8ChQ4fanMfd36kA4NKlS5gxYwaeffZZzJ07FwMGDEBdXR0efPBB/Pvf/8azzz6LgIAAnDhxAsuWLUNpaSneeecdAIBKpcKMGTMQHh6ON998EwDwww8/4Pjx43jxxRcB3J5gJj09Hc888wzGjBmD6upqnD17Ft999x0iIyPb/iLcYcuWLbh58ybmzZsHqVQKuVyOwsJCjBs3Dvfccw9eeeUVdOvWDZ9//jmmTp2KL7/8Unwe7ZpAFm/Lli0CAOHAgQPCr7/+Kvz888/C9u3bhR49eghubm7CL7/8IiQkJAgAhFdeecXgsd9++60AQNi2bZvB+pycHIP1arVacHZ2FqZOnWrQLjU1VQAgJCQkNIonIiJC0Ol04vpFixYJTk5OQmVlpbiurq6uUT7PPvus4O7uLty8eVNc9+CDDwoAhI8//lhcp9FoBIVCIcTHx4vr/v73vwsAhLfeeqtRv3fGAkBYtWqVuJyYmCj4+fkJv/32m8Fjpk+fLnh5eYlxPvLII8LgwYMb9U1ETauqqhIANBo7BEEQ/vOf/wi//vqr+Kf/nK1atUq4838/xcXFAgBhy5Ytjfq4+7M8e/ZswdHRUThz5kyjtvoxYOHChQIA4dtvvxW33bhxQwgKChLuvfdeoaGhQRCEtn3e2zp2ENkb/XeBu/+kUqmQmZlp0Pbuz/HUqVMFFxcXoaioSFx37do1wdPTU5gwYYK4rq2f5XfeeUcAIHz++ediu9raWqFfv34CAOHw4cPi+oSEBKFbt27iuHTlyhXh9ddfFxwcHIRhw4aJ7QIDAwUAQk5OjkEua9asEbp16yb87//+r8H6V155RXBychJKSkoEQRCEF198UZDJZEJ9fX2zz+Hw4cOFuLi4ZrcLwu3vRw8++GCj9QkJCUJgYKC4rB9HZTKZUF5ebtA2PDxcGDp0qMH3Lp1OJ/zxj38U7r///hb3by94ypwViYiIQK9evdCnTx9Mnz4dHh4e2LVrF+655x6xzfz58w0es2PHDnh5eSEyMhK//fab+BcSEgIPDw8cPnwYAHDw4EHU19fj+eefN3j8ggULmo1n3rx5BlPnPvDAA2hoaMBPP/0krrvzXNsbN27gt99+wwMPPIC6ujr8+OOPBv15eHgY/KLk4uKCMWPG4P/+7//EdV9++SV69uzZZFzNTeMrCAK+/PJLTJkyBYIgGDwP0dHRqKqqwnfffQfg9qH+X375BWfOnGk2byL6r+rqagC3P793CwsLQ69evcS/jIyMTu1Lp9Nh9+7dmDJlisE1C3r6MWDfvn0YM2YMxo8fL27z8PDAvHnzcPXqVfEUktY+7+0ZO4jsVUZGBlQqFVQqFT755BNMnDgRzzzzDHbu3Nlk+4aGBuTm5mLq1Km47777xPV+fn548skncezYMXFcaetned++ffDz88Njjz0mtnN3d8e8efOajKG2tlYcl/r164dXX30VSqUSu3btMmgXFBSE6Ohog3U7duzAAw88gO7duxuMCREREWhoaEBeXh6A2+NLbW2twelvd/P29kZhYSEuX77cbJv2io+PR69evcTliooKHDp0CI8//rj4Pey3337D9evXER0djcuXL+Pf//630fZvrXjKnBXJyMhA//794ezsDF9fXwwYMMDgImVnZ2f07t3b4DGXL19GVVUVfHx8muyzvLwcAMQipl+/fgbb5XI5unfv3uRjAwICDJb17e68NqmwsBDLly/HoUOHxAFOr6qqymC5d+/ejYqa7t27G0zXW1RUhAEDBrRrBrlff/0VlZWV+PDDD/Hhhx822Ub/PCxduhQHDhzAmDFj0K9fP0RFReHJJ5/EuHHj2rw/Invi6ekJAKipqWm07YMPPsCNGzdQVlbW4ukzbfXrr7+iuroaQ4YMabHdTz/91OTpe4MGDRK3DxkypNXPe3vGDiJ7NWbMGIMfKGbMmIGRI0ciOTkZDz30UKML+n/99VfU1dVhwIABjfoaNGgQdDodfv75ZwwePLjNn+WffvoJ/fr1a/Qdoql9ALcnXtqzZw8AiNch3v39CbhdEN3t8uXLOH/+vEHRcSf9mPD888/j888/R2xsLO655x5ERUXh8ccfR0xMjNh29erVeOSRR9C/f38MGTIEMTExmDVrFoYNG9Zk321xd8xXrlyBIAhYsWIFVqxY0WzMd/64bo9YEFmRuwedu0ml0kazOOl0Ovj4+GDbtm1NPqa5D3RbODk5NbleEAQAty86fPDBByGTybB69Wr07dsXrq6u+O6777B06dJGFx+21l9H6ffz1FNPISEhock2+sFn0KBBuHTpErKzs5GTk4Mvv/wSGzduxMqVK5GWltapOIhskZeXF/z8/HDhwoVG2/RfZPQXKTenuaO7d0++Ymytfd7bM3YQ0W2Ojo6YOHEi3n33XVy+fBmDBw82d0iNODk5ISIiotV2Tc0op9PpEBkZiSVLljT5mP79+wMAfHx8cO7cOezfvx/ffPMNvvnmG2zZsgWzZ8/G1q1bAQATJkxAUVERvvrqK+Tm5uJvf/sb3n77bWzevBnPPPMMgNvjY1Pfg5obH++OWT+Ovfzyy42Odund/WO4PWJBZOP69u2LAwcOYNy4cS1OFam/N8iVK1cMfl24fv16o9no2urIkSO4fv06du7ciQkTJojri4uLO9QfcDufU6dOQavVipNBtKZXr17w9PREQ0NDmwbAbt264YknnsATTzyBW7duYdq0aXjttdewbNkyTudN1IS4uDj87W9/w+nTpzFmzJh2P15/dLmystJg/Z2n3wK3P8symazJ4utOgYGBuHTpUqP1+tN077wXUkuf9/aOHUR0W319PYCmjxz36tUL7u7uzX5GHR0dxRkp2/pZDgwMxIULFyAIgsEPLE09trP69u2LmpqaNo0JLi4umDJlCqZMmQKdTofnn38eH3zwAVasWCEWIXK5HE8//TSefvpp1NTUYMKECUhNTRULou7duxtcOqB39/jYHP1piRKJhONYC3gNkY17/PHH0dDQgDVr1jTaVl9fL34BCQ8Ph7OzMzZt2mTQ5v333+/wvvVHfO78ZePWrVvYuHFjh/uMj4/Hb7/91mRczR1JcnJyQnx8PL788ssmv0jdOVX49evXDba5uLggODgYgiBAq9V2OG4iW7ZkyRK4u7vjT3/6E8rKyhptb+0or0wmQ8+ePcVz7/XuHiscHR0xdepU7NmzB2fPnm12P5MnT8bp06eRn58vbqutrcWHH36Ie++9F8HBwQBa/7y3Z+wgotu0Wi1yc3Ph4uIintp2JycnJ0RFReGrr74yOHpcVlaGrKwsjB8/HjKZDEDbP8uTJ0/GtWvX8MUXX4jt6urqmj3VtTMef/xx5OfnY//+/Y22VVZWisXg3eOLo6OjeERZPx343W08PDzQr18/g+nC+/btix9//NFgvPnXv/6F48ePtyleHx8fhIWF4YMPPkBpaWmj7RzHbuMRIhv34IMP4tlnn0V6ejrOnTuHqKgoSCQSXL58GTt27MC7776Lxx57DL6+vnjxxRfx17/+FQ8//DBiYmLwr3/9C9988w169uzZ7CktLfnjH/+I7t27IyEhAS+88AIcHBzwj3/8o1OnwM2ePRsff/wxUlJScPr0aTzwwAOora3FgQMH8Pzzz+ORRx5p8nFvvPEGDh8+jNDQUMydOxfBwcGoqKjAd999hwMHDqCiogIAEBUVBYVCgXHjxsHX1xc//PAD3n//fcTFxYnXShCRofvvvx9ZWVmYMWMGBgwYgJkzZ2L48OEQBAHFxcXIysqCo6Njk+fo6z3zzDN444038Mwzz2DUqFHIy8vD//7v/zZq9/rrryM3NxcPPvgg5s2bh0GDBqG0tBQ7duzAsWPH4O3tjVdeeQWffvopYmNj8cILL0Aul2Pr1q0oLi7Gl19+KZ5a3JbPe1vHDiJ79c0334hHbMrLy5GVlYXLly/jlVdeEQubu61duxYqlQrjx4/H888/D2dnZ3zwwQfQaDQG9x9s62d57ty5eP/99zF79mwUFBTAz88P//jHP8TbjxjT4sWL8fXXX+Ohhx7CnDlzEBISgtraWnz//ff44osvcPXqVfTs2RPPPPMMKioqMGnSJPTu3Rs//fQTNmzYgBEjRoiFYnBwMMLCwhASEgK5XI6zZ8/iiy++QHJysri/P/3pT3jrrbcQHR2NxMRElJeXY/PmzRg8eHCja7Obk5GRgfHjx2Po0KGYO3cu7rvvPpSVlSE/Px+//PIL/vWvfxn9ebI6XT6vHbWbfmrLpqaZ1dNPI9mcDz/8UAgJCRHc3NwET09PYejQocKSJUuEa9euiW3q6+uFFStWCAqFQnBzcxMmTZok/PDDD0KPHj2E5557rtV4Dh8+3Gh6y+PHjwtjx44V3NzcBH9/f2HJkiXC/v37G7V78MEHm5z+9u5pJQXh9lTef/7zn4WgoCBBIpEICoVCeOyxxwym78RdU3wKgiCUlZUJSUlJQp8+fcTHhYeHCx9++KHY5oMPPhAmTJgg9OjRQ5BKpULfvn2FxYsXC1VVVc0+t0R025UrV4T58+cL/fr1E1xdXQU3Nzdh4MCBwnPPPSecO3dObHf3tNuCcPtznZiYKHh5eQmenp7C448/LpSXlzf5Wf7pp5+E2bNnC7169RKkUqlw3333CUlJSYJGoxHbFBUVCY899pjg7e0tuLq6CmPGjBGys7MN+mnr570tYweRvWlq2m1XV1dhxIgRwqZNm1q8FYYgCMJ3330nREdHCx4eHoK7u7swceJE4cSJE43205bPsiDcHhcefvhhwd3dXejZs6fw4osvircYaWra7dYEBgY2OyX2jRs3hGXLlgn9+vUTXFxchJ49ewp//OMfhfXr1wu3bt0SBEEQvvjiCyEqKkrw8fERXFxchICAAOHZZ58VSktLxX7Wrl0rjBkzRvD29hbHy9dee03sQ++TTz4R7rvvPsHFxUUYMWKEsH///man3f7LX/7SZMxFRUXC7NmzBYVCIUgkEuGee+4RHnroIeGLL75o9bmwBw6C0Mkr1smmVVZWonv37li7di3+/Oc/mzscIiIiIiKj4jVEJPr9998brdPfcTksLKxrgyEiIiIi6gK8hohEn332GTIzMzF58mR4eHjg2LFj+PTTTxEVFcX78BARERGRTWJBRKJhw4bB2dkZ69atQ3V1tTjRwtq1a80dGhERERGRSfAaIiIiIiIislu8hoiIiIiIiOwWCyIiIiIiIrJbVnkNkU6nw7Vr1+Dp6dmhG4YSUdMEQcCNGzfg7+8v3vDO3nB8ITINji8cX4hMpbPji1UWRNeuXUOfPn3MHQaRzfr555/Ru3dvc4dhFhxfiEyL4wvHFyJT6ej4YpUFkaenJ4DbSctksmbbabVa5ObmIioqChKJpKvC61L2kCPAPLtKdXU1+vTpI37G7JE9jS/MwTLYSw4cX+xrfDEnPn+dY43PX2fHF6ssiPSHmWUyWasDiru7O2QymdW8oO1lDzkCzLOr2fOpHPY0vjAHy2BvOXB8sY/xxZz4/HWONT9/HR1f2nWSXXp6OkaPHg1PT0/4+Phg6tSpuHTpkkGbsLAwODg4GPw999xzBm1KSkoQFxcHd3d3+Pj4YPHixaivr+9QAkRERERERB3VriNER48eRVJSEkaPHo36+nq8+uqriIqKwsWLF9GtWzex3dy5c7F69Wpx2d3dXfx3Q0MD4uLioFAocOLECZSWlmL27NmQSCR4/fXXjZASERERERFR27SrIMrJyTFYzszMhI+PDwoKCjBhwgRxvbu7OxQKRZN95Obm4uLFizhw4AB8fX0xYsQIrFmzBkuXLkVqaipcXFw6kAYREREREVH7deoaoqqqKgCAXC43WL9t2zZ88sknUCgUmDJlClasWCEeJcrPz8fQoUPh6+srto+Ojsb8+fNRWFiIkSNHNtqPRqOBRqMRl6urqwHcPsdRq9U2G59+W0ttrJ095Agwz67ePxEREZG96HBBpNPpsHDhQowbNw5DhgwR1z/55JMIDAyEv78/zp8/j6VLl+LSpUvYuXMnAECtVhsUQwDEZbVa3eS+0tPTkZaW1mh9bm6uwel4zVGpVG3Oy1rZQ44A8zS1uro6s+yXiIiIyFw6XBAlJSXhwoULOHbsmMH6efPmif8eOnQo/Pz8EB4ejqKiIvTt27dD+1q2bBlSUlLEZf3UelFRUa3O0qJSqRAZGWl1s2S0lT3kCDDPrqI/+kpERERkLzpUECUnJyM7Oxt5eXmt3vwoNDQUAHDlyhX07dsXCoUCp0+fNmhTVlYGAM1edySVSiGVShutl0gkbfrS2NZ21swecgSYZ1fsl4iIiMietKsgEgQBCxYswK5du3DkyBEEBQW1+phz584BAPz8/AAASqUSr732GsrLy+Hj4wPg9ulBMpkMwcHB7Qy/bYak7oemofP3Pbj6RpwRoiEiImPjOE9ExnbvK3uN2h/HF8vVroIoKSkJWVlZ+Oqrr+Dp6Sle8+Pl5QU3NzcUFRUhKysLkydPRo8ePXD+/HksWrQIEyZMwLBhwwAAUVFRCA4OxqxZs7Bu3Tqo1WosX74cSUlJTR4FIiIiIiIiMpV23Zh106ZNqKqqQlhYGPz8/MS/zz77DADg4uKCAwcOICoqCgMHDsRLL72E+Ph47NmzR+zDyckJ2dnZcHJyglKpxFNPPYXZs2cb3LeIiIiIiIioK7T7lLmW9OnTB0ePHm21n8DAQOzbt689uyYiIiIiIjK6dh0hIiIiIiIisiUsiIiIiMimpaenY/To0fD09ISPjw+mTp2KS5cuGbQJCwuDg4ODwd9zzz1n0KakpARxcXFwd3eHj48PFi9ejPr6+q5MhYhMoMP3ISIiIiKyBkePHkVSUhJGjx6N+vp6vPrqq4iKisLFixfRrVs3sd3cuXMNrmm+8+bvDQ0NiIuLg0KhwIkTJ1BaWorZs2dDIpHg9ddf79J8iMi4eISIiCxCW37BvXnzJpKSktCjRw94eHggPj5evI+ZHn/BJaK75eTkYM6cORg8eDCGDx+OzMxMlJSUoKCgwKCdu7s7FAqF+Hfnzd9zc3Nx8eJFfPLJJxgxYgRiY2OxZs0aZGRk4NatW12dEhEZEY8QEZFFaMsvuIsWLcLevXuxY8cOeHl5ITk5GdOmTcPx48cB8BdcImqbqqoqAIBcLjdYv23bNnzyySdQKBSYMmUKVqxYIR4lys/Px9ChQ+Hr6yu2j46Oxvz581FYWIiRI0c22o9Go4FGoxGXq6urAQBarRZarbbZ+PTbWmpDzTPW8yd1ankysfayltfTGt9/nY2VBRERWYScnByD5czMTPj4+KCgoAATJkxAVVUVPvroI2RlZWHSpEkAgC1btmDQoEE4efIkxo4dK/6Ce+DAAfj6+mLEiBFYs2YNli5ditTUVLi4uJgjNSKyIDqdDgsXLsS4ceMwZMgQcf2TTz6JwMBA+Pv74/z581i6dCkuXbqEnTt3AgDUarVBMQRAXNbfl/Fu6enpSEtLa7Q+NzfX4HS85qhUqjbnRY119vlbN8ZIgfz/rG2GZWt6/9XV1XXq8SyIiMgi3f0LbkFBAbRaLSIiIsQ2AwcOREBAAPLz8zF27Fj+gttOtpSD1NE4v+Sa47mwpdehLZ8Zc0tKSsKFCxdw7Ngxg/Xz5s0T/z106FD4+fkhPDwcRUVF6Nu3b4f2tWzZMqSkpIjL1dXV6NOnD6KiogxOx7ubVquFSqVCZGQkJBJJh/Ztz4z1/A1J3W/EqIALqdFG7c9UrPH9p/9/d0exICIii9PUL7hqtRouLi7w9vY2aOvr6yv+OstfcDvGFnJYM0pnlH7M+QuuLbwOLeXQ2V9wjSE5ORnZ2dnIy8tD7969W2wbGhoKALhy5Qr69u0LhUKB06dPG7TRX8OoUCia7EMqlUIqlTZaL5FI2vRFs63tqGmdff40DQ5GjAZW91pa0/uvs3GyICIii9PcL7imYM+/4NpSDivOOkKj6/yXF3P8gmtLr0NLOXT2F9zOEAQBCxYswK5du3DkyBEEBQW1+phz584BAPz8/AAASqUSr732GsrLy+Hj4wPgdgEok8kQHBxsstiJyPRYEBGRRWnuF1yFQoFbt26hsrLS4ChRWVmZ+Ossf8HtGFvIQaNzMMqvueZ8HmzhdWgpB3PmlpSUhKysLHz11Vfw9PQUjxh7eXnBzc0NRUVFyMrKwuTJk9GjRw+cP38eixYtwoQJEzBs2DAAQFRUFIKDgzFr1iysW7cOarUay5cvR1JSUpNjCBFZD067TUQWQRAEJCcnY9euXTh06FCjX3BDQkIgkUhw8OBBcd2lS5dQUlICpVIJ4PYvuN9//z3Ky8vFNvwFl4g2bdqEqqoqhIWFwc/PT/z77LPPAAAuLi44cOAAoqKiMHDgQLz00kuIj4/Hnj17xD6cnJyQnZ0NJycnKJVKPPXUU5g9e7bBfYuIyDrxCBERWYTWfsH18vJCYmIiUlJSIJfLIZPJsGDBAiiVSowdOxYAf8EloqYJQsuTbvTp0wdHjx5ttZ/AwECrmymMLMe9r+w1an9X34gzan/2jAUREVmETZs2AQDCwsIM1m/ZsgVz5swBALz99ttwdHREfHw8NBoNoqOjsXHjRrGt/hfc+fPnQ6lUolu3bkhISOAvuERERNQsFkREZBFa+wUXAFxdXZGRkYGMjIxm2/AXXCIiImoPXkNERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1iQURERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WpXQZSeno7Ro0fD09MTPj4+mDp1Ki5dumTQ5ubNm0hKSkKPHj3g4eGB+Ph4lJWVGbQpKSlBXFwc3N3d4ePjg8WLF6O+vr7z2RAREREREbVDuwqio0ePIikpCSdPnoRKpYJWq0VUVBRqa2vFNosWLcKePXuwY8cOHD16FNeuXcO0adPE7Q0NDYiLi8OtW7dw4sQJbN26FZmZmVi5cqXxsiIiIiIiImoD5/Y0zsnJMVjOzMyEj48PCgoKMGHCBFRVVeGjjz5CVlYWJk2aBADYsmULBg0ahJMnT2Ls2LHIzc3FxYsXceDAAfj6+mLEiBFYs2YNli5ditTUVLi4uBgvOyIiIiIiohZ06hqiqqoqAIBcLgcAFBQUQKvVIiIiQmwzcOBABAQEID8/HwCQn5+PoUOHwtfXV2wTHR2N6upqFBYWdiYcIiIiIiKidmnXEaI76XQ6LFy4EOPGjcOQIUMAAGq1Gi4uLvD29jZo6+vrC7VaLba5sxjSb9dva4pGo4FGoxGXq6urAQBarRZarbbZGPXbpI5COzJrXkv7Mhd9TJYYmzExz67dPxEREZG96HBBlJSUhAsXLuDYsWPGjKdJ6enpSEtLa7Q+NzcX7u7urT5+zSidUeLYt2+fUfoxBZVKZe4QugTzNK26ujqz7JeIiIjIXDpUECUnJyM7Oxt5eXno3bu3uF6hUODWrVuorKw0OEpUVlYGhUIhtjl9+rRBf/pZ6PRt7rZs2TKkpKSIy9XV1ejTpw+ioqIgk8majVOr1UKlUmHFWUdodA7tzvNuF1KjO92HselzjIyMhEQiMXc4JsM8u4b+6CsRERGRvWhXQSQIAhYsWIBdu3bhyJEjCAoKMtgeEhICiUSCgwcPIj4+HgBw6dIllJSUQKlUAgCUSiVee+01lJeXw8fHB8DtX8NlMhmCg4Ob3K9UKoVUKm20XiKRtOlLo0bnAE1D5wsiS/4i3tbnwtoxT9Pvl4iIiMietKsgSkpKQlZWFr766it4enqK1/x4eXnBzc0NXl5eSExMREpKCuRyOWQyGRYsWAClUomxY8cCAKKiohAcHIxZs2Zh3bp1UKvVWL58OZKSkposeoiIiIiIiEylXQXRpk2bAABhYWEG67ds2YI5c+YAAN5++204OjoiPj4eGo0G0dHR2Lhxo9jWyckJ2dnZmD9/PpRKJbp164aEhASsXr26c5kQERERERG1U7um3RYEock/fTEEAK6ursjIyEBFRQVqa2uxc+fORtcGBQYGYt++fairq8Ovv/6K9evXw9m5w/M7EBERETUrPT0do0ePhqenJ3x8fDB16lRcunTJoM3NmzeRlJSEHj16wMPDA/Hx8eI1znolJSWIi4uDu7s7fHx8sHjxYtTX13dlKkRkAp26DxERERGRpTt69CiSkpJw8uRJqFQqaLVaREVFoba2VmyzaNEi7NmzBzt27MDRo0dx7do1TJs2Tdze0NCAuLg43Lp1CydOnMDWrVuRmZmJlStXmiMlIjIiHpYhIiIim5aTk2OwnJmZCR8fHxQUFGDChAmoqqrCRx99hKysLEyaNAnA7csBBg0ahJMnT2Ls2LHIzc3FxYsXceDAAfj6+mLEiBFYs2YNli5ditTUVLi4uJgjNSIyAhZERERE/797X9lr1P6uvhFn1P7IOKqqqgAAcrkcAFBQUACtVouIiAixzcCBAxEQEID8/HyMHTsW+fn5GDp0qMHN5aOjozF//nwUFhZi5MiRjfbT2RvL82bZHWOs50/qJBgjHJMx1fvDGt9/nY2VBRERERHZDZ1Oh4ULF2LcuHEYMmQIAECtVsPFxcXgHooA4OvrK86oq1arDYoh/Xb9tqZ09sby9nIzclPp7PO3boyRAjGRffv2mbR/a3r/dfbG8iyIiIiIyG4kJSXhwoULOHbsmMn31dkby9v6zchNxVjP35DU/UaMyvgupEabpF9rfP919sbyLIiIiIjILiQnJyM7Oxt5eXno3bu3uF6hUODWrVuorKw0OEpUVlYmzpSrUChw+vRpg/70s9DdPZuuXmdvLG8vNyM3lc4+f5oGByNGY3ymfm9Y0/uvs3FyljkiIiKyaYIgIDk5Gbt27cKhQ4cQFBRksD0kJAQSiQQHDx4U1126dAklJSVQKpUAAKVSie+//x7l5eViG5VKBZlMhuDg4K5JhIhMgkeIiIiIyKYlJSUhKysLX331FTw9PcVrfry8vODm5gYvLy8kJiYiJSUFcrkcMpkMCxYsgFKpxNixYwEAUVFRCA4OxqxZs7Bu3Tqo1WosX74cSUlJTR4FIiLrwYKIiIiIbNqmTZsAAGFhYQbrt2zZIt5c/u2334ajoyPi4+Oh0WgQHR2NjRs3im2dnJyQnZ2N+fPnQ6lUolu3bkhISMDq1au7Kg0iMhEWRERE1KWMObW11Emw+JmgyPwEofXpk11dXZGRkYGMjIxm2wQGBpp8Zi8i6nq8hoiILEJeXh6mTJkCf39/ODg4YPfu3Qbb58yZAwcHB4O/mJgYgzYVFRWYOXMmZDIZvL29kZiYiJqami7MgoiIiKwNCyIisgi1tbUYPnx4i7/OxsTEoLS0VPz79NNPDbbPnDkThYWFUKlU4kxS8+bNM3XoREREZMV4ylw78A7mRKYTGxuL2NjYFttIpdJmp7f94YcfkJOTgzNnzmDUqFEAgA0bNmDy5MlYv349/P39jR4zERERWT8WRERkNY4cOQIfHx90794dkyZNwtq1a9GjRw8AQH5+Pry9vcViCAAiIiLg6OiIU6dO4dFHH22yT41GA41GIy7rb+6m1Wqh1WqbjUW/raU2ls5cOUidWr+eo819OQoG/7U0bXlu7eW9ZM35EZFtY0FERFYhJiYG06ZNQ1BQEIqKivDqq68iNjYW+fn5cHJyglqtho+Pj8FjnJ2dIZfLxSl2m5Keno60tLRG63Nzc+Hu7t5qXCqVqv3JWJiuzsEUkyCsGaUzfqdG0J4L8G39vVRXV9eFkRARtR0LIiKyCtOnTxf/PXToUAwbNgx9+/bFkSNHEB4e3uF+ly1bhpSUFHG5uroaffr0QVRUFGQyWbOP02q1UKlUiIyMtJo7ed/NXDkMSd1vtL6kjgLWjNJhxVlHaHSWd1f5C6nRrbaxl/eS/ugrEZGlYUFERFbpvvvuQ8+ePXHlyhWEh4dDoVAY3EEeAOrr61FRUdHsdUfA7euSmrqpokQiadOX07a2s2RdnYOmwfiFi0bnYJJ+O6s9z6utv5esPTcisl2cZY6IrNIvv/yC69evw8/PDwCgVCpRWVmJgoICsc2hQ4eg0+kQGhpqrjCJiIjIwvEIERFZhJqaGly5ckVcLi4uxrlz5yCXyyGXy5GWlob4+HgoFAoUFRVhyZIl6NevH6Kjb5+SNGjQIMTExGDu3LnYvHkztFotkpOTMX36dM4wR0RERM3iESIisghnz57FyJEjMXLkSABASkoKRo4ciZUrV8LJyQnnz5/Hww8/jP79+yMxMREhISH49ttvDU5327ZtGwYOHIjw8HBMnjwZ48ePx4cffmiulIiIiMgK8AgREVmEsLAwCELzUyfv39/6hfhyuRxZWVnGDIuIiIhsHI8QERERERGR3WJBREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1iQURERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERERER2q90FUV5eHqZMmQJ/f384ODhg9+7dBtvnzJkDBwcHg7+YmBiDNhUVFZg5cyZkMhm8vb2RmJiImpqaTiVCRERERETUXu0uiGprazF8+HBkZGQ02yYmJgalpaXi36effmqwfebMmSgsLIRKpUJ2djby8vIwb9689kdPRERERETUCc7tfUBsbCxiY2NbbCOVSqFQKJrc9sMPPyAnJwdnzpzBqFGjAAAbNmzA5MmTsX79evj7+7c3JCIiIiIiog5pd0HUFkeOHIGPjw+6d++OSZMmYe3atejRowcAID8/H97e3mIxBAARERFwdHTEqVOn8OijjzbqT6PRQKPRiMvV1dUAAK1WC61W22wc+m1SR8EoeRlbS7G3tw9j9GXJmGfX7p+IiIjIXhi9IIqJicG0adMQFBSEoqIivPrqq4iNjUV+fj6cnJygVqvh4+NjGISzM+RyOdRqdZN9pqenIy0trdH63NxcuLu7txrTmlG6jiVjYvv27TNaXyqVymh9WTLmaVp1dXVm2S8RERGRuRi9IJo+fbr476FDh2LYsGHo27cvjhw5gvDw8A71uWzZMqSkpIjL1dXV6NOnD6KioiCTyZp9nFarhUqlwoqzjtDoHDq0b1O6kBrd6T70OUZGRkIikRghKsvEPLuG/ugrERERkb0wySlzd7rvvvvQs2dPXLlyBeHh4VAoFCgvLzdoU19fj4qKimavO5JKpZBKpY3WSySSNn1p1OgcoGmwvILImF942/pcWDvmafr9EhEREdkTk9+H6JdffsH169fh5+cHAFAqlaisrERBQYHY5tChQ9DpdAgNDTV1OERERGRneMsQImpJuwuimpoanDt3DufOnQMAFBcX49y5cygpKUFNTQ0WL16MkydP4urVqzh48CAeeeQR9OvXD9HRt08PGzRoEGJiYjB37lycPn0ax48fR3JyMqZPn84Z5oiIiMjoeMsQImpJu0+ZO3v2LCZOnCgu66/tSUhIwKZNm3D+/Hls3boVlZWV8Pf3R1RUFNasWWNwytu2bduQnJyM8PBwODo6Ij4+Hu+9954R0iEiIiIyxFuGEFFL2l0QhYWFQRCan8Z6//79rfYhl8uRlZXV3l0TERERmYSxbxkCdP62IbwVQscY6/mTOlnmbVv0TPX+sMb3X2djNfmkCkRERESWzBS3DAE6f9sQe7nVhKl09vlbN8ZIgZiIMW/f0hRrev919rYhLIiIiIjIrpniliFA528bYuu3mjAVYz1/Q1JbP+vJnIxx+5amWOP7r7O3DWFBRERERHQHY9wyBOj8bUPs5VYTptLZ588Sb9lyJ1O/N6zp/dfZOE0+7TYRERGRNeEtQ4jsC48QERERkU2rqanBlStXxGX9LUPkcjnkcjnS0tIQHx8PhUKBoqIiLFmypNlbhmzevBlarZa3DCGyITxCRERERDbt7NmzGDlyJEaOHAng9i1DRo4ciZUrV8LJyQnnz5/Hww8/jP79+yMxMREhISH49ttvG90yZODAgQgPD8fkyZMxfvx4fPjhh+ZKiYiMiEeIiIiIyKbxliFE1BIeISIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbLIiIiIiIiMhusSAiIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyW7wPkRnd+8reTvchdRKwbgwwJHU/Lr32kBGiIiIiIiKyHzxCREREREREdosFERFZhLy8PEyZMgX+/v5wcHDA7t27DbYLgoCVK1fCz88Pbm5uiIiIwOXLlw3aVFRUYObMmZDJZPD29kZiYiJqamq6MAsiIiKyNiyIiMgi1NbWYvjw4cjIyGhy+7p16/Dee+9h8+bNOHXqFLp164bo6GjcvHlTbDNz5kwUFhZCpVIhOzsbeXl5mDdvXlelQERERFaI1xARkUWIjY1FbGxsk9sEQcA777yD5cuX45FHHgEAfPzxx/D19cXu3bsxffp0/PDDD8jJycGZM2cwatQoAMCGDRswefJkrF+/Hv7+/l2WCxEREVkPHiEiIotXXFwMtVqNiIgIcZ2XlxdCQ0ORn58PAMjPz4e3t7dYDAFAREQEHB0dcerUqS6PmYiIiKwDjxARkcVTq9UAAF9fX4P1vr6+4ja1Wg0fHx+D7c7OzpDL5WKbpmg0Gmg0GnG5uroaAKDVaqHVapt9nH5bS20snblykDoJxuvLUTD4r6Vpy3NrL+8la86PiGwbCyIismvp6elIS0trtD43Nxfu7u6tPl6lUpkirC7V1TmsG2P8PteM0hm/UyPYt29fm9va+nuprq6uCyMhImo7FkREZPEUCgUAoKysDH5+fuL6srIyjBgxQmxTXl5u8Lj6+npUVFSIj2/KsmXLkJKSIi5XV1ejT58+iIqKgkwma/ZxWq0WKpUKkZGRkEgkHUnL7MyVw5DU/UbrS+ooYM0oHVacdYRG52C0fo3lQmp0q23s5b2kP/pKRGRpWBARkcULCgqCQqHAwYMHxQKouroap06dwvz58wEASqUSlZWVKCgoQEhICADg0KFD0Ol0CA0NbbZvqVQKqVTaaL1EImnTl9O2trNkXZ2DpsH4hYtG52CSfjurPc+rrb+XrD03IrJdLIiIyCLU1NTgypUr4nJxcTHOnTsHuVyOgIAALFy4EGvXrsX999+PoKAgrFixAv7+/pg6dSoAYNCgQYiJicHcuXOxefNmaLVaJCcnY/r06ZxhjoiIiJrFgoiILMLZs2cxceJEcVl/GltCQgIyMzOxZMkS1NbWYt68eaisrMT48eORk5MDV1dX8THbtm1DcnIywsPD4ejoiPj4eLz33ntdnguR3r2v7G21jdRJwLoxt08lbOko19U34owZGhER/f9YEBGRRQgLC4MgND9TmIODA1avXo3Vq1c320YulyMrK8sU4REREZGN4n2IiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7Fa7C6K8vDxMmTIF/v7+cHBwwO7duw22C4KAlStXws/PD25uboiIiMDly5cN2lRUVGDmzJmQyWTw9vZGYmIiampqOpUIERERERFRe7W7IKqtrcXw4cORkZHR5PZ169bhvffew+bNm3Hq1Cl069YN0dHRuHnzpthm5syZKCwshEqlQnZ2NvLy8jBv3ryOZ0FERERERNQB7Z5lLjY2FrGxsU1uEwQB77zzDpYvX45HHnkEAPDxxx/D19cXu3fvxvTp0/HDDz8gJycHZ86cwahRowAAGzZswOTJk7F+/XreL4SIiIiIiLqMUafdLi4uhlqtRkREhLjOy8sLoaGhyM/Px/Tp05Gfnw9vb2+xGAKAiIgIODo64tSpU3j00Ucb9avRaKDRaMTl6upqAIBWq4VWq202Hv02qWPzU/laO31uUkehxefC2ulzs+UcAfPnaevPLxEREdHdjFoQqdVqAICvr6/Bel9fX3GbWq2Gj4+PYRDOzpDL5WKbu6WnpyMtLa3R+tzcXLi7u7ca15pRujbFb83WjNJh37595g7D5FQqlblD6BLmyrOurs4s+yUiIjKGe1/Z2+abHRPpWcWNWZctWybetR64fYSoT58+iIqKgkwma/ZxWq0WKpUKK846QqOzzQ+E1FHAmlE6rDjriIKVMeYOx2T0r2VkZCQkEom5wzEZc+epP/pKRGRL8vLy8Je//AUFBQUoLS3Frl27MHXqVHG7IAhYtWoV/ud//geVlZUYN24cNm3ahPvvv19sU1FRgQULFmDPnj1wdHREfHw83n33XXh4eJghIyIyJqMWRAqFAgBQVlYGPz8/cX1ZWRlGjBghtikvLzd4XH19PSoqKsTH300qlUIqlTZaL5FI2vSlUaNzsPlfCDQ6B5suFPTa+ppbO3PlaQ/PLRHZH/2EUH/6058wbdq0Rtv1E0Jt3boVQUFBWLFiBaKjo3Hx4kW4uroCuD0hVGlpKVQqFbRaLZ5++mnMmzcPWVlZXZ0OERmZUe9DFBQUBIVCgYMHD4rrqqurcerUKSiVSgCAUqlEZWUlCgoKxDaHDh2CTqdDaGioMcMhIiIiQmxsLNauXdvkdcp3Twg1bNgwfPzxx7h27Zp4axH9hFB/+9vfEBoaivHjx2PDhg3Yvn07rl271sXZEJGxtfsIUU1NDa5cuSIuFxcX49y5c5DL5QgICMDChQuxdu1a3H///eKvLP7+/uKh6UGDBiEmJgZz587F5s2bodVqkZycjOnTp3OGOSIiIupSppoQCuj8pFCc6Kb9pE6CwYRTtsxU7w9rfP91NtZ2F0Rnz57FxIkTxWX9tT0JCQnIzMzEkiVLUFtbi3nz5qGyshLjx49HTk6OeMgZALZt24bk5GSEh4eL5+G+9957nUqEiIiIqL1MNSEU0PlJoexlIiFjWjfmv/+29Um1TD2ZljW9/zo7KVS7C6KwsDAIQvMVt4ODA1avXo3Vq1c320Yul/OcWyIiIrJpnZ0UytYnEjKFIan7DSacstVJtQDgQmq0Sfq1xvdfZyeFsopZ5oiIiIhMwVQTQgGdnxTKXiYSMqY7J9Gy9Um1TP3esKb3X2fjNOqkCkRERETWhBNCERGPEBEREZFN44RQRNQSFkRERERk0zghFBG1hAURERER2TROCEVELeE1REREREREZLdYEBERERERkd3iKXPUpHtf2WvU/q6+EWfU/oiIiIiIjIEFERERERGRlTHmj9f2/sM1T5kjIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7BYLIiIiIiIislssiIiIiIiIyG6xICIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbLIiIiIiIiMhusSAiIiIiIiK75WzuAIiIiKh1976y16j9XX0jzqj9ERFZKx4hIiKrkZqaCgcHB4O/gQMHittv3ryJpKQk9OjRAx4eHoiPj0dZWZkZIyYiIiJLx4KIiKzK4MGDUVpaKv4dO3ZM3LZo0SLs2bMHO3bswNGjR3Ht2jVMmzbNjNESERGRpeMpc0RkVZydnaFQKBqtr6qqwkcffYSsrCxMmjQJALBlyxYMGjQIJ0+exNixY7s6VCIiIrICPEJERFbl8uXL8Pf3x3333YeZM2eipKQEAFBQUACtVouIiAix7cCBAxEQEID8/HxzhUtEREQWjkeIiMhqhIaGIjMzEwMGDEBpaSnS0tLwwAMP4MKFC1Cr1XBxcYG3t7fBY3x9faFWq5vtU6PRQKPRiMvV1dUAAK1WC61W2+zj9NtaamPpzJWD1EkwXl+OgsF/rZG5cjDm696W95I1f1aIyLaxICIiqxEbGyv+e9iwYQgNDUVgYCA+//xzuLm5dajP9PR0pKWlNVqfm5sLd3f3Vh+vUqk6tF9L0tU5rBtj/D7XjNIZv9Mu1tU57Nu3z+h9tvReqqurM/r+iIiMgQUREVktb29v9O/fH1euXEFkZCRu3bqFyspKg6NEZWVlTV5zpLds2TKkpKSIy9XV1ejTpw+ioqIgk8mafZxWq4VKpUJkZCQkEolR8ulq5sphSOp+o/UldRSwZpQOK846QqNzMFq/XclcOVxIjTZaX215L+mPvhIRWRqjF0SpqamNfm0dMGAAfvzxRwC3p8V96aWXsH37dmg0GkRHR2Pjxo3w9fU1dihEZONqampQVFSEWbNmISQkBBKJBAcPHkR8fDwA4NKlSygpKYFSqWy2D6lUCqlU2mi9RCJpU5HQ1naWrKtz0DQY/0u/Rudgkn67UlfnYIrXvKX3krV/TojIdpnkCNHgwYNx4MCB/+7E+b+7WbRoEfbu3YsdO3bAy8sLycnJmDZtGo4fP26KUIjIhrz88suYMmUKAgMDce3aNaxatQpOTk6YMWMGvLy8kJiYiJSUFMjlcshkMixYsABKpZIzzBEREVGzTFIQcVpcIjKFX375BTNmzMD169fRq1cvjB8/HidPnkSvXr0AAG+//TYcHR0RHx9vcASaiBq795W9Ruvr8pooo/VFRNTVTFIQ6afFdXV1hVKpRHp6OgICAlqdFpcFke3q7P94pU4C1o25fe3BpdceMlJUZG22b9/e4nZXV1dkZGQgIyOjiyIiIlvBU/6J7JfRCyJLnBbXmqdjbc2d07Uac0pTY06LawymytPSmHsqZ1t+bomIWsNT/onsk9ELIkucFtcWpmNtzZpROqNOoWqKaXGNwdh5WipzTeXMaXGJyJ7xlH8i+2TyabctYVpca56OtTW2MOVsW9yZZ8HKGHOHYzLmnsqZ0+ISkT0z9in/9nzjZ3OROgk2ccPmrnbne80a33+djdXkBZElTItrC9OxtsYecgRu52kPU7eaaypne3huiYiaYopT/nnj56535xku9nCGkLE0dfaNNb3/OnuGi9ELIk6LS0RERNbGFKf82/ONn81lSOp+uzl7xpjuvFGzNb7/OnuGi9ELIk6LS0RERNbOGKf888bPXe/Os2Xs5ewZY2jqfWZN77/Oxmn0gojT4hIREZG1M8Yp/0RkHUx+DRERERGRpeMp/0T2iwURERER2T2e8k9kv1gQERERkd3jKf9E9svR3AEQERERERGZC48QERFRi+59Za+5QyAiIjIZHiEiIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyW7yGiIiIiMgCDUndD02DQ6f7ufpGnBGiIbJdPEJERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1iQURERERERHaLBREREREREdktZ3MHQGRu976y12h9XX0jzmh9EREREZHp8QgRERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdouTKhARERER2bE7J5iSOglYNwYYkrofmgaHDvVnbZNMsSAiIiIiIrMw5kyvRB3FgoisDgdPIiIiIjIWXkNERERERER2iwURERERERHZLRZERERERERkt3gNERFRJ3RmFp47WduMPERERLbCrAVRRkYG/vKXv0CtVmP48OHYsGEDxowZY86QiMgGcGxp2+QjxphalcjecHwhap0xJ8Dqih8MzXbK3GeffYaUlBSsWrUK3333HYYPH47o6GiUl5ebKyQisgEcW4jIVDi+ENkmsx0heuuttzB37lw8/fTTAIDNmzdj7969+Pvf/45XXnnFXGERdUpnfxG5+xd7nkbVfhxbiMhUOL4Q2SazFES3bt1CQUEBli1bJq5zdHREREQE8vPzG7XXaDTQaDTiclVVFQCgoqICWq222f1otVrU1dXBWeuIBp1tng7irBNQV6ez6RwB+82z38ufG7X/U8vCW9x+48YNAIAgCEbdb1dp79gCWM74cv369U73cSfn+trW29jA54o5WIbr16+jrq4O169fh0QiabINxxfzjS/G/n+JMZnii6gtfKbMydKev7b8/7HT44tgBv/+978FAMKJEycM1i9evFgYM2ZMo/arVq0SAPCPf/zror+ff/65q4YDo2rv2CIIHF/4x7+u/uP4wj/+8c9Ufx0dX6xilrlly5YhJSVFXNbpdKioqECPHj3g4NB85VpdXY0+ffrg559/hkwm64pQu5w95Agwz64iCAJu3LgBf3//Lt+3udjz+MIcLIO95MDxxb7GF3Pi89c51vj8dXZ8MUtB1LNnTzg5OaGsrMxgfVlZGRQKRaP2UqkUUqnUYJ23t3eb9yeTyazmBe0oe8gRYJ5dwcvLyyz7NYb2ji0AxxeAOVgKe8iB44v9jS/mxOevc6zt+evM+GKWWeZcXFwQEhKCgwcPiut0Oh0OHjwIpVJpjpCIyAZwbCEiU+H4QmS7zHbKXEpKChISEjBq1CiMGTMG77zzDmpra8WZW4iIOoJjCxGZCscXIttktoLoiSeewK+//oqVK1dCrVZjxIgRyMnJga+vr9H2IZVKsWrVqkaHq22JPeQIME9qu64YWwDbeK2Yg2VgDtaD44t14PPXOfb4/DkIgpXOf0lERERERNRJZrmGiIiIiIiIyBKwICIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbNlsQZWRk4N5774WrqytCQ0Nx+vRpc4dkVKmpqXBwcDD4GzhwoLnD6rS8vDxMmTIF/v7+cHBwwO7duw22C4KAlStXws/PD25uboiIiMDly5fNE2wHtZbjnDlzGr22MTEx5gmWmmRN40trY8XNmzeRlJSEHj16wMPDA/Hx8Y1uPNnVjDEOVFRUYObMmZDJZPD29kZiYiJqamq6MAvjfNbNmUd6ejpGjx4NT09P+Pj4YOrUqbh06ZJBm7a8f0pKShAXFwd3d3f4+Phg8eLFqK+v75IcrJE1jS/mZI1jmznZyrhqKjZZEH322WdISUnBqlWr8N1332H48OGIjo5GeXm5uUMzqsGDB6O0tFT8O3bsmLlD6rTa2loMHz4cGRkZTW5ft24d3nvvPWzevBmnTp1Ct27dEB0djZs3b3ZxpB3XWo4AEBMTY/Dafvrpp10YIbXEGseXlsaKRYsWYc+ePdixYweOHj2Ka9euYdq0aWaM1jjjwMyZM1FYWAiVSoXs7Gzk5eVh3rx5XZUCAON81s2Zx9GjR5GUlISTJ09CpVJBq9UiKioKtbW1YpvW3j8NDQ2Ii4vDrVu3cOLECWzduhWZmZlYuXJll+RgbaxxfDEnaxvbzMlWxlWTEWzQmDFjhKSkJHG5oaFB8Pf3F9LT080YlXGtWrVKGD58uLnDMCkAwq5du8RlnU4nKBQK4S9/+Yu4rrKyUpBKpcKnn35qhgg77+4cBUEQEhIShEceecQs8VDrrG18aWmsqKysFCQSibBjxw5x3Q8//CAAEPLz87sowpZ1ZBy4ePGiAEA4c+aM2Oabb74RHBwchH//+99dFvudOvJZt7Q8ysvLBQDC0aNHBUFo2/tn3759gqOjo6BWq8U2mzZtEmQymaDRaLo2AStgbeOLOVn72GZOtjKuGpPNHSG6desWCgoKEBERIa5zdHREREQE8vPzzRiZ8V2+fBn+/v647777MHPmTJSUlJg7JJMqLi6GWq02eG29vLwQGhpqc6/tkSNH4OPjgwEDBmD+/Pm4fv26uUMiWO/40txYUVBQAK1Wa5DPwIEDERAQYLH5tGUcyM/Ph7e3N0aNGiW2iYiIgKOjI06dOtXlMbekpc+6peVRVVUFAJDL5QDa9v7Jz8/H0KFDDW5cGh0djerqahQWFnZh9JbPWscXc7Klsc2cbG1c7QibK4h+++03NDQ0NLprtK+vL9RqtZmiMr7Q0FBkZmYiJycHmzZtQnFxMR544AHcuHHD3KGZjP71s/XXNiYmBh9//DEOHjyIN998E0ePHkVsbCwaGhrMHZrds8bxpaWxQq1Ww8XFBd7e3gaPseR82jIOqNVq+Pj4GGx3dnaGXC63qLxa+6xbUh46nQ4LFy7EuHHjMGTIEDG+1t4/arW6yddKv43+yxrHF3OytbHNnGxpXO0oZ3MHQB0TGxsr/nvYsGEIDQ1FYGAgPv/8cyQmJpoxMuqs6dOni/8eOnQohg0bhr59++LIkSMIDw83Y2RkjVoaK9zc3MwYGVnTZz0pKQkXLlywiWtVyTZwbCNjsrkjRD179oSTk1OjmUTKysqgUCjMFJXpeXt7o3///rhy5Yq5QzEZ/etnb6/tfffdh549e9r0a2stbGF8uXOsUCgUuHXrFiorKw3aWHI+bRkHFApFo4vQ6+vrUVFRYbF5AY0/65aSR3JyMrKzs3H48GH07t1bXN+W949CoWjytdJvo/+yhfHFnKx9bDMnWx5X28rmCiIXFxeEhITg4MGD4jqdToeDBw9CqVSaMTLTqqmpQVFREfz8/MwdiskEBQVBoVAYvLbV1dU4deqUTb+2v/zyC65fv27Tr621sIXx5c6xIiQkBBKJxCCfS5cuoaSkxGLzacs4oFQqUVlZiYKCArHNoUOHoNPpEBoa2uUxt9Xdn3Vz5yEIApKTk7Fr1y4cOnQIQUFBBtvb8v5RKpX4/vvvDb5IqVQqyGQyBAcHmzwHa2IL44s5WfvYZk62PK62mblndTCF7du3C1KpVMjMzBQuXrwozJs3T/D29jaY5cbavfTSS8KRI0eE4uJi4fjx40JERITQs2dPoby83NyhdcqNGzeEf/7zn8I///lPAYDw1ltvCf/85z+Fn376SRAEQXjjjTcEb29v4auvvhLOnz8vPPLII0JQUJDw+++/mznytmspxxs3bggvv/yykJ+fLxQXFwsHDhwQ/vCHPwj333+/cPPmTXOHToL1jS+tjRXPPfecEBAQIBw6dEg4e/asoFQqBaVSadaYjTEOxMTECCNHjhROnTolHDt2TLj//vuFGTNmWEwebf2smzOP+fPnC15eXsKRI0eE0tJS8a+urk5s09r7p76+XhgyZIgQFRUlnDt3TsjJyRF69eolLFu2rEtysDbWNr6YkzWObeZkK+OqqdhkQSQIgrBhwwYhICBAcHFxEcaMGSOcPHnS3CEZ1RNPPCH4+fkJLi4uwj333CM88cQTwpUrV8wdVqcdPnxYANDoLyEhQRCE21NDrlixQvD19RWkUqkQHh4uXLp0ybxBt1NLOdbV1QlRUVFCr169BIlEIgQGBgpz587l/wwtjDWNL62NFb///rvw/PPPC927dxfc3d2FRx99VCgtLTVjxMYZB65fvy7MmDFD8PDwEGQymfD0008LN27csJg82vpZN2ceTcUOQNiyZYvYpi3vn6tXrwqxsbGCm5ub0LNnT+Gll14StFptl+RgjaxpfDEnaxzbzMlWxlVTcRAEQTDtMSgiIiIiIiLLZHPXEBEREREREbUVCyIiIiIiIrJbLIiIiIiIiMhusSAiIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7BYLIiIiIiIislssiIiIiIiIyG6xICIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbLIiIiIiIiMhusSAiIiIiIiK7xYKIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCyEo4ODggOTm5xTZXr16Fg4MDMjMzTRrLvffei4ceeqjVdkeOHIGDgwOOHDnSrv7nzJkDDw+PDkZHRGQoLCwMYWFh4nJXjZVERGQdWBBZgO+//x6PPfYYAgMD4erqinvuuQeRkZHYsGFDl+x/zpw5cHBwaPVvzpw5XRIPEdmGzMxMODg44OzZs+YOhYjsnH48uvPPx8cHEydOxDfffGPQVr/9mWeeabKvP//5z2Kb3377TVzPH3Stl7O5A7B3J06cwMSJExEQEIC5c+dCoVDg559/xsmTJ/Huu+9iwYIFbe4rMDAQv//+OyQSSbtiePbZZxERESEuFxcXY+XKlZg3bx4eeOABcX3fvn3b1e+ECRPw+++/w8XFpV2PIyIypY6OlURk/VavXo2goCAIgoCysjJkZmZi8uTJ2LNnj8HZL66urvjyyy+xcePGRt9jPv30U7i6uuLmzZtdHT6ZCAsiM3vttdfg5eWFM2fOwNvb22BbeXl5u/pycHCAq6tru2NQKpVQKpXi8tmzZ7Fy5UoolUo89dRT7e5Pz9HRsUPxEBGZUkfHSiKyfrGxsRg1apS4nJiYCF9fX3z66acGBVFMTAy+/vprfPPNN3jkkUfE9SdOnEBxcTHi4+Px5ZdfdmnsZDo8Zc7MioqKMHjw4EbFEAD4+Pi0+Ni1a9fC0dFRPLWuqfPi9Ydv//3vf2Pq1Knw8PBAr1698PLLL6OhoaFTsR87dgxjxoyBq6sr7rvvPnz88ccG25u7hujUqVOYPHkyunfvjm7dumHYsGF49913W9zXuXPn0KtXL4SFhaGmpgbAf69lai0OAKisrMTChQvRp08fSKVS9OvXD2+++SZ0Op1Bu+3btyMkJASenp6QyWQYOnSoQWxarRZpaWm4//774erqih49emD8+PFQqVTteeqI7FJ7xqPWPoupqalwcHBotA/9aTFXr15tNo6uHiuJyHJ5e3vDzc0Nzs6GxwjuueceTJgwAVlZWQbrt23bhqFDh2LIkCFdGSaZGAsiMwsMDERBQQEuXLjQrsctX74cK1euxAcffNDqaXUNDQ2Ijo5Gjx49sH79ejz44IP461//ig8//LDDcV+5cgWPPfYYIiMj8de//hXdu3fHnDlzUFhY2OLjVCoVJkyYgIsXL+LFF1/EX//6V0ycOBHZ2dnNPubMmTOYNGkSRo4ciW+++cbg/Ny2xFFXV4cHH3wQn3zyCWbPno333nsP48aNw7Jly5CSkmIQ24wZM9C9e3e8+eabeOONNxAWFobjx4+LbVJTU5GWloaJEyfi/fffx5///GcEBATgu+++68jTSGR32jIeteWzaK7YiMi6VVVV4bfffsOvv/6KwsJCzJ8/HzU1NU2eEfPkk09iz5494g+x9fX12LFjB5588smuDptMTSCzys3NFZycnAQnJydBqVQKS5YsEfbv3y/cunXLoB0AISkpSRAEQXjppZcER0dHITMz06BNcXGxAEDYsmWLuC4hIUEAIKxevdqg7ciRI4WQkJAmYzpz5kyjfu4UGBgoABDy8vLEdeXl5YJUKhVeeuklcd3hw4cFAMLhw4cFQRCE+vp6ISgoSAgMDBT+85//GPSp0+kMYu7WrZsgCIJw7NgxQSaTCXFxccLNmzc7FMeaNWuEbt26Cf/7v/9r8PhXXnlFcHJyEkpKSgRBEIQXX3xRkMlkQn19fZN5C4IgDB8+XIiLi2t2OxH915YtWwQAwpkzZwRBaPt41JbP4qpVq4Sm/hem32dxcbG47sEHHxQefPBBcdlYYyURWQ/92HD3n1QqbfR9Sv+dq6KiQnBxcRH+8Y9/CIIgCHv37hUcHByEq1evimPQr7/+Kj7uzu8vZF14hMjMIiMjkZ+fj4cffhj/+te/sG7dOkRHR+Oee+7B119/bdBWEAQkJyfj3XffxSeffIKEhIQ27+e5554zWH7ggQfwf//3fx2OOzg42GDChV69emHAgAEt9vnPf/4TxcXFWLhwYaNTBJs69eXw4cOIjo5GeHg4du7cCalU2qE4duzYgQceeADdu3fHb7/9Jv5FRESgoaEBeXl5AG4fNq+trW3x9Ddvb28UFhbi8uXLzbYhopa1Nh615bNoKsYeK4nIsmRkZEClUkGlUuGTTz7BxIkT8cwzz2Dnzp2N2nbv3h0xMTH49NNPAQBZWVn44x//iMDAwK4Om0yMBZEFGD16NHbu3In//Oc/OH36NJYtW4YbN27gsccew8WLF8V2H3/8MTIyMrBhwwbMmDGjzf27urqiV69eBuu6d++O//znPx2OOSAgoNG61vosKioCgDadd3vz5k3ExcVh5MiR+Pzzz5udqa4tcVy+fBk5OTno1auXwZ9+Zj395BXPP/88+vfvj9jYWPTu3Rt/+tOfkJOTY9D36tWrUVlZif79+2Po0KFYvHgxzp8/32o+RHRbW8ajtnwWzRUbEVm3MWPGICIiAhEREZg5cyb27t2L4OBgJCcn49atW43aP/nkk1CpVCgpKcHu3bt5upyNYkFkQVxcXDB69Gi8/vrr2LRpE7RaLXbs2CFuHzduHHx9ffH++++joqKizf06OTkZPdbm+hQEwSj9S6VSxMXF4dSpUy1+EWpLHDqdDpGRkeIvQnf/xcfHA7g9icW5c+fw9ddf4+GHH8bhw4cRGxtrcCRuwoQJKCoqwt///ncMGTIEf/vb3/CHP/wBf/vb34ySN5Gta8t41JbPYlNHlQF0agIEU4yVRGTZHB0dMXHiRJSWljZ59sfDDz8MqVSKhIQEaDQaPP7442aIkkyNBZGF0k8JWVpaKq7r168fcnNzce3aNcTExODGjRvmCq9D9PcxassEEg4ODti2bRvCw8Px//7f/2s0U11791tTUyP+InT3351HmVxcXDBlyhRs3LgRRUVFePbZZ/Hxxx/jypUrYhu5XI6nn34an376KX7++WcMGzYMqampHY6PiBpr7bPYvXt3ALdnkLzTTz/91NWhEpGVq6+vBwBx8oQ7ubm5YerUqThy5AgiIyPRs2fPrg6PugALIjM7fPhwk0dV9u3bBwAYMGCAwfphw4Zh3759+OGHHzBlyhT8/vvvXRKnMfzhD39AUFAQ3nnnnUZfYpp6DlxcXLBz506MHj0aU6ZMwenTpzu038cffxz5+fnYv39/o22VlZXiQHj9+nWDbY6Ojhg2bBgAQKPRNNnGw8MD/fr1E7cTUee15bOo/4FFfw0gANTW1mLr1q1dFCUR2QKtVovc3Fy4uLhg0KBBTbZ5+eWXsWrVKqxYsaKLo6OuwhuzmtmCBQtQV1eHRx99FAMHDsStW7dw4sQJfPbZZ7j33nvx9NNPN3rM2LFj8dVXX2Hy5Ml47LHHsHv3bqu447qjoyM2bdqEKVOmYMSIEXj66afh5+eHH3/8EYWFhU0WLG5ubsjOzsakSZMQGxuLo0ePtnvu/8WLF+Prr7/GQw89hDlz5iAkJAS1tbX4/vvv8cUXX+Dq1avo2bMnnnnmGVRUVGDSpEno3bs3fvrpJ2zYsAEjRowQB8ng4GCEhYUhJCQEcrkcZ8+exRdffIHk5GSjPEdEhDZ9FqOiohAQEIDExEQsXrwYTk5O+Pvf/45evXqhpKTEzBkQkaX65ptv8OOPPwK4fQ1xVlYWLl++jFdeeQUymazJxwwfPhzDhw/vyjCpi7EgMrP169djx44d2LdvHz788EPcunULAQEBeP7557F8+fImb9gKAJMmTcLnn3+O+Ph4zJo1q9GNwyxVdHQ0Dh8+jLS0NPz1r3+FTqdD3759MXfu3GYfI5PJsH//fkyYMAGRkZH49ttv0a9fvzbv093dHUePHsXrr7+OHTt24OOPP4ZMJkP//v2RlpYGLy8vAMBTTz2FDz/8EBs3bkRlZSUUCgWeeOIJpKamwtHx9sHUF154AV9//TVyc3Oh0WgQGBiItWvXYvHixZ17YohI1JbPokQiwa5du/D8889jxYoVUCgUWLhwIbp3797kD0lERACwcuVK8d+urq4YOHAgNm3ahGeffdaMUZG5OQjGugqeiIiIiIjIyvAaIiIiIiIislssiIiIiIiIyG6xICIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbLIiIiIiIiMhuWeV9iHQ6Ha5duwZPT084ODiYOxwimyEIAm7cuAF/f3/xfi/2huMLkWlwfOH4QmQqnR1frLIgunbtGvr06WPuMIhs1s8//4zevXubOwyz4PhCZFocXzi+EJlKR8cXqyyIPD09AdxOWiaTNdtOq9UiNzcXUVFRkEgkXRWeUdlCDoBt5GELOQAt51FdXY0+ffqIn7GulJqairS0NIN1AwYMwI8//ggAuHnzJl566SVs374dGo0G0dHR2LhxI3x9fcX2JSUlmD9/Pg4fPgwPDw8kJCQgPT0dzs5tH+psfXxh3F3PWmM3dtzmHF8sha2PL+3FPG2PuXLt7PhilQWR/jCzTCZrdUBxd3eHTCaz2jegLeQA2EYetpAD0LY8zHUqx+DBg3HgwAFx+c5CZtGiRdi7dy927NgBLy8vJCcnY9q0aTh+/DgAoKGhAXFxcVAoFDhx4gRKS0sxe/ZsSCQSvP76622OwdbHF8bd9aw1dlPFbc+nitn6+NJezNP2mDvXjo4vVlkQEZFtcnZ2hkKhaLS+qqoKH330EbKysjBp0iQAwJYtWzBo0CCcPHkSY8eORW5uLi5evIgDBw7A19cXI0aMwJo1a7B06VKkpqbCxcWlq9MhIiIiK8CCiIgsxuXLl+Hv7w9XV1colUqkp6cjICAABQUF0Gq1iIiIENsOHDgQAQEByM/Px9ixY5Gfn4+hQ4canEIXHR2N+fPno7CwECNHjmxynxqNBhqNRlyurq4GcPtXLq1W22ys+m0ttbFEjLvrWWvsxo7b2vInIvvBgoiILEJoaCgyMzMxYMAAlJaWIi0tDQ888AAuXLgAtVoNFxcXeHt7GzzG19cXarUaAKBWqw2KIf12/bbmpKenN7p2CQByc3Ph7u7eatwqlarVNpaIcXc9a43dWHHX1dUZpR8iImNjQUREFiE2Nlb897BhwxAaGorAwEB8/vnncHNzM9l+ly1bhpSUFHFZf2FmVFRUq+f4q1QqREZGWtU54Yy761lr7MaOW3/0lYjI0rAgIiKL5O3tjf79++PKlSuIjIzErVu3UFlZaXCUqKysTLzmSKFQ4PTp0wZ9lJWViduaI5VKIZVKG62XSCRt+hLY1naWhnF3PWuN3VhxW2PuRGQf7PPOaERk8WpqalBUVAQ/Pz+EhIRAIpHg4MGD4vZLly6hpKQESqUSAKBUKvH999+jvLxcbKNSqSCTyRAcHNzl8RMREZF14BEiIrIIL7/8MqZMmYLAwEBcu3YNq1atgpOTE2bMmAEvLy8kJiYiJSUFcrkcMpkMCxYsgFKpxNixYwEAUVFRCA4OxqxZs7Bu3Tqo1WosX74cSUlJTR4BIiIiIgJYEBGRhfjll18wY8YMXL9+Hb169cL48eNx8uRJ9OrVCwDw9ttvw9HREfHx8QY3ZtVzcnJCdnY25s+fD6VSiW7duiEhIQGrV682V0pERERkBeyiIBqSuh+ahs7fCO7qG3FGiIaImrJ9+/YWt7u6uiIjIwMZGRnNtgkMDMS+ffuMHVqLOL4QEVmOe1/Za7S+OC7bD15DREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1iQURERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERENi09PR2jR4+Gp6cnfHx8MHXqVFy6dMmgTVhYGBwcHAz+nnvuOYM2JSUliIuLg7u7O3x8fLB48WLU19d3ZSpEZALO5g6AiIiIyJSOHj2KpKQkjB49GvX19Xj11VcRFRWFixcvolu3bmK7uXPnYvXq1eKyu7u7+O+GhgbExcVBoVDgxIkTKC0txezZsyGRSPD66693aT5EZFwsiIiIiMim5eTkGCxnZmbCx8cHBQUFmDBhgrje3d0dCoWiyT5yc3Nx8eJFHDhwAL6+vhgxYgTWrFmDpUuXIjU1FS4uLibNgYhMhwURERER2ZWqqioAgFwuN1i/bds2fPLJJ1AoFJgyZQpWrFghHiXKz8/H0KFD4evrK7aPjo7G/PnzUVhYiJEjRzbaj0ajgUajEZerq6sBAFqtFlqtttn49NtaamMLTJGn1EkwWl/GisteXk/AfLl2dn8siIiIiMhu6HQ6LFy4EOPGjcOQIUPE9U8++SQCAwPh7++P8+fPY+nSpbh06RJ27twJAFCr1QbFEABxWa1WN7mv9PR0pKWlNVqfm5trcDpec1QqVZvzsmbGzHPdGKN1hX379hmvM9jP6wl0fa51dXWdejwLIiIiIrIbSUlJuHDhAo4dO2awft68eeK/hw4dCj8/P4SHh6OoqAh9+/bt0L6WLVuGlJQUcbm6uhp9+vRBVFQUZDJZs4/TarVQqVSIjIyERCLp0L6tgSnyHJK63yj9AMCF1Gij9GMvrydgvlz1R187igURERER2YXk5GRkZ2cjLy8PvXv3brFtaGgoAODKlSvo27cvFAoFTp8+bdCmrKwMAJq97kgqlUIqlTZaL5FI2vRlsa3trJ0x89Q0OBilHwBGf+7t5fUEuj7Xzu6L024TERGRTRMEAcnJydi1axcOHTqEoKCgVh9z7tw5AICfnx8AQKlU4vvvv0d5ebnYRqVSQSaTITg42CRxE1HX4BEiIiIismlJSUnIysrCV199BU9PT/GaHy8vL7i5uaGoqAhZWVmYPHkyevTogfPnz2PRokWYMGEChg0bBgCIiopCcHAwZs2ahXXr1kGtVmP58uVISkpq8igQEVkPHiEiIiIim7Zp0yZUVVUhLCwMfn5+4t9nn30GAHBxccGBAwcQFRWFgQMH4qWXXkJ8fDz27Nkj9uHk5ITs7Gw4OTlBqVTiqaeewuzZsw3uW0RE1olHiIiIiMimCULLUzH36dMHR48ebbWfwMBAo888RkTmxyNERERERERkt1gQERERERGR3WpXQZSeno7Ro0fD09MTPj4+mDp1Ki5dumTQ5ubNm0hKSkKPHj3g4eGB+Ph4cVpKvZKSEsTFxcHd3R0+Pj5YvHgx6uvrO58NERERERFRO7SrIDp69CiSkpJw8uRJqFQqaLVaREVFoba2VmyzaNEi7NmzBzt27MDRo0dx7do1TJs2Tdze0NCAuLg43Lp1CydOnMDWrVuRmZmJlStXGi8rIiIiIiKiNmjXpAo5OTkGy5mZmfDx8UFBQQEmTJiAqqoqfPTRR8jKysKkSZMAAFu2bMGgQYNw8uRJjB07Frm5ubh48SIOHDgAX19fjBgxAmvWrMHSpUuRmpoKFxcX42VHRERERETUgk5dQ1RVVQUAkMvlAICCggJotVpERESIbQYOHIiAgADk5+cDAPLz8zF06FD4+vqKbaKjo1FdXY3CwsLOhENERERERNQuHZ52W6fTYeHChRg3bhyGDBkCAFCr1XBxcYG3t7dBW19fX/EmaGq12qAY0m/Xb2uKRqOBRqMRl6urqwEAWq0WWq222Rj126SOLU+32VYt7ctU9Ps0x76NyRbysIUcgJbzsPbciIiIiNqrwwVRUlISLly4gGPHjhkznialp6cjLS2t0frc3Fy4u7u3+vg1o3RGicOc9x5QqVRm27cx2UIetpAD0HQedXV1ZoiEiIiIyHw6VBAlJycjOzsbeXl56N27t7heoVDg1q1bqKysNDhKVFZWBoVCIbY5ffq0QX/6Wej0be62bNkypKSkiMvV1dXo06cPoqKiIJPJmo1Tq9VCpVJhxVlHaHQO7c7zbhdSozvdR3vpc4iMjIREIuny/RuLLeRhCzkALeehP/pKREREZC/aVRAJgoAFCxZg165dOHLkCIKCggy2h4SEQCKR4ODBg4iPjwcAXLp0CSUlJVAqlQAApVKJ1157DeXl5fDx8QFw+5dqmUyG4ODgJvcrlUohlUobrZdIJG36YqrROUDT0PmCyJxfgtuaq6WzhTxsIQeg6TxsIS8iIiKi9mhXQZSUlISsrCx89dVX8PT0FK/58fLygpubG7y8vJCYmIiUlBTI5XLIZDIsWLAASqUSY8eOBQBERUUhODgYs2bNwrp166BWq7F8+XIkJSU1WfQQERERERGZSrtmmdu0aROqqqoQFhYGPz8/8e+zzz4T27z99tt46KGHEB8fjwkTJkChUGDnzp3idicnJ2RnZ8PJyQlKpRJPPfUUZs+ejdWrVxsvKyKyem+88QYcHBywcOFCcR1v/ExERETG1u5T5lrj6uqKjIwMZGRkNNsmMDDQrBMUEJFlO3PmDD744AMMGzbMYP2iRYuwd+9e7NixA15eXkhOTsa0adNw/PhxAP+98bNCocCJEydQWlqK2bNnQyKR4PXXXzdHKkRERGThOjzLHBGRKdTU1GDmzJn4n//5H6xdu1Zczxs/ExFRV7r3lb1G6UfqJGDdGKN0RSbSqRuzEhEZW1JSEuLi4gxu8Azwxs9ERERkGjxCREQWY/v27fjuu+9w5syZRtt442fjsNYbDFtr3ID1xm7suK0tfyKyHyyIiMgi/Pzzz3jxxRehUqng6uraZfu11xs/W+sNhq01bsB6YzdW3LzxMxFZKhZERGQRCgoKUF5ejj/84Q/iuoaGBuTl5eH999/H/v37eeNnI7DWGwxba9yA9cZu7Lh542cislQsiIjIIoSHh+P77783WPf0009j4MCBWLp0Kfr06cMbPxuRtd5g2FrjBqw3dmPFbY25E5F9YEFERBbB09MTQ4YMMVjXrVs39OjRQ1zPGz8TERGRsbEgIiKr8fbbb8PR0RHx8fHQaDSIjo7Gxo0bxe36Gz/Pnz8fSqUS3bp1Q0JCAm/8TERERM1iQUREFuvIkSMGy7zxMxERERkb70NERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdosFEREREdm09PR0jB49Gp6envDx8cHUqVNx6dIlgzY3b95EUlISevToAQ8PD8THx6OsrMygTUlJCeLi4uDu7g4fHx8sXrwY9fX1XZkKEZkACyIiIiKyaUePHkVSUhJOnjwJlUoFrVaLqKgo1NbWim0WLVqEPXv2YMeOHTh69CiuXbuGadOmidsbGhoQFxeHW7du4cSJE9i6dSsyMzOxcuVKc6REREbE+xDZkHtf2Wu0vq6+EWe0voiIiMwpJyfHYDkzMxM+Pj4oKCjAhAkTUFVVhY8++ghZWVmYNGkSAGDLli0YNGgQTp48ibFjxyI3NxcXL17EgQMH4OvrixEjRmDNmjVYunQpUlNT4eLiYo7UiMgIWBARERGRXamqqgIAyOVyAEBBQQG0Wi0iIiLENgMHDkRAQADy8/MxduxY5OfnY+jQofD19RXbREdHY/78+SgsLMTIkSMb7Uej0UCj0YjL1dXVAACtVgutVttsfPptLbWxBabIU+okGK0vY5E63o7J1l9PwHzv3c7ujwURERER2Q2dToeFCxdi3LhxGDJkCABArVbDxcUF3t7eBm19fX2hVqvFNncWQ/rt+m1NSU9PR1paWqP1ubm5cHd3bzVWlUrVahtbYMw8140xWldGZy+vJ9D1udbV1XXq8SyIiIiIyG4kJSXhwoULOHbsmMn3tWzZMqSkpIjL1dXV6NOnD6KioiCTyZp9nFarhUqlQmRkJCQSicnjNBdT5Dkkdb9R+jEmqaOANaN0Nv96AuZ77+qPvnYUCyIiIiKyC8nJycjOzkZeXh569+4trlcoFLh16xYqKysNjhKVlZVBoVCIbU6fPm3Qn34WOn2bu0mlUkil0kbrJRJJm74strWdtTNmnpoGB6P0Ywr28noCXZ9rZ/fFWeaIiIjIpgmCgOTkZOzatQuHDh1CUFCQwfaQkBBIJBIcPHhQXHfp0iWUlJRAqVQCAJRKJb7//nuUl5eLbVQqFWQyGYKDg7smESIyCR4hIiIiIpuWlJSErKwsfPXVV/D09BSv+fHy8oKbmxu8vLyQmJiIlJQUyOVyyGQyLFiwAEqlEmPHjgUAREVFITg4GLNmzcK6deugVquxfPlyJCUlNXkUiIisBwsiIiIismmbNm0CAISFhRms37JlC+bMmQMAePvtt+Ho6Ij4+HhoNBpER0dj48aNYlsnJydkZ2dj/vz5UCqV6NatGxISErB69equSoOITIQFEREREdk0QWh9KmZXV1dkZGQgIyOj2TaBgYHYt2+fMUMjIgvAgsiM2nIjVamTgHVjbs+aYskXChIRERERWSNOqkBERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3Wp3QZSXl4cpU6bA398fDg4O2L17t8H2OXPmwMHBweAvJibGoE1FRQVmzpwJmUwGb29vJCYmoqamplOJEBERERERtVe7C6La2loMHz4cGRkZzbaJiYlBaWmp+Pfpp58abJ85cyYKCwuhUqmQnZ2NvLw8zJs3r/3RExERERERdYJzex8QGxuL2NjYFttIpVIoFIomt/3www/IycnBmTNnMGrUKADAhg0bMHnyZKxfvx7+/v7tDYmIiIiIiKhD2l0QtcWRI0fg4+OD7t27Y9KkSVi7di169OgBAMjPz4e3t7dYDAFAREQEHB0dcerUKTz66KON+tNoNNBoNOJydXU1AECr1UKr1TYbh36b1FEwSl4t7asjpE6tx6WP3Vg5tJWxc9X3Z+x+u5It5AC0nIe150ZERETUXkYviGJiYjBt2jQEBQWhqKgIr776KmJjY5Gfnw8nJyeo1Wr4+PgYBuHsDLlcDrVa3WSf6enpSEtLa7Q+NzcX7u7urca0ZpSuY8ncZd++fUbpR2/dmLa3NVYObWXsXPVUKpVJ+u1KtpAD0HQedXV1ZoiEiIiIyHyMXhBNnz5d/PfQoUMxbNgw9O3bF0eOHEF4eHiH+ly2bBlSUlLE5erqavTp0wdRUVGQyWTNPk6r1UKlUmHFWUdodA4d2vedLqRGd7qPOw1J3d9qG6mjgDWjdEbLoa2Mnav+tYiMjIREIjFq313FFnIAWs5Df/SViIiIyF6Y5JS5O913333o2bMnrly5gvDwcCgUCpSXlxu0qa+vR0VFRbPXHUmlUkil0kbrJRJJm76YanQO0DR0vpgw9pfg9sRkrBzaylRf+Nv6mlkyW8gBaDoPc+a1adMmbNq0CVevXgUADB48GCtXrhSvWbx58yZeeuklbN++HRqNBtHR0di4cSN8fX3FPkpKSjB//nwcPnwYHh4eSEhIQHp6OpydTT7UERERkZUy+X2IfvnlF1y/fh1+fn4AAKVSicrKShQUFIhtDh06BJ1Oh9DQUFOHQ0QWqnfv3njjjTdQUFCAs2fPYtKkSXjkkUdQWFgIAFi0aBH27NmDHTt24OjRo7h27RqmTZsmPr6hoQFxcXG4desWTpw4ga1btyIzMxMrV640V0pERERkBdr9s2lNTQ2uXLkiLhcXF+PcuXOQy+WQy+VIS0tDfHw8FAoFioqKsGTJEvTr1w/R0bdPwRo0aBBiYmIwd+5cbN68GVqtFsnJyZg+fTpnmCOyY1OmTDFYfu2117Bp0yacPHkSvXv3xkcffYSsrCxMmjQJALBlyxYMGjQIJ0+exNixY5Gbm4uLFy/iwIED8PX1xYgRI7BmzRosXboUqampcHFxMUdaREREZOHafYTo7NmzGDlyJEaOHAkASElJwciRI7Fy5Uo4OTnh/PnzePjhh9G/f38kJiYiJCQE3377rcEpb9u2bcPAgQMRHh6OyZMnY/z48fjwww+NlxURWbWGhgZs374dtbW1UCqVKCgogFarRUREhNhm4MCBCAgIQH5+PoDbM1gOHTrU4BS66OhoVFdXi0eZiIiIiO7W7iNEYWFhEITmp4Dev7/1iQLkcjmysrLau2sisnHff/89lEolbt68CQ8PD+zatQvBwcE4d+4cXFxc4O3tbdDe19dXnJ1SrVYbFEP67fptzbHVaf1b24+1TbFurXED1hu7seO2tvyJyH7wSmMishgDBgzAuXPnUFVVhS+++AIJCQk4evSoSfdpq9P6t8Zap4+31rgB643dWHFzWn8islQsiIjIYri4uKBfv34AgJCQEJw5cwbvvvsunnjiCdy6dQuVlZUGR4nKysrE2SkVCgVOnz5t0F9ZWZm4rTm2Oq1/c6x1+nhrjRuw3tiNHTen9SciS8WCiIgslk6ng0ajQUhICCQSCQ4ePIj4+HgAwKVLl1BSUgKlUgng9gyWr732GsrLy8WbP6tUKshkMgQHBze7D1ud1r8t+7OmL+d61ho3YL2xGytua8ydiOwDCyIisgjLli1DbGwsAgICcOPGDWRlZeHIkSPYv38/vLy8kJiYiJSUFMjlcshkMixYsABKpRJjx44FAERFRSE4OBizZs3CunXroFarsXz5ciQlJTVZ8BAREREBLIiIyEKUl5dj9uzZKC0thZeXF4YNG4b9+/cjMjISAPD222/D0dER8fHxBjdm1XNyckJ2djbmz58PpVKJbt26ISEhAatXrzZXSkRERGQFWBARkUX46KOPWtzu6uqKjIwMZGRkNNsmMDCwyycnICIiIuvW7vsQERERERER2QoeISIiIiKblpeXh7/85S8oKChAaWkpdu3ahalTp4rb58yZg61btxo8Jjo6Gjk5OeJyRUUFFixYgD179oin77777rvw8PDoqjRs1pDU/UaZnIaoo3iEiIiIiGxabW0thg8f3uIptzExMSgtLRX/Pv30U4PtM2fORGFhIVQqFbKzs5GXl4d58+aZOnQi6gI8QkREREQ2LTY2FrGxsS22kUqlzd6z7IcffkBOTg7OnDmDUaNGAQA2bNiAyZMnY/369fD39zd6zETUdVgQERERkd07cuQIfHx80L17d0yaNAlr165Fjx49AAD5+fnw9vYWiyEAiIiIgKOjI06dOoVHH320yT41Gg00Go24rL85rVarhVarbTYW/baW2tgCfX5SR8HMkZiWPj9bfz0B8713O7s/FkRERERk12JiYjBt2jQEBQWhqKgIr776KmJjY5Gfnw8nJyeo1Wrxhs96zs7OkMvlUKvVzfabnp6OtLS0Rutzc3Ph7u7ealwqlar9yVihNaN05g6hS9jL6wl0fa51dXWdejwLIiIiIrJr06dPF/89dOhQDBs2DH379sWRI0cQHh7e4X6XLVuGlJQUcbm6uhp9+vRBVFQUZDJZs4/TarVQqVSIjIyERCLp8P4tnT7PFWcdodHZ7qQKUkcBa0bpbP71BMz33tUffe0oFkREREREd7jvvvvQs2dPXLlyBeHh4VAoFCgvLzdoU19fj4qKimavOwJuX5cklUobrZdIJG36stjWdtZOo3Owi1nm7OX1BLo+187ui7PMEREREd3hl19+wfXr1+Hn5wcAUCqVqKysREFBgdjm0KFD0Ol0CA0NNVeYRGQkPEJERERENq2mpgZXrlwRl4uLi3Hu3DnI5XLI5XKkpaUhPj4eCoUCRUVFWLJkCfr164fo6GgAwKBBgxATE4O5c+di8+bN0Gq1SE5OxvTp0znDHJEN4BEiIiIismlnz57FyJEjMXLkSABASkoKRo4ciZUrV8LJyQnnz5/Hww8/jP79+yMxMREhISH49ttvDU5327ZtGwYOHIjw8HBMnjwZ48ePx4cffmiulIjIiHiEiIiIiGxaWFgYBKH5qZ3379/fah9yuRxZWVnGDIuILASPEBERERERkd1iQURERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1yNncA1uTeV/aaOwQiIiIiIjIiHiEiIiIiIiK71e6CKC8vD1OmTIG/vz8cHBywe/dug+2CIGDlypXw8/ODm5sbIiIicPnyZYM2FRUVmDlzJmQyGby9vZGYmIiamppOJUJERERERNRe7S6IamtrMXz4cGRkZDS5fd26dXjvvfewefNmnDp1Ct26dUN0dDRu3rwptpk5cyYKCwuhUqmQnZ2NvLw8zJs3r+NZEBERERERdUC7ryGKjY1FbGxsk9sEQcA777yD5cuX45FHHgEAfPzxx/D19cXu3bsxffp0/PDDD8jJycGZM2cwatQoAMCGDRswefJkrF+/Hv7+/p1Ih4iIiIiIqO2MOqlCcXEx1Go1IiIixHVeXl4IDQ1Ffn4+pk+fjvz8fHh7e4vFEABERETA0dERp06dwqOPPtqoX41GA41GIy5XV1cDALRaLbRabbPx6LdJHYVO52Yu+ti7OoeWntfO9GfsfruSLeQAtJyHtedGRERE1F5GLYjUajUAwNfX12C9r6+vuE2tVsPHx8cwCGdnyOVysc3d0tPTkZaW1mh9bm4u3N3dW41rzShdm+K3ZF2dw759+0zSr0qlMkm/XckWcgCazqOurs4MkdyWnp6OnTt34scff4Sbmxv++Mc/4s0338SAAQPENjdv3sRLL72E7du3Q6PRIDo6Ghs3bjQYc0pKSjB//nwcPnwYHh4eSEhIQHp6OpydOakmERERNWYV3xCWLVuGlJQUcbm6uhp9+vRBVFQUZDJZs4/TarVQqVRYcdYRGp1DV4RqdFJHAWtG6bo8hwup0UbtT/9aREZGQiKRGLXvrmILOQAt56E/+moOR48eRVJSEkaPHo36+nq8+uqriIqKwsWLF9GtWzcAwKJFi7B3717s2LEDXl5eSE5OxrRp03D8+HEAQENDA+Li4qBQKHDixAmUlpZi9uzZkEgkeP31182WGxEREVkuoxZECoUCAFBWVgY/Pz9xfVlZGUaMGCG2KS8vN3hcfX09KioqxMffTSqVQiqVNlovkUja9MVUo3OApsE6CyK9rs7BVF/42/qaWTJbyAFoOg9z5pWTk2OwnJmZCR8fHxQUFGDChAmoqqrCRx99hKysLEyaNAkAsGXLFgwaNAgnT57E2LFjkZubi4sXL+LAgQPw9fXFiBEjsGbNGixduhSpqalwcXExR2pERERkwYx6H6KgoCAoFAocPHhQXFddXY1Tp05BqVQCAJRKJSorK1FQUCC2OXToEHQ6HUJDQ40ZDhFZsaqqKgCAXC4HABQUFECr1Rpcozhw4EAEBAQgPz8fAJCfn4+hQ4canEIXHR2N6upqFBYWdmH0REREZC3afYSopqYGV65cEZeLi4tx7tw5yOVyBAQEYOHChVi7di3uv/9+BAUFYcWKFfD398fUqVMBAIMGDUJMTAzmzp2LzZs3Q6vVIjk5GdOnT+cMc0QEANDpdFi4cCHGjRuHIUOGALh9/aGLiwu8vb0N2t59jWJT1zDqtzXFUiZt6aoJLax1chBrjRuw3tiNHbe15U9E9qPdBdHZs2cxceJEcVl/bU9CQgIyMzOxZMkS1NbWYt68eaisrMT48eORk5MDV1dX8THbtm1DcnIywsPD4ejoiPj4eLz33ntGSIeIbEFSUhIuXLiAY8eOmXxfljJpi6kmMmmOtU4OYq1xA9Ybu7HiNuekLURELWl3QRQWFgZBaP4XUQcHB6xevRqrV69uto1cLkdWVlZ7d01EdiA5OVm8YXPv3r3F9QqFArdu3UJlZaXBUaKysjLx+kOFQoHTp08b9FdWViZua4qlTNpi7IlMmmOtk4NYa9yA9cZu7LjNOWkLEVFLrGKWOSKyfYIgYMGCBdi1axeOHDmCoKAgg+0hISGQSCQ4ePAg4uPjAQCXLl1CSUmJwTWKr732GsrLy8Xp/VUqFWQyGYKDg5vcr6VM2tLVX5StdXIQa40bsN7YjRW3NeZORPbBqJMqEBF1VFJSEj755BNkZWXB09MTarUaarUav//+O4DbN3lOTExESkoKDh8+jIKCAjz99NNQKpUYO3YsACAqKgrBwcGYNWsW/vWvf2H//v1Yvnw5kpKSmix6iMg+5OXlYcqUKfD394eDgwN2795tsF0QBKxcuRJ+fn5wc3NDREQELl++bNCmoqICM2fOhEwmg7e3NxITE1FTU9OFWRCRqbAgIiKLsGnTJlRVVSEsLAx+fn7i32effSa2efvtt/HQQw8hPj4eEyZMgEKhwM6dO8XtTk5OyM7OhpOTE5RKJZ566inMnj27xVN4icj21dbWYvjw4cjIyGhy+7p16/Dee+9h8+bNOHXqFLp164bo6GjcvHlTbDNz5kwUFhZCpVKJp/XOmzevq1IgIhPiKXNEZBFaujZRz9XVFRkZGc1+qQGAwMDALp+ggIgsW2xsLGJjY5vcJggC3nnnHSxfvhyPPPIIAODjjz+Gr68vdu/ejenTp+OHH35ATk4Ozpw5g1GjRgEANmzYgMmTJ2P9+vWcJZfIyrEgIiIiIrtVXFwMtVptcI8zLy8vhIaGIj8/H9OnT0d+fj68vb3FYggAIiIi4OjoiFOnTuHRRx9tsu/OTutv61OVG/v2BZZKn5+tv56A+d67nd0fCyIiIiKyW/p7lDV1D7M773Gmn6hFz9nZGXK5vNl7nAGdn9bfWqdqby9j3b7A0tnL6wl0fa6dndafBRERERGRCXR2Wn9rm6q9vYx9+wJLJXUUsGaUzuZfT8B8793OTuvPgoiIiIjslv4eZWVlZfDz8xPXl5WVYcSIEWKb8vJyg8fV19ejoqKi2XucAZ2f1t9ap2pvL2PdvsDS2cvrCXR9rp3dF2eZIyIiIrsVFBQEhUKBgwcPiuuqq6tx6tQpg3ucVVZWoqCgQGxz6NAh6HQ6hIaGdnnMRGRcPEJERERENq2mpgZXrlwRl4uLi3Hu3DnI5XIEBARg4cKFWLt2Le6//34EBQVhxYoV8Pf3x9SpUwEAgwYNQkxMDObOnYvNmzdDq9UiOTkZ06dP5wxzRDaABRERERHZtLNnz2LixInisv66noSEBGRmZmLJkiWora3FvHnzUFlZifHjxyMnJweurq7iY7Zt24bk5GSEh4fD0dER8fHxeO+997o8FyIyPhZEREREZNPCwsJavNeZg4MDVq9e3eJNnOVyObKyskwRHhGZGQsiatK9r+w1an+X10QZtT8iIiIiImPgpApERERERGS3WBAREREREZHdYkFERERERER2i9cQERFZAGNft3f1jTij9kdERGSreISIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7BZnmSMiIiIiMrEhqfuhaXAwWn+cTdR4eISIiIiIiIjsFgsiIiIiIiKyWyyIiIiIiIjIbrEgIiIiIiIiu8WCiIiIiIiI7BYLIiIiIiIislssiIiIiIiIyG6xICIiIiIiIrvFgoiIiIiIiOwWCyIiIiIiIrJbRi+IUlNT4eDgYPA3cOBAcfvNmzeRlJSEHj16wMPDA/Hx8SgrKzN2GERERERERK0yyRGiwYMHo7S0VPw7duyYuG3RokXYs2cPduzYgaNHj+LatWuYNm2aKcIgIiIiIiJqkUkKImdnZygUCvGvZ8+eAICqqip89NFHeOuttzBp0iSEhIRgy5YtOHHiBE6ePGmKUIjISuTl5WHKlCnw9/eHg4MDdu/ebbBdEASsXLkSfn5+cHNzQ0REBC5fvmzQpqKiAjNnzoRMJoO3tzcSExNRU1PThVkQERGRtXE2RaeXL1+Gv78/XF1doVQqkZ6ejoCAABQUFECr1SIiIkJsO3DgQAQEBCA/Px9jx45tsj+NRgONRiMuV1dXAwC0Wi20Wm2zcei3SR0FY6RlFvrYrTkH4L+vRUuvl6WzhRyAlvMwZ261tbUYPnw4/vSnPzV51HjdunV47733sHXrVgQFBWHFihWIjo7GxYsX4erqCgCYOXMmSktLoVKpoNVq8fTTT2PevHnIysrq6nSIiIjIShi9IAoNDUVmZiYGDBiA0tJSpKWl4YEHHsCFCxegVqvh4uICb29vg8f4+vpCrVY322d6ejrS0tIarc/NzYW7u3urMa0ZpWt3HpbG2nNQqVQG/7VmtpAD0HQedXV1ZojkttjYWMTGxja5TRAEvPPOO1i+fDkeeeQRAMDHH38MX19f7N69G9OnT8cPP/yAnJwcnDlzBqNGjQIAbNiwAZMnT8b69evh7+/fZbkQERGR9TB6QXTnF5phw4YhNDQUgYGB+Pzzz+Hm5tahPpctW4aUlBRxubq6Gn369EFUVBRkMlmzj9NqtVCpVFhx1hEanUOH9m1uUkcBa0bprDoHAPjnnydBpVIhMjISEonE3OF0iP79ZM05AC3noT/6ammKi4uhVqsNji57eXkhNDQU+fn5mD59OvLz8+Ht7S0WQwAQEREBR0dHnDp1Co8++miTfdvqEejmYrfWI53WGjdgvbEbO25ry5+I7IdJTpm7k7e3N/r3748rV64gMjISt27dQmVlpcFRorKyMigUimb7kEqlkEqljdZLJJI2fTHV6BygabDeYgKw/hz0r1NbXzNLZgs5AE3nYal56Y8g+/r6Gqy/8+iyWq2Gj4+PwXZnZ2fI5XK7PAK9b9++Frdb65FOa40bsN7YjRW3OY9At0VqamqjsWDAgAH48ccfAdyeJfell17C9u3bodFoEB0djY0bNzYal4jI+pi8IKqpqUFRURFmzZqFkJAQSCQSHDx4EPHx8QCAS5cuoaSkBEql0tShEBE1YqtHoC+kRje53lqPdFpr3ID1xm7suC31CPSdBg8ejAMHDojLzs7//Zq0aNEi7N27Fzt27ICXlxeSk5Mxbdo0HD9+3ByhEpERGb0gevnllzFlyhQEBgbi2rVrWLVqFZycnDBjxgx4eXkhMTERKSkpkMvlkMlkWLBgAZRKZbMTKhAR6Y8gl5WVwc/PT1xfVlaGESNGiG3Ky8sNHldfX4+Kigq7PALdWuzWeqTTWuMGrDd2Y8VtDbnrZ8m9m36W3KysLEyaNAkAsGXLFgwaNAgnT57kdxgiK2f0guiXX37BjBkzcP36dfTq1Qvjx4/HyZMn0atXLwDA22+/DUdHR8THxxscciYiak5QUBAUCgUOHjwoFkDV1dU4deoU5s+fDwBQKpWorKxEQUEBQkJCAACHDh2CTqdDaGiouUInIitiabPk2vp1V5Z+LaaxmGrGYEt8f5jrvdvZ/Rm9INq+fXuL211dXZGRkYGMjAxj75qIrFhNTQ2uXLkiLhcXF+PcuXOQy+UICAjAwoULsXbtWtx///3itNv+/v6YOnUqAGDQoEGIiYnB3LlzsXnzZmi1WiQnJ2P69OmcYY6IWmWJs+Ra63Vn7WWp12Iam7HzbO1aUXPq6vduZ69RNPk1REREbXH27FlMnDhRXNZf15OQkIDMzEwsWbIEtbW1mDdvHiorKzF+/Hjk5OSI9yACgG3btiE5ORnh4eHikej33nuvy3MhIutjibPkWtt1Z+1l6ddiGoupZgxu7lpRczLXe7ez1yiyICIiixAWFgZBaP50AgcHB6xevRqrV69uto1cLudNWInIKCxhllxrve6svSz1WkxjM3aelvze6Or3bmf35WikOIiIiIhshn6WXD8/P4NZcvU4Sy6R7eARIiIiIrJ7nCWXyH6xICIiIiK7x1lyiewXCyIiIiKye5wll8h+8RoiIiIiIiKyWyyIiIiIiIjIbvGUOSIiG3TvK3ubXC91ErBuDDAkdX+bp3+9+kacMUMjIiKyKDxCREREREREdosFERERERER2S0WREREREREZLdYEBERERERkd1iQURERERERHaLBREREREREdktFkRERERERGS3WBAREREREZHdYkFERERERER2iwURERERERHZLRZERERERERkt1gQERERERGR3WJBREREREREdosFERERERER2a3/r717j4/p2vsH/sltJomYREJuJBGXiriURhOD4hCJSJVKW1QJdVAnFGmVnLoE1TjapzdPGkcfFedBc6pFUSURt6q4pdStUpSmLZOoPLmQmozM+v3hN/sYucgkk8zt83695iWz9po937W2WbO/e+9ZmwkRERERERHZLCZERERERERksxxNHQAREZm3tvO/Nur6rq2INer6iIiIGoIJERERERHVmbEOksgdBFaGG2VVRA3CS+aIiIiIiMhm8QwREREREZGFMeblzLZ+KTMTImoSXZP3YGX4/X/VlXYNWpetf2iJiMg2GOM7E+D3JtGj8JI5IiIiIiKyWUyIiIiIiIjIZjEhIiIiIiIim2XS3xClpqbinXfegUqlwuOPP45Vq1YhPJzzLxJRw3BssS38YTE1JY4vRNbHZAnRv//9byQmJmL16tWIiIjABx98gOjoaOTl5cHb29tUYRGRhePYYv7qk8Do7ldirB+ZE9UHxxci62SyhOi9997DlClTMGnSJADA6tWr8fXXX+PTTz/F/PnzTRUWWQBjHg0GeETY2nBsoYbg+EK14fhC1srWb7ZrkoSooqICubm5SEpKksrs7e0RGRmJnJycKvXVajXUarX0vKSkBABQVFQEjUZT4/toNBqUl5fDUWOPSq1lHlF01AqUl2stug2Aebfj1q1bdaqn+/9069YtODk5NXJU90WkZBt1fceSBtfajrKyMgCAEMKo79tUDB1bANsbX8z5s1gbS4371q1bRhs7GmM8qI2xxzyOL6YbX+r6PVdXjvfuGGc9Fvq5NpSttBP4T1t7vLkFaiO19VFjFWCE8UWYwO+//y4AiCNHjuiVz507V4SHh1epv3jxYgGADz74aKLHr7/+2lTDgVEZOrYIwfGFDz6a+sHxhQ8++GisR33HF4u4MWtSUhISExOl51qtFkVFRfDy8oKdXc3ZZ2lpKQICAvDrr79CoVA0RahGZw1tAKyjHdbQBqD2dgghUFZWBn9/fxNF1/RsbXxh3E3PUmM3dtwcX6x/fDEU22l9TNXWho4vJkmIWrZsCQcHBxQUFOiVFxQUwNfXt0p9uVwOuVyuV+bh4VHn91MoFBb/H9Aa2gBYRzusoQ1Aze1wd3c3QTTGYejYAtju+MK4m56lxm7MuDm+2Mb4Yii20/qYoq0NGV9Mch8imUyGsLAwZGf/53porVaL7OxsKJVKU4RERFaAYwsRNRaOL0TWy2SXzCUmJiI+Ph69evVCeHg4PvjgA9y5c0eauYWIqD44thBRY+H4QmSdTJYQjR49Gjdv3sSiRYugUqnQo0cP7N69Gz4+PkZ7D7lcjsWLF1c5XW1JrKENgHW0wxraAFhPO2rSFGMLYLn9yLibnqXGbqlxNyaOL8bFdlofS22rnRAWOv8lERERERFRA5nkN0RERERERETmgAkRERERERHZLCZERERERERks5gQERERERGRzbLahCg1NRVt27aFs7MzIiIicPz4cVOHVKuUlBQ8+eSTaN68Oby9vTFy5Ejk5eXp1Rk4cCDs7Oz0Hq+88oqJIq4qOTm5SnwhISHS8rt37yIhIQFeXl5wc3NDXFxclRvcmYO2bdtWaYednR0SEhIAmOd2OHToEIYPHw5/f3/Y2dlh27ZtesuFEFi0aBH8/Pzg4uKCyMhIXLp0Sa9OUVERxo0bB4VCAQ8PD0yePBm3b99uwlZYDnMbX+oyftTl85efn4/Y2Fi4urrC29sbc+fOxb1795qsHStWrICdnR1mz55t9nH//vvveOmll+Dl5QUXFxd069YNJ0+elJab62eusrISCxcuRHBwMFxcXNC+fXssW7YMD86vZK6x2wpzG18ayljjk6Wp73hmKYwxBpoVYYUyMjKETCYTn376qTh//ryYMmWK8PDwEAUFBaYOrUbR0dFi3bp14ty5c+L06dNi2LBhIjAwUNy+fVuqM2DAADFlyhRx48YN6VFSUmLCqPUtXrxYdOnSRS++mzdvSstfeeUVERAQILKzs8XJkydF7969RZ8+fUwYcfUKCwv12pCVlSUAiP379wshzHM77Nq1S7z55ptiy5YtAoDYunWr3vIVK1YId3d3sW3bNvHDDz+IZ555RgQHB4s///xTqjN06FDx+OOPi6NHj4pvv/1WdOjQQYwdO7aJW2L+zHF8qcv48ajP371790TXrl1FZGSkOHXqlNi1a5do2bKlSEpKapI2HD9+XLRt21Z0795dzJo1y6zjLioqEkFBQWLixIni2LFj4ueffxZ79uwRly9fluqY62du+fLlwsvLS+zcuVNcvXpVbN68Wbi5uYkPP/zQ7GO3BeY4vjSUMcYnS1Pf8cxSGGsMNCdWmRCFh4eLhIQE6XllZaXw9/cXKSkpJozKMIWFhQKAOHjwoFQ2YMAAvQ+WuVm8eLF4/PHHq11WXFwsnJycxObNm6WyH3/8UQAQOTk5TRRh/cyaNUu0b99eaLVaIYT5b4eHEyKtVit8fX3FO++8I5UVFxcLuVwuPvvsMyGEEBcuXBAAxIkTJ6Q633zzjbCzsxO///57k8VuCSxhfHl4/KjL52/Xrl3C3t5eqFQqqU5aWppQKBRCrVY3arxlZWWiY8eOIisrS+/zZa5xz5s3T/Tr16/G5eb8mYuNjRUvv/yyXtmoUaPEuHHjzD52W2AJ40tD1Wd8siQNGc8shTHGQHNjdZfMVVRUIDc3F5GRkVKZvb09IiMjkZOTY8LIDFNSUgIA8PT01CvfuHEjWrZsia5duyIpKQnl5eWmCK9Gly5dgr+/P9q1a4dx48YhPz8fAJCbmwuNRqO3XUJCQhAYGGjW26WiogIbNmzAyy+/DDs7O6nc3LfDg65evQqVSqXX9+7u7oiIiJD6PicnBx4eHujVq5dUJzIyEvb29jh27FiTx2yuLGV8eXj8qMvnLycnB926ddO7wWR0dDRKS0tx/vz5Ro03ISEBsbGxevGZc9zbt29Hr1698Pzzz8Pb2xs9e/bEJ598Ii03589cnz59kJ2djZ9++gkA8MMPP+Dw4cOIiYkx+9itnaWMLw1Vn/HJkjRkPLMUxhgDzY2jqQMwtj/++AOVlZVV7hrt4+ODixcvmigqw2i1WsyePRt9+/ZF165dpfIXX3wRQUFB8Pf3x5kzZzBv3jzk5eVhy5YtJoz2PyIiIpCeno5OnTrhxo0bWLJkCZ566imcO3cOKpUKMpkMHh4eeq/x8fGBSqUyTcB1sG3bNhQXF2PixIlSmblvh4fp+re6z4RumUqlgre3t95yR0dHeHp6mvX2aWqWML5UN37U5fOnUqmqbZduWWPJyMjA999/jxMnTlRZZq5x//zzz0hLS0NiYiL+/ve/48SJE3j11Vchk8kQHx9v1p+5+fPno7S0FCEhIXBwcEBlZSWWL1+OcePGSXGZa+zWzhLGl4aq7/hkKRo6nlkKY4yB5sbqEiJrkJCQgHPnzuHw4cN65VOnTpX+7tatG/z8/DB48GBcuXIF7du3b+owq9AdYQSA7t27IyIiAkFBQfj888/h4uJiwsjqb+3atYiJiYG/v79UZu7bgWxbTeOHOfr1118xa9YsZGVlwdnZ2dTh1JlWq0WvXr3w9ttvAwB69uyJc+fOYfXq1YiPjzdxdLX7/PPPsXHjRmzatAldunTB6dOnMXv2bPj7+5t97GT5LGl8MpSljmf1YcljYE2s7pK5li1bwsHBocqsHQUFBfD19TVRVHU3Y8YM7Ny5E/v370ebNm1qrRsREQEAuHz5clOEZjAPDw889thjuHz5Mnx9fVFRUYHi4mK9Oua8XX755Rfs3bsXf/3rX2utZ+7bQde/tX0mfH19UVhYqLf83r17KCoqMtvtYwrmPr7UNH7U5fPn6+tbbbt0yxpDbm4uCgsL8cQTT8DR0RGOjo44ePAgPvroIzg6OsLHx8cs4/bz80NoaKheWefOnaVLhM35Mzd37lzMnz8fY8aMQbdu3TB+/HjMmTMHKSkpZh+7tTP38aWhGjI+WQJjjGeWwhhjoLmxuoRIJpMhLCwM2dnZUplWq0V2djaUSqUJI6udEAIzZszA1q1bsW/fPgQHBz/yNadPnwZw/z+mObp9+zauXLkCPz8/hIWFwcnJSW+75OXlIT8/32y3y7p16+Dt7Y3Y2Nha65n7dggODoavr69e35eWluLYsWNS3yuVShQXFyM3N1eqs2/fPmi1WinhI/MdXx41ftTl86dUKnH27Fm9Hd2srCwoFIoqX3zGMnjwYJw9exanT5+WHr169cK4ceOkv80x7r59+1aZNvinn35CUFAQAPP+zJWXl8PeXv+r38HBAVqt1uxjt3bmOr40lDHGJ0tgjPHMUhhjDDQ7Jp7UoVFkZGQIuVwu0tPTxYULF8TUqVOFh4eH3ixE5mb69OnC3d1dHDhwQG865/LyciGEEJcvXxZLly4VJ0+eFFevXhVfffWVaNeunejfv7+JI/+P1157TRw4cEBcvXpVfPfddyIyMlK0bNlSFBYWCiHuTzcZGBgo9u3bJ06ePCmUSqVQKpUmjrp6lZWVIjAwUMybN0+v3Fy3Q1lZmTh16pQ4deqUACDee+89cerUKfHLL78IIe5Pf+nh4SG++uorcebMGTFixIhqp9Ht2bOnOHbsmDh8+LDo2LEjp9GthjmOL48aP4R49OdPN311VFSUOH36tNi9e7do1apVk027rfPwLI7mGPfx48eFo6OjWL58ubh06ZLYuHGjcHV1FRs2bJDqmOtnLj4+XrRu3VqadnvLli2iZcuW4o033jD72G2BOY4vDWWM8clSGTqeWQpjjYHmxCoTIiGEWLVqlQgMDBQymUyEh4eLo0ePmjqkWgGo9rFu3TohhBD5+fmif//+wtPTU8jlctGhQwcxd+5ck9//5kGjR48Wfn5+QiaTidatW4vRo0frzUn/559/ir/97W+iRYsWwtXVVTz77LPixo0bJoy4Znv27BEARF5enl65uW6H/fv3V/v/Jz4+XghxfwrMhQsXCh8fHyGXy8XgwYOrtO3WrVti7Nixws3NTSgUCjFp0iRRVlZmgtaYP3MbXx41fghRt8/ftWvXRExMjHBxcREtW7YUr732mtBoNE3alod3IMw17h07doiuXbsKuVwuQkJCxJo1a/SWm+tnrrS0VMyaNUsEBgYKZ2dn0a5dO/Hmm2/qTVFurrHbCnMbXxrKWOOTJarPeGYpjDEGmhM7IR64PTUREREREZENsbrfEBEREREREdUVEyIiIiIiIrJZTIiIiIiIiMhmMSEiIiIiIiKbxYSIiIiIiIhsFhMiIiIiIiKyWUyIiIiIiIjIZjEhIiIiIiIim8WEiIiIiIiIbBYTIiIiIiIisllMiIiIiIiIyGYxISIiIiIiIpvFhIiIiIiIiGwWEyIiIiIiIrJZTIiIiIiIiMhmMSEiIiIiIiKbxYSIiIiIiIhsFhMiIiIiIiKyWUyIiIiIiIjIZjEhIiIiIiIim2VTCVFycjLs7Ozq9dq2bdvi6aefNnJE1qNt27aYOHGi9PzAgQOws7PDgQMHTBaTNXu4v4mIiIiofiw6IUpPT4ednZ30cHZ2hr+/P6Kjo/HRRx+hrKzM1CHWqLy8HMnJyY2eMOiSQN3D1dUVoaGhWLBgAUpLSxv1vS3BtWvX9PrnwUfv3r1NGtuRI0eQnJyM4uJik8ZB1NQ+/vhj2NnZISIiwtShEJEJnD9/Hi+99BJat24NuVwOf39/jBs3DufPn6/3Ot9++21s27bNeEGSVXE0dQDGsHTpUgQHB0Oj0UClUuHAgQOYPXs23nvvPWzfvh3du3cHACxYsADz5883cbT3lZeXY8mSJQCAgQMHNvr7paWlwc3NDbdv30ZmZiaWL1+Offv24bvvvqv3WbPa9O/fH3/++SdkMpnR190Yxo4di2HDhumVtWrVykTR3HfkyBEsWbIEEydOhIeHh96yvLw82Ntb9PEMohpt3LgRbdu2xfHjx3H58mV06NDB1CERURPZsmULxo4dC09PT0yePBnBwcG4du0a1q5diy+++AIZGRl49tlnDV7v22+/jeeeew4jR440ftBk8awiIYqJiUGvXr2k50lJSdi3bx+efvppPPPMM/jxxx/h4uICR0dHODpaRZMN9txzz6Fly5YAgFdeeQVxcXHYsmULjh49CqVSafT3s7e3h7Ozs9HWd/fuXchkskZLAp544gm89NJLjbLuxiCXy00dAlGjuHr1Ko4cOYItW7Zg2rRp2LhxIxYvXmzqsIioCVy5cgXjx49Hu3btcOjQIb0Dk7NmzcJTTz2F8ePH48yZM2jXrp0JIyVrY7WHmAcNGoSFCxfil19+wYYNGwBU/xuidevWYdCgQfD29oZcLkdoaCjS0tJqXG9mZiZ69OgBZ2dnhIaGYsuWLVXqFBcXY/bs2QgICIBcLkeHDh3wj3/8A1qtFsD9y7R0H/IlS5ZIl2glJydL67h48SKee+45eHp6wtnZGb169cL27dv13kej0WDJkiXo2LEjnJ2d4eXlhX79+iErK6tO/QPc3/kAAK1Wiw8++ABdunSBs7MzfHx8MG3aNPzf//2f3uuEEHjrrbfQpk0buLq64i9/+Uu1p7Br+g1Ramoq2rVrBxcXF4SHh+Pbb7/FwIED9c6S6V6bkZGBBQsWoHXr1nB1dZUu8Tt27BiGDh0Kd3d3uLq6YsCAAfjuu++qxPD777/j5Zdfho+PD+RyObp06YJPP/30kX3zsIfj05k4cSLatm0rPdddfvfuu+9izZo1aN++PeRyOZ588kmcOHGiyusvXryIF154Aa1atYKLiws6deqEN998E8D9/6tz584FAAQHB0v/R65duwag+t8Q/fzzz3j++efh6ekJV1dX9O7dG19//bVeHV3ffv7551i+fDnatGkDZ2dnDB48GJcvXza4b4iMbePGjWjRogViY2Px3HPPYePGjVXq3Lp1C+PHj4dCoYCHhwfi4+Pxww8/wM7ODunp6Xp16zKWEpF5eOedd1BeXo41a9ZUuUqjZcuW+Oc//4k7d+5g5cqVAKp+D+s8vL9nZ2eHO3fuYP369dL36YPfob///jsmT54Mf39/yOVyBAcHY/r06aioqJDqGPodu2TJErRu3RrNmzfHc889h5KSEqjVasyePRve3t5wc3PDpEmToFarq8S/YcMGhIWFwcXFBZ6enhgzZgx+/fXX+nQp1ZFVny4ZP348/v73vyMzMxNTpkyptk5aWhq6dOmCZ555Bo6OjtixYwf+9re/QavVIiEhQa/upUuXMHr0aLzyyiuIj4/HunXr8Pzzz2P37t0YMmQIgPuXwg0YMAC///47pk2bhsDAQBw5cgRJSUm4ceMGPvjgA7Rq1QppaWmYPn06nn32WYwaNQoApEv7zp8/j759+6J169aYP38+mjVrhs8//xwjR47El19+KZ0qTk5ORkpKCv76178iPDwcpaWlOHnyJL7//nspnppcuXIFAODl5QUAmDZtGtLT0zFp0iS8+uqruHr1Kv77v/8bp06dwnfffQcnJycAwKJFi/DWW29h2LBhGDZsGL7//ntERUXpDRo1SUtLw4wZM/DUU09hzpw5uHbtGkaOHIkWLVqgTZs2VeovW7YMMpkMr7/+OtRqNWQyGfbt24eYmBiEhYVh8eLFsLe3l5Lab7/9FuHh4QCAgoIC9O7dG3Z2dpgxYwZatWqFb775BpMnT0ZpaSlmz56t917l5eX4448/9Mrc3d2ldhti06ZNKCsrw7Rp02BnZ4eVK1di1KhR+Pnnn6X1nTlzBk899RScnJwwdepUtG3bFleuXMGOHTuwfPlyjBo1Cj/99BM+++wzvP/++9LZvZou4ysoKECfPn1QXl6OV199FV5eXli/fj2eeeYZfPHFF1UuL1ixYgXs7e3x+uuvo6SkBCtXrsS4ceNw7Ngxg9tLZEwbN27EqFGjIJPJMHbsWKSlpeHEiRN48sknAdw/eDN8+HAcP34c06dPR0hICL766ivEx8dXWVddx1IiMg87duxA27Zt8dRTT1W7vH///mjbtm2VRORR/vd//1faV5o6dSoAoH379gCA69evIzw8HMXFxZg6dSpCQkLw+++/44svvkB5eTlkMpnB37EpKSlwcXHB/PnzcfnyZaxatQpOTk6wt7fH//3f/yE5ORlHjx5Feno6goODsWjRIum1y5cvx8KFC/HCCy/gr3/9K27evIlVq1ahf//+OHXqVJVL6MlIhAVbt26dACBOnDhRYx13d3fRs2dPIYQQixcvFg83uby8vMproqOjRbt27fTKgoKCBADx5ZdfSmUlJSXCz89PWr8QQixbtkw0a9ZM/PTTT3qvnz9/vnBwcBD5+flCCCFu3rwpAIjFixdXef/BgweLbt26ibt370plWq1W9OnTR3Ts2FEqe/zxx0VsbGyNbX+wzXl5eeLmzZvi6tWr4p///KeQy+XCx8dH3LlzR3z77bcCgNi4caPea3fv3q1XXlhYKGQymYiNjRVarVaq9/e//10AEPHx8VLZ/v37BQCxf/9+IYQQarVaeHl5iSeffFJoNBqpXnp6ugAgBgwYUOW17dq109s+Wq1WdOzYUURHR+u9f3l5uQgODhZDhgyRyiZPniz8/PzEH3/8odemMWPGCHd3d2m9V69eFQCqfehiHzBggF58OvHx8SIoKEh6rluXl5eXKCoqksq/+uorAUDs2LFDKuvfv79o3ry5+OWXX/TW+WC73nnnHQFAXL16tcp7BwUF6fX37NmzBQDx7bffSmVlZWUiODhYtG3bVlRWVgoh/tO3nTt3Fmq1Wqr74YcfCgDi7NmzVd6LqKmcPHlSABBZWVlCiPufhzZt2ohZs2ZJdb788ksBQHzwwQdSWWVlpRg0aJAAINatWyeV13UsJSLTKy4uFgDEiBEjaq33zDPPCACitLS0yvewTnX7e82aNdP73tSZMGGCsLe3r3ZfUvedbOh3bNeuXUVFRYVUd+zYscLOzk7ExMTorV+pVOrFf+3aNeHg4CCWL1+uV+/s2bPC0dGxSjkZj9VeMqfj5uZW62xzLi4u0t8lJSX4448/MGDAAPz8888oKSnRq+vv7693FEChUGDChAk4deoUVCoVAGDz5s146qmn0KJFC/zxxx/SIzIyEpWVlTh06FCt8RYVFWHfvn144YUXUFZWJr3+1q1biI6OxqVLl/D7778DADw8PHD+/HlcunTpkf3QqVMntGrVCsHBwZg2bRo6dOiAr7/+Gq6urti8eTPc3d0xZMgQvZjDwsLg5uaG/fv3AwD27t2LiooKzJw5U+9U9MNnW6pz8uRJ3Lp1C1OmTNH7Hde4cePQokWLal8THx+vt31Onz6NS5cu4cUXX8StW7ekOO/cuYPBgwfj0KFD0Gq1EELgyy+/xPDhwyGE0GtTdHQ0SkpK8P333+u919SpU5GVlaX3ePzxxx/ZruqMHj1ar026I10///wzAODmzZs4dOgQXn75ZQQGBuq9tr4TXOzatQvh4eHo16+fVObm5oapU6fi2rVruHDhgl79SZMm6U148XCMRKawceNG+Pj44C9/+QuA+5+H0aNHIyMjA5WVlQCA3bt3w8nJSe+sv729fZUz+oaMpURkerp9tebNm9daT7fcGDPlarVabNu2DcOHD9f7LbqO7jvZ0O/YCRMm6F1hEhERASEEXn75Zb16ERER+PXXX3Hv3j0A9yeU0Gq1eOGFF/T2XXx9fdGxY0dpf4yMz6ovmQOA27dvw9vbu8bl3333HRYvXoycnByUl5frLSspKYG7u7v0vEOHDlV2WB977DEA938/4uvri0uXLuHMmTM1XtpUWFhYa7yXL1+GEAILFy7EwoULa1xH69atsXTpUowYMQKPPfYYunbtiqFDh2L8+PHSpXcP+vLLL6FQKODk5IQ2bdpIp4qB+5cClpSU1NhPuph/+eUXAEDHjh31lrdq1arGpEZH99qHZ4tydHSs9vpf4P5vZx6kS/yquzRGp6SkBBqNBsXFxVizZg3WrFlTbb2Ht0PHjh0RGRlZaxvq6uEkR9c3ut9j6ZKOrl27GuX9gPv9W90UxZ07d5aWP/h+j4qRqKlVVlYiIyMDf/nLX6TfNgL3dxj+67/+C9nZ2YiKisIvv/wCPz8/uLq66r3+4bHFkLGUiExPl+g86pYpdU2c6uLmzZsoLS195PdxQ79jdfuSAQEBVcq1Wi1KSkrg5eWFS5cuQQhRZT9Lpz6X8VPdWHVC9Ntvv6GkpKTGKVuvXLmCwYMHIyQkBO+99x4CAgIgk8mwa9cuvP/++9IkCIbQarUYMmQI3njjjWqX6xKo2l4PAK+//jqio6OrraNrT//+/XHlyhV89dVXyMzMxP/8z//g/fffx+rVq/HXv/5V7zX9+/eXfodS3Xt6e3tX++NlwHTTTz94dgj4T9+888476NGjR7WvcXNzw61btwAAL730Uo3JU3VJY03s7OwghKhSrjti/TAHB4dqy6tbh6lYQoxkW/bt24cbN24gIyMDGRkZVZZv3LgRUVFRdV6fIWMpEZmeu7s7/Pz8cObMmVrrnTlzBq1bt4ZCoajxqoqavp+bSk3fsY/67tVqtbCzs8M333xTbV03NzfjBUl6rDoh+t///V8AqPHLcMeOHVCr1di+fbteNl/TKUndEccHP4A//fQTAEhnOdq3b4/bt28/8mxDTR9i3TSSTk5OdTpj4enpiUmTJmHSpEm4ffs2+vfvj+Tk5CoJUW3at2+PvXv3om/fvlWSkAcFBQUBuH+m5sHpLm/evPnIMwu6116+fFm6HAYA7t27h2vXrtUpQdGd1VIoFLX2TatWrdC8eXNUVlYa5axPixYtqr2UTHfWy1C6vjt37lyt9Qy5fC4oKAh5eXlVyi9evCgtJzJnGzduhLe3N1JTU6ss27JlC7Zu3YrVq1cjKCgI+/fvR3l5ud5ZoodnSTR0LCUi03v66afxySef4PDhw3qXp+l8++23uHbtGqZNmwbg/vdzdTcvr+77ubrv1FatWkGhUDzy+7ipvmPbt28PIQSCg4MfeQCdjMtqf0O0b98+LFu2DMHBwRg3bly1dXTZ94NHxUtKSrBu3bpq61+/fh1bt26VnpeWluJf//oXevToAV9fXwDACy+8gJycHOzZs6fK64uLi6XrRHVf5A9/kL29vTFw4ED885//xI0bN6qs4+bNm9LfujMhOm5ubujQoUO1UzjW5oUXXkBlZSWWLVtWZdm9e/ekGCMjI+Hk5IRVq1bp9dkHH3zwyPfo1asXvLy88Mknn0h9ANzfCarrZVphYWFo37493n33Xdy+fbvKcl3fODg4IC4uDl9++WW1g9yDfVgX7du3x8WLF/Ve98MPP1Q71XddtGrVCv3798enn36K/Px8vWUP9muzZs0AVP0/Up1hw4bh+PHjyMnJkcru3LmDNWvWoG3btggNDa1XrERN4c8//8SWLVvw9NNP47nnnqvymDFjBsrKyrB9+3ZER0dDo9Hgk08+kV6v1WqrJFKGjKVEZB7mzp0LFxcXTJs2rco+TlFREV555RW4urpKt6Vo3749SkpK9M4q3bhxQ29fTadZs2ZVvk/t7e0xcuRI7NixAydPnqzyGt13clN9x44aNQoODg5YsmRJlSs2hBBV+oSMxyrOEH3zzTe4ePEi7t27h4KCAuzbtw9ZWVkICgrC9u3ba7xBaFRUFGQyGYYPH45p06bh9u3b+OSTT+Dt7V3tF+hjjz2GyZMn48SJE/Dx8cGnn36KgoICvQRq7ty52L59O55++mlMnDgRYWFhuHPnDs6ePYsvvvgC165dQ8uWLeHi4oLQ0FD8+9//xmOPPQZPT0907doVXbt2RWpqKvr164du3bphypQpaNeuHQoKCpCTk4PffvsNP/zwAwAgNDQUAwcORFhYGDw9PXHy5El88cUXmDFjhkH9N2DAAEybNg0pKSk4ffo0oqKi4OTkhEuXLmHz5s348MMP8dxzz6FVq1Z4/fXXkZKSgqeffhrDhg3DqVOn8M0339R4OZ6OTCZDcnIyZs6ciUGDBuGFF17AtWvXkJ6ejvbt29fpbIi9vT3+53/+BzExMejSpQsmTZqE1q1b4/fff8f+/fuhUCiwY8cOAPenld6/fz8iIiIwZcoUhIaGoqioCN9//z327t2LoqKiOvfPyy+/jPfeew/R0dGYPHkyCgsLsXr1anTp0qXeP+r86KOP0K9fPzzxxBOYOnWqdCfur7/+GqdPnwZwPwEEgDfffBNjxoyBk5MThg8fLiVKD5o/fz4+++wzxMTE4NVXX4WnpyfWr1+Pq1ev4ssvv2y0G9oSGcP27dtRVlaGZ555ptrlvXv3RqtWrbBx40Zs3boV4eHheO2113D58mWEhIRg+/bt0mf6wbGkrmMpEZmHjh07Yv369Rg3bhy6deuGyZMnS9+Pa9euxR9//IHPPvtMumJkzJgxmDdvHp599lm8+uqrKC8vR1paGh577LEqkyeFhYVh7969eO+99+Dv74/g4GBERETg7bffRmZmJgYMGICpU6eic+fOuHHjBjZv3ozDhw/Dw8Ojyb5j27dvj7feegtJSUnSrUmaN2+Oq1evYuvWrZg6dSpef/11o7wXPaSpp7UzJt2027qHTCYTvr6+YsiQIeLDDz8UpaWlevWrm4Zx+/btonv37sLZ2Vm0bdtW/OMf/xCffvpplemOg4KCRGxsrNizZ4/o3r27kMvlIiQkRGzevLlKXGVlZSIpKUl06NBByGQy0bJlS9GnTx/x7rvv6k3DeOTIEREWFiZkMlmVKbivXLkiJkyYIHx9fYWTk5No3bq1ePrpp8UXX3wh1XnrrbdEeHi48PDwEC4uLiIkJEQsX75c7z10bb558+Yj+3PNmjUiLCxMuLi4iObNm4tu3bqJN954Q1y/fl2qU1lZKZYsWSL8/PyEi4uLGDhwoDh37lyVaaAfnnZb56OPPhJBQUFCLpeL8PBw8d1334mwsDAxdOjQKq+trm+FEOLUqVNi1KhRwsvLS8jlchEUFCReeOEFkZ2drVevoKBAJCQkiICAAOHk5CR8fX3F4MGDxZo1a6Q6uqmy33nnnVr7ZsOGDaJdu3ZCJpOJHj16iD179tQ47XZ163p4+wohxLlz58Szzz4rPDw8hLOzs+jUqZNYuHChXp1ly5aJ1q1bC3t7e73/kw/3txD3/88899xz0vrCw8PFzp079erU1Le62B+cspioqQwfPlw4OzuLO3fu1Fhn4sSJwsnJSfzxxx/i5s2b4sUXXxTNmzcX7u7uYuLEieK7774TAERGRobe6+oylhKReTlz5owYO3as8PPzk76/x44dW+2tITIzM0XXrl2FTCYTnTp1Ehs2bKh2f+/ixYuif//+wsXFpcqtQn755RcxYcIE0apVKyGXy0W7du1EQkKC3u0pGvIdW9NtYmraR/vyyy9Fv379RLNmzUSzZs1ESEiISEhIEHl5eQb1I9WdnRD8FTWZjlarRatWrTBq1Ci9S2CIiAyxbds2PPvsszh8+DD69u1r6nCIiMiC8DoaajJ3796tck3sv/71LxQVFWHgwIGmCYqILM6ff/6p97yyshKrVq2CQqHAE088YaKoiIjIUlnFb4jIMhw9ehRz5szB888/Dy8vL3z//fdYu3Ytunbtiueff97U4RGRhZg5cyb+/PNPKJVKqNVqbNmyBUeOHMHbb79d60yZRERE1WFCRE2mbdu2CAgIwEcffYSioiJ4enpiwoQJWLFiBWQymanDIyILMWjQIPzXf/0Xdu7cibt376JDhw5YtWqVwRPKEBERAQB/Q0RERERERDaLvyEiIiIiIiKbxYSIiIiIiIhslkX+hkir1eL69eto3rx5nW7oSUR1I4RAWVkZ/P39bfZmrhxfiBoHxxeOL0SNpaHji0UmRNevX0dAQICpwyCyWr/++ivatGlj6jBMguMLUePi+MLxhaix1Hd8sciEqHnz5gDuN9rFxQWZmZmIioqCk5OTiSOzfBqNhv1pJJbYl6WlpQgICJA+Y7bowfFFoVBI5Za4PRsD+4F9ANSvDzi+1Dy+PMwa/o9ZehssPX7AttrQ0PHFIhMi3WlmhUIBFxcXuLq6QqFQWOzGNicajYb9aSSW3Je2fCnHg+PLwwmRpW5PY2I/sA+AhvUBx5eq48vDrOH/mKW3wdLjB2yzDfUdX2zzIl4iIiIiIiIwISIiIiIiIhvGhIiIiIiIiGwWEyIiMgtpaWno3r27dG29UqnEN998Iy2/e/cuEhIS4OXlBTc3N8TFxaGgoEBvHfn5+YiNjYWrqyu8vb0xd+5c3Lt3r6mbQkRmJjk5GXZ2dnqPkJAQaTnHFyLbxoSIiMxCmzZtsGLFCuTm5uLkyZMYNGgQRowYgfPnzwMA5syZgx07dmDz5s04ePAgrl+/jlGjRkmvr6ysRGxsLCoqKnDkyBGsX78e6enpWLRokamaRERmpEuXLrhx44b0OHz4sLSM4wuRbbPIWeaIyPoMHz5c7/ny5cuRlpaGo0ePok2bNli7di02bdqEQYMGAQDWrVuHzp074+jRo+jduzcyMzNx4cIF7N27Fz4+PujRoweWLVuGefPmITk5GTKZzBTNIiIz4ejoCF9f3yrlJSUlHF+IbBzPEBGR2amsrERGRgbu3LkDpVKJ3NxcaDQaREZGSnVCQkIQGBiInJwcAEBOTg66desGHx8fqU50dDRKS0uls0xEZLsuXboEf39/tGvXDuPGjUN+fj4AcHwhIp4hIiLzcfbsWSiVSty9exdubm7YunUrQkNDcfr0achkMnh4eOjV9/HxgUqlAgCoVCq9nRXdct2ymqjVaqjVaul5aWkpgPv3PtBoNFK57u8Hy2wR+4F9ANSvD0zZXxEREUhPT0enTp1w48YNLFmyBE899RTOnTsHlUpl8vHlYdbwf8zS22Dp8QO21YaGttHqE6K287822rqurYg12rqIqKpOnTrh9OnTKCkpwRdffIH4+HgcPHiwUd8zJSUFS5YsqVKemZkJV1fXKuVZWVmNGo+lYD+wDwDD+qC8vLwRI6ldTEyM9Hf37t0RERGBoKAgfP7553BxcWm09zV0fHmYNfwfs/Q2WHr8gG20oaHji9UnRERkOWQyGTp06AAACAsLw4kTJ/Dhhx9i9OjRqKioQHFxsd5R3IKCAuk3Ab6+vjh+/Lje+nSzRFX3uwGdpKQkJCYmSs9LS0sREBCAqKgovTvJazQaZGVlYciQIdLdsrsm72lYgx9wLjnaaOtqTNX1g61hH9SvD3RnR8yBh4cHHnvsMVy+fBlDhgwx+fjyMF3/LjxpD7XWrj5N1GOK8cXSPyeWHj9gW21o6PjChIiIzJZWq4VarUZYWBicnJyQnZ2NuLg4AEBeXh7y8/OhVCoBAEqlEsuXL0dhYSG8vb0B3D+ipFAoEBoaWuN7yOVyyOXyKuVOTk7VDr4PlqsrG76j8uB6LUlN/WNL2AeG9YE59dXt27dx5coVjB8/3qzGl4eptXZGGWdM2feW/jmx9PgB22hDQ9vHhIiIzEJSUhJiYmIQGBiIsrIybNq0CQcOHMCePXvg7u6OyZMnIzExEZ6enlAoFJg5cyaUSiV69+4NAIiKikJoaCjGjx+PlStXQqVSYcGCBUhISKh2h4SIbMfrr7+O4cOHIygoCNevX8fixYvh4OCAsWPHcnwhIiZERGQeCgsLMWHCBNy4cQPu7u7o3r079uzZgyFDhgAA3n//fdjb2yMuLg5qtRrR0dH4+OOPpdc7ODhg586dmD59OpRKJZo1a4b4+HgsXbrUVE0iIjPx22+/YezYsbh16xZatWqFfv364ejRo2jVqhUAji9Eto4JERGZhbVr19a63NnZGampqUhNTa2xTlBQEHbt2mXs0IjIwmVkZNS6nOMLkW3jfYiIiIiIiMhmGZQQpaWloXv37lAoFFAoFFAqlfjmm2+k5Xfv3kVCQgK8vLzg5uaGuLg4aRYWnfz8fMTGxsLV1RXe3t6YO3cu7t27Z5zWEBERERERGcCghKhNmzZYsWIFcnNzcfLkSQwaNAgjRoyQ7tI8Z84c7NixA5s3b8bBgwdx/fp1jBo1Snp9ZWUlYmNjUVFRgSNHjmD9+vVIT0/HokWLjNsqIiIiIiKiOjDoN0TDhw/Xe758+XKkpaXh6NGjaNOmDdauXYtNmzZh0KBBAIB169ahc+fOOHr0KHr37o3MzExcuHABe/fuhY+PD3r06IFly5Zh3rx5SE5OhkwmM17LiIiIiIiIHqHekypUVlZi8+bNuHPnDpRKJXJzc6HRaBAZGSnVCQkJQWBgIHJyctC7d2/k5OSgW7du8PHxkepER0dj+vTpOH/+PHr27Fnte6nVaqjVaum57uZLGo0Gjo6O0t/VkTuI+jaxiprew5ro2mgLbW1sltiXlhQrERERkTEYnBCdPXsWSqUSd+/ehZubG7Zu3YrQ0FCcPn0aMplM7y7PAODj4wOVSgUAUKlUesmQbrluWU1SUlKwZMmSKuWZmZlwdXUFcP8GadVZGV7npj2SLc0uU1N/kuEsqS/Ly8tNHQIRERFRkzI4IerUqRNOnz6NkpISfPHFF4iPj8fBgwcbIzZJUlISEhMTpeelpaUICAhAVFQUXFxckJWVhSFDhlR7l9quyXuMFse55GijrctcaTSaWvuT6s4S+1J39pWIiIjIVhicEMlkMnTo0AEAEBYWhhMnTuDDDz/E6NGjUVFRgeLiYr2zRAUFBfD19QUA+Pr64vjx43rr081Cp6tTHblcXu2doJ2cnKQdzQf/fpC60s6wBtbCUnZqjaGm/iTDWVJfWkqcRERERMbS4PsQabVaqNVqhIWFwcnJCdnZ2dKyvLw85OfnQ6lUAgCUSiXOnj2LwsJCqU5WVhYUCgVCQ0MbGgoREREREZFBDDpDlJSUhJiYGAQGBqKsrAybNm3CgQMHsGfPHri7u2Py5MlITEyEp6cnFAoFZs6cCaVSid69ewMAoqKiEBoaivHjx2PlypVQqVRYsGABEhISqj0DRERERERE1JgMSogKCwsxYcIE3LhxA+7u7ujevTv27NmDIUOGAADef/992NvbIy4uDmq1GtHR0fj444+l1zs4OGDnzp2YPn06lEolmjVrhvj4eCxdutS4rSIiIiIiIqoDgxKitWvX1rrc2dkZqampSE1NrbFOUFCQTc3WRkRERERE5qvBvyEiIiIiIiKyVEyIiIiIiIjIZjEhIiIiIiIim8WEiIiIiIiIbBYTIiIiIiIisllMiIiIiIiIyGYxISIiIiIiIpvFhIiIiIiIiGwWEyIiIiIiIrJZTIiIiIiIiMhmMSEiIiIiIiKbxYSIiMxCSkoKnnzySTRv3hze3t4YOXIk8vLy9OoMHDgQdnZ2eo9XXnlFr05+fj5iY2Ph6uoKb29vzJ07F/fu3WvKphAREZEFcTR1AEREAHDw4EEkJCTgySefxL179/D3v/8dUVFRuHDhApo1aybVmzJlCpYuXSo9d3V1lf6urKxEbGwsfH19ceTIEdy4cQMTJkyAk5MT3n777SZtDxEREVkGJkREZBZ2796t9zw9PR3e3t7Izc1F//79pXJXV1f4+vpWu47MzExcuHABe/fuhY+PD3r06IFly5Zh3rx5SE5Ohkwma9Q2EBERkeXhJXNEZJZKSkoAAJ6ennrlGzduRMuWLdG1a1ckJSWhvLxcWpaTk4Nu3brBx8dHKouOjkZpaSnOnz/fNIETERGRReEZIiIyO1qtFrNnz0bfvn3RtWtXqfzFF19EUFAQ/P39cebMGcybNw95eXnYsmULAEClUuklQwCk5yqVqtr3UqvVUKvV0vPS0lIAgEajgUajkcp1fz9YJncQDWmmngfXa86q6wdbwz6oXx/Ycn8RkXljQkREZichIQHnzp3D4cOH9cqnTp0q/d2tWzf4+flh8ODBuHLlCtq3b1+v90pJScGSJUuqlGdmZur9PkknKytL+ntleL3eslq7du0y3sqawIP9YKvYB4b1wYNnc4mIzAkTIiIyKzNmzMDOnTtx6NAhtGnTpta6ERERAIDLly+jffv28PX1xfHjx/XqFBQUAECNvztKSkpCYmKi9Ly0tBQBAQGIioqCQqGQyjUaDbKysjBkyBA4OTkBALom7zG8gTU4lxxttHU1pur6wdawD+rXB7qzr0RE5oYJERGZBSEEZs6cia1bt+LAgQMIDg5+5GtOnz4NAPDz8wMAKJVKLF++HIWFhfD29gZw/wi2QqFAaGhoteuQy+WQy+VVyp2cnKrd0XuwXF1pV6e21YWl7VjX1D+2hH1gWB+YU1+tWLECSUlJmDVrFj744AMAwN27d/Haa68hIyMDarUa0dHR+Pjjj/Uuw83Pz8f06dOxf/9+uLm5IT4+HikpKXB05O4UkSXjpApEZBYSEhKwYcMGbNq0Cc2bN4dKpYJKpcKff/4JALhy5QqWLVuG3NxcXLt2Ddu3b8eECRPQv39/dO/eHQAQFRWF0NBQjB8/Hj/88AP27NmDBQsWICEhodqkh4hsz4kTJ/DPf/5TGjd05syZgx07dmDz5s04ePAgrl+/jlGjRknLddP6V1RU4MiRI1i/fj3S09OxaNGipm4CERkZEyIiMgtpaWkoKSnBwIED4efnJz3+/e9/AwBkMhn27t2LqKgohISE4LXXXkNcXBx27NghrcPBwQE7d+6Eg4MDlEolXnrpJUyYMEHvvkVEZLtu376NcePG4ZNPPkGLFi2k8pKSEqxduxbvvfceBg0ahLCwMKxbtw5HjhzB0aNHAfxnWv8NGzagR48eiImJwbJly5CamoqKigpTNYmIjMCgc7wpKSnYsmULLl68CBcXF/Tp0wf/+Mc/0KlTJ6nOwIEDcfDgQb3XTZs2DatXr5ae85QzET1MiNpnbAsICKgytlQnKCjI4iYoIKKmkZCQgNjYWERGRuKtt96SynNzc6HRaBAZGSmVhYSEIDAwEDk5Oejdu3eN0/pPnz4d58+fR8+ePau8X11nsXyYbpnc3jgzWZpihj9Ln43R0uMHbKsNDW2jQRkI7yRPREREligjIwPff/89Tpw4UWWZSqWCTCaDh4eHXrmPj480ZX99pvU3dBbLhy3rpX1knbow5UEiS5+N0dLjB2yjDQ2dxdKghIh3kiciIiJL8+uvv2LWrFnIysqCs7Nzk71vXWexfJhuFr+FJ+2h1jZ88hZTzGJp6bMxWnr8gG21oaGzWDboGrXa7iS/YcMG+Pr6Yvjw4Vi4cKF0JMTYp5x1l9nVdKrMFm+c2BDWcHrVXFhiX1pSrEREdZWbm4vCwkI88cQTUlllZSUOHTqE//7v/8aePXtQUVGB4uJivbNEBQUF0gHe+kzrb+gslg9Ta+2MMpulKXeGLX02RkuPH7CNNjS0ffVOiJryTvJ1OeVc06k0W75xYkNYw+lVc2FJfckbJxKRNRo8eDDOnj2rVzZp0iSEhIRg3rx5CAgIgJOTE7KzsxEXFwcAyMvLQ35+PpRKJYD6TetPRJah3glRU95JvrZTzi4uLrWeSrPFGyc2hDWcXjUXltiXvHEiEVmj5s2b6x28BYBmzZrBy8tLKp88eTISExPh6ekJhUKBmTNnQqlUonfv3gD0p/VfuXIlVCoVp/UnshL1Soia+k7ydTnlXNOpNFu+cWJDWMPpVXNhSX1pKXESERnb+++/D3t7e8TFxendmFVHN63/9OnToVQq0axZM8THx3NafyIrYFBCZKo7yRMREREZ04EDB/SeOzs7IzU1FampqTW+htP6E1kngxKihIQEbNq0CV999ZV0J3kAcHd3h4uLC65cuYJNmzZh2LBh8PLywpkzZzBnzpwa7yTPU85ERERERGRK9oZU5p3kiYiIiIjImhh8yVxteCd5IiIiIiKyJAadISIiIiIiIrImTIiIiIiIiMhmMSEiIiIiIiKbxYSIiIiIiIhsFhMiIiIiIiKyWUyIiIiIiIjIZjEhIiIiIiIim8WEiIiIiIiIbBYTIiIiIiIisllMiIiIiIiIyGYxISIiIiIiIpvFhIiIiIiIiGwWEyIiIiIiIrJZTIiIyCykpKTgySefRPPmzeHt7Y2RI0ciLy9Pr87du3eRkJAALy8vuLm5IS4uDgUFBXp18vPzERsbC1dXV3h7e2Pu3Lm4d+9eUzaFiIiILAgTIiIyCwcPHkRCQgKOHj2KrKwsaDQaREVF4c6dO1KdOXPmYMeOHdi8eTMOHjyI69evY9SoUdLyyspKxMbGoqKiAkeOHMH69euRnp6ORYsWmaJJREREZAEcTR0AEREA7N69W+95eno6vL29kZubi/79+6OkpARr167Fpk2bMGjQIADAunXr0LlzZxw9ehS9e/dGZmYmLly4gL1798LHxwc9evTAsmXLMG/ePCQnJ0Mmk5miaURERGTGmBARkVkqKSkBAHh6egIAcnNzodFoEBkZKdUJCQlBYGAgcnJy0Lt3b+Tk5KBbt27w8fGR6kRHR2P69Ok4f/48evbsWeV91Go11Gq19Ly0tBQAoNFooNFopHLd3w+WyR2EMZpaZb3mrLp+sDXsg/r1gS33FxGZNyZERGR2tFotZs+ejb59+6Jr164AAJVKBZlMBg8PD726Pj4+UKlUUp0HkyHdct2y6qSkpGDJkiVVyjMzM+Hq6lqlPCsrS/p7ZXjd2/Qou3btMt7KmsCD/WCr2AeG9UF5eXkjRkJEVH9MiIjI7CQkJODcuXM4fPhwo79XUlISEhMTpeelpaUICAhAVFQUFAqFVK7RaJCVlYUhQ4bAyckJANA1eY/R4jiXHG20dTWm6vrB1rAP6tcHurOvRETmhgkREZmVGTNmYOfOnTh06BDatGkjlfv6+qKiogLFxcV6Z4kKCgrg6+sr1Tl+/Lje+nSz0OnqPEwul0Mul1cpd3JyqnZH78FydaWdYY2rhaXtWNfUP7aEfWBYH9h6XxGR+eIsc0RkFoQQmDFjBrZu3Yp9+/YhODhYb3lYWBicnJyQnZ0tleXl5SE/Px9KpRIAoFQqcfbsWRQWFkp1srKyoFAoEBoa2jQNISIiIoti0BmilJQUbNmyBRcvXoSLiwv69OmDf/zjH+jUqZNU5+7du3jttdeQkZEBtVqN6OhofPzxx3rX9efn52P69OnYv38/3NzcEB8fj5SUFDg6mvcJq7bzvzbq+q6tiDXq+ogsWUJCAjZt2oSvvvoKzZs3l37z4+7uDhcXF7i7u2Py5MlITEyEp6cnFAoFZs6cCaVSid69ewMAoqKiEBoaivHjx2PlypVQqVRYsGABEhISqj0LRERERGTQGSLeJ4SIGktaWhpKSkowcOBA+Pn5SY9///vfUp33338fTz/9NOLi4tC/f3/4+vpiy5Yt0nIHBwfs3LkTDg4OUCqVeOmllzBhwgQsXbrUFE0iIiIiC2DQKRneJ4SIGosQj57C2tnZGampqUhNTa2xTlBQkMXN2EZERESm06Br1MzhPiG6y+xqur+BMe8TYmzmeE8G3l/DeCyxLy0pViIiIiJjqHdCZG73CanpXgjGvE+IsZnzUWzeX8N4LKkveZ8QIiIisjX1TojM5T4hLi4utd4LwZj3CTE2c7zvCO+vYTyW2Je8TwgRERHZmnolROZ4n5Ca7oVgzPuEGJs57yTz/hrGY0l9aSlxEhEZIi0tDWlpabh27RoAoEuXLli0aBFiYmIAWPcMuUT0aAbNMsf7hBAREZGladOmDVasWIHc3FycPHkSgwYNwogRI3D+/HkAnCGXyNYZdFiD9wkhIiIiSzN8+HC958uXL0daWhqOHj2KNm3acIZcIhtnUEKUlpYGABg4cKBe+bp16zBx4kQA9+8TYm9vj7i4OL3Tzjq6+4RMnz4dSqUSzZo1Q3x8PO8TQkRERI2usrISmzdvxp07d6BUKhtthlyg9llya5vVU7dMbm+cmXJNMYOoJc60+iBLjx+wrTY0tI0GJUS8TwgRERFZorNnz0KpVOLu3btwc3PD1q1bERoaitOnTzfKDLlA3WbJrc2yXtpH1qkLU+5zWdJMq9Wx9PgB22hDQ2fJ5S8BiYiIyOp16tQJp0+fRklJCb744gvEx8fj4MGDjfqetc2Sq1AoanydbpbShSftodY2fHIoU8xqa4kzrT7I0uMHbKsNDZ0llwkRERERWT2ZTIYOHToAuD8J1IkTJ/Dhhx9i9OjRjTJDLlC3WXJro9baGWW2XFPuDFvSTKvVsfT4AdtoQ0PbZ9Asc0RERETWQKvVQq1Wc4ZcIuIZIiIiIrJuSUlJiImJQWBgIMrKyrBp0yYcOHAAe/bs4Qy5RMSEiIiIiKxbYWEhJkyYgBs3bsDd3R3du3fHnj17MGTIEACcIZfI1jEhIiIiIqu2du3aWpdzhlwi28bfEBERERERkc1iQkRERERERDaLCREREREREdksJkRERERERGSzmBAREREREZHNYkJEREREREQ2i9NuExERERGR0bSd/7VR1iN3EFgZbpRV1YpniIiIiIiIyGYxISIiIiIiIpvFS+aIyCwcOnQI77zzDnJzc3Hjxg1s3boVI0eOlJZPnDgR69ev13tNdHQ0du/eLT0vKirCzJkzsWPHDtjb2yMuLg4ffvgh3NzcmqoZ9Wasywt0rq2INer6iIiIrBXPEBGRWbhz5w4ef/xxpKam1lhn6NChuHHjhvT47LPP9JaPGzcO58+fR1ZWFnbu3IlDhw5h6tSpjR06ERERWTCeISIisxATE4OYmJha68jlcvj6+la77Mcff8Tu3btx4sQJ9OrVCwCwatUqDBs2DO+++y78/f2NHjMRERFZPiZERGQxDhw4AG9vb7Ro0QKDBg3CW2+9BS8vLwBATk4OPDw8pGQIACIjI2Fvb49jx47h2WefrXadarUaarVael5aWgoA0Gg00Gg0Urnu7wfL5A7CeI0zsgfjbIz1Ntb6LQH7oH59YMv9RUTmjQkREVmEoUOHYtSoUQgODsaVK1fw97//HTExMcjJyYGDgwNUKhW8vb31XuPo6AhPT0+oVKoa15uSkoIlS5ZUKc/MzISrq2uV8qysLOnvppgKtL527drVqOt/sB9sFfvAsD4oLy9vxEiIiOqPCRERWYQxY8ZIf3fr1g3du3dH+/btceDAAQwePLje601KSkJiYqL0vLS0FAEBAYiKioJCoZDKNRoNsrKyMGTIEDg5OQEAuibvqff7NrZzydGNst7q+sHWsA/q1we6s69ERObG4ITI1meCIiLz0K5dO7Rs2RKXL1/G4MGD4evri8LCQr069+7dQ1FRUY2/OwLu/y5JLpdXKXdycqp2R+/BcnWlXQNb0Xgae0e9pv6xJewDw/rA1vuKiMyXwbPMcSYoIjIHv/32G27dugU/Pz8AgFKpRHFxMXJzc6U6+/btg1arRUREhKnCJCIiIjNn8BkizgRFRI3h9u3buHz5svT86tWrOH36NDw9PeHp6YklS5YgLi4Ovr6+uHLlCt544w106NAB0dH3Lw3r3Lkzhg4diilTpmD16tXQaDSYMWMGxowZw3GFiIiIatQovyEy9kxQtc0C5ejoKP1dHVucBaohOHuS8VhiX5oy1pMnT+Ivf/mL9Fz3u574+HikpaXhzJkzWL9+PYqLi+Hv74+oqCgsW7ZM73K3jRs3YsaMGRg8eLB0Oe5HH33U5G0hIiIiy2H0hKgxZoKqyyxQNc10Y8uzQDUEZ08yHkvqS1POAjVw4EAIUfMBjD17Hj2BgaenJzZt2mTMsIiIiMjKGT0haoyZoGqbBcrFxaXWmW5scRaohuDsScZjiX3JWaCIiIjI1jT6tNvGmAmqLrNA1TTTjS3PAtUQnD3JeCypLy0lTiIiIiJjMXiWOUNxJigiIiIiIjJXBp8h4kxQRERERERkLQw+Q3Ty5En07NkTPXv2BHB/JqiePXti0aJFcHBwwJkzZ/DMM8/gsccew+TJkxEWFoZvv/22ykxQISEhGDx4MIYNG4Z+/fphzZo1xmsVERERERFRHRh8hogzQRERERERkbVo9N8QERERERERmSsmREREREREZLMafdptqlnb+V8bdX3XVsQadX1ERERERNaOZ4iIiIjIqqWkpODJJ59E8+bN4e3tjZEjRyIvL0+vzt27d5GQkAAvLy+4ubkhLi4OBQUFenXy8/MRGxsLV1dXeHt7Y+7cubh3715TNoWIGgETIiIiIrJqBw8eREJCAo4ePYqsrCxoNBpERUXhzp07Up05c+Zgx44d2Lx5Mw4ePIjr169j1KhR0vLKykrExsaioqICR44cwfr165Geno5FixaZoklEZES8ZI6IiIis2u7du/Wep6enw9vbG7m5uejfvz9KSkqwdu1abNq0CYMGDQIArFu3Dp07d8bRo0fRu3dvZGZm4sKFC9i7dy98fHzQo0cPLFu2DPPmzUNycjJkMpkpmkZERsAzRERERGRTSkpKANy/DQgA5ObmQqPRIDIyUqoTEhKCwMBA5OTkAABycnLQrVs3+Pj4SHWio6NRWlqK8+fPN2H0RGRsPENERERENkOr1WL27Nno27cvunbtCgBQqVSQyWTw8PDQq+vj4wOVSiXVeTAZ0i3XLauOWq2GWq2WnpeWlgIANBoNNBpNjTHqlsnta77voyFqe6/GontPU7y3MVh6/IBp2yB3MM7/Xd1n4FFtaGgbmRARERGRzUhISMC5c+dw+PDhRn+vlJQULFmypEp5ZmYmXF1dH/n6Zb20Rolj165dRllPfWRlZZnsvY3B0uMHTNOGleHGXd+j2lBeXt6g9TMhIiIiIpswY8YM7Ny5E4cOHUKbNm2kcl9fX1RUVKC4uFjvLFFBQQF8fX2lOsePH9dbn24WOl2dhyUlJSExMVF6XlpaioCAAERFRUGhUNQYp0ajQVZWFhaetIdaa2dwOx92Ljm6weswlK4NQ4YMgZOTU5O/f0NZevyAadvQNXmPUdYjtxdY1kv7yDbozr7WFxMiIiIismpCCMycORNbt27FgQMHEBwcrLc8LCwMTk5OyM7ORlxcHAAgLy8P+fn5UCqVAAClUonly5ejsLAQ3t7eAO4ftVYoFAgNDa32feVyOeRyeZVyJyenOu2gqrV2UFc2PCEy5Q59Xdtqriw9fsA0bTDG/9sHPaoNDW0fEyIiIiKyagkJCdi0aRO++uorNG/eXPrNj7u7O1xcXODu7o7JkycjMTERnp6eUCgUmDlzJpRKJXr37g0AiIqKQmhoKMaPH4+VK1dCpVJhwYIFSEhIqDbpISLLwYSIiIiIrFpaWhoAYODAgXrl69atw8SJEwEA77//Puzt7REXFwe1Wo3o6Gh8/PHHUl0HBwfs3LkT06dPh1KpRLNmzRAfH4+lS5c2VTOIqJEwISIiIiKrJsSjZ7xydnZGamoqUlNTa6wTFBRk0gkKiKhx8D5ERERERERks5gQERERERGRzWJCRERERERENosJERGZhUOHDmH48OHw9/eHnZ0dtm3bprdcCIFFixbBz88PLi4uiIyMxKVLl/TqFBUVYdy4cVAoFPDw8MDkyZNx+/btJmwFERERWRomRERkFu7cuYPHH3+8xh80r1y5Eh999BFWr16NY8eOoVmzZoiOjsbdu3elOuPGjcP58+eRlZUl3Xxx6tSpTdUEIiIiskCcZY6IzEJMTAxiYmKqXSaEwAcffIAFCxZgxIgRAIB//etf8PHxwbZt2zBmzBj8+OOP2L17N06cOIFevXoBAFatWoVhw4bh3Xffhb+/f5O1hYiIiCwHEyIiMntXr16FSqVCZGSkVObu7o6IiAjk5ORgzJgxyMnJgYeHh5QMAUBkZCTs7e1x7NgxPPvss9WuW61WQ61WS89LS0sBABqNBhqNRirX/f1gmdzh0VP5msqDcTbGehtr/ZaAfVC/PrDl/iIi82ZwQnTo0CG88847yM3NxY0bN7B161aMHDlSWi6EwOLFi/HJJ5+guLgYffv2RVpaGjp27CjVKSoqwsyZM7Fjxw7pJmgffvgh3NzcjNIoIrIuurvK+/j46JX7+PhIy1QqFby9vfWWOzo6wtPTU6pTnZSUFCxZsqRKeWZmJlxdXauUZ2VlSX+vDK97G5paY98r5cF+sFXsA8P6oLy8vBEjISKqP4MTIt11/i+//DJGjRpVZbnuOv/169cjODgYCxcuRHR0NC5cuABnZ2cA96/zv3HjBrKysqDRaDBp0iRMnToVmzZtaniLiIgMkJSUhMTEROl5aWkpAgICEBUVBYVCIZVrNBpkZWVhyJAhcHJyAgB0Td7T5PHW1bnk6EZZb3X9YGvYB/XrA93ZVyIic2NwQsTr/Imoqfn6+gIACgoK4OfnJ5UXFBSgR48eUp3CwkK91927dw9FRUXS66sjl8shl8urlDs5OVW7o/dgubrSzuC2NJXG3lGvqX9sCfvAsD6w9b4iIvNl1N8QNdZ1/rVd4+/o6Cj9XR1zvsbf2IxxfTavjTceS+xLc401ODgYvr6+yM7OlhKg0tJSHDt2DNOnTwcAKJVKFBcXIzc3F2FhYQCAffv2QavVIiIiwlShExERkZkzakLUWNf51+Ua/5quYzbna/yNzZi/GeC18cZjSX1pymv8b9++jcuXL0vPr169itOnT8PT0xOBgYGYPXs23nrrLXTs2FG6HNff31/6DWPnzp0xdOhQTJkyBatXr4ZGo8GMGTMwZswYnnkmIiKiGlnELHO1XePv4uJS63XM5nyNv7EZ4zcDvDbeeCyxL015jf/Jkyfxl7/8RXqu+8zHx8cjPT0db7zxBu7cuYOpU6eiuLgY/fr1w+7du6XfJgLAxo0bMWPGDAwePFiasOWjjz5q8rYQERGR5TBqQtRY1/nX5Rr/mq5jNudr/I3NmDvdvDbeeCypL00Z58CBAyFEzZe42tnZYenSpVi6dGmNdTw9PTk5y//Xdv7XRlvXtRWxRlsXERGRubE35soevM5fR3edv1KpBKB/nb8Or/MnIiIiIiJTMPgMEa/zJyIiIiIia2FwQsTr/ImIiIiIyFoYnBDxOn8iItvy4O+R5A4CK8PvT1hT399o8jdJRERkToz6GyIiIiIiIiJLwoSIiIiIiIhsFhMiIiIiIiKyWUyIiIiIiIjIZjEhIiIiIiIim8WEiIiIiIiIbBYTIiIiIiIisllMiIiIiIiIyGYxISIiIiIiIpvFhIiIiIiIiGwWEyIiIiIiIrJZTIiIiIiIiMhmMSEiIiIiq3bo0CEMHz4c/v7+sLOzw7Zt2/SWCyGwaNEi+Pn5wcXFBZGRkbh06ZJenaKiIowbNw4KhQIeHh6YPHkybt++3YStIKLGwoSIiIiIrNqdO3fw+OOPIzU1tdrlK1euxEcffYTVq1fj2LFjaNasGaKjo3H37l2pzrhx43D+/HlkZWVh586dOHToEKZOndpUTSCiRuRo6gCIiIiIGlNMTAxiYmKqXSaEwAcffIAFCxZgxIgRAIB//etf8PHxwbZt2zBmzBj8+OOP2L17N06cOIFevXoBAFatWoVhw4bh3Xffhb+/f5O1hYiMj2eIiIiIyGZdvXoVKpUKkZGRUpm7uzsiIiKQk5MDAMjJyYGHh4eUDAFAZGQk7O3tcezYsSaPmYiMi2eIiIiIyGapVCoAgI+Pj165j4+PtEylUsHb21tvuaOjIzw9PaU61VGr1VCr1dLz0tJSAIBGo4FGo6nxdbplcnthQEtqVtt7NRbde5rivY3B0uMHTNsGuYNx/u/qPgOPakND28iEiIiIiKgRpKSkYMmSJVXKMzMz4erq+sjXL+ulNUocu3btMsp66iMrK8tk720Mlh4/YJo2rAw37voe1Yby8vIGrZ8JEREREdksX19fAEBBQQH8/Pyk8oKCAvTo0UOqU1hYqPe6e/fuoaioSHp9dZKSkpCYmCg9Ly0tRUBAAKKioqBQKGp8nUajQVZWFhaetIdaa1efZuk5lxzd4HUYSteGIUOGwMnJqcnfv6EsPX7AtG3omrzHKOuR2wss66V9ZBt0Z1/riwkREVmM5OTkKkdbO3XqhIsXLwIA7t69i9deew0ZGRlQq9WIjo7Gxx9/XOVSGCIineDgYPj6+iI7O1tKgEpLS3Hs2DFMnz4dAKBUKlFcXIzc3FyEhYUBAPbt2wetVouIiIga1y2XyyGXy6uUOzk51WkHVa21g7qy4QmRKXfo69pWc2Xp8QOmaYMx/t8+6FFtaGj7mBBZkbbzv27wOuQOwuinOYmMqUuXLti7d6/03NHxP8PYnDlz8PXXX2Pz5s1wd3fHjBkzMGrUKHz33XemCJWIzMTt27dx+fJl6fnVq1dx+vRpeHp6IjAwELNnz8Zbb72Fjh07Ijg4GAsXLoS/vz9GjhwJAOjcuTOGDh2KKVOmYPXq1dBoNJgxYwbGjBnDGeaIrIDRZ5lLTk6GnZ2d3iMkJERafvfuXSQkJMDLywtubm6Ii4tDQUGBscMgIivl6OgIX19f6dGyZUsAQElJCdauXYv33nsPgwYNQlhYGNatW4cjR47g6NGjJo6aiEzp5MmT6NmzJ3r27AkASExMRM+ePbFo0SIAwBtvvIGZM2di6tSpePLJJ3H79m3s3r0bzs7O0jo2btyIkJAQDB48GMOGDUO/fv2wZs0ak7SHiIyrUc4Q8QguETWWS5cuwd/fH87OzlAqlUhJSUFgYCByc3Oh0Wj0ps4NCQlBYGAgcnJy0Lt372rXV9dZoKqbrcdYs+hYEt2MPw2Z/arTmzuNFQ6Apv99hDXMPtVQ9ekDU/bXwIEDIUTN/2ft7OywdOlSLF26tMY6np6e2LRpU2OER0Qm1igJke4I7sN0R3A3bdqEQYMGAQDWrVuHzp074+jRozXusBARAUBERATS09PRqVMn3LhxA0uWLMFTTz2Fc+fOQaVSQSaTwcPDQ+81D06dWx1DZ4F6cKYbW7681FizXxmDqWbQsobZpxrKkD5o6CxQRESNpVESoqY8gqs7+1TTkSdbPILbEHWd750ezRKPIpt7rA/eab579+6IiIhAUFAQPv/8c7i4uNRrnXWdBaq62XqMNYuOJdHN+GOs2a+MwRRniCx99qmGqk8fNHQWKCKixmL0hMhUR3BrOkply0dwG4JHPo3HkvrS0o7genh44LHHHsPly5cxZMgQVFRUoLi4WG+MKSgoqHVaXENngXqw3Niz6FgSY81+ZQymSkqsYfaphjKkD2y9r4jIfBk9IWrqI7guLi61HqWyxSO4DVHX+d7p0SzxKLKlHcG9ffs2rly5gvHjxyMsLAxOTk7Izs5GXFwcACAvLw/5+flQKpUmjpSIiIjMVaNPu91UR3BrOkplLkcwLQ2PfBqPJfWlucf5+uuvY/jw4QgKCsL169exePFiODg4YOzYsXB3d8fkyZORmJgIT09PKBQKzJw5E0qlkr9PJCIiohoZfdrth+mO4Pr5+ekdwdXhEVwiqqvffvsNY8eORadOnfDCCy/Ay8sLR48eRatWrQAA77//Pp5++mnExcWhf//+8PX1xZYtW0wcNREREZkzo58h4hFcImosGRkZtS53dnZGamoqUlNTmygiIiIisnRGT4h0R3Bv3bqFVq1aoV+/flWO4Nrb2yMuLg5qtRrR0dH4+OOPjR0GERERERHRIxk9IeIRXCIiIiIishSN/hsiIiIiIiIic8WEiIiIiIiIbFajT7tNRETUmNrO/9po67q2ItZo6yIiIsvAM0RERERERGSzmBAREREREZHNYkJEREREREQ2iwkRERERERHZLCZERERERERkszjLHBER0f9Xlxnr5A4CK8OBrsl7oK60q7UuZ60jIjJ/TIioWnX5ojcEdwqIiIiIyBzxkjkiIiIiIrJZTIiIiIiIiMhmMSEiIiIiIiKbxYSIiIiIiIhsFidVICIiaiR1mbWurjg5DRFR4+AZIiIiIiIislk8Q0RNgkdJiYiIiMgc8QwRERERERHZLCZERERERERks5gQERERERGRzWJCRERERERENsukCVFqairatm0LZ2dnRERE4Pjx46YMh4isBMcWImosHF+IrI/JEqJ///vfSExMxOLFi/H999/j8ccfR3R0NAoLC00VEhFZAY4tRNRYOL4QWSeTTbv93nvvYcqUKZg0aRIAYPXq1fj666/x6aefYv78+aYKiyyAMafwNjZjTwlu7LbawpTlHFvIWnE8MD2OL0TWySQJUUVFBXJzc5GUlCSV2dvbIzIyEjk5OVXqq9VqqNVq6XlJSQkAoKioCM7OzigvL8etW7fg5ORU5bWO9+40Qgusl6NWoLxcC0eNPSq1dqYOx+LcunVL+luj0dT6f7MujP3/98H4qlNWVgYAEEIY9X2biqFjC1D7+KLRaKTy6ranLY4vHCOspw8eNR7Upj7jG8eXmseXh+n611j/xxqyrevLGN+BpmTp8QOmbYOxvh914+2j2tDQ8cUkCdEff/yByspK+Pj46JX7+Pjg4sWLVeqnpKRgyZIlVcqDg4MbLUZb9qKpA7BgLf/L1BHUrq7xlZWVwd3dvXGDaQSGji0Ax5f64BhhHX1gqvGK40vTjy/m/t1EVBtDxtv6ji8mu2TOEElJSUhMTJSea7VaFBUVwcvLC2VlZQgICMCvv/4KhUJhwiitQ2lpKfvTSCyxL4UQKCsrg7+/v6lDaTK1jS92dv85MmuJ27MxsB/YB0D9+oDjS83jy8Os4f+YpbfB0uMHbKsNDR1fTJIQtWzZEg4ODigoKNArLygogK+vb5X6crkccrlcr8zDwwMApAFFoVBY7MY2R+xP47G0vrTEI7c6ho4tQO3jS3UsbXs2FvYD+wAwvA84vtQ+vjzMGv6PWXobLD1+wHba0JDxxSSzzMlkMoSFhSE7O1sq02q1yM7OhlKpNEVIRGQFOLYQUWPh+EJkvUx2yVxiYiLi4+PRq1cvhIeH44MPPsCdO3ekmVuIiOqDYwsRNRaOL0TWyWQJ0ejRo3Hz5k0sWrQIKpUKPXr0wO7du6v8WPFR5HI5Fi9eXOWUNNUP+9N42JemYayx5WHcnvexH9gHgO32QWONLw+zhv619DZYevwA22AIO2Gp818SERERERE1kEl+Q0RERERERGQOmBAREREREZHNYkJEREREREQ2iwkRERERERHZLItPiFJTU9G2bVs4OzsjIiICx48fN3VIFunQoUMYPnw4/P39YWdnh23btpk6JIuVkpKCJ598Es2bN4e3tzdGjhyJvLw8U4dFdVSX7Xf37l0kJCTAy8sLbm5uiIuLq3KzRmuyYsUK2NnZYfbs2VKZLfTB77//jpdeegleXl5wcXFBt27dcPLkSWm5EAKLFi2Cn58fXFxcEBkZiUuXLpkwYuOqrKzEwoULERwcDBcXF7Rv3x7Lli3Dg3MxWXsfGIuh+yqbN29GSEgInJ2d0a1bN+zatUtvuSn63ZA2fPLJJ3jqqafQokULtGjRApGRkVXqT5w4EXZ2dnqPoUOHmk0b0tPTq8Tn7OysV8fct8PAgQOrtMHOzg6xsbFSnabcDvXZ1zxw4ACeeOIJyOVydOjQAenp6VXqGCUXEBYsIyNDyGQy8emnn4rz58+LKVOmCA8PD1FQUGDq0CzOrl27xJtvvim2bNkiAIitW7eaOiSLFR0dLdatWyfOnTsnTp8+LYYNGyYCAwPF7du3TR0a1UFdtt8rr7wiAgICRHZ2tjh58qTo3bu36NOnjwmjbjzHjx8Xbdu2Fd27dxezZs2Syq29D4qKikRQUJCYOHGiOHbsmPj555/Fnj17xOXLl6U6K1asEO7u7mLbtm3ihx9+EM8884wIDg4Wf/75pwkjN57ly5cLLy8vsXPnTnH16lWxefNm4ebmJj788EOpjrX3gTEYuq/y3XffCQcHB7Fy5Upx4cIFsWDBAuHk5CTOnj0r1Wnqfje0DS+++KJITU0Vp06dEj/++KOYOHGicHd3F7/99ptUJz4+XgwdOlTcuHFDehQVFTVK/PVpw7p164RCodCLT6VS6dUx9+1w69YtvfjPnTsnHBwcxLp166Q6TbkdDN3X/Pnnn4Wrq6tITEwUFy5cEKtWrRIODg5i9+7dUh1j5QIWnRCFh4eLhIQE6XllZaXw9/cXKSkpJozK8jEhMq7CwkIBQBw8eNDUoVA9PLz9iouLhZOTk9i8ebNU58cffxQARE5OjqnCbBRlZWWiY8eOIisrSwwYMEBKiGyhD+bNmyf69etX43KtVit8fX3FO++8I5UVFxcLuVwuPvvss6YIsdHFxsaKl19+Wa9s1KhRYty4cUII2+gDYzB0X+WFF14QsbGxemURERFi2rRpQgjT9HtD97fu3bsnmjdvLtavXy+VxcfHixEjRhg71BoZ2oZ169YJd3f3Gtdnidvh/fffF82bN9c7wNfU20GnLvuab7zxhujSpYte2ejRo0V0dLT03Fi5gMVeMldRUYHc3FxERkZKZfb29oiMjEROTo4JIyPSV1JSAgDw9PQ0cSRUHw9vv9zcXGg0Gr2xJyQkBIGBgVY39iQkJCA2NlavrYBt9MH27dvRq1cvPP/88/D29kbPnj3xySefSMuvXr0KlUql1wfu7u6IiIiwmj7o06cPsrOz8dNPPwEAfvjhBxw+fBgxMTEAbKMPGqo++yo5OTlVPnPR0dFS/abud2Psb5WXl0Oj0VT5Hjxw4AC8vb3RqVMnTJ8+Hbdu3TJq7Dr1bcPt27cRFBSEgIAAjBgxAufPn5eWWeJ2WLt2LcaMGYNmzZrplTfVdjDUoz4LxswFLDYh+uOPP1BZWVnl7tA+Pj5QqVQmiopIn1arxezZs9G3b1907drV1OGQgarbfiqVCjKZDB4eHnp1rW3sycjIwPfff4+UlJQqy2yhD37++WekpaWhY8eO2LNnD6ZPn45XX30V69evBwCpndb8HTR//nyMGTMGISEhcHJyQs+ePTF79myMGzcOgG30QUPVZ19FpVLVWr+p+90Y+1vz5s2Dv7+/3o7r0KFD8a9//QvZ2dn4xz/+gYMHDyImJgaVlZVGjR+oXxs6deqETz/9FF999RU2bNgArVaLPn364LfffgNgedvh+PHjOHfuHP7617/qlTfldjBUTZ+F0tJS/Pnnn0bNBRwbHC0R1SghIQHnzp3D4cOHTR0K1YOtbr9ff/0Vs2bNQlZWVpUfEdsKrVaLXr164e233wYA9OzZE+fOncPq1asRHx9v4uiaxueff46NGzdi06ZN6NKlC06fPo3Zs2fD39/fZvqAGm7FihXIyMjAgQMH9MaTMWPGSH9369YN3bt3R/v27XHgwAEMHjzYFKHqUSqVUCqV0vM+ffqgc+fO+Oc//4lly5aZMLL6Wbt2Lbp164bw8HC9cnPfDk3FYs8QtWzZEg4ODlVmNSooKICvr6+JoiL6jxkzZmDnzp3Yv38/2rRpY+pwyEA1bT9fX19UVFSguLhYr741jT25ubkoLCzEE088AUdHRzg6OuLgwYP46KOP4OjoCB8fH6vvAz8/P4SGhuqVde7cGfn5+QAgtdOav4Pmzp0rnSXq1q0bxo8fjzlz5khnDW2hDxqqPvsqvr6+tdZv6n5vyP7Wu+++ixUrViAzMxPdu3evtW67du3QsmVLXL58ucExP8wY+4y6s6S6+CxpO9y5cwcZGRmYPHnyI9+nMbeDoWr6LCgUCri4uBg1F7DYhEgmkyEsLAzZ2dlSmVarRXZ2tl5GT9TUhBCYMWMGtm7din379iE4ONjUIZEBHrX9wsLC4OTkpDf25OXlIT8/32rGnsGDB+Ps2bM4ffq09OjVqxfGjRsn/W3tfdC3b98q063/9NNPCAoKAgAEBwfD19dXrw9KS0tx7Ngxq+mD8vJy2Nvr7yY4ODhAq9UCsI0+aKj67KsolUq9+gCQlZUl1W/qfq/v/tbKlSuxbNky7N69G7169Xrk+/z222+4desW/Pz8jBL3g4yxz1hZWYmzZ89K8VnKdgDuT+OuVqvx0ksvPfJ9GnM7GOpRnwWj5gIGTcFgZjIyMoRcLhfp6eniwoULYurUqcLDw6PKtIj0aGVlZeLUqVPi1KlTAoB47733xKlTp8Qvv/xi6tAszvTp04W7u7s4cOCA3jSW5eXlpg6N6qAu2++VV14RgYGBYt++feLkyZNCqVQKpVJpwqgb34OzzAlh/X1w/Phx4ejoKJYvXy4uXbokNm7cKFxdXcWGDRukOitWrBAeHh7iq6++EmfOnBEjRoywqimn4+PjRevWraVpt7ds2SJatmwp3njjDamOtfeBMTxqX2X8+PFi/vz5Uv3vvvtOODo6infffVf8+OOPYvHixdVOu92U/W5oG1asWCFkMpn44osv9MbRsrIyIcT9fY7XX39d5OTkiKtXr4q9e/eKJ554QnTs2FHcvXvXLNqwZMkSsWfPHnHlyhWRm5srxowZI5ydncX58+f12mnO20GnX79+YvTo0VXKm3o7PGpfc/78+WL8+PFSfd2023PnzhU//vijSE1NrXbabWPkAhadEAkhxKpVq0RgYKCQyWQiPDxcHD161NQhWaT9+/cLAFUe8fHxpg7N4lTXjwD05v0n81WX7ffnn3+Kv/3tb6JFixbC1dVVPPvss+LGjRumC7oJPJwQ2UIf7NixQ3Tt2lXI5XIREhIi1qxZo7dcq9WKhQsXCh8fHyGXy8XgwYNFXl6eiaI1vtLSUjFr1iwRGBgonJ2dRbt27cSbb74p1Gq1VMfa+8BYattXGTBgQJXv2s8//1w89thjQiaTiS5duoivv/5ab7kp+t2QNgQFBVU7ji5evFgIIUR5ebmIiooSrVq1Ek5OTiIoKEhMmTKl0Q9oG9KG2bNnS3V9fHzEsGHDxPfff6+3PnPfDkIIcfHiRQFAZGZmVllXU2+HR+1rxsfHiwEDBlR5TY8ePYRMJhPt2rWrdl/KGLmAnRAP3HKaiIiIiIjIhljsb4iIiIiIiIgaigkRERERERHZLCZERERERERks5gQERERERGRzWJCRERERERENosJERERERER2SwmREREREREZLOYEBERERERkc1iQkRERERERDaLCREREREREdksJkRERERERGSzmBAREREREZHN+n+NIacuc2JUBAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -282,7 +280,17 @@ "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:23:43.060702: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-05-16 17:23:43.107094: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "from omlt.io import write_onnx_model_with_bounds, load_onnx_neural_network_with_bounds" ] @@ -330,13 +338,22 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/codespace/.python/current/lib/python3.10/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" + ] + } + ], "source": [ "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}\n", - "import tensorflow as tf\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense\n", + "import keras\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense\n", "\n", "model = Sequential()\n", "model.add(Dense(12, input_dim=8, activation='relu'))\n", @@ -363,311 +380,311 @@ "output_type": "stream", "text": [ "Epoch 1/150\n", - "77/77 [==============================] - 0s 1ms/step - loss: 6.3354 - accuracy: 0.5677\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6556 - loss: 5.5503\n", "Epoch 2/150\n", - "77/77 [==============================] - 0s 1ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6514 - loss: 5.6185\n", "Epoch 3/150\n", - "77/77 [==============================] - 0s 1ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6416 - loss: 5.7775\n", "Epoch 4/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6579 - loss: 5.5142\n", "Epoch 5/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6483 - loss: 5.6692\n", "Epoch 6/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6317 - loss: 5.9365\n", "Epoch 7/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6459 - loss: 5.7081\n", "Epoch 8/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6452 - loss: 5.7192\n", "Epoch 9/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6770 - loss: 5.2058\n", "Epoch 10/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6290 - loss: 5.9799\n", "Epoch 11/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6771 - loss: 5.2039\n", "Epoch 12/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6570 - loss: 5.5278\n", "Epoch 13/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6566 - loss: 5.5354\n", "Epoch 14/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6599 - loss: 5.4820\n", "Epoch 15/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6489 - loss: 5.6587\n", "Epoch 16/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6662 - loss: 5.3798\n", "Epoch 17/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6313 - loss: 5.9427\n", "Epoch 18/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6623 - loss: 5.4427\n", "Epoch 19/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6502 - loss: 5.6380\n", "Epoch 20/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7022 - loss: 4.8001\n", "Epoch 21/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6584 - loss: 5.5060\n", "Epoch 22/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6772 - loss: 5.2026\n", "Epoch 23/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6578 - loss: 5.5153\n", "Epoch 24/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6851 - loss: 5.0759\n", "Epoch 25/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6703 - loss: 5.3147\n", "Epoch 26/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6440 - loss: 5.7380\n", "Epoch 27/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6467 - loss: 5.6945\n", "Epoch 28/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6375 - loss: 5.8429\n", "Epoch 29/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6296 - loss: 5.9698\n", "Epoch 30/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6477 - loss: 5.6782\n", "Epoch 31/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6452 - loss: 5.7189\n", "Epoch 32/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6753 - loss: 5.2343\n", "Epoch 33/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6440 - loss: 5.7387\n", "Epoch 34/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6535 - loss: 5.5844\n", "Epoch 35/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6307 - loss: 5.9523\n", "Epoch 36/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6518 - loss: 5.6125\n", "Epoch 37/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6640 - loss: 5.4163\n", "Epoch 38/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6501 - loss: 5.6394\n", "Epoch 39/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6997 - loss: 4.8408\n", "Epoch 40/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6395 - loss: 5.8108\n", "Epoch 41/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6608 - loss: 5.4667\n", "Epoch 42/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6467 - loss: 5.6938\n", "Epoch 43/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6377 - loss: 5.8393\n", "Epoch 44/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6574 - loss: 5.5224\n", "Epoch 45/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6220 - loss: 6.0925\n", "Epoch 46/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6355 - loss: 5.8751\n", "Epoch 47/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6315 - loss: 5.9388\n", "Epoch 48/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6745 - loss: 5.2463\n", "Epoch 49/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6943 - loss: 4.9269\n", "Epoch 50/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6564 - loss: 5.5379\n", "Epoch 51/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6453 - loss: 5.7168\n", "Epoch 52/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6524 - loss: 5.6025 \n", "Epoch 53/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 935us/step - accuracy: 0.6364 - loss: 5.8609\n", "Epoch 54/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 950us/step - accuracy: 0.6476 - loss: 5.6793\n", "Epoch 55/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6735 - loss: 5.2618\n", "Epoch 56/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6405 - loss: 5.7944\n", "Epoch 57/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6695 - loss: 5.3265\n", "Epoch 58/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6572 - loss: 5.5254\n", "Epoch 59/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6720 - loss: 5.2875\n", "Epoch 60/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6537 - loss: 5.5818\n", "Epoch 61/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6457 - loss: 5.7102\n", "Epoch 62/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6308 - loss: 5.9513\n", "Epoch 63/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6598 - loss: 5.4827\n", "Epoch 64/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6293 - loss: 5.9745\n", "Epoch 65/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6528 - loss: 5.5963\n", "Epoch 66/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6677 - loss: 5.3561\n", "Epoch 67/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6537 - loss: 5.5819\n", "Epoch 68/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6589 - loss: 5.4973\n", "Epoch 69/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6673 - loss: 5.3623\n", "Epoch 70/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6625 - loss: 5.4391\n", "Epoch 71/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6450 - loss: 5.7224\n", "Epoch 72/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6457 - loss: 5.7109\n", "Epoch 73/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510: 0s - loss: 5.0131 - accuracy\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6634 - loss: 5.4250\n", "Epoch 74/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6510 - loss: 5.6259\n", "Epoch 75/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6493 - loss: 5.6531\n", "Epoch 76/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6166 - loss: 6.1800\n", "Epoch 77/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6771 - loss: 5.2045\n", "Epoch 78/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6628 - loss: 5.4357\n", "Epoch 79/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6479 - loss: 5.6760\n", "Epoch 80/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6261 - loss: 6.0264\n", "Epoch 81/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6175 - loss: 6.1647\n", "Epoch 82/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6728 - loss: 5.2734\n", "Epoch 83/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6395 - loss: 5.8100\n", "Epoch 84/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6401 - loss: 5.8015\n", "Epoch 85/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6313 - loss: 5.9432\n", "Epoch 86/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6628 - loss: 5.4345\n", "Epoch 87/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6603 - loss: 5.4747\n", "Epoch 88/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6418 - loss: 5.7727\n", "Epoch 89/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6285 - loss: 5.9874\n", "Epoch 90/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6408 - loss: 5.7903\n", "Epoch 91/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6540 - loss: 5.5770\n", "Epoch 92/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6400 - loss: 5.8018\n", "Epoch 93/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6405 - loss: 5.7938\n", "Epoch 94/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6485 - loss: 5.6650\n", "Epoch 95/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6539 - loss: 5.5784\n", "Epoch 96/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6647 - loss: 5.4040\n", "Epoch 97/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7045 - loss: 4.7636 \n", "Epoch 98/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6365 - loss: 5.8596\n", "Epoch 99/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6261 - loss: 6.0266\n", "Epoch 100/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6576 - loss: 5.5193\n", "Epoch 101/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6628 - loss: 5.4345\n", "Epoch 102/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6722 - loss: 5.2833\n", "Epoch 103/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6260 - loss: 6.0280\n", "Epoch 104/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6428 - loss: 5.7568\n", "Epoch 105/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6574 - loss: 5.5220\n", "Epoch 106/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6772 - loss: 5.2030\n", "Epoch 107/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6540 - loss: 5.5763\n", "Epoch 108/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6572 - loss: 5.5246 \n", "Epoch 109/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6324 - loss: 5.9245\n", "Epoch 110/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6569 - loss: 5.5308\n", "Epoch 111/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6541 - loss: 5.5753\n", "Epoch 112/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6757 - loss: 5.2275\n", "Epoch 113/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6306 - loss: 5.9543\n", "Epoch 114/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6765 - loss: 5.2146\n", "Epoch 115/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6328 - loss: 5.9185\n", "Epoch 116/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6585 - loss: 5.5045\n", "Epoch 117/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6320 - loss: 5.9312\n", "Epoch 118/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6413 - loss: 5.7809\n", "Epoch 119/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6661 - loss: 5.3812\n", "Epoch 120/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6779 - loss: 5.1913\n", "Epoch 121/150\n", - "77/77 [==============================] - ETA: 0s - loss: 5.4343 - accuracy: 0.64 - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6361 - loss: 5.8660\n", "Epoch 122/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6555 - loss: 5.5521\n", "Epoch 123/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6376 - loss: 5.8411\n", "Epoch 124/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6536 - loss: 5.5841\n", "Epoch 125/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6427 - loss: 5.7591\n", "Epoch 126/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6446 - loss: 5.7281\n", "Epoch 127/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6545 - loss: 5.5692\n", "Epoch 128/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6402 - loss: 5.7988\n", "Epoch 129/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6731 - loss: 5.2691\n", "Epoch 130/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6671 - loss: 5.3662\n", "Epoch 131/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6392 - loss: 5.8152\n", "Epoch 132/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6591 - loss: 5.4942\n", "Epoch 133/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6609 - loss: 5.4661\n", "Epoch 134/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6521 - loss: 5.6080\n", "Epoch 135/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6640 - loss: 5.4156\n", "Epoch 136/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6496 - loss: 5.6477\n", "Epoch 137/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6349 - loss: 5.8848\n", "Epoch 138/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6604 - loss: 5.4742\n", "Epoch 139/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6440 - loss: 5.7379\n", "Epoch 140/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6441 - loss: 5.7370\n", "Epoch 141/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6613 - loss: 5.4598\n", "Epoch 142/150\n", - "77/77 [==============================] - 0s 2ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6705 - loss: 5.3115\n", "Epoch 143/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6506 - loss: 5.6317\n", "Epoch 144/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6447 - loss: 5.7266\n", "Epoch 145/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.6659 - loss: 5.3855\n", "Epoch 146/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.6351 - loss: 5.8810\n", "Epoch 147/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6500 - loss: 5.6406\n", "Epoch 148/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6295 - loss: 5.9721\n", "Epoch 149/150\n", - "77/77 [==============================] - 0s 4ms/step - loss: 5.3827 - accuracy: 0.6510\n", + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6328 - loss: 5.9180\n", "Epoch 150/150\n", - "77/77 [==============================] - 0s 3ms/step - loss: 5.3827 - accuracy: 0.6510\n" + "\u001b[1m77/77\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6430 - loss: 5.7547\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -688,21 +705,36 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:24:23.814799: I tensorflow/core/grappler/devices.cc:75] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 (Note: TensorFlow was not compiled with CUDA or ROCm support)\n", + "2024-05-16 17:24:23.814932: I tensorflow/core/grappler/clusters/single_machine.cc:361] Starting new session\n", + "2024-05-16 17:24:23.911262: I tensorflow/core/grappler/devices.cc:75] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0 (Note: TensorFlow was not compiled with CUDA or ROCm support)\n", + "2024-05-16 17:24:23.911400: I tensorflow/core/grappler/clusters/single_machine.cc:361] Starting new session\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Wrote ONNX model with bounds at /tmp/tmp2u0qvwd0.onnx\n" + "Wrote ONNX model with bounds at /tmp/tmpz_5cafcg.onnx\n" ] } ], "source": [ + "# Add output_names for compatibility:\n", + "model.output_names = [output.name for output in model.outputs]\n", + "\n", + "from tensorflow import TensorSpec\n", "import tf2onnx\n", "\n", - "onnx_model, _ = tf2onnx.convert.from_keras(model)\n", + "spec = [TensorSpec(input.shape, input.dtype, input.name) for input in model.inputs]\n", + "onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature=spec)\n", "\n", "with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as f:\n", " write_onnx_model_with_bounds(f.name, onnx_model, input_bounds)\n", @@ -718,17 +750,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAAKhCAIAAABsDUxeAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu3de/zX8/0/fu/OpaMOksqh5jiajhSxjzSGGS4RyWGGzzAqtpxKQ2TO+7I11CYmZhJmhmRh1CdFJTElHaVzrfPx95jX1q/V+/3u3fv9er+ez+freX3/0eXd8/V8Pp73x/X+unS59TwWbN26dQ8/BAgQIECAAAECBCIVqBDp3u2cAAECBAgQIECAwL8EpFLfAwIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6gUrRl6ACAgQIZEPgk08+mTp16pIlSypUSPb/t/faa6+WLVt+5zvfyYaKMQgQIJAYgYKtW7cmpliFEiBAoDCBdevWXXvttRs2bNhvv/3q1q1b2CpJWlZQUPDRRx+Ff5wHDBiw//77J6l0tRIgQKAMAlJpGfBsSoBADARCJL3qqqsuuOCCPDu4GA76Dho0qF+/fiFqx4BZCQQIECh3Aam03IntgACBchW44oorunfvnmeRNCO2Zs2a88477+233y5XQIMTIEAgJgLJvvoqJojKIEAgKoFp06aFE/d5GUkDaY0aNbp27frCCy9ExWu/BAgQyKWAVJpLbfsiQCDLAp9++mnz5s2zPGichjvggAM+/vjjOFWkFgIECJSXgFRaXrLGJUAgBwKLFi0Kd6znYEdR7aJ+/fphjlHt3X4JECCQSwGpNJfa9kWAQK4FHnrood///vflt9eRI0eGG5LKb3wjEyBAID0Cnleanl6bKQEC2Rc47bTTwqWfZRl37Nix1apVy9dLY8siY1sCBNIm4Fhp2jpuvgQIZFOgUqVK4Z6ksoz4/vvvf/7552UZwbYECBDIDwHHSvOjj2ZBgMB/Cfz6178ePHjwt771rRYtWtSpUyd8tmDBgmuuuWbp0qU1a9Z8+OGHmzZt2rdv3+rVq48fP/6rr7569NFH27ZtG+6duu2221asWNGgQYMHH3ywXr16w4YNe+yxx8LLosLDp37yk5/srPzSSy998MEHYaudRwsfvfbaa4sXLw7DduvW7ZZbbpkzZ054tGpYHsa57rrrvv/9769cuXLIkCFVq1YNNYTydh7fEgIECKRHQCpNT6/NlEBaBP7xj388+eST4TGftWvX7tmz52GHHRZmftNNN/Xo0eOMM8545ZVXQoL8wx/+EBaGOBj++uKLL/7yl7/84x//GAJieD7o6aefPmnSpHAENKTJp5566vXXX69YseKpp57asWPHVq1aFYO4w2hhzblz544YMWLt2rVnnXXWe++916xZsx02P/PMM8PDrUJ6DrG1mJF9RIAAgTQIOIOfhi6bI4F0Cfzf//3fKaecEl49Go5xtm/fPjP5v//97yEjhgOoM2fOHDduXGZhmzZtwi/HH3/8vHnzwi/t2rV74IEHwjohkoaIGXJtOM76xBNPDB06NPwSLgAt3nGH0cLKIcWGRBuOzoY0vG2nxQ/iUwIECKRWwLHS1LbexAnkrcCWLVvCq+R3mF5Ih+GOonAZaFieOVC6bYXKlStnfj/nnHM6der06quvhiOsIYmGN9GHE/1HHXVU+DT8GX4vCdm20XZYOVQVlmzcuLEkg1iHAAECKRRwrDSFTTdlAnkuEK4QDckyXLIZYuW2I5ThoOnXX3/doUOHvffeO5ziL5QgnG0PsfXHP/7xD37wg4kTJx533HHhCfaHH3542CpcflqKu5rC3kMYDS8ODdeShkEaNmwYztdnCpsyZUqhNVhIgACB1Ao4Vpra1ps4gbwVCBeShpuTQqYM12vuv//+mXneddddP/3pT//f//t/4bn04SrSQiffuHHjEEmrVKkSkuvVV18dLks9//zzu3TpEjb57ne/G25+KnSrYha2bNkyHHadOnVquK702GOPDWv+7Gc/C9enhnP9++67b2bDcJZ/0KBB4drTCy+8sJihfESAAIG8FygIxxLyfpImSIBAvgqEe+djm+e23Z5fFvxwtPUvf/nLr371q7IMYlsCBAgkQsCx0kS0SZEECEQv8OWXX15++eXb1xHu6z/hhBOir0wFBAgQyAsBqTQv2mgSBNIqEG6037RpU25mHy4GCE+Jys2+tu0lXJa67Vx/jndtdwQIEMixgLudcgxudwQIZFPgwAMPDLclZXPE7I0VbpkKT9cv43jhpqh99tmnjIPYnAABAokQkEoT0SZFEiBQuEDr1q3Ds5bCTe6Ff5z8pbNmzercuXPy52EGBAgQ2LWAVLprI2sQIBBbgfCc/HBX+4ABA2JbYVkKC88N6Nq167bHCJRlKNsSIEAg/gLuwY9/j1RIgMAuBMKrQS+99NLwNKjw1vvwCvtdrB37j9etW/fJJ5989NFH4TWn4fWnsa9XgQQIEMiOgFSaHUejECAQrcD69evDO+vDVZiLFi0q10oWLFjQqFGjcIy2/PbSvHnz8OTU8NLUgw46qPz2YmQCBAjETUAqjVtH1EOAQKwFwuHY999/PwTTWFepOAIECCRQoBz/u59ADSUTIEBgFwLhzqrMG+13sZ6PCRAgQGA3BaTS3QSzOgEC6RZo165duZ6+T7eu2RMgkGoBqTTV7Td5AgR2V2D8+PGOle4umvUJECBQEgGptCRK1iFAgMC/BQ477DDHSn0bCBAgUB4CUml5qBqTAIG8FQjPbHKsNG+7a2IECEQqIJVGym/nBAgQIECAAAEC3whIpb4IBAgQ2A2B8I7TgoKC3djAqgQIECBQMgGptGRO1iJAgMA3AhMnTty6dSsMAgQIEMi6gFSadVIDEiBAgAABAgQI7LaAVLrbZDYgQIAAAQIECBDIuoBUmnVSAxIgkM8C4Y2jngyVzw02NwIEohOQSqOzt2cCBBIoMGPGDE+GSmDflEyAQAIEpNIENEmJBAgQIECAAIG8F5BK877FJkiAAAECBAgQSICAVJqAJimRAIH4CLRr1851pfFph0oIEMgnAak0n7ppLgQIlLvA+PHjXVda7sp2QIBAKgWk0lS23aQJECBAgAABAjETkEpj1hDlECBAgAABAgRSKSCVprLtJk2AAAECBAgQiJmAVBqzhiiHAIF4Cxx++OHudop3i1RHgEBSBaTSpHZO3QQIRCIwdepUdztFIm+nBAjkvYBUmvctNkECBAgQIECAQAIEpNIENEmJBAgQIECAAIG8F5BK877FJkiAAAECBAgQSICAVJqAJimRAIH4CHi3U3x6oRICBPJMQCrNs4aaDgEC5StQunc7ffbZZz179izfyoxOgACBhAtIpQlvoPIJEMhfgVWrVp111lm///3vi5riypUrf/SjH3Xt2vW000576aWXilrNcgIECCRCQCpNRJsUSYBArAVOP/30r7/+OpT4i1/84sUXXwy/tGnT5mc/+9mRRx552223bV/6nXfeeccdd5RwMj169OjVq9fFF1+cWX/27NlXXHHF1q1b33///QEDBoSFzzzzzN577/36668PGTIk7K6Ew1qNAAEC8RSQSuPZF1URIJBsgSVLlvz85z+fOHFiyIvr16/PTOa1114LS26++eaSzO3tt99etmzZyJEjQxL98ssvwybNmzfv2LHjOeecE5Lu9ddfH5aEi1xnzpy5aNGiCRMmHH300SUZ1joECBCIrUCl2FamMAIECMRQoEWLFiV5t1PDb35C/eFw6eLFi8Mvs2bNCsc+//73vxcUFJRkXmPGjKlfv344Vvruu+9269YtXM8atmrVqtWvfvWrDh061KxZM/z10EMPrVatWjh9v2LFiqeffrokw1qHAAECsRVwrDS2rVEYAQJxFJgxY0ah73bavHlzoeVWqvTv//yH8+/33XdfOINf6Go7LwzXjIYwGo6Pnn/++eFoaBh/zpw5N9544+jRo0M2zVwGcM8993Tu3HncuHGTJ0++6KKLNm7cuPM4lhAgQCApAlJpUjqlTgIE4isQLu4M59BDfdOmTSuqyuOOOy4ExwULFoQQWdQ62y9v27Zt5vjo3Llzq1evXrFixaZNmz733HN16tQJ5/SvvfbasPJXX32VicjhYtNwun/t2rUlGdk6BAgQiKeAVBrPvqiKAIEkCVx99dXhQs9zzz03pMPi6w5HN/v06bPL1cIg4UDpmjVrjjnmmB/+8IePPfZYWBJO/WdO3Iffa9WqFf685ZZb/vSnP4XDpeF603D0tHbt2sXv3acECBCIs0BBSf5xjPME1EaAAIFcCuyzzz4ffvhh48aNc7lT+yJAgEAaBNztlIYumyMBAvESeOGFF4YOHbqtplNPPXXhwoWZ8/WZhTfccEOnTp3iVbRqCBAgUM4CjpWWM7DhCRDIL4HwINJXX321UaNG+TUtsyFAgED0Aq4rjb4HKiBAIEEC8+fPL/Qe/ARNQakECBCIp4BUGs++qIoAAQIECBAgkC4BqTRd/TZbAgQIECBAgEA8BaTSePZFVQQIECBAgACBdAlIpenqt9kSIFBGgSOOOKIkbxwt415sToAAgRQKSKUpbLopEyBQeoEpU6a426n0fLYkQIBA0QJSadE2PiFAgAABAgQIEMiVgFSaK2n7IUCAAAECBAgQKFpAKi3axicECBAgQIAAAQK5EpBKcyVtPwQI5IVAeKuTu53yopMmQYBA7ASk0ti1REEECMRZILyw3t1OcW6Q2ggQSK6AVJrc3qmcAAECBAgQIJA/AlJp/vTSTAgQIECAAAECyRWQSpPbO5UTIBCBQOvWrQsKCiLYsV0SIEAg3wWk0nzvsPkRIJBVgYkTJ27dujWrQxqMAAECBP4lIJX6HhAgQIAAAQIECEQvIJVG3wMVECCQIIEaNWp4MlSC+qVUAgQSJCCVJqhZSiVAIHqBNWvWeDJU9G1QAQEC+SggleZjV82JAAECBAgQIJA0Aak0aR1TLwECkQo0a9bMGfxIO2DnBAjkrYBUmretNTECBLIosHbt2qFDh4YB58yZE87gv/POO9OnT8/i+IYiQIAAgUoICBAgQGCXAtWrVx87duzf/va3sOZvf/vbESNGTJo0aZdbWYEAAQIESi5Q4MF7JceyJgECaRb48ssvDzjggIoVK27evPn5558/66yz0qxh7gQIEMi6gDP4WSc1IAEC+Smw//77X3LJJSGSHnzwwSJpfvbYrAgQiFTAGfxI+e2cAIGsCixfvvyrr77K6pD/NVj37t2fffbZnj17Tps2rfz2UqdOnSZNmpTf+EYmQIBAPAWcwY9nX1RFgMDuCfzxj38cNmzYwoULd2+z3V973bp11apV2/3tdmOLSpUqhdv8zzjjjJ/97Ge7sZlVCRAgkHABx0oT3kDlEyCwxx733HPP448//sUXX2zatCk/PMLVq/PmzZs4ceLw4cPzY0ZmQYAAgV0KuK50l0RWIEAg1gK/+93vHnvssX/84x95E0kDd7h6NdxcNWrUqMsuuyzW+oojQIBA9gSk0uxZGokAgZwLhPd/PvXUU59//nnO95yLHS5evPizzz776KOPcrEz+yBAgEDUAlJp1B2wfwIEyiAQDpGuWrWqDAPEfdOZM2d++umnca9SfQQIEMiGgFSaDUVjECAQkUB401L4iWjnudjt6tWrlyxZkos92QcBAgSiFpBKo+6A/RMgUAaBDRs2VK5cuQwDxH3TcNvTihUr4l6l+ggQIJANAak0G4rGIEAgfQL169cfP358+uZtxgQIECgvAam0vGSNS4BAhAIbN268+eabtxXwyCOPFHNH1MUXXxweXB9W7tSpU3gJ87HHHpvZsKCgYMqUKeEG/wgnYtcECBBIj4BUmp5emymBFAksW7YsvIcpkzWbNWvWoUOHoiYfomdYs2bNmpkVpk6dOmDAgMzv3bp1K2orywkQIEAg6wJSadZJDUiAQPQC69evHzJkSK9evUIp4aDpvffem6mpSpUqjz766JgxY/7617+eeOKJYeGgQYM6duz48ssvd+nSJfw1HBwNN/WfcMIJ4e1Kffv2vf/++zMbXnTRRbfeemvm9/C60apVq0Y/SRUQIEAgvwSk0vzqp9kQIPAfgcGDB59zzjlHHXXUEUccMXLkyMzi8LLQ8GLS448/PgTWTFQN0XPSpEmnn356eGR9Zp3+/fuHw6XnnXfe6NGj58+fT5QAAQIEciPgjaO5cbYXAgRyLRBeWP/QQw+9+eab5557brhaNLP7f/7zn4cccsgll1xSo0aNunXrFlrT5MmTQxgdOHBgmzZt2rZtW+g6FhIgQIBA1gWk0qyTGpAAgbgIDB06tF27dm+88ca2E+49evTo2rXrVVddtWjRovCA+qIKDYdLw3HWHR4Umt+PoCqKwnICBAjkTMAZ/JxR2xEBArkW2LRp0+WXX779XmvXrh2uCg2RtH379tsOoO5c1vTp0++6667tl8+dO7dz587h6aENGzZs2rTpzptYQoAAAQJlFJBKywhocwIEYi2wQ/R85plnwpWm4bR+uLfpvffeu+yyy0L14ZcRI0bscLJ+hw3feuutBQsWfPzxx/369ctcbLp8+fItW7bcdNNNsZ6/4ggQIJAcgYJijhYkZxYqJUAgpQLPP/98nz59Zs+ena/zb9CgQe/evWXffO2veREgsL2AY6W+DwQIECBAgAABAtELSKXR90AFBAgQIECAAAECUqnvAAECBAgQIECAQPQCUmn0PVABAQIECBAgQICAVOo7QIAAAQIECBAgEL2Ap+hH3wMVECBQFoHmzZsfeOCBZRkhzttu2LBh/fr1ca5QbQQIEMiWgFSaLUnjECAQjcD//M///PSnP41m3+W/11deeWXevHnlvx97IECAQPQCUmn0PVABAQJlEQhvEw0P9SzLCHHetmbNmnEuT20ECBDIooDrSrOIaSgCBAgQIECAAIFSCkilpYSzGQECBAgQIECAQBYFpNIsYhqKAAECBAgQIECglAJSaSnhbEaAAAECBAgQIJBFAak0i5iGIkAgSQIrVqyYM2dO2SuePHly2QcxAgECBAhIpb4DBAjkm8CLL75Y8M1PpUqVTj311PDIz0JneMstt6xZs2bjxo0/+clPzv3mZ+LEiYWuOWzYsMaNG4eHNGU+/d3vfnfGGWe0a9fuvffeC0vCn88991yhG1pIgAABAiUXkEpLbmVNAgSSJDBhwoSQI//yl7+88cYbO9c9ZsyYJk2aHHzwwWPHjt26deuzzz7bu3fvX//61zuv+eabb44ePfqaa67JfBRS7KRJk0LwffLJJ2+//faw8IorrgipdPny5TtvawkBAgQIlFxAKi25lTUJEEiSQHjSZ+Zhn/Xq1duh7nXr1j388MPXX399WH744Yd//fXXCxcuHD9+/DHHHBOWDB48+PXXXw8p88c//nEIrG3atHn88ccrVqyYGaRy5coPPvhg+H3PPffMjBwOyoZ42r9//yTpqJUAAQLxE/AU/fj1REUECGRDIBwHDcOccsopBx100A7j3X333dddd13Il2F5nTp1wgtLe/ToEQ6ChsOfYcnl3/zcf//9jzzySEicdevWLbSce+65J2yV+Sjsa6+99gqHXY8++uhCV7aQAAECBHYp4FjpLomsQIBAIgVWrVq1du3aTz755IEHHthhAh06dBg3blxm4Z///OdGjRqFs/xPP/10nz59wsLVq1cvXbo0HAct5lWf4Vx/7dq1w0Wr20aeMWNGy5YtEymlaAIECMRDQCqNRx9UQYBAtgVCTJw+ffr69etr1aq1w9gnn3xySKuzZs0KyxcsWBBO04dfwp/h9/DLyJEjBw4cGI6bvvXWW5mPdth86NCh//jHP+64445ty5966qmuXbvm8YtPs90c4xEgQKAQAWfwC0GxiACBPBBo1apVmEWLFi3OP//8nacTMmU4Mhqi5wUXXHDhhReGe+rDg6JCGA1r9uzZM7P+rbfeGn4J0bZfv34hxYZz/S+//PKgQYPCnU+nnXbaeeedFz4Nt+eHDcM9VeFQ6857sYQAAQIESi4glZbcypoECCRDIETMQo9xbl99w4YNw9HNUaNGdenS5fnnny9mYuG8/PDhw7dfIVwbsP1ff/WrX21/3LSYoXxEgAABAsUISKXF4PiIAIG4C1SrVq1+/fqlq3LbMdHSbb5tq9tuu62MIxSzeY0aNYq63aqYrXxEgACBJAq4rjSJXVMzAQL/FmjWrNm2+5byEmXKlCkuV83LzpoUAQI7C0ilO5tYQoBAYgQOPfTQKlWqJKbc3S80PFo1zHH3t7MFAQIEkicglSavZyomQGCbQHjmaHgiad++ffPS5LHHHgsTPOKII/JydiZFgACBHQQKdnlPADICBAjEXCDcAv/aa6+Fe+r322+/mJdawvLmzp0b7sEKD/bPvICqhFtZjQABAokWkEoT3T7FEyDwb4G33377mWeemThxYniT08qVK8vPZfPmzdvePlp+ewkjd//mp1x3YXACBAjESkAqjVU7FEOAQJkENm3aNH/+/PCa0DKNUuzGxxxzzEsvvRQeLFXsWmX6MNx0v/OT/8s0oo0JECCQBAFPhkpCl9RIgEDJBCpVqtS8efOSrVvKtQ4//PCmTZuGl5SWcnubESBAgEARAu52KgLGYgIECBQmsGzZssIWW0aAAAECZRWQSssqaHsCBFIlMGfOnC1btqRqyiZLgACB3AhIpblxthcCBPJEIDy3v0IF/3LmSTdNgwCBWAn4tzVW7VAMAQJxF3CsNO4dUh8BAokVkEoT2zqFEyBAgAABAgTySEAqzaNmmgoBAuUvEB7U7wx++TPbAwECaRSQStPYdXMmQKDUArNmzXK3U6n1bEiAAIFiBKTSYnB8RIAAgR0FjjrqKMdKd0TxdwIECGRDQCrNhqIxCBBIjcCHH37oWGlqum2iBAjkVEAqzSm3nREgQIAAAQIECBQqIJUWymIhAQIEChcI7xp1Br9wGksJECBQNgGptGx+tiZAIGUCCxcudAY/ZT03XQIEciQgleYI2m4IEEi0wPr165csWRKm0LZt23CsdMOGDYsXL070jBRPgACBuAlIpXHriHoIEIijQNWqVS+55JJwq9MHH3ywaNGi733ve7Vq1YpjoWoiQIBAYgWk0sS2TuEECORW4JprrmndunW9evW6dOly4oknhpya2/3bGwECBPJcoGDr1q15PkXTI0CAQJYEjj766HHjxtWuXXvevHk1a9bM0qiGIUCAAIF/CThW6ntAgACBkgoMHDgwrHrllVeKpCUlsx4BAgRKLOBYaYmprEiAQJ4KvPzyy2/8+c+bt2z+cs7cXU5xwYIFDRs2rFixYqt8VxcAACAASURBVPFr7rtP44KCgs4ndunRo0fxa/qUAAECBDICUqlvAgECqRboee65W+fN2mPF8pqbN+1RkDWK8G/r6oqVtlSvsaBG7T//9bVq1aplbWgDESBAIE8FpNI8baxpESBQAoFLzz9v9ZQP99m8oQTrlnKVtQUVPqvX+K133y3l9jYjQIBAagRcV5qaVpsoAQL/LfCHYcPWfP5puUbSsMPqW7c0Xb7o9ltvxU+AAAECxQtIpcX7+JQAgbwVePWVP1dbuzoH06u7ZeNfX389BzuyCwIECCRaQCpNdPsUT4BA6QXWr1pda/PG0m9f4i0r7bHH3tWqzJkzp8RbWJEAAQJpFJBK09h1cyZAIAjMWrgwe3c37UJ05YaN4Z2lu1jJxwQIEEi3gFSa7v6bPQECpRI46+YBh3X+bqk2tREBAgQIFC4Qziz5IUCAAIF/C5x0xVWduvdYtXRpxcqV16xY/kTvq1cuXkSHAAECBHIg4FhpDpDtggCBJAmMevQ395592t0/+N70/xt7/EU/SlLpaiVAgECSBaTSJHdP7QQIlKfAnKlTatVvEPZQu0HDywcP7f3sC1cOfaruPk223+d5A3/Zom37sKRm/QbXDn++PMsxNgECBPJcQCrN8wabHgECpROoXLXqkSedPPOjiWHzM2/sP27Ecw+ce+Y7f3ji7JsHlG5AWxEgQIBA8QKuKy3ex6cECKRO4H8uvbz9mWc33P+A9559euyfng3zb9m+w6wpkzr3vLhipcoHtG6TOhETJkCAQE4EpNKcMNsJAQLJERg95NF3hz957PkXNjrgwK1btoTCt2zZMufjyVs2bw6/D7nq8h2mEu6LSs7kVEqAAIH4CjiDH9/eqIwAgQgF3n9u+KHHHb/Xvk1DDTM/nFC7YaPw58pFCxsd2GL7qpZ/vaBl+6PDkmaHHR5htXZNgACBPBCQSvOgiaZAgED2BTZv3Pjm44NP+WnvMPSIgb/ocFa36/70Urdb75gxflxYEg6dfv/a62o1aPD34U+F8Npr+Ihm3z4y+0UYkQABAmkSKNi6dWua5muuBAgQ+LdA+3btjlm1uEJBLl7wNKVe48FPDGvZsiV9AgQIEChKwLHSomQsJ0AgzwWqVamSsxlWykn2zdl07IgAAQLlISCVloeqMQkQSIBA1SqVN1SomJtC/7lpc+PGjXOzL3shQIBAQgWk0oQ2TtkECJRVoPVRrVflJJWuK6iwT6NGNWvWLGvFtidAgEBeC0iled1ekyNAoGiBK66++qva9Yv+PGufzK1R+/yePbM2nIEIECCQpwJSaZ421rQIENiVwIEHHnj7oLs/26t8T6x/UaPOyd17nNWt267K8TkBAgTSLuAe/LR/A8yfQMoFXv3zn4cOHvzPpUv2XLViY/buSaq8dY81NWrWrFu3y2mnXXH1T1OObPoECBAoiYBUWhIl6xAgkM8C4QF5kydP/vLLL1evXr3Lefbv3//666+vXbt28WtWq1Zt3333Peigg+rVq1f8mj4lQIAAgYyAVOqbQIAAgd0QOO2004YOHdqoUaPd2MaqBAgQIFACAdeVlgDJKgQIEPiPwIQJE7Zs2cKDAAECBLIuIJVmndSABAjks0CTJk0qVPAvZz632NwIEIhKwL+tUcnbLwECiRSYP3++Y6WJ7JyiCRCIvYBUGvsWKZAAgTgJNGvWzLHSODVELQQI5I+AVJo/vTQTAgRyIDBnzhzHSnPgbBcECKRQQCpNYdNNmQCB0gu0a9fOsdLS89mSAAECRQtIpUXb+IQAAQI7CYwfP96x0p1ULCBAgEAWBKTSLCAaggCB9AjUqlXLsdL0tNtMCRDIpYBUmktt+yJAIPEC//znPx0rTXwXTYAAgVgKSKWxbIuiCBAgQIAAAQIpE5BKU9Zw0yVAoGwCbdu2dQa/bIS2JkCAQOECUmnhLpYSIECgUIEPPvjAGfxCZSwkQIBAGQWk0jIC2pwAgVQIbNq0KTPPww47LHOsdP369amYuUkSIEAgVwJSaa6k7YcAgSQLVKpUqWfPnsuWLfvkk0/CsdJevXqtXr06yRNSOwECBGInIJXGriUKIkAgngInnHBC69atwxtHzz777BBJ99prr3jWqSoCBAgkVKBg69atCS1d2QQIEMixQPPmzcMbR8NOZ8+eHeJpjvdudwQIEMhvAcdK87u/ZkeAQDYFbr311jDcBRdcIJJmk9VYBAgQ+EagEgcCBAjkh8DEiRM//fTTxYsXb9y4sfxmtN9+++2777733Xdf+e2iYcOGBx100NFHH11+uzAyAQIEYijgDH4Mm6IkAgR2TyDcIH/hhRd+9tlnCxcuXLduXdKfJxrqb9KkSYMGDZ544onGjRvvnoW1CRAgkFgBqTSxrVM4AQL/Efj+97//7rvvhneB5hNJlSpVwuHSZ599VjDNp7aaCwECxQi4rrQYHB8RIJAAgUsvvfT999/Ps0ga3Dds2DB27Nju3bsnoAdKJECAQDYEpNJsKBqDAIGIBMJVpFOnTl2+fHlE+y/f3YZgunTp0nfeead8d2N0AgQIxENAKo1HH1RBgECpBEIkLdd7m0pVVDY3ClfKhutlszmisQgQIBBXAak0rp1RFwECJRAIx0rDTwlWTOoqmzdvDsE0qdWrmwABArsjIJXujpZ1CRAg8B+B+vXrjx8/ngcBAgQIZEtAKs2WpHEIEIiRQDitf/PNN28r6JFHHvn888+Lqu/iiy+uU6dO+LRTp07hdXfHHntsZs2CgoIpU6Y89thjRW1oOQECBAhkUUAqzSKmoQgQiIvAsmXLwt3rmawZ3sPUoUOHoioL0TOsWbNmzcwK4ULVAQMGZH7v1q1bUVtZToAAAQJZF5BKs05qQAIEohdYv379kCFDevXqFUoJB03vvffeTE3hIaCPPvromDFj/vrXv5544olh4aBBgzp27Pjyyy936dIl/DUcHF21atUJJ5wQHmXft2/f+++/P7PhRRddlHndaPjrtGnTqlatGv0kVUCAAIH8EpBK86ufZkOAwH8EBg8efM455xx11FFHHHHEyJEjM4urVas2bNiw448/PgTWTFQN0XPSpEmnn376qFGjMuv0798/HC4977zzRo8ePX/+fKIECBAgkBuBSrnZjb0QIEAgxwLh1aMPPfTQm2++ee6554arRTN7Dw/bP+SQQy655JIaNWrUrVu30JImT54cwujAgQPbtGnTtm3bQtexkAABAgSyLiCVZp3UgAQIxEVg6NCh7dq1e+ONN7adcO/Ro0fXrl2vuuqqRYsWzZw5s6hCw+HScJx1yZIl269QuXLlota3nAABAgTKLuAMftkNjUCAQEwFNm3adPnll29fXO3atcNVoSGStm/fftsB1J2rnz59+l133bX98rlz53bu3LlixYoNGzZs2rTpzptYQoAAAQJlFJBKywhocwIEYi2wQ/R85plnwpWm4bR+uLfpvffeu+yyy0L14ZcRI0bscLJ+hw3feuutBQsWfPzxx/369ctcbBpec7ply5abbrop1vNXHAECBJIjUFDM0YLkzEKlBAikVOD555/v06fP7Nmz83X+DRo06N27t+ybr/01LwIEthdwrNT3gQABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEohfwFP3oe6ACAgTKIlCpUqWaNWuWZYQ4bxue/x+ePxXnCtVGgACBbAlIpdmSNA4BAtEIhDeIhvfaR7Pv8t/r4sWLw7sAyn8/9kCAAIHoBaTS6HugAgIEyiLQqVOnPH6cZ3gg62effVYWH9sSIEAgKQKuK01Kp9RJgAABAgQIEMhnAak0n7trbgQIECBAgACBpAhIpUnplDoJECBAgAABAvksIJXmc3fNjQABAgQIECCQFAGpNCmdUicBAgQIECBAIJ8FpNJ87q65ESBQjMCKFSvmzJlTzAol/Gjy5MklXNNqBAgQIFCMgFRaDI6PCBBIpMCLL75Y8M1PeMD+qaeeumHDhkKnccstt6xZsyZ8NGzYsMaNG7/yyiuZ1caNG3fWWWd16NDhN7/5TaEbPvDAA+eee263bt3+8Ic/hBXee++95557rtA1LSRAgACBkgt4XmnJraxJgECSBCZMmLBo0aKTTz75jTfeCNl0h9LHjBnTpEmTgw8++M033xw9evQ111yzbYURI0aEnFqjRo3w6RVXXFGhwn/97z28aWno0KFTpkxZv359x44de/ToEdYJIfWkk06qW7dukoDUSoAAgZgJOFYas4YohwCBLAmE15Bm3kRar169HYZct27dww8/fP3114flbdq0efzxxytWrLhtnbvvvjtsGMJoOIAa/gwr/+hHPwoZ9IknnnjppZfCkgMOOGDGjBkhmB555JFhq3BQ9vbbb+/fv3+WCjcMAQIEUirgWGlKG2/aBPJeIBzpDHM85ZRTDjrooB0mG3LnddddV7ly5bC8qAOc4aVKxxxzTFihWrVq//u//xvGOfroo++8886w5LzzzrvgggvCi0DvueeezMhhX3vttdfYsWPDOnkPa4IECBAoJwHHSssJ1rAECEQssGrVqrVr137yySfhMtAdSgnXjIaLR4upL3wajowOHDgws84XX3zRtGnTuXPnhiS6ZMmSp59++v333x8/fnw4Prp58+bMOuHoacuWLYsZ00cECBAgULyAVFq8j08JEEiqQIiJ06dPD2fea9WqtcMcwsWmIa3OmjWr0Ll9+OGH4Yx8iJ6Zg6nhDH4YJ1xpGq4fHTVq1OLFizdu3JjZcOnSpWH88PtTTz3VtWvXBg0aFDqghQQIECBQEgFn8EuiZB0CBJIn0KpVq1B0ixYtzj///J2rv+OOO/r06fPkk0+GxNmvX78QUuvUqfPyyy8PHjz40ksv3WeffS677LKw1Q033BDGCXfrh987deqUGad169Yh14ZsGnJquCkq5NS//OUvIcXuvBdLCBAgQKDkAlJpya2sSYBAMgTOOOOMrVu3Fl9rw4YNw9HNcOyzS5cuw4cP337liRMnFr9t5urSbev86le/Chm3+E18SoAAAQK7FJBKd0lkBQIE4isQzs5nbrQvRYk9e/YsxVY7b3LbbbftvDBbS8It/yFAZ2s04xAgQCDOAq4rjXN31EaAwC4Ews3vb7/99i5WSvLHH3zwQfPmzZM8A7UTIECgpAJSaUmlrEeAQAwF9ttvv3333beo+5ZiWPDuljR79uzOnTvv7lbWJ0CAQBIFpNIkdk3NBAj8/wJ9+/YNtyuFO+XzD6V3797hhqrq1avn39TMiAABAjsLFOzynoCdt7GEAAECsRJYsGDB2WefHe6d33///cOh0/BS0FiVt7vFrFy58uOPPw4PBLjxxhvDo1V3d3PrEyBAIKECUmlCG6dsAgR2FAiPFA1hbsWKFatXr97xs+z9PSTgRo0ahZuQsjfkjiM1adIkxOtzzjnHA1B3pPF3AgTyWkAqzev2mhwBAtkWCA9ADS92CsE02wMbjwABAmkXKMf/7qed1vwJEMhHgTVr1iT9CoF8bIs5ESCQDwJSaT500RwIEMiZQLt27QoKCnK2OzsiQIBAegSk0vT02kwJEMiCwPjx490kmgVHQxAgQGAnAal0JxILCBAgULSAY6VF2/iEAAECZRKQSsvEZ2MCBNIm4Fhp2jpuvgQI5ExAKs0ZtR0RIJAPAgcccEC5PhYqH4zMgQABAqUSkEpLxWYjAgTSKjBz5kz34Ke1+eZNgED5Ckil5etrdAIECBAgQIAAgZIISKUlUbIOAQIE/i1wxBFHOIPv20CAAIHyEJBKy0PVmAQI5K3AlClTnMHP2+6aGAECkQpIpZHy2zkBAkkTOPjggx0rTVrT1EuAQDIEpNJk9EmVBAjEROCzzz5zrDQmvVAGAQJ5JiCV5llDTYcAAQIECBAgkEgBqTSRbVM0AQI5Fli7du3QoUPDTuvWrRvO4L/zzjvTp0/PcQ12R4AAgfwWqJTf0zM7AgQIZEWgevXqY8eO/dvf/rZ8+fLf/OY3I0aMmDRpUlZGNggBAgQIZAQKtm7dyoIAAQIEdinw5Zdfhhc7VaxYcfPmzc8///xZZ521y02sQIAAAQIlF3AGv+RW1iRAINUC+++//yWXXBIiabgNXyRN9VfB5AkQKB8BZ/DLx9WoBAgkTaAkN9d379792Wef7dmz57Rp03Y5vwMPPLBq1aq7XM0KBAgQIJARcAbfN4EAgVQLLF269M7+/f82dmyLurWWr9uwS4t169ZVq1Ztl6vVqVpl9qrV3275rWv69j3yyCN3ub4VCBAgQEAq9R0gQCC9AsuWLfvBqd8/aMXi2ls3l4fCuj0KZtRpePu993Xo1Kk8xjcmAQIE8klAKs2nbpoLAQK7IRAehn90hw6dVi/ZjW1KterHdRs98Ojj3/72t0u1tY0IECCQFgF3O6Wl0+ZJgMAOAvcOuuugtStzwHLgisUP33tvDnZkFwQIEEi0gFSa6PYpngCB0gu88/bbNbZuKf32Jd4y7GXi1KneU1piMCsSIJBSAak0pY03bQIEKu5RUGPLptw4NKtZY+bMmbnZl70QIEAgoQJSaUIbp2wCBMoqMH/Jkpy9RGTFho1eWVLWhtmeAIF8F5BK873D5keAQDkInHXzgMM6f7ccBjYkAQIE0ivgKfrp7b2ZEyCws8BJV1zVqXuPVUuXVqxcec2K5U/0vnrl4kU7r2YJAQIECGRdwLHSrJMakACBZAuMevQ395592t0/+N70/xt7/EU/SvZkVE+AAIHkCEilyemVSgkQyK3AnKlTatVvEPZZu0HDywcP7f3sC1cOfaruPk22r+K8gb9s0bZ9WFKzfoNrhz+f2wLtjQABAnklIJXmVTtNhgCBbAlUrlr1yJNOnvnRxDDgmTf2HzfiuQfOPfOdPzxx9s0DsrUL4xAgQIDA9gKuK/V9IECAwH8J/M+ll7c/8+yG+x/w3rNPj/3Ts+Gzlu07zJoyqXPPiytWqnxA6za8CBAgQKA8BKTS8lA1JgECCRYYPeTRd4c/eez5FzY64MCtW/71mP3wAPw5H0/esnlz+H3IVZfvMLdwX1SCZ6t0AgQIxEbAGfzYtEIhBAjESeD954Yfetzxe+3bNBQ188MJtRs2Cn+uXLSw0YEtti9z+dcLWrY/OixpdtjhcSpfLQQIEEiegFSavJ6pmACBHAhs3rjxzccHn/LT3mFfIwb+osNZ3a7700vdbr1jxvhxYUk4dPr9a6+r1aDB34c/FcJrr+Ejmn37yBxUZRcECBDIY4ECrxvJ4+6aGgECxQi0b9fumFWLKxQUFLNOtj6aUq/x4CeGtWzZMlsDGocAAQL5J+BYaf711IwIECiRQPNGDXMRSL+ppW7VKhUq+Pe2RH2xEgECqRXwr2RqW2/iBNIusLVCxVUVc3HH59Y99pi1ctWBBx6YdnHzJ0CAQLECUmmxPD4kQCB/BY4/4YQ1e1TMwfxWF1Q4tn27HOzILggQIJBoAdeVJrp9iidAoEwCx3Y8ptXyhVX2CEczy/FnYp1GT//p+X333bcc92FoAgQIJF/AsdLk99AMCBAorcDov435oGb9JRUqry+He5427lGwoqDixLp7P/r4EJG0tC2yHQECKRJwrDRFzTZVAgQKFRh0x+1vjBrVuG7deUuWFrrC9gs3bdpUqdKur0bdZ696cxct7nTMMX369m3UqNEuh7UCAQIECEilvgMECBD4l8CyZcs2f/P2puJ/WrVq9cYbb5QkaDZo0KD4oXxKgAABAtsL7Pp//LwIECCQBoF69eqVZJqHHHJIiJsSZ0msrEOAAIHdEnBd6W5xWZkAgbQLrF+/Pu0E5k+AAIHyEZBKy8fVqAQI5KnAjBkztmzZkqeTMy0CBAhEKSCVRqlv3wQIJE6gRYsW3tKUuK4pmACBRAhIpYlokyIJEIiLgGOlcemEOggQyDsBqTTvWmpCBAgQIECAAIEECkilCWyakgkQiE6gcePGBeXwyP3oJmTPBAgQiIuAVBqXTqiDAIFECCxYsGDr1vJ9Q2kiHBRJgACBrAtIpVknNSABAvks0KZNG3c75XODzY0AgegEpNLo7O2ZAIEECkyYMMGToRLYNyUTIJAAAak0AU1SIgECBAgQIEAg7wWk0rxvsQkSIJBNgVq1ajmDn01QYxEgQOA/AlKp7wIBAgR2Q+Cf//ynM/i74WVVAgQIlFhAKi0xlRUJEEixwPr168Pd9wEgc7fTmjVrFi5cmGIPUydAgED2BaTS7JsakQCB/BOoWrXqBRdcMHLkyHC30+TJkzt16lSnTp38m6YZESBAIEIBqTRCfLsmQCBJAjfccMOZZ54ZKj7ppJPOPvvskFOTVL1aCRAgEHuBAo+Djn2PFEiAQFwEjj766HHjxtWuXXvevHk1a9aMS1nqIECAQF4IOFaaF200CQIEciIwcODAsJ8rr7xSJM2Jt50QIJAuAcdK09VvsyWQrwIrV6588MEHP/rooyVLlmzatKn8phnuc6pevXpBQUH57aJRo0bNmjW7/PLLv/3tb5ffXoxMgACBuAlIpXHriHoIENhtgQ8//PB///d/p0+fvm7dug0bNuz29jHboGLFiuFYbIsWLa699trzzz8/ZtUphwABAuUlIJWWl6xxCRDIjcDHH3980UUXTZw4MTe7y+VeDjnkkJtuuqlnz5653Kl9ESBAICoB15VGJW+/BAhkR6Bfv37hxH12xorZKJ9++unQoUO/+uqrmNWlHAIECJSLgFRaLqwGJUAgNwLhrP38+fPz+GVL4Wb/8ITU3GDaCwECBKIVkEqj9bd3AgTKJBBS6erVq8s0RLw3Djdvhdgd7xpVR4AAgewISKXZcTQKAQKRCIRIGl5MH8muc7PTChUqLF68ODf7shcCBAhEKyCVRutv7wQIJFWgfv3648ePT2r16iZAgED8BKTS+PVERQQIlFlg48aNN99887ZhHnnkkc8//7yoUS+++OLMS+3D2+3D6+6OPfbYzJrhoaRTpkx57LHHitrQcgIECBDIooBUmkVMQxEgEBeBZcuWde/ePZM1wxPpO3ToUFRlIXqGNbe9q2nq1KkDBgzIrNytW7eitrKcAAECBLIuIJVmndSABAhEL7B+/fohQ4b06tUrlBIOmt57772ZmqpUqfLoo4+OGTPmr3/964knnhgWDho0qGPHji+//HKXLl3CX8PB0VWrVp1wwgnhgs6+ffvef//9mQ3DI1FvvfXWzO/Tpk2rWrVq9JNUAQECBPJLQCrNr36aDQEC/xEYPHjwOeecc9RRRx1xxBEjR47MLK5WrdqwYcOOP/74EFgzUTVEz0mTJp1++umjRo3KrNO/f/9wuPS8884bPXq0+999oQgQIJAzgUo525MdESBAIJcC4e2jDz300JtvvnnuueeGq0Uzuw437IcXJl1yySU1atSoW7duofVMnjw5hNGBAwe2adOmbdu2ha5jIQECBAhkXUAqzTqpAQkQiItAeDFSu3bt3njjjW0n3Hv06NG1a9errrpq0aJFM2fOLKrQcLg0HGcNzwrdfoXKlSsXtb7lBAgQIFB2AWfwy25oBAIEYiqwadOmyy+/fPviateuHa4KDZG0ffv22w6g7lx9eDj/XXfdtf3yuXPndu7cuWLFig0bNmzatOnOm1hCgAABAmUUkErLCGhzAgRiLbBD9HzmmWfClabhtH64t+m999677LLLQvXhlxEjRuxwsn6HDd96660FCxZ8/PHH/fr1y1xsunz58vCm05tuuinW81ccAQIEkiNQUMzRguTMQqUECKRU4Pnnn+/Tp8/s2bPzdf4NGjTo3bu37Juv/TUvAgS2F3Cs1PeBAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF/AU/eh7oAICBMoisOeee+63335lGSHO24bn/2/cuDHOFaqNAAEC2RKQSrMlaRwCBKIRCC+1/973vhfNvst/rxMmTKhQwUmt8oe2BwIEYiAglcagCUogQKAMAs2aNfvhD39YhgFivenmzZs/++yzWJeoOAIECGRJwH/BswRpGAIECBAgQIAAgTIISKVlwLMpAQIECBAgQIBAlgSk0ixBGoYAAQIECBAgQKAMAlJpGfBsSoAAAQIECBAgkCUBqTRLkIYhQCBpAitWrJgzZ87uVr1q1aqZM2fu7lbWJ0CAAIFdCkiluySyAgECCRN48cUXC775qVSp0qmnnrphw4ZCJ3DLLbesWbMmPA30Jz/5ybnf/EycOLHQNYcNG9a4ceNXXnklfBqe03Tddddt2rSp0DUtJECAAIFSC0ilpaazIQECsRYIT/oMOfIvf/nLG2+8sXOhY8aMadKkycEHHzx27NitW7c+++yzvXv3/vWvf73zmm+++ebo0aOvueaazEc1atS48sor77vvvp3XtIQAAQIEyiIglZZFz7YECMRXoOY3P6G+evXq7VDlunXrHn744euvvz4sP/zww7/++uuFCxeOHz/+mGOOCUsGDx78+uuvL1++/Mc//nEIrG3atHn88ccrVqy4bZAuXbrMmjVrxowZ8Z28yggQIJBAAU/RT2DTlEyAQAkEwnHQsNYpp5xy0EEH7bD63XffHc7CV65cOSyvU6fOgQce2KNHj3Aq/8knnwxLLv/m5/7773/kkUfCZQB169bdeW933HHH1Vdf/fTTT+/8kSUECBAgUDoBx0pL52YrAgTiLhBuS1q7du0nn3zywAMP7FBrhw4dxo0bl1n45z//uVGjRuEsf4iYffr0CQtXr169dOnScIR13rx5RU3y008/PeSQQ4r61HICBAgQKIWAVFoKNJsQIJAAgXCGffr06evXr69Vq9YO5Z588skhrYaz8GH5ggULwmn68Ev4M/wefhk5cuTAgQPDcdO33nor89EOm4fbqJfGUAAAGKNJREFUp8KR1BtuuCEBCkokQIBAcgScwU9Or1RKgMDuCLRq1Sqs3qJFi/PPP3/n7cIp+HBkNETPCy644MILLzzjjDPCg6JCGA1r9uzZM7P+rbfeGn4J0bZfv34hxYZz/S+//HK46nTQoEG9evWqUqXKzsNaQoAAAQKlFpBKS01nQwIEYioQImahxzi3L7dhw4Zdu3YdNWpUuHXp+eefL2YmLVu2HD58+LYVwn1RIb8ee+yxxWziIwIECBAohYBUWgo0mxAgEBeBcGt85qalUhS07Zjobm0bLkLN5WOhwgTDU1d3q0IrEyBAIKECritNaOOUTYDAvwTCIc+5c+fmscX8+fMbNGiQxxM0NQIECGwTkEp9GQgQSLDAoYceGnJbgiewq9LDcwAyj7ja1Yo+J0CAQOIFpNLEt9AECKRZYK+99mrduvUf//jHvESYNm1aeFBAp06d8nJ2JkWAAIEdBKRSXwkCBJItcOONN4aXi/7pT39K9jR2qv7DDz8MF7CGW/53+sQCAgQI5KdAwS7vVM3PeZsVAQL5JRCe9DRz5szw6Pv99tsvPE800ZMLD///6KOPGjdufM8991SvXj3Rc1E8AQIESi4glZbcypoECMRaIFyC+fnnn4eX2m/evLn8Cu3fv//1119fu3bt8ttF/fr1w7Wk+++/f/ntwsgECBCIoYBUGsOmKIkAgfgK7LPPPuHcejiQGd8SVUaAAIFkCriuNJl9UzUBAgQIECBAIL8EpNL86qfZECBQzgLt2rWrUMG/nOWsbHgCBFIp4N/WVLbdpAkQKK3A+PHjt2zZUtqtbUeAAAECRQpIpUXS+IAAAQI7C1SrVq2goGDn5ZYQIECAQBkFpNIyAtqcAIF0Cey9995SabpabrYECORKQCrNlbT9ECCQFwLhZUvO4OdFJ02CAIHYCUilsWuJgggQiLNAeCaUY6VxbpDaCBBIroBUmtzeqZwAgQgEFixY4JV4EbjbJQECKRCQSlPQZFMkQIAAAQIECMReQCqNfYsUSIBAnASaNGnieaVxaohaCBDIHwGpNH96aSYECORAYP78+e52yoGzXRAgkEIBqTSFTTdlAgRKL9C2bVvHSkvPZ0sCBAgULSCVFm3jEwIECOwk8MEHHzhWupOKBQQIEMiCgFSaBURDECBAgAABAgQIlFFAKi0joM0JEEiXgOeVpqvfZkuAQA4FpNIcYtsVAQLJFyjd80o/++yznj17Jn/2ZkCAAIFyFJBKyxHX0AQI5J/AwQcfnJu7nXr37n3sscee8s1PjRo1ipJ86KGH9t1339/+9rdFrWA5AQIEkiIglSalU+okQCAWAuGo5853O51++ulff/11qO8Xv/jFiy++GH5p06bNz372syOPPPK2227bvu4777zzjjvuKOFMQtZ89dVX77rrrpNPPjlsMnv27CuuuCK8Wer9998fMGBAWPLwww9/+eWX119/fQkHtBoBAgTiLFApzsWpjQABAgkVWLJkyc9//vMQKFu0aNG3b9/MLF577bWJEyc+99xzJZnUPffcU7FixbBmiJ5XXXVV+KV58+YdO3Y855xzVq1alRmke/fuDRo0CIdLSzKgdQgQIBBzAcdKY94g5REgEC+BEj6vtOE3P5UqVQqHSxcvXhzmMGvWrB49egwcOLCgoKAkUwrbhjWXLl364YcfnnjiiZlNWrVq9cUXXxxwwAE1a9YMS0IkLclQ1iFAgEAiBKTSRLRJkQQIxEWgqOeVbt68udASQ7jMLA/n3++7775wBr/Q1YpaOGTIkEsuuSTz6Zw5c2688cbRo0eHbFryywCKGtlyAgQIxE1AKo1bR9RDgEDyBPbee+8JEyaEuqdNm1ZU9ccdd9xFF10UbuEfN25cUevssDxcwPrkk09eeOGFmeVNmzYNJ+7r1KkTri699tprSziI1QgQIJAUAak0KZ1SJwECsRAo9HmlV199dbjl6Nxzzw23IhVfZbhatE+fPrtcLTPIK6+8ErJs7dq1M38NJ/QzJ+7DX2vVqhX+fP3110866aRf//rXDz74YPhlxowZxe/dpwQIEIizQEEJ/3GM8xzURoAAgZwJ7LPPPuFCz5BNc7ZHOyJAgEBKBNyDn5JGmyYBAtkRyMrzSl944YWhQ4duK+jUU09duHDh+PHjty254YYbOnXqlJ2KjUKAAIGECDhWmpBGKZMAgXgIOFYajz6oggCBPBRwXWkeNtWUCBAgQIAAAQKJE5BKE9cyBRMgEKVAeP5obt44GuUk7ZsAAQJRCEilUajbJwECiRWYPHnyzm8cTexsFE6AAIEYCUilMWqGUggQiL/AIYccUsKXM8V/LiokQIBArASk0li1QzEECMRd4NNPP/VAvbg3SX0ECCRTQCpNZt9UTYAAAQIECBDILwGpNL/6aTYECBAgQIAAgWQKSKXJ7JuqCRAgQIAAAQL5JSCV5lc/zYYAgXIWCC+g92SocjY2PAECKRWQSlPaeNMmQGC3BDZt2pRZP6TSzC/r16/frRGsTIAAAQLFC0ilxfv4lAABAv8SqFSpUs+ePZctWzZ//vzwvNJevXqtXr0aDQECBAhkUUAqzSKmoQgQyGeBE044oXXr1i1atDj77LNDJN1rr73yebbmRoAAgZwLFHjwXs7N7ZAAgaQKNG/efM6cOaH62bNnN2vWLKnTUDcBAgRiKeBYaSzboigCBGIpcOutt4a6evToIZLGsj+KIkAg2QKVkl2+6gkQIFACgZkzZ06dOvXrr79evnx5CVYvbpX99tuvadOm9913X3Er7eqzPffcs0GDBgcffPARRxyxq3V9ToAAgbQIOIOflk6bJ4HUCjz66KNffPFFeHl9iIBr166Ng0P16tU///zzUEyVKlVuu+22OJSkBgIECEQuIJVG3gIFECBQjgJPP/10eHN97969y3EfZRj6xRdf/Mc//nHnnXeWYQybEiBAIE8EXFeaJ400DQIEdhYYNWrUBx98ENtIGgo+44wzwiWqDz300M7FW0KAAIG0CUilaeu4+RJIkcAf/vCHs846K+YTDs+ZGj58eMyLVB4BAgRyICCV5gDZLggQiEYgPMUp3FEUzb5LvNfKlSsfdNBB4TLTEm9hRQIECOSngFSan301KwIEVq1atXHjxvBOpvhThJufli5dGv86VUiAAIFyFZBKy5XX4AQIxFrgO9/5TqzrUxwBAgTSJCCVpqnb5kqAQG4Fwu3/J5544pFHHvmDH/xg3rx5ud25vREgQCBhAlJpwhqmXAIEEiTQt2/f22+/fdKkSR06dBg0aFCCKlcqAQIEci8glebe3B4JEIhSIByz/P73v3/cccc9+OCDmTrC5ac///nPv/vd755wwgnvvPNOWPjSSy9deeWV55133uGHH/7EE0+EJeEq1SuuuCIc8jzttNOmTJkSlixYsOCcc87p0qXLD3/4w7lz5xY6pfC01I4dO4YH+Hfu3HnJkiWFrmMhAQIECGQEpFLfBAIE0iUQ3mXfrVu3kD5DUtywYUOY/JNPPhmC4+jRo5999tmrrrpq/fr1YWG4fz9kyrBwwIABW7ZsCY8+rVevXkirv/3tb8MvYYWbbrqpR48eYflll10WjokWihjeLJpZ/uqrr4bUW+g6FhIgQIBARkAq9U0gQCBdAuPHj+/evXuYc+vWrcMLP8MvY8aMCX+GuPnCCy+Ee/anT58e/nrUUUeFqLr33nuHt94vX748HDR9880377777tmzZ4clYYW///3v4RDp4MGDZ86cOW7cuGIQX3nllcmTJ1944YXFrOMjAgQIEEjAM1M0iQABAlkU2Lx5c4ib2w+4devWQw455LDDDgsLf/Ob34SXLc2YMWPbCpnk+q1vfSscN3399dd/+ctfhpP4l156acWKFcMt/JknT4XH9RdVYTi8+sgjjzzzzDNVq1Ytah3LCRAgQCAIOFbqa0CAQLoE2rZt+9xzz4U5f/jhh5kz+OEa008++SQsb9Wq1dtvv127du2dRSZMmDBt2rTwHqZevXqFt5iGFdq3b//111+H25jC8dTwLvudNwlLwiUBQ4cODbvLnPQvdB0LCRAgQCAjIJX6JhAgkC6B22677amnngo3NoUT95njoBdffHE4XBqyabje9Nvf/nahHPvss0+4Oyrc2BRSZrj2NKxz1113hQtPw9Wi119/fadOnQrd6oYbbli4cOGZZ54Zng8VflauXFnoahYSIECAQBAoCP8WgyBAgED+CYS75k899dSRI0fGf2ohvP7oRz8Kh13jX6oKCRAgUH4CristP1sjEyCQIoHwXNLMU6Uycw4Xpw4ZMiRF8zdVAgQIlFlAKi0zoQEIEIilQHi5fDjtnrPS+vXrV+p91fzmp9Sb25AAAQL5IeC60vzoo1kQILCjQLhHPtxrn3nM046fxezv77777qGHHhqzopRDgACBXAtIpbkWtz8CBHImEB7hlLlfPmd7LMWOwrNOw/WvFSr417gUeDYhQCCvBPw7mFftNBkCBLYXCO9eCq9oCs/Gjy1LOJQbburv379/bCtUGAECBHIm4B78nFHbEQEC0Qhcd9114ZGidevWDY/K37RpUzRF/Pdew7P3v/zyyyVLloQDpb///e+rVasWh6rUQIAAgWgFpNJo/e2dAIFcCPztb3+bOHHi6tWr582bl4v97Wof9evX33PPPcND+8O5+12t63MCBAikRUAqTUunzZMAAQIECBAgEGcB15XGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizwP8HG/sk2ig7ZrwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAAKhCAIAAABsDUxeAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu3de/zX8/0/fu/OpaMOksqh5jiajhSxjzSGGS4RyWGGzzAqtpxKQ2TO+7I11CYmZhJmhmRh1CdFJTElHaVzrfPx95jX1q/V+/3u3fv9er+ez+freX3/0eXd8/V8Pp73x/X+unS59TwWbN26dQ8/BAgQIECAAAECBCIVqBDp3u2cAAECBAgQIECAwL8EpFLfAwIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6Aak0+h6ogAABAgQIECBAQCr1HSBAgAABAgQIEIheQCqNvgcqIECAAAECBAgQkEp9BwgQIECAAAECBKIXkEqj74EKCBAgQIAAAQIEpFLfAQIECBAgQIAAgegFpNLoe6ACAgQIECBAgAABqdR3gAABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEoheQSqPvgQoIECBAgAABAgSkUt8BAgQIECBAgACB6AWk0uh7oAICBAgQIECAAAGp1HeAAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF5BKo++BCggQIECAAAECBKRS3wECBAgQIECAAIHoBaTS6HugAgIECBAgQIAAAanUd4AAAQIECBAgQCB6gUrRl6ACAgQIZEPgk08+mTp16pIlSypUSPb/t/faa6+WLVt+5zvfyYaKMQgQIJAYgYKtW7cmpliFEiBAoDCBdevWXXvttRs2bNhvv/3q1q1b2CpJWlZQUPDRRx+Ff5wHDBiw//77J6l0tRIgQKAMAlJpGfBsSoBADARCJL3qqqsuuOCCPDu4GA76Dho0qF+/fiFqx4BZCQQIECh3Aam03IntgACBchW44oorunfvnmeRNCO2Zs2a88477+233y5XQIMTIEAgJgLJvvoqJojKIEAgKoFp06aFE/d5GUkDaY0aNbp27frCCy9ExWu/BAgQyKWAVJpLbfsiQCDLAp9++mnz5s2zPGichjvggAM+/vjjOFWkFgIECJSXgFRaXrLGJUAgBwKLFi0Kd6znYEdR7aJ+/fphjlHt3X4JECCQSwGpNJfa9kWAQK4FHnrood///vflt9eRI0eGG5LKb3wjEyBAID0Cnleanl6bKQEC2Rc47bTTwqWfZRl37Nix1apVy9dLY8siY1sCBNIm4Fhp2jpuvgQIZFOgUqVK4Z6ksoz4/vvvf/7552UZwbYECBDIDwHHSvOjj2ZBgMB/Cfz6178ePHjwt771rRYtWtSpUyd8tmDBgmuuuWbp0qU1a9Z8+OGHmzZt2rdv3+rVq48fP/6rr7569NFH27ZtG+6duu2221asWNGgQYMHH3ywXr16w4YNe+yxx8LLosLDp37yk5/srPzSSy998MEHYaudRwsfvfbaa4sXLw7DduvW7ZZbbpkzZ054tGpYHsa57rrrvv/9769cuXLIkCFVq1YNNYTydh7fEgIECKRHQCpNT6/NlEBaBP7xj388+eST4TGftWvX7tmz52GHHRZmftNNN/Xo0eOMM8545ZVXQoL8wx/+EBaGOBj++uKLL/7yl7/84x//GAJieD7o6aefPmnSpHAENKTJp5566vXXX69YseKpp57asWPHVq1aFYO4w2hhzblz544YMWLt2rVnnXXWe++916xZsx02P/PMM8PDrUJ6DrG1mJF9RIAAgTQIOIOfhi6bI4F0Cfzf//3fKaecEl49Go5xtm/fPjP5v//97yEjhgOoM2fOHDduXGZhmzZtwi/HH3/8vHnzwi/t2rV74IEHwjohkoaIGXJtOM76xBNPDB06NPwSLgAt3nGH0cLKIcWGRBuOzoY0vG2nxQ/iUwIECKRWwLHS1LbexAnkrcCWLVvCq+R3mF5Ih+GOonAZaFieOVC6bYXKlStnfj/nnHM6der06quvhiOsIYmGN9GHE/1HHXVU+DT8GX4vCdm20XZYOVQVlmzcuLEkg1iHAAECKRRwrDSFTTdlAnkuEK4QDckyXLIZYuW2I5ThoOnXX3/doUOHvffeO5ziL5QgnG0PsfXHP/7xD37wg4kTJx533HHhCfaHH3542CpcflqKu5rC3kMYDS8ODdeShkEaNmwYztdnCpsyZUqhNVhIgACB1Ao4Vpra1ps4gbwVCBeShpuTQqYM12vuv//+mXneddddP/3pT//f//t/4bn04SrSQiffuHHjEEmrVKkSkuvVV18dLks9//zzu3TpEjb57ne/G25+KnSrYha2bNkyHHadOnVquK702GOPDWv+7Gc/C9enhnP9++67b2bDcJZ/0KBB4drTCy+8sJihfESAAIG8FygIxxLyfpImSIBAvgqEe+djm+e23Z5fFvxwtPUvf/nLr371q7IMYlsCBAgkQsCx0kS0SZEECEQv8OWXX15++eXb1xHu6z/hhBOir0wFBAgQyAsBqTQv2mgSBNIqEG6037RpU25mHy4GCE+Jys2+tu0lXJa67Vx/jndtdwQIEMixgLudcgxudwQIZFPgwAMPDLclZXPE7I0VbpkKT9cv43jhpqh99tmnjIPYnAABAokQkEoT0SZFEiBQuEDr1q3Ds5bCTe6Ff5z8pbNmzercuXPy52EGBAgQ2LWAVLprI2sQIBBbgfCc/HBX+4ABA2JbYVkKC88N6Nq167bHCJRlKNsSIEAg/gLuwY9/j1RIgMAuBMKrQS+99NLwNKjw1vvwCvtdrB37j9etW/fJJ5989NFH4TWn4fWnsa9XgQQIEMiOgFSaHUejECAQrcD69evDO+vDVZiLFi0q10oWLFjQqFGjcIy2/PbSvHnz8OTU8NLUgw46qPz2YmQCBAjETUAqjVtH1EOAQKwFwuHY999/PwTTWFepOAIECCRQoBz/u59ADSUTIEBgFwLhzqrMG+13sZ6PCRAgQGA3BaTS3QSzOgEC6RZo165duZ6+T7eu2RMgkGoBqTTV7Td5AgR2V2D8+PGOle4umvUJECBQEgGptCRK1iFAgMC/BQ477DDHSn0bCBAgUB4CUml5qBqTAIG8FQjPbHKsNG+7a2IECEQqIJVGym/nBAgQIECAAAEC3whIpb4IBAgQ2A2B8I7TgoKC3djAqgQIECBQMgGptGRO1iJAgMA3AhMnTty6dSsMAgQIEMi6gFSadVIDEiBAgAABAgQI7LaAVLrbZDYgQIAAAQIECBDIuoBUmnVSAxIgkM8C4Y2jngyVzw02NwIEohOQSqOzt2cCBBIoMGPGDE+GSmDflEyAQAIEpNIENEmJBAgQIECAAIG8F5BK877FJkiAAAECBAgQSICAVJqAJimRAIH4CLRr1851pfFph0oIEMgnAak0n7ppLgQIlLvA+PHjXVda7sp2QIBAKgWk0lS23aQJECBAgAABAjETkEpj1hDlECBAgAABAgRSKSCVprLtJk2AAAECBAgQiJmAVBqzhiiHAIF4Cxx++OHudop3i1RHgEBSBaTSpHZO3QQIRCIwdepUdztFIm+nBAjkvYBUmvctNkECBAgQIECAQAIEpNIENEmJBAgQIECAAIG8F5BK877FJkiAAAECBAgQSICAVJqAJimRAIH4CHi3U3x6oRICBPJMQCrNs4aaDgEC5StQunc7ffbZZz179izfyoxOgACBhAtIpQlvoPIJEMhfgVWrVp111lm///3vi5riypUrf/SjH3Xt2vW000576aWXilrNcgIECCRCQCpNRJsUSYBArAVOP/30r7/+OpT4i1/84sUXXwy/tGnT5mc/+9mRRx552223bV/6nXfeeccdd5RwMj169OjVq9fFF1+cWX/27NlXXHHF1q1b33///QEDBoSFzzzzzN577/36668PGTIk7K6Ew1qNAAEC8RSQSuPZF1URIJBsgSVLlvz85z+fOHFiyIvr16/PTOa1114LS26++eaSzO3tt99etmzZyJEjQxL98ssvwybNmzfv2LHjOeecE5Lu9ddfH5aEi1xnzpy5aNGiCRMmHH300SUZ1joECBCIrUCl2FamMAIECMRQoEWLFiV5t1PDb35C/eFw6eLFi8Mvs2bNCsc+//73vxcUFJRkXmPGjKlfv344Vvruu+9269YtXM8atmrVqtWvfvWrDh061KxZM/z10EMPrVatWjh9v2LFiqeffrokw1qHAAECsRVwrDS2rVEYAQJxFJgxY0ah73bavHlzoeVWqvTv//yH8+/33XdfOINf6Go7LwzXjIYwGo6Pnn/++eFoaBh/zpw5N9544+jRo0M2zVwGcM8993Tu3HncuHGTJ0++6KKLNm7cuPM4lhAgQCApAlJpUjqlTgIE4isQLu4M59BDfdOmTSuqyuOOOy4ExwULFoQQWdQ62y9v27Zt5vjo3Llzq1evXrFixaZNmz733HN16tQJ5/SvvfbasPJXX32VicjhYtNwun/t2rUlGdk6BAgQiKeAVBrPvqiKAIEkCVx99dXhQs9zzz03pMPi6w5HN/v06bPL1cIg4UDpmjVrjjnmmB/+8IePPfZYWBJO/WdO3Iffa9WqFf685ZZb/vSnP4XDpeF603D0tHbt2sXv3acECBCIs0BBSf5xjPME1EaAAIFcCuyzzz4ffvhh48aNc7lT+yJAgEAaBNztlIYumyMBAvESeOGFF4YOHbqtplNPPXXhwoWZ8/WZhTfccEOnTp3iVbRqCBAgUM4CjpWWM7DhCRDIL4HwINJXX321UaNG+TUtsyFAgED0Aq4rjb4HKiBAIEEC8+fPL/Qe/ARNQakECBCIp4BUGs++qIoAAQIECBAgkC4BqTRd/TZbAgQIECBAgEA8BaTSePZFVQQIECBAgACBdAlIpenqt9kSIFBGgSOOOKIkbxwt415sToAAgRQKSKUpbLopEyBQeoEpU6a426n0fLYkQIBA0QJSadE2PiFAgAABAgQIEMiVgFSaK2n7IUCAAAECBAgQKFpAKi3axicECBAgQIAAAQK5EpBKcyVtPwQI5IVAeKuTu53yopMmQYBA7ASk0ti1REEECMRZILyw3t1OcW6Q2ggQSK6AVJrc3qmcAAECBAgQIJA/AlJp/vTSTAgQIECAAAECyRWQSpPbO5UTIBCBQOvWrQsKCiLYsV0SIEAg3wWk0nzvsPkRIJBVgYkTJ27dujWrQxqMAAECBP4lIJX6HhAgQIAAAQIECEQvIJVG3wMVECCQIIEaNWp4MlSC+qVUAgQSJCCVJqhZSiVAIHqBNWvWeDJU9G1QAQEC+SggleZjV82JAAECBAgQIJA0Aak0aR1TLwECkQo0a9bMGfxIO2DnBAjkrYBUmretNTECBLIosHbt2qFDh4YB58yZE87gv/POO9OnT8/i+IYiQIAAgUoICBAgQGCXAtWrVx87duzf/va3sOZvf/vbESNGTJo0aZdbWYEAAQIESi5Q4MF7JceyJgECaRb48ssvDzjggIoVK27evPn5558/66yz0qxh7gQIEMi6gDP4WSc1IAEC+Smw//77X3LJJSGSHnzwwSJpfvbYrAgQiFTAGfxI+e2cAIGsCixfvvyrr77K6pD/NVj37t2fffbZnj17Tps2rfz2UqdOnSZNmpTf+EYmQIBAPAWcwY9nX1RFgMDuCfzxj38cNmzYwoULd2+z3V973bp11apV2/3tdmOLSpUqhdv8zzjjjJ/97Ge7sZlVCRAgkHABx0oT3kDlEyCwxx733HPP448//sUXX2zatCk/PMLVq/PmzZs4ceLw4cPzY0ZmQYAAgV0KuK50l0RWIEAg1gK/+93vHnvssX/84x95E0kDd7h6NdxcNWrUqMsuuyzW+oojQIBA9gSk0uxZGokAgZwLhPd/PvXUU59//nnO95yLHS5evPizzz776KOPcrEz+yBAgEDUAlJp1B2wfwIEyiAQDpGuWrWqDAPEfdOZM2d++umnca9SfQQIEMiGgFSaDUVjECAQkUB401L4iWjnudjt6tWrlyxZkos92QcBAgSiFpBKo+6A/RMgUAaBDRs2VK5cuQwDxH3TcNvTihUr4l6l+ggQIJANAak0G4rGIEAgfQL169cfP358+uZtxgQIECgvAam0vGSNS4BAhAIbN268+eabtxXwyCOPFHNH1MUXXxweXB9W7tSpU3gJ87HHHpvZsKCgYMqUKeEG/wgnYtcECBBIj4BUmp5emymBFAksW7YsvIcpkzWbNWvWoUOHoiYfomdYs2bNmpkVpk6dOmDAgMzv3bp1K2orywkQIEAg6wJSadZJDUiAQPQC69evHzJkSK9evUIp4aDpvffem6mpSpUqjz766JgxY/7617+eeOKJYeGgQYM6duz48ssvd+nSJfw1HBwNN/WfcMIJ4e1Kffv2vf/++zMbXnTRRbfeemvm9/C60apVq0Y/SRUQIEAgvwSk0vzqp9kQIPAfgcGDB59zzjlHHXXUEUccMXLkyMzi8LLQ8GLS448/PgTWTFQN0XPSpEmnn356eGR9Zp3+/fuHw6XnnXfe6NGj58+fT5QAAQIEciPgjaO5cbYXAgRyLRBeWP/QQw+9+eab5557brhaNLP7f/7zn4cccsgll1xSo0aNunXrFlrT5MmTQxgdOHBgmzZt2rZtW+g6FhIgQIBA1gWk0qyTGpAAgbgIDB06tF27dm+88ca2E+49evTo2rXrVVddtWjRovCA+qIKDYdLw3HWHR4Umt+PoCqKwnICBAjkTMAZ/JxR2xEBArkW2LRp0+WXX779XmvXrh2uCg2RtH379tsOoO5c1vTp0++6667tl8+dO7dz587h6aENGzZs2rTpzptYQoAAAQJlFJBKywhocwIEYi2wQ/R85plnwpWm4bR+uLfpvffeu+yyy0L14ZcRI0bscLJ+hw3feuutBQsWfPzxx/369ctcbLp8+fItW7bcdNNNsZ6/4ggQIJAcgYJijhYkZxYqJUAgpQLPP/98nz59Zs+ena/zb9CgQe/evWXffO2veREgsL2AY6W+DwQIECBAgAABAtELSKXR90AFBAgQIECAAAECUqnvAAECBAgQIECAQPQCUmn0PVABAQIECBAgQICAVOo7QIAAAQIECBAgEL2Ap+hH3wMVECBQFoHmzZsfeOCBZRkhzttu2LBh/fr1ca5QbQQIEMiWgFSaLUnjECAQjcD//M///PSnP41m3+W/11deeWXevHnlvx97IECAQPQCUmn0PVABAQJlEQhvEw0P9SzLCHHetmbNmnEuT20ECBDIooDrSrOIaSgCBAgQIECAAIFSCkilpYSzGQECBAgQIECAQBYFpNIsYhqKAAECBAgQIECglAJSaSnhbEaAAAECBAgQIJBFAak0i5iGIkAgSQIrVqyYM2dO2SuePHly2QcxAgECBAhIpb4DBAjkm8CLL75Y8M1PpUqVTj311PDIz0JneMstt6xZs2bjxo0/+clPzv3mZ+LEiYWuOWzYsMaNG4eHNGU+/d3vfnfGGWe0a9fuvffeC0vCn88991yhG1pIgAABAiUXkEpLbmVNAgSSJDBhwoSQI//yl7+88cYbO9c9ZsyYJk2aHHzwwWPHjt26deuzzz7bu3fvX//61zuv+eabb44ePfqaa67JfBRS7KRJk0LwffLJJ2+//faw8IorrgipdPny5TtvawkBAgQIlFxAKi25lTUJEEiSQHjSZ+Zhn/Xq1duh7nXr1j388MPXX399WH744Yd//fXXCxcuHD9+/DHHHBOWDB48+PXXXw8p88c//nEIrG3atHn88ccrVqyYGaRy5coPPvhg+H3PPffMjBwOyoZ42r9//yTpqJUAAQLxE/AU/fj1REUECGRDIBwHDcOccsopBx100A7j3X333dddd13Il2F5nTp1wgtLe/ToEQ6ChsOfYcnl3/zcf//9jzzySEicdevWLbSce+65J2yV+Sjsa6+99gqHXY8++uhCV7aQAAECBHYp4FjpLomsQIBAIgVWrVq1du3aTz755IEHHthhAh06dBg3blxm4Z///OdGjRqFs/xPP/10nz59wsLVq1cvXbo0HAct5lWf4Vx/7dq1w0Wr20aeMWNGy5YtEymlaAIECMRDQCqNRx9UQYBAtgVCTJw+ffr69etr1aq1w9gnn3xySKuzZs0KyxcsWBBO04dfwp/h9/DLyJEjBw4cGI6bvvXWW5mPdth86NCh//jHP+64445ty5966qmuXbvm8YtPs90c4xEgQKAQAWfwC0GxiACBPBBo1apVmEWLFi3OP//8nacTMmU4Mhqi5wUXXHDhhReGe+rDg6JCGA1r9uzZM7P+rbfeGn4J0bZfv34hxYZz/S+//PKgQYPCnU+nnXbaeeedFz4Nt+eHDcM9VeFQ6857sYQAAQIESi4glZbcypoECCRDIETMQo9xbl99w4YNw9HNUaNGdenS5fnnny9mYuG8/PDhw7dfIVwbsP1ff/WrX21/3LSYoXxEgAABAsUISKXF4PiIAIG4C1SrVq1+/fqlq3LbMdHSbb5tq9tuu62MIxSzeY0aNYq63aqYrXxEgACBJAq4rjSJXVMzAQL/FmjWrNm2+5byEmXKlCkuV83LzpoUAQI7C0ilO5tYQoBAYgQOPfTQKlWqJKbc3S80PFo1zHH3t7MFAQIEkicglSavZyomQGCbQHjmaHgiad++ffPS5LHHHgsTPOKII/JydiZFgACBHQQKdnlPADICBAjEXCDcAv/aa6+Fe+r322+/mJdawvLmzp0b7sEKD/bPvICqhFtZjQABAokWkEoT3T7FEyDwb4G33377mWeemThxYniT08qVK8vPZfPmzdvePlp+ewkjd//mp1x3YXACBAjESkAqjVU7FEOAQJkENm3aNH/+/PCa0DKNUuzGxxxzzEsvvRQeLFXsWmX6MNx0v/OT/8s0oo0JECCQBAFPhkpCl9RIgEDJBCpVqtS8efOSrVvKtQ4//PCmTZuGl5SWcnubESBAgEARAu52KgLGYgIECBQmsGzZssIWW0aAAAECZRWQSssqaHsCBFIlMGfOnC1btqRqyiZLgACB3AhIpblxthcCBPJEIDy3v0IF/3LmSTdNgwCBWAn4tzVW7VAMAQJxF3CsNO4dUh8BAokVkEoT2zqFEyBAgAABAgTySEAqzaNmmgoBAuUvEB7U7wx++TPbAwECaRSQStPYdXMmQKDUArNmzXK3U6n1bEiAAIFiBKTSYnB8RIAAgR0FjjrqKMdKd0TxdwIECGRDQCrNhqIxCBBIjcCHH37oWGlqum2iBAjkVEAqzSm3nREgQIAAAQIECBQqIJUWymIhAQIEChcI7xp1Br9wGksJECBQNgGptGx+tiZAIGUCCxcudAY/ZT03XQIEciQgleYI2m4IEEi0wPr165csWRKm0LZt23CsdMOGDYsXL070jBRPgACBuAlIpXHriHoIEIijQNWqVS+55JJwq9MHH3ywaNGi733ve7Vq1YpjoWoiQIBAYgWk0sS2TuEECORW4JprrmndunW9evW6dOly4oknhpya2/3bGwECBPJcoGDr1q15PkXTI0CAQJYEjj766HHjxtWuXXvevHk1a9bM0qiGIUCAAIF/CThW6ntAgACBkgoMHDgwrHrllVeKpCUlsx4BAgRKLOBYaYmprEiAQJ4KvPzyy2/8+c+bt2z+cs7cXU5xwYIFDRs2rFixYqt8VxcAACAASURBVPFr7rtP44KCgs4ndunRo0fxa/qUAAECBDICUqlvAgECqRboee65W+fN2mPF8pqbN+1RkDWK8G/r6oqVtlSvsaBG7T//9bVq1aplbWgDESBAIE8FpNI8baxpESBQAoFLzz9v9ZQP99m8oQTrlnKVtQUVPqvX+K133y3l9jYjQIBAagRcV5qaVpsoAQL/LfCHYcPWfP5puUbSsMPqW7c0Xb7o9ltvxU+AAAECxQtIpcX7+JQAgbwVePWVP1dbuzoH06u7ZeNfX389BzuyCwIECCRaQCpNdPsUT4BA6QXWr1pda/PG0m9f4i0r7bHH3tWqzJkzp8RbWJEAAQJpFJBK09h1cyZAIAjMWrgwe3c37UJ05YaN4Z2lu1jJxwQIEEi3gFSa7v6bPQECpRI46+YBh3X+bqk2tREBAgQIFC4Qziz5IUCAAIF/C5x0xVWduvdYtXRpxcqV16xY/kTvq1cuXkSHAAECBHIg4FhpDpDtggCBJAmMevQ395592t0/+N70/xt7/EU/SlLpaiVAgECSBaTSJHdP7QQIlKfAnKlTatVvEPZQu0HDywcP7f3sC1cOfaruPk223+d5A3/Zom37sKRm/QbXDn++PMsxNgECBPJcQCrN8wabHgECpROoXLXqkSedPPOjiWHzM2/sP27Ecw+ce+Y7f3ji7JsHlG5AWxEgQIBA8QKuKy3ex6cECKRO4H8uvbz9mWc33P+A9559euyfng3zb9m+w6wpkzr3vLhipcoHtG6TOhETJkCAQE4EpNKcMNsJAQLJERg95NF3hz957PkXNjrgwK1btoTCt2zZMufjyVs2bw6/D7nq8h2mEu6LSs7kVEqAAIH4CjiDH9/eqIwAgQgF3n9u+KHHHb/Xvk1DDTM/nFC7YaPw58pFCxsd2GL7qpZ/vaBl+6PDkmaHHR5htXZNgACBPBCQSvOgiaZAgED2BTZv3Pjm44NP+WnvMPSIgb/ocFa36/70Urdb75gxflxYEg6dfv/a62o1aPD34U+F8Npr+Ihm3z4y+0UYkQABAmkSKNi6dWua5muuBAgQ+LdA+3btjlm1uEJBLl7wNKVe48FPDGvZsiV9AgQIEChKwLHSomQsJ0AgzwWqVamSsxlWykn2zdl07IgAAQLlISCVloeqMQkQSIBA1SqVN1SomJtC/7lpc+PGjXOzL3shQIBAQgWk0oQ2TtkECJRVoPVRrVflJJWuK6iwT6NGNWvWLGvFtidAgEBeC0iled1ekyNAoGiBK66++qva9Yv+PGufzK1R+/yePbM2nIEIECCQpwJSaZ421rQIENiVwIEHHnj7oLs/26t8T6x/UaPOyd17nNWt267K8TkBAgTSLuAe/LR/A8yfQMoFXv3zn4cOHvzPpUv2XLViY/buSaq8dY81NWrWrFu3y2mnXXH1T1OObPoECBAoiYBUWhIl6xAgkM8C4QF5kydP/vLLL1evXr3Lefbv3//666+vXbt28WtWq1Zt3333Peigg+rVq1f8mj4lQIAAgYyAVOqbQIAAgd0QOO2004YOHdqoUaPd2MaqBAgQIFACAdeVlgDJKgQIEPiPwIQJE7Zs2cKDAAECBLIuIJVmndSABAjks0CTJk0qVPAvZz632NwIEIhKwL+tUcnbLwECiRSYP3++Y6WJ7JyiCRCIvYBUGvsWKZAAgTgJNGvWzLHSODVELQQI5I+AVJo/vTQTAgRyIDBnzhzHSnPgbBcECKRQQCpNYdNNmQCB0gu0a9fOsdLS89mSAAECRQtIpUXb+IQAAQI7CYwfP96x0p1ULCBAgEAWBKTSLCAaggCB9AjUqlXLsdL0tNtMCRDIpYBUmktt+yJAIPEC//znPx0rTXwXTYAAgVgKSKWxbIuiCBAgQIAAAQIpE5BKU9Zw0yVAoGwCbdu2dQa/bIS2JkCAQOECUmnhLpYSIECgUIEPPvjAGfxCZSwkQIBAGQWk0jIC2pwAgVQIbNq0KTPPww47LHOsdP369amYuUkSIEAgVwJSaa6k7YcAgSQLVKpUqWfPnsuWLfvkk0/CsdJevXqtXr06yRNSOwECBGInIJXGriUKIkAgngInnHBC69atwxtHzz777BBJ99prr3jWqSoCBAgkVKBg69atCS1d2QQIEMixQPPmzcMbR8NOZ8+eHeJpjvdudwQIEMhvAcdK87u/ZkeAQDYFbr311jDcBRdcIJJmk9VYBAgQ+EagEgcCBAjkh8DEiRM//fTTxYsXb9y4sfxmtN9+++2777733Xdf+e2iYcOGBx100NFHH11+uzAyAQIEYijgDH4Mm6IkAgR2TyDcIH/hhRd+9tlnCxcuXLduXdKfJxrqb9KkSYMGDZ544onGjRvvnoW1CRAgkFgBqTSxrVM4AQL/Efj+97//7rvvhneB5hNJlSpVwuHSZ599VjDNp7aaCwECxQi4rrQYHB8RIJAAgUsvvfT999/Ps0ga3Dds2DB27Nju3bsnoAdKJECAQDYEpNJsKBqDAIGIBMJVpFOnTl2+fHlE+y/f3YZgunTp0nfeead8d2N0AgQIxENAKo1HH1RBgECpBEIkLdd7m0pVVDY3ClfKhutlszmisQgQIBBXAak0rp1RFwECJRAIx0rDTwlWTOoqmzdvDsE0qdWrmwABArsjIJXujpZ1CRAg8B+B+vXrjx8/ngcBAgQIZEtAKs2WpHEIEIiRQDitf/PNN28r6JFHHvn888+Lqu/iiy+uU6dO+LRTp07hdXfHHntsZs2CgoIpU6Y89thjRW1oOQECBAhkUUAqzSKmoQgQiIvAsmXLwt3rmawZ3sPUoUOHoioL0TOsWbNmzcwK4ULVAQMGZH7v1q1bUVtZToAAAQJZF5BKs05qQAIEohdYv379kCFDevXqFUoJB03vvffeTE3hIaCPPvromDFj/vrXv5544olh4aBBgzp27Pjyyy936dIl/DUcHF21atUJJ5wQHmXft2/f+++/P7PhRRddlHndaPjrtGnTqlatGv0kVUCAAIH8EpBK86ufZkOAwH8EBg8efM455xx11FFHHHHEyJEjM4urVas2bNiw448/PgTWTFQN0XPSpEmnn376qFGjMuv0798/HC4977zzRo8ePX/+fKIECBAgkBuBSrnZjb0QIEAgxwLh1aMPPfTQm2++ee6554arRTN7Dw/bP+SQQy655JIaNWrUrVu30JImT54cwujAgQPbtGnTtm3bQtexkAABAgSyLiCVZp3UgAQIxEVg6NCh7dq1e+ONN7adcO/Ro0fXrl2vuuqqRYsWzZw5s6hCw+HScJx1yZIl269QuXLlota3nAABAgTKLuAMftkNjUCAQEwFNm3adPnll29fXO3atcNVoSGStm/fftsB1J2rnz59+l133bX98rlz53bu3LlixYoNGzZs2rTpzptYQoAAAQJlFJBKywhocwIEYi2wQ/R85plnwpWm4bR+uLfpvffeu+yyy0L14ZcRI0bscLJ+hw3feuutBQsWfPzxx/369ctcbBpec7ply5abbrop1vNXHAECBJIjUFDM0YLkzEKlBAikVOD555/v06fP7Nmz83X+DRo06N27t+ybr/01LwIEthdwrNT3gQABAgQIECBAIHoBqTT6HqiAAAECBAgQIEBAKvUdIECAAAECBAgQiF5AKo2+ByogQIAAAQIECBCQSn0HCBAgQIAAAQIEohfwFP3oe6ACAgTKIlCpUqWaNWuWZYQ4bxue/x+ePxXnCtVGgACBbAlIpdmSNA4BAtEIhDeIhvfaR7Pv8t/r4sWLw7sAyn8/9kCAAIHoBaTS6HugAgIEyiLQqVOnPH6cZ3gg62effVYWH9sSIEAgKQKuK01Kp9RJgAABAgQIEMhnAak0n7trbgQIECBAgACBpAhIpUnplDoJECBAgAABAvksIJXmc3fNjQABAgQIECCQFAGpNCmdUicBAgQIECBAIJ8FpNJ87q65ESBQjMCKFSvmzJlTzAol/Gjy5MklXNNqBAgQIFCMgFRaDI6PCBBIpMCLL75Y8M1PeMD+qaeeumHDhkKnccstt6xZsyZ8NGzYsMaNG7/yyiuZ1caNG3fWWWd16NDhN7/5TaEbPvDAA+eee263bt3+8Ic/hBXee++95557rtA1LSRAgACBkgt4XmnJraxJgECSBCZMmLBo0aKTTz75jTfeCNl0h9LHjBnTpEmTgw8++M033xw9evQ111yzbYURI0aEnFqjRo3w6RVXXFGhwn/97z28aWno0KFTpkxZv359x44de/ToEdYJIfWkk06qW7dukoDUSoAAgZgJOFYas4YohwCBLAmE15Bm3kRar169HYZct27dww8/fP3114flbdq0efzxxytWrLhtnbvvvjtsGMJoOIAa/gwr/+hHPwoZ9IknnnjppZfCkgMOOGDGjBkhmB555JFhq3BQ9vbbb+/fv3+WCjcMAQIEUirgWGlKG2/aBPJeIBzpDHM85ZRTDjrooB0mG3LnddddV7ly5bC8qAOc4aVKxxxzTFihWrVq//u//xvGOfroo++8886w5LzzzrvgggvCi0DvueeezMhhX3vttdfYsWPDOnkPa4IECBAoJwHHSssJ1rAECEQssGrVqrVr137yySfhMtAdSgnXjIaLR4upL3wajowOHDgws84XX3zRtGnTuXPnhiS6ZMmSp59++v333x8/fnw4Prp58+bMOuHoacuWLYsZ00cECBAgULyAVFq8j08JEEiqQIiJ06dPD2fea9WqtcMcwsWmIa3OmjWr0Ll9+OGH4Yx8iJ6Zg6nhDH4YJ1xpGq4fHTVq1OLFizdu3JjZcOnSpWH88PtTTz3VtWvXBg0aFDqghQQIECBQEgFn8EuiZB0CBJIn0KpVq1B0ixYtzj///J2rv+OOO/r06fPkk0+GxNmvX78QUuvUqfPyyy8PHjz40ksv3WeffS677LKw1Q033BDGCXfrh987deqUGad169Yh14ZsGnJquCkq5NS//OUvIcXuvBdLCBAgQKDkAlJpya2sSYBAMgTOOOOMrVu3Fl9rw4YNw9HNcOyzS5cuw4cP337liRMnFr9t5urSbev86le/Chm3+E18SoAAAQK7FJBKd0lkBQIE4isQzs5nbrQvRYk9e/YsxVY7b3LbbbftvDBbS8It/yFAZ2s04xAgQCDOAq4rjXN31EaAwC4Ews3vb7/99i5WSvLHH3zwQfPmzZM8A7UTIECgpAJSaUmlrEeAQAwF9ttvv3333beo+5ZiWPDuljR79uzOnTvv7lbWJ0CAQBIFpNIkdk3NBAj8/wJ9+/YNtyuFO+XzD6V3797hhqrq1avn39TMiAABAjsLFOzynoCdt7GEAAECsRJYsGDB2WefHe6d33///cOh0/BS0FiVt7vFrFy58uOPPw4PBLjxxhvDo1V3d3PrEyBAIKECUmlCG6dsAgR2FAiPFA1hbsWKFatXr97xs+z9PSTgRo0ahZuQsjfkjiM1adIkxOtzzjnHA1B3pPF3AgTyWkAqzev2mhwBAtkWCA9ADS92CsE02wMbjwABAmkXKMf/7qed1vwJEMhHgTVr1iT9CoF8bIs5ESCQDwJSaT500RwIEMiZQLt27QoKCnK2OzsiQIBAegSk0vT02kwJEMiCwPjx490kmgVHQxAgQGAnAal0JxILCBAgULSAY6VF2/iEAAECZRKQSsvEZ2MCBNIm4Fhp2jpuvgQI5ExAKs0ZtR0RIJAPAgcccEC5PhYqH4zMgQABAqUSkEpLxWYjAgTSKjBz5kz34Ke1+eZNgED5Ckil5etrdAIECBAgQIAAgZIISKUlUbIOAQIE/i1wxBFHOIPv20CAAIHyEJBKy0PVmAQI5K3AlClTnMHP2+6aGAECkQpIpZHy2zkBAkkTOPjggx0rTVrT1EuAQDIEpNJk9EmVBAjEROCzzz5zrDQmvVAGAQJ5JiCV5llDTYcAAQIECBAgkEgBqTSRbVM0AQI5Fli7du3QoUPDTuvWrRvO4L/zzjvTp0/PcQ12R4AAgfwWqJTf0zM7AgQIZEWgevXqY8eO/dvf/rZ8+fLf/OY3I0aMmDRpUlZGNggBAgQIZAQKtm7dyoIAAQIEdinw5Zdfhhc7VaxYcfPmzc8///xZZ521y02sQIAAAQIlF3AGv+RW1iRAINUC+++//yWXXBIiabgNXyRN9VfB5AkQKB8BZ/DLx9WoBAgkTaAkN9d379792Wef7dmz57Rp03Y5vwMPPLBq1aq7XM0KBAgQIJARcAbfN4EAgVQLLF269M7+/f82dmyLurWWr9uwS4t169ZVq1Ztl6vVqVpl9qrV3275rWv69j3yyCN3ub4VCBAgQEAq9R0gQCC9AsuWLfvBqd8/aMXi2ls3l4fCuj0KZtRpePu993Xo1Kk8xjcmAQIE8klAKs2nbpoLAQK7IRAehn90hw6dVi/ZjW1KterHdRs98Ojj3/72t0u1tY0IECCQFgF3O6Wl0+ZJgMAOAvcOuuugtStzwHLgisUP33tvDnZkFwQIEEi0gFSa6PYpngCB0gu88/bbNbZuKf32Jd4y7GXi1KneU1piMCsSIJBSAak0pY03bQIEKu5RUGPLptw4NKtZY+bMmbnZl70QIEAgoQJSaUIbp2wCBMoqMH/Jkpy9RGTFho1eWVLWhtmeAIF8F5BK873D5keAQDkInHXzgMM6f7ccBjYkAQIE0ivgKfrp7b2ZEyCws8BJV1zVqXuPVUuXVqxcec2K5U/0vnrl4kU7r2YJAQIECGRdwLHSrJMakACBZAuMevQ395592t0/+N70/xt7/EU/SvZkVE+AAIHkCEilyemVSgkQyK3AnKlTatVvEPZZu0HDywcP7f3sC1cOfaruPk22r+K8gb9s0bZ9WFKzfoNrhz+f2wLtjQABAnklIJXmVTtNhgCBbAlUrlr1yJNOnvnRxDDgmTf2HzfiuQfOPfOdPzxx9s0DsrUL4xAgQIDA9gKuK/V9IECAwH8J/M+ll7c/8+yG+x/w3rNPj/3Ts+Gzlu07zJoyqXPPiytWqnxA6za8CBAgQKA8BKTS8lA1JgECCRYYPeTRd4c/eez5FzY64MCtW/71mP3wAPw5H0/esnlz+H3IVZfvMLdwX1SCZ6t0AgQIxEbAGfzYtEIhBAjESeD954Yfetzxe+3bNBQ188MJtRs2Cn+uXLSw0YEtti9z+dcLWrY/OixpdtjhcSpfLQQIEEiegFSavJ6pmACBHAhs3rjxzccHn/LT3mFfIwb+osNZ3a7700vdbr1jxvhxYUk4dPr9a6+r1aDB34c/FcJrr+Ejmn37yBxUZRcECBDIY4ECrxvJ4+6aGgECxQi0b9fumFWLKxQUFLNOtj6aUq/x4CeGtWzZMlsDGocAAQL5J+BYaf711IwIECiRQPNGDXMRSL+ppW7VKhUq+Pe2RH2xEgECqRXwr2RqW2/iBNIusLVCxVUVc3HH59Y99pi1ctWBBx6YdnHzJ0CAQLECUmmxPD4kQCB/BY4/4YQ1e1TMwfxWF1Q4tn27HOzILggQIJBoAdeVJrp9iidAoEwCx3Y8ptXyhVX2CEczy/FnYp1GT//p+X333bcc92FoAgQIJF/AsdLk99AMCBAorcDov435oGb9JRUqry+He5427lGwoqDixLp7P/r4EJG0tC2yHQECKRJwrDRFzTZVAgQKFRh0x+1vjBrVuG7deUuWFrrC9gs3bdpUqdKur0bdZ696cxct7nTMMX369m3UqNEuh7UCAQIECEilvgMECBD4l8CyZcs2f/P2puJ/WrVq9cYbb5QkaDZo0KD4oXxKgAABAtsL7Pp//LwIECCQBoF69eqVZJqHHHJIiJsSZ0msrEOAAIHdEnBd6W5xWZkAgbQLrF+/Pu0E5k+AAIHyEZBKy8fVqAQI5KnAjBkztmzZkqeTMy0CBAhEKSCVRqlv3wQIJE6gRYsW3tKUuK4pmACBRAhIpYlokyIJEIiLgGOlcemEOggQyDsBqTTvWmpCBAgQIECAAIEECkilCWyakgkQiE6gcePGBeXwyP3oJmTPBAgQiIuAVBqXTqiDAIFECCxYsGDr1vJ9Q2kiHBRJgACBrAtIpVknNSABAvks0KZNG3c75XODzY0AgegEpNLo7O2ZAIEECkyYMMGToRLYNyUTIJAAAak0AU1SIgECBAgQIEAg7wWk0rxvsQkSIJBNgVq1ajmDn01QYxEgQOA/AlKp7wIBAgR2Q+Cf//ynM/i74WVVAgQIlFhAKi0xlRUJEEixwPr168Pd9wEgc7fTmjVrFi5cmGIPUydAgED2BaTS7JsakQCB/BOoWrXqBRdcMHLkyHC30+TJkzt16lSnTp38m6YZESBAIEIBqTRCfLsmQCBJAjfccMOZZ54ZKj7ppJPOPvvskFOTVL1aCRAgEHuBAo+Djn2PFEiAQFwEjj766HHjxtWuXXvevHk1a9aMS1nqIECAQF4IOFaaF200CQIEciIwcODAsJ8rr7xSJM2Jt50QIJAuAcdK09VvsyWQrwIrV6588MEHP/rooyVLlmzatKn8phnuc6pevXpBQUH57aJRo0bNmjW7/PLLv/3tb5ffXoxMgACBuAlIpXHriHoIENhtgQ8//PB///d/p0+fvm7dug0bNuz29jHboGLFiuFYbIsWLa699trzzz8/ZtUphwABAuUlIJWWl6xxCRDIjcDHH3980UUXTZw4MTe7y+VeDjnkkJtuuqlnz5653Kl9ESBAICoB15VGJW+/BAhkR6Bfv37hxH12xorZKJ9++unQoUO/+uqrmNWlHAIECJSLgFRaLqwGJUAgNwLhrP38+fPz+GVL4Wb/8ITU3GDaCwECBKIVkEqj9bd3AgTKJBBS6erVq8s0RLw3Djdvhdgd7xpVR4AAgewISKXZcTQKAQKRCIRIGl5MH8muc7PTChUqLF68ODf7shcCBAhEKyCVRutv7wQIJFWgfv3648ePT2r16iZAgED8BKTS+PVERQQIlFlg48aNN99887ZhHnnkkc8//7yoUS+++OLMS+3D2+3D6+6OPfbYzJrhoaRTpkx57LHHitrQcgIECBDIooBUmkVMQxEgEBeBZcuWde/ePZM1wxPpO3ToUFRlIXqGNbe9q2nq1KkDBgzIrNytW7eitrKcAAECBLIuIJVmndSABAhEL7B+/fohQ4b06tUrlBIOmt57772ZmqpUqfLoo4+OGTPmr3/964knnhgWDho0qGPHji+//HKXLl3CX8PB0VWrVp1wwgnhgs6+ffvef//9mQ3DI1FvvfXWzO/Tpk2rWrVq9JNUAQECBPJLQCrNr36aDQEC/xEYPHjwOeecc9RRRx1xxBEjR47MLK5WrdqwYcOOP/74EFgzUTVEz0mTJp1++umjRo3KrNO/f/9wuPS8884bPXq0+999oQgQIJAzgUo525MdESBAIJcC4e2jDz300JtvvnnuueeGq0Uzuw437IcXJl1yySU1atSoW7duofVMnjw5hNGBAwe2adOmbdu2ha5jIQECBAhkXUAqzTqpAQkQiItAeDFSu3bt3njjjW0n3Hv06NG1a9errrpq0aJFM2fOLKrQcLg0HGcNzwrdfoXKlSsXtb7lBAgQIFB2AWfwy25oBAIEYiqwadOmyy+/fPviateuHa4KDZG0ffv22w6g7lx9eDj/XXfdtf3yuXPndu7cuWLFig0bNmzatOnOm1hCgAABAmUUkErLCGhzAgRiLbBD9HzmmWfClabhtH64t+m999677LLLQvXhlxEjRuxwsn6HDd96660FCxZ8/PHH/fr1y1xsunz58vCm05tuuinW81ccAQIEkiNQUMzRguTMQqUECKRU4Pnnn+/Tp8/s2bPzdf4NGjTo3bu37Juv/TUvAgS2F3Cs1PeBAAECBAgQIEAgegGpNPoeqIAAAQIECBAgQEAq9R0gQIAAAQIECBCIXkAqjb4HKiBAgAABAgQIEJBKfQcIECBAgAABAgSiF/AU/eh7oAICBMoisOeee+63335lGSHO24bn/2/cuDHOFaqNAAEC2RKQSrMlaRwCBKIRCC+1/973vhfNvst/rxMmTKhQwUmt8oe2BwIEYiAglcagCUogQKAMAs2aNfvhD39YhgFivenmzZs/++yzWJeoOAIECGRJwH/BswRpGAIECBAgQIAAgTIISKVlwLMpAQIECBAgQIBAlgSk0ixBGoYAAQIECBAgQKAMAlJpGfBsSoAAAQIECBAgkCUBqTRLkIYhQCBpAitWrJgzZ87uVr1q1aqZM2fu7lbWJ0CAAIFdCkiluySyAgECCRN48cUXC775qVSp0qmnnrphw4ZCJ3DLLbesWbMmPA30Jz/5ybnf/EycOLHQNYcNG9a4ceNXXnklfBqe03Tddddt2rSp0DUtJECAAIFSC0ilpaazIQECsRYIT/oMOfIvf/nLG2+8sXOhY8aMadKkycEHHzx27NitW7c+++yzvXv3/vWvf73zmm+++ebo0aOvueaazEc1atS48sor77vvvp3XtIQAAQIEyiIglZZFz7YECMRXoOY3P6G+evXq7VDlunXrHn744euvvz4sP/zww7/++uuFCxeOHz/+mGOOCUsGDx78+uuvL1++/Mc//nEIrG3atHn88ccrVqy4bZAuXbrMmjVrxowZ8Z28yggQIJBAAU/RT2DTlEyAQAkEwnHQsNYpp5xy0EEH7bD63XffHc7CV65cOSyvU6fOgQce2KNHj3Aq/8knnwxLLv/m5/7773/kkUfCZQB169bdeW933HHH1Vdf/fTTT+/8kSUECBAgUDoBx0pL52YrAgTiLhBuS1q7du0nn3zywAMP7FBrhw4dxo0bl1n45z//uVGjRuEsf4iYffr0CQtXr169dOnScIR13rx5RU3y008/PeSQQ4r61HICBAgQKIWAVFoKNJsQIJAAgXCGffr06evXr69Vq9YO5Z588skhrYaz8GH5ggULwmn68Ev4M/wefhk5cuTAgQPDcdO33nor89EOm4fbqJfGUAAAGKNJREFUp8KR1BtuuCEBCkokQIBAcgScwU9Or1RKgMDuCLRq1Sqs3qJFi/PPP3/n7cIp+HBkNETPCy644MILLzzjjDPCg6JCGA1r9uzZM7P+rbfeGn4J0bZfv34hxYZz/S+//HK46nTQoEG9evWqUqXKzsNaQoAAAQKlFpBKS01nQwIEYioQImahxzi3L7dhw4Zdu3YdNWpUuHXp+eefL2YmLVu2HD58+LYVwn1RIb8ee+yxxWziIwIECBAohYBUWgo0mxAgEBeBcGt85qalUhS07Zjobm0bLkLN5WOhwgTDU1d3q0IrEyBAIKECritNaOOUTYDAvwTCIc+5c+fmscX8+fMbNGiQxxM0NQIECGwTkEp9GQgQSLDAoYceGnJbgiewq9LDcwAyj7ja1Yo+J0CAQOIFpNLEt9AECKRZYK+99mrduvUf//jHvESYNm1aeFBAp06d8nJ2JkWAAIEdBKRSXwkCBJItcOONN4aXi/7pT39K9jR2qv7DDz8MF7CGW/53+sQCAgQI5KdAwS7vVM3PeZsVAQL5JRCe9DRz5szw6Pv99tsvPE800ZMLD///6KOPGjdufM8991SvXj3Rc1E8AQIESi4glZbcypoECMRaIFyC+fnnn4eX2m/evLn8Cu3fv//1119fu3bt8ttF/fr1w7Wk+++/f/ntwsgECBCIoYBUGsOmKIkAgfgK7LPPPuHcejiQGd8SVUaAAIFkCriuNJl9UzUBAgQIECBAIL8EpNL86qfZECBQzgLt2rWrUMG/nOWsbHgCBFIp4N/WVLbdpAkQKK3A+PHjt2zZUtqtbUeAAAECRQpIpUXS+IAAAQI7C1SrVq2goGDn5ZYQIECAQBkFpNIyAtqcAIF0Cey9995SabpabrYECORKQCrNlbT9ECCQFwLhZUvO4OdFJ02CAIHYCUilsWuJgggQiLNAeCaUY6VxbpDaCBBIroBUmtzeqZwAgQgEFixY4JV4EbjbJQECKRCQSlPQZFMkQIAAAQIECMReQCqNfYsUSIBAnASaNGnieaVxaohaCBDIHwGpNH96aSYECORAYP78+e52yoGzXRAgkEIBqTSFTTdlAgRKL9C2bVvHSkvPZ0sCBAgULSCVFm3jEwIECOwk8MEHHzhWupOKBQQIEMiCgFSaBURDECBAgAABAgQIlFFAKi0joM0JEEiXgOeVpqvfZkuAQA4FpNIcYtsVAQLJFyjd80o/++yznj17Jn/2ZkCAAIFyFJBKyxHX0AQI5J/AwQcfnJu7nXr37n3sscee8s1PjRo1ipJ86KGH9t1339/+9rdFrWA5AQIEkiIglSalU+okQCAWAuGo5853O51++ulff/11qO8Xv/jFiy++GH5p06bNz372syOPPPK2227bvu4777zzjjvuKOFMQtZ89dVX77rrrpNPPjlsMnv27CuuuCK8Wer9998fMGBAWPLwww9/+eWX119/fQkHtBoBAgTiLFApzsWpjQABAgkVWLJkyc9//vMQKFu0aNG3b9/MLF577bWJEyc+99xzJZnUPffcU7FixbBmiJ5XXXVV+KV58+YdO3Y855xzVq1alRmke/fuDRo0CIdLSzKgdQgQIBBzAcdKY94g5REgEC+BEj6vtOE3P5UqVQqHSxcvXhzmMGvWrB49egwcOLCgoKAkUwrbhjWXLl364YcfnnjiiZlNWrVq9cUXXxxwwAE1a9YMS0IkLclQ1iFAgEAiBKTSRLRJkQQIxEWgqOeVbt68udASQ7jMLA/n3++7775wBr/Q1YpaOGTIkEsuuSTz6Zw5c2688cbRo0eHbFryywCKGtlyAgQIxE1AKo1bR9RDgEDyBPbee+8JEyaEuqdNm1ZU9ccdd9xFF10UbuEfN25cUevssDxcwPrkk09eeOGFmeVNmzYNJ+7r1KkTri699tprSziI1QgQIJAUAak0KZ1SJwECsRAo9HmlV199dbjl6Nxzzw23IhVfZbhatE+fPrtcLTPIK6+8ErJs7dq1M38NJ/QzJ+7DX2vVqhX+fP3110866aRf//rXDz74YPhlxowZxe/dpwQIEIizQEEJ/3GM8xzURoAAgZwJ7LPPPuFCz5BNc7ZHOyJAgEBKBNyDn5JGmyYBAtkRyMrzSl944YWhQ4duK+jUU09duHDh+PHjty254YYbOnXqlJ2KjUKAAIGECDhWmpBGKZMAgXgIOFYajz6oggCBPBRwXWkeNtWUCBAgQIAAAQKJE5BKE9cyBRMgEKVAeP5obt44GuUk7ZsAAQJRCEilUajbJwECiRWYPHnyzm8cTexsFE6AAIEYCUilMWqGUggQiL/AIYccUsKXM8V/LiokQIBArASk0li1QzEECMRd4NNPP/VAvbg3SX0ECCRTQCpNZt9UTYAAAQIECBDILwGpNL/6aTYECBAgQIAAgWQKSKXJ7JuqCRAgQIAAAQL5JSCV5lc/zYYAgXIWCC+g92SocjY2PAECKRWQSlPaeNMmQGC3BDZt2pRZP6TSzC/r16/frRGsTIAAAQLFC0ilxfv4lAABAv8SqFSpUs+ePZctWzZ//vzwvNJevXqtXr0aDQECBAhkUUAqzSKmoQgQyGeBE044oXXr1i1atDj77LNDJN1rr73yebbmRoAAgZwLFHjwXs7N7ZAAgaQKNG/efM6cOaH62bNnN2vWLKnTUDcBAgRiKeBYaSzboigCBGIpcOutt4a6evToIZLGsj+KIkAg2QKVkl2+6gkQIFACgZkzZ06dOvXrr79evnx5CVYvbpX99tuvadOm9913X3Er7eqzPffcs0GDBgcffPARRxyxq3V9ToAAgbQIOIOflk6bJ4HUCjz66KNffPFFeHl9iIBr166Ng0P16tU///zzUEyVKlVuu+22OJSkBgIECEQuIJVG3gIFECBQjgJPP/10eHN97969y3EfZRj6xRdf/Mc//nHnnXeWYQybEiBAIE8EXFeaJ400DQIEdhYYNWrUBx98ENtIGgo+44wzwiWqDz300M7FW0KAAIG0CUilaeu4+RJIkcAf/vCHs846K+YTDs+ZGj58eMyLVB4BAgRyICCV5gDZLggQiEYgPMUp3FEUzb5LvNfKlSsfdNBB4TLTEm9hRQIECOSngFSan301KwIEVq1atXHjxvBOpvhThJufli5dGv86VUiAAIFyFZBKy5XX4AQIxFrgO9/5TqzrUxwBAgTSJCCVpqnb5kqAQG4Fwu3/J5544pFHHvmDH/xg3rx5ud25vREgQCBhAlJpwhqmXAIEEiTQt2/f22+/fdKkSR06dBg0aFCCKlcqAQIEci8glebe3B4JEIhSIByz/P73v3/cccc9+OCDmTrC5ac///nPv/vd755wwgnvvPNOWPjSSy9deeWV55133uGHH/7EE0+EJeEq1SuuuCIc8jzttNOmTJkSlixYsOCcc87p0qXLD3/4w7lz5xY6pfC01I4dO4YH+Hfu3HnJkiWFrmMhAQIECGQEpFLfBAIE0iUQ3mXfrVu3kD5DUtywYUOY/JNPPhmC4+jRo5999tmrrrpq/fr1YWG4fz9kyrBwwIABW7ZsCY8+rVevXkirv/3tb8MvYYWbbrqpR48eYflll10WjokWihjeLJpZ/uqrr4bUW+g6FhIgQIBARkAq9U0gQCBdAuPHj+/evXuYc+vWrcMLP8MvY8aMCX+GuPnCCy+Ee/anT58e/nrUUUeFqLr33nuHt94vX748HDR9880377777tmzZ4clYYW///3v4RDp4MGDZ86cOW7cuGIQX3nllcmTJ1944YXFrOMjAgQIEEjAM1M0iQABAlkU2Lx5c4ib2w+4devWQw455LDDDgsLf/Ob34SXLc2YMWPbCpnk+q1vfSscN3399dd/+ctfhpP4l156acWKFcMt/JknT4XH9RdVYTi8+sgjjzzzzDNVq1Ytah3LCRAgQCAIOFbqa0CAQLoE2rZt+9xzz4U5f/jhh5kz+OEa008++SQsb9Wq1dtvv127du2dRSZMmDBt2rTwHqZevXqFt5iGFdq3b//111+H25jC8dTwLvudNwlLwiUBQ4cODbvLnPQvdB0LCRAgQCAjIJX6JhAgkC6B22677amnngo3NoUT95njoBdffHE4XBqyabje9Nvf/nahHPvss0+4Oyrc2BRSZrj2NKxz1113hQtPw9Wi119/fadOnQrd6oYbbli4cOGZZ54Zng8VflauXFnoahYSIECAQBAoCP8WgyBAgED+CYS75k899dSRI0fGf2ohvP7oRz8Kh13jX6oKCRAgUH4CristP1sjEyCQIoHwXNLMU6Uycw4Xpw4ZMiRF8zdVAgQIlFlAKi0zoQEIEIilQHi5fDjtnrPS+vXrV+p91fzmp9Sb25AAAQL5IeC60vzoo1kQILCjQLhHPtxrn3nM046fxezv77777qGHHhqzopRDgACBXAtIpbkWtz8CBHImEB7hlLlfPmd7LMWOwrNOw/WvFSr417gUeDYhQCCvBPw7mFftNBkCBLYXCO9eCq9oCs/Gjy1LOJQbburv379/bCtUGAECBHIm4B78nFHbEQEC0Qhcd9114ZGidevWDY/K37RpUzRF/Pdew7P3v/zyyyVLloQDpb///e+rVasWh6rUQIAAgWgFpNJo/e2dAIFcCPztb3+bOHHi6tWr582bl4v97Wof9evX33PPPcND+8O5+12t63MCBAikRUAqTUunzZMAAQIECBAgEGcB15XGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizgFQa5+6ojQABAgQIECCQFgGpNC2dNk8CBAgQIECAQJwFpNI4d0dtBAgQIECAAIG0CEilaem0eRIgQIAAAQIE4iwglca5O2ojQIAAAQIECKRFQCpNS6fNkwABAgQIECAQZwGpNM7dURsBAgQIECBAIC0CUmlaOm2eBAgQIECAAIE4C0ilce6O2ggQIECAAAECaRGQStPSafMkQIAAAQIECMRZQCqNc3fURoAAAQIECBBIi4BUmpZOmycBAgQIECBAIM4CUmmcu6M2AgQIECBAgEBaBKTStHTaPAkQIECAAAECcRaQSuPcHbURIECAAAECBNIiIJWmpdPmSYAAAQIECBCIs4BUGufuqI0AAQIECBAgkBYBqTQtnTZPAgQIECBAgECcBaTSOHdHbQQIECBAgACBtAhIpWnptHkSIECAAAECBOIsIJXGuTtqI0CAAAECBAikRUAqTUunzZMAAQIECBAgEGcBqTTO3VEbAQIECBAgQCAtAlJpWjptngQIECBAgACBOAtIpXHujtoIECBAgAABAmkRkErT0mnzJECAAAECBAjEWUAqjXN31EaAAAECBAgQSIuAVJqWTpsnAQIECBAgQCDOAlJpnLujNgIECBAgQIBAWgSk0rR02jwJECBAgAABAnEWkErj3B21ESBAgAABAgTSIiCVpqXT5kmAAAECBAgQiLOAVBrn7qiNAAECBAgQIJAWAak0LZ02TwIECBAgQIBAnAWk0jh3R20ECBAgQIAAgbQISKVp6bR5EiBAgAABAgTiLCCVxrk7aiNAgAABAgQIpEVAKk1Lp82TAAECBAgQIBBnAak0zt1RGwECBAgQIEAgLQJSaVo6bZ4ECBAgQIAAgTgLSKVx7o7aCBAgQIAAAQJpEZBK09Jp8yRAgAABAgQIxFlAKo1zd9RGgAABAgQIEEiLgFSalk6bJwECBAgQIEAgzgJSaZy7ozYCBAgQIECAQFoEpNK0dNo8CRAgQIAAAQJxFpBK49wdtREgQIAAAQIE0iIglaal0+ZJgAABAgQIEIizwP8HG/sk2ig7ZrwAAAAASUVORK5CYII=", "text/plain": [ "" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": { "image/png": { "height": 600 @@ -757,28 +789,28 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch number: 0 loss : 0.25130271911621094\n", - "Epoch number: 10 loss : 0.25201597809791565\n", - "Epoch number: 20 loss : 0.2500983774662018\n", - "Epoch number: 30 loss : 0.2500978708267212\n", - "Epoch number: 40 loss : 0.25245341658592224\n", - "Epoch number: 50 loss : 0.2509850561618805\n", - "Epoch number: 60 loss : 0.25141310691833496\n", - "Epoch number: 70 loss : 0.2518356740474701\n", - "Epoch number: 80 loss : 0.250247597694397\n", - "Epoch number: 90 loss : 0.25029245018959045\n", - "Epoch number: 100 loss : 0.2565183639526367\n", - "Epoch number: 110 loss : 0.25006231665611267\n", - "Epoch number: 120 loss : 0.2502576410770416\n", - "Epoch number: 130 loss : 0.2532578110694885\n", - "Epoch number: 140 loss : 0.2514439821243286\n" + "Epoch number: 0 loss : 0.2537655234336853\n", + "Epoch number: 10 loss : 0.251478910446167\n", + "Epoch number: 20 loss : 0.2516653537750244\n", + "Epoch number: 30 loss : 0.2530170977115631\n", + "Epoch number: 40 loss : 0.25084957480430603\n", + "Epoch number: 50 loss : 0.2542480528354645\n", + "Epoch number: 60 loss : 0.25108495354652405\n", + "Epoch number: 70 loss : 0.25102800130844116\n", + "Epoch number: 80 loss : 0.2500641345977783\n", + "Epoch number: 90 loss : 0.2532801032066345\n", + "Epoch number: 100 loss : 0.2516343593597412\n", + "Epoch number: 110 loss : 0.2513783872127533\n", + "Epoch number: 120 loss : 0.25228577852249146\n", + "Epoch number: 130 loss : 0.2504936456680298\n", + "Epoch number: 140 loss : 0.2519592344760895\n" ] } ], @@ -829,14 +861,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Wrote PyTorch model to /tmp/tmpw13siqwz.onnx\n" + "Wrote PyTorch model to /tmp/tmpnl9ub4y3.onnx\n" ] } ], @@ -865,17 +897,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAI6CAIAAACFOm87AAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu3dC5xO1f74cc9cDMMwbjNCyHU4IjKImVwSieg4HPd01CEpoVEKySVGjkh+XRTOUXGSHNd0iChEwshtMMZlMmKmMcOYGXP9f/N05q+5PjPz7P3stffnefV6Xs+svfZa3/Ve++X1be2bLSsrqxQfBBBAAAEEEEAAAdUE3FQLmHgRQAABBBBAAAEEfhMgjeM4QAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBTwUDJqgkYAAbMIZGVlHTx48MyZM9evX7fZbE4fVqVKlerXr9+yZUstGnd6tDSIAAIIFEnAJv+GFmkHKiOAAALOEoiIiJg1a5anp6ekWampqc5q9s52PDw8Dh06lJmZ+dprr9WrV0+LLmgTAQQQcJUAaZyr5OkXAasLREZGzp49e+rUqRUqVNDaIiEhQfLFKVOm1K1bV+u+aB8BBBDQTYA0TjdqOkIAgT8IBAYGfvXVV25uOl2hm5aW1rt373379jENCCCAgGkEdPoH1DReDAQBBJwi8Omnnw4YMEC3HE5illO3f/7znz/77DOnxE8jCCCAgBEESOOMMAvEgIDlBE6cOKH/lWrS47FjxyxnzYARQMC8AqRx5p1bRoaAgQViYmLkHlKdA6xcufLVq1d17pTuEEAAAe0ESOO0s6VlBBAomsC6devkjoei7UNtBBBAwMICpHEWnnyGjoDBBHr16vXKK6+UJKgrV6785z//KUkL7IsAAggoJEAap9BkESoCJheQZ7x5e3uXZJAXL17cuXNnSVpgXwQQQEAhAd7ioNBkESoCJhfYsGHDjz/+OGPGjJdffrls2bIHDhy4fPnykiVLWrduLZv++9//xsbGhoeH9+/fX54AJxb33XdfWFiY/JAVuKNHjw4ZMmTs2LG//vprYmLi0qVLTY7F8BBAAIFSpViN4yhAAAEjCnh5eW3evHnatGlvvvmmPb6ff/555cqVe/bs+fbbb/fu3Zs7aHnpVmhoaI8ePcjhcuNQggACphQgjTPltDIoBJQXuP/++2UMHTt2vHTpkn0wLVq0cHd3L1++fJ8+ffbv36/8CBkAAgggUGIB0rgSE9IAAghoJiDP7M2zbXlHqr08PT09zwoUIoAAAlYQII2zwiwzRgTMICArcJK9JSUlyXVybdu2lSHVqFHju+++kx9HjhwxwwgZAwIIIFBEAdK4IoJRHQEEXCTQoEGDYcOGtW/fvkOHDkFBQRKFPJ3khRde6Nev361bt+xBSR25SSIkJMRFMdItAgggoKsAd6rqyk1nCCBQgIC8ul4+UmHu3Ln2auXKlZN7Guy/q1Sp8n//93937h4cHPzTTz/dWVKzZs3s+gV0xCYEEEDAHAKsxpljHhkFAggggAACCFhOgDTOclPOgBEwgkCtWrWyb1PQLR7psXbt2rp1R0cIIICA1gKkcVoL0z4CCOQh4Ofnd/z48Tw25FMkJ1vlscD5bHS0+NixY/7+/o7Wph4CCCBgeAHSOMNPEQEiYEaBzp07R0ZG6jyyc+fOderUSedO6Q4BBBDQToA0TjtbWkYAgXwFGjduLPecZr+hId96ztsgt01IDie3sjqvSVpCAAEEXCxgy8rKcnEIdI8AAlYVWLNmjdxY2qRJk6ZNm5YuXVoLhtTU1BMnTsjp1C5dujz++ONadEGbCCCAgKsESONcJU+/CCDwm4AkWNu2bYuJiblw4YKDItHR0fLgXwcr16lTR67D69atm2SKDu5CNQQQQEAVAdI4VWaKOBFA4HcBHx+fGzduwIEAAgggQBrHMYAAAooJ2Gz8w6XYlBEuAghoJMAtDhrB0iwCCGglwN2mWsnSLgIIqCbA/9SqNmPEi4DlBViNs/whAAACCPwuwGochwICCCgm0KpVK8UiJlwEEEBAGwFW47RxpVUEENBMgNU4zWhpGAEEFBNgNU6xCSNcBBBAAAEEEEDALkAax5GAAAKKCQQHBysWMeEigAAC2ghwUlUbV1pFAAHNBDipqhktDSOAgGICrMYpNmGEiwACCCCAAAII2AVI4zgSEEAAAQQQQAABJQVI45ScNoJGwMoCvB3VyrPP2BFA4E4Bro3jeEAAAcUEuDZOsQkjXAQQ0EyA1TjNaGkYAQQQQAABBBDQUoA0Tktd2kYAAQQQQAABBDQTII3TjJaGEUBAG4FOnTpp0zCtIoAAAooJcG2cYhNGuAggwLVxHAMIIICAXYDVOI4EBBBAAAEEEEBASQHSOCWnjaARQAABBBBAAAHSOI4BBBBAAAEEEEBASQHSOCWnjaARsLJA69atrTx8xo4AAghkC3CLAwcDAggoJsAtDopNGOEigIBmAqzGaUZLwwgggAACCCCAgJYCpHFa6tI2AggggAACCCCgmQBpnGa0NIwAAggggAACCGgpQBqnpS5tI4CABgK8xUEDVJpEAAElBUjjlJw2gkbAygI7d+7MPfxBgwadPXs2d3l2SVpa2ldffZVnhcDAwDzL8yy8evXq888/n+cmChFAAAGdBUjjdAanOwQQcI1AXFzc0qVLS963n5/fO++8U4x2fvrpp379+nXr1q1///4nT54sRgvsggACCOQQII3jkEAAAZMIfPjhh3K+9aGHHpKMTYb08ssv9+rV6/HHHz9y5Ij8+eSTT+7evXv8+PHyOyQkRNKp7t27R0REyJ+ZmZkTJ05s3rz5jBkzclvI8pskXtLU0KFDU1JSTp06NWzYsPj4+Mduf1q2bCkLgbLXlClTpK/g4OATJ07In//+97+XLVsmPxYvXrxx40b5ERoa+ve//33r1q0DBw6cN29e7o4oQQABBIoqQBpXVDHqI4CAQQXatm0r51sll3r77bclM+vdu/emTZsmTJjw1ltvScTvv/9+UFDQggULvv76619//VXSqUWLFoWHh8sm+fOll146dOiQLNfdunUrx/C+/PLLBx98UJqaPHlymTJl7Ft9fX0lOduwYUOVKlWmTp26a9eu6OjodevWSSr53HPPSZ0BAwbs379/+PDhp0+flmxPSjp06HD48OFr166FhYVJJAZFJCwEEFBKgDROqekiWAQQKFWqadOmeTLIcpqUSxp38OBBNze3mzdvyqqb5FXXr1+/s/6+fftkHU5KGjduLGts8qPa7Y+Hh4e0EBsbm6PxLl26SCMLFy6U06k5NknaJ8mZxCPrfLJQN3/+/M2bN9tX4+QZxe3atZO+2rdvb9+rb9++kvb17Nnzu+++syd2eY6CQgQQQMBxAdI4x62oiQAChhCw50kFhyKnPmfPni2nSuVUZsE179wqmVzuyrVr196+fbu7u7ssod2ZEcrJVknjXn31VdklKytLkkLJ2+TzxRdfSInkc7IaJ6HKfRU7duyQkieeeGLFihV79+6VVUA5u5q7I0oQQACBogqQxhVVjPoIIGBQAfs1cHKus1WrVnLtWqNGjfz9/Y8ePZojXMm0tm3bJoVyGnTVqlWFDkZW1JKSkuTu1M6dO9+ZQcrp2jlz5nh5eUkLsiZ3/vx5+W7WrJmcRZWSjh07vvfee5L8SaonPUrJ5cuX5VSv/JCcT34X2i8VEEAAgUIF8vhfz0L3oQICCCBgQIEDBw5I5pSRkbFmzZpKlSrJopecYJXcKzk5WS5KCwgIuHDhgtzE8Nprr23ZsuXRRx+VpEpOlRY6kAoVKjzzzDPly5evWrVq69at7Y81iYyMlDOkct5WrsOTfHHu3LlysZ2copUUbdq0adKm1Le3LJmct7e3/JbYZEFOrq5LTU0t3r2uhYZKBQQQsJqATf7RsdqYGS8CCCgtIJed8Q+X0jNI8Agg4CwBVuOcJUk7CCBgEgF5vIjcr5A9mE8//VQW5EwyNoaBAALmEuB/as01n4wGAQsI1K1bVy5Es8BAGSICCCBQiABpXCFAbEYAAaMJcFLVaDNCPAgg4CoB7lR1lTz9IoAAAggggAACJRIgjSsRHzsjgAACCCCAAAKuEiCNc5U8/SKAAAIIIIAAAiUSII0rER87I4CA/gJt2rTRv1N6RAABBAwowC0OBpwUQkIAgYIEuMWhIB22IYCAlQRYjbPSbDNWBBBAAAEEEDCRAGmciSaToSCAAAIIIICAlQRI46w024wVAQQQQAABBEwkQBpnoslkKAhYQ+Cuu+6yxkAZJQIIIFCIALc4FALEZgQQMJoAtzgYbUaIBwEEXCXAapyr5OkXAQQQQAABBBAokQBpXIn42BkBBBBAAAEEEHCVAGmcq+TpFwEEiikQHBxczD3ZDQEEEDCXANfGmWs+GQ0CFhDg2jgLTDJDRAABhwRYjXOIiUoIIIAAAggggIDRBEjjjDYjxIMAAoUIlC9fvpAabEYAAQSsIcBJVWvMM6NEwEQCnFQ10WQyFAQQKJEAq3El4mNnBBBAAAEEEEDAVQKkca6Sp18EECimQL169Yq5J7shgAAC5hIgjTPXfDIaBMwrEBcXt2nTJhlfZGSkfMtvKTHvcBkZAgggULiAR+FVqIEAAggYQKBy5cqLFy/evXu3xDJp0qQjR4706tXLAHERAgIIIOAyAW5xcBk9HSOAQFEF9u3b98ADD9hvcdi/f3+bNm2K2gL1EUAAATMJcFLVTLPJWBAwuUC7du26du2alZXVrVs3cjiTTzbDQwABBwQ4qeoAElUQQMBhgdjY2JiYGIerF7nik08+uXfv3hEjRpw8ebLIOzu8Q7Vq1apWrepwdSoigAACrhHgpKpr3OkVAfMJLFv+r5WrViUn33IvXVbT0aWkpJQpU0bTLjJSk729yw4ZPPjJ4UM17YjGEUAAgZIIkMaVRI99EUDgd4FXps7YdeB0armGpdy1TbD0E09P8Uw81eWBP70xfbJ+ndITAgggUBQBro0rihZ1EUAgL4E35ry588fI1Ar3mieHk2F6lEnzbfHND2fmhP4jr0FThgACCLhegDTO9XNABAgoLXDx4sXvfzya5tNE6VHkF3yqT5M9P4RFRUXlV4FyBBBAwIUCpHEuxKdrBMwgcOrUqdj4JDOMJJ8xxCYkyxjz2UgxAggg4EoB0jhX6tM3AiYQuHLlSrqHrwkGkt8Q0twrXr58Ob+tlCOAAAIuFCCNcyE+XSNgBoGkpKSsjDQzjCS/MWSmyxjz20g5Aggg4EIB0jgX4tM1AggggAACCCBQfAEe/1t8O/ZEAIECBMp7e00c0TXgnuq3UtN37D/1z3X7CqjMJgQQQACBYgiwGlcMNHZBAIHCBWaNfezQiagBLy4d+frKhnX8enVsVvg+1EAAAQQQKIoAq3FF0aIuAgg4JlCruq+vT9n1O36S6im30qa/uzkjI1N+e7i7TRj+UPNGNUvZSi1csePH4xe7tG3UKbBRhfJl6taosmDFjhYBNYNa1Y++mhAyb216Rua//zFi696TXdsFXI5NWL72+1F/Da5fu+rsJf/dfeisY4FQCwEEEDCzAKtxZp5dxoaAqwQkJzt/KS6799Q0yeKy5M/HH2qRVSpr6KR/vjDn89fH9PT0cJdC/6oVxoWueSH089AJfbbuOSkLeDabrUPL+vbdfzp1afBLy5NT0ob2bvv87NUvzV83euCDrhoX/SKAAAKGEmA1zlDTQTAImERA8rOMzN+W3+Qz/bmecoWcLK0NeWl5m3vrxly7MfDR1lIuJXVqVJYfJyJ+e5zHhei4+OvJ4eeuyO/DJ6P8qvjYdz92e2tY+M+yYic/jp2Jrnj7Bx8EEEAAAVbjOAYQQMD5Ahcvx9X0//1hctMWb37+jdX2Pmy2UpFRsSfPXpb/pi3edDkm4c6+09Iz7H+m/+9H9tbsTVKSeXthjw8CCCCAAGkcxwACCDhf4GxUrJvN9nD7AGlarofr1uH3V3UdOHahQe1qR89En4z8JbBZnZvJqc7vmxYRQAABywiQxllmqhkoAvoKTFqwTm5N+Gz+U0umD45LuGnvfO22MLnubdW8Ee9MHnD6wlV9I6I3BBBAwGwCtqwsTk+YbVIZDwJ6CixZsuSD1bttlf+kZ6d69pUVd3xk/w6jRo3Ss1P6QgABBBwRYDXOESXqIIAAAggggAAChhMgjTPclBAQAggggAACCCDgiABpnCNK1EEAAQQQQAABBAwnQBpnuCkhIAQQQAABBBBAwBEB0jhHlKiDAAIIIIAAAggYToC3OBhuSggIAeUEvJLPlvk1WrmwHQw4JSW5VKkODlamGgIIIKCnAGmcntr0hYA5Bfr36zds2DBzjq1UqU8++cSsQ2NcCCCgugBpnOozSPwIuF7A29u7atWqro9DmwhkdDxfUxtaWkUAgZIKcG1cSQXZHwEEEEAAAQQQcIkAaZxL2OkUAQQQQAABBBAoqQBpXEkF2R8BBBBAAAEEEHCJAGmcS9jpFAEEEEAAAQQQKKkAaVxJBdkfAQSKLZCQkBAVFVXs3bN3PHr0aMkboQUEEEBAOQHSOOWmjIARUEBg/fr1ttsfDw+Pnj17pqam5hn0lClTkpKSZNOKFSuqV6++efNme7X9+/f37du3bdu27733Xp47LliwYMCAAf379//000+lwsKFC8+fP59nTQoRQAABEwvwwBETTy5DQ8DFAgcPHoyJiXnkkUe2bdsmyVyOaHbt2lWjRo3GjRtv3759x44dY8eOza6wdu1aSezkSR+yddSoUW5uf/gfzszMzGXLlskK3K1bt9q3bz9kyJA5c+aMHz/entK5eMx0jwACCOgowGqcjth0hYDFBMrf/sigK1WqlGPoKSkpixcvDgkJkfL777//o48+cnd3z64zd+5c2VGyN1mik+/Dhw/PnDlTHt72/PPPX758WUruueees2fPSibXvHlz2cvPz69bt24rV660GDDDRQABqwuQxln9CGD8CGgnIGtpQUFBPXr0aNSoUY5eJFF78cUXPT09pdzX11fOveYO44svvnjggQekvGXLlvJ4YWmqe/fud911l5QMGjRo6NCho0ePHj58uH1H+bFu3bobN27kbocSBBBAwKwCpHFmnVnGhYDrBRITE5OTk0+cOCGXsuWIRq57kwvgCghRtv7rX/9644037HVOnz4tSWF4eLj8+euvv8rC2/fff3/gwIHXXnstIyNDCuPj42U9z8fHp4A22YQAAgiYTIA0zmQTynAQMJCAnPeMiIiQK9hyZ1dywZykdxcuXMgzXPtZVMnV7Mt1YWFhcg2cXA9XtmxZOakaGxublpZm3zEuLk7al99yt8T06dPzbI1CBBBAwKwCeZzIMOtQGRcCCOgs0KJFC+mxfv36gwcPzt31rFmzJkyY8PHHH0uqN3XqVMnqKlasuHHjxvfff/+pp56Sk6d///vfZa9Jkybdd/sjv8eMGSPfsqlVq1aSCEoyJzdAyJ0QO3furFmzZu5Tt7k7pQQBBBAwkwBpnJlmk7EgYBSBPn36FPo6+WrVqsl9CV9//XXXrl1XrVp1Z+iHDh0qeCSzZ8++s4Lc1vrBBx8UvAtbEUAAAfMJkMaZb04ZEQLKCAwbNswpscr5Vqe0QyMIIICAWgJcG6fWfBEtAggggAACCCDwuwBpHIcCAggggAACCCCgpABpnJLTRtAIIIAAAggggABpHMcAAggggAACCCCgpABpnJLTRtAIIIAAAggggABpHMcAAgi4TCAyMjIpKanQ7n/66adC61ABAQQQsKAAaZwFJ50hI6CHwOrVqxs2bCgvrX/66aft78vK0WtqaurEiRPlDVpSLk/xlbem3rx5015n+fLl8uS5wMDAvXv3Sol8f/7553oETR8IIICAUgKkcUpNF8EioIiALLMNGTKkc+fOixcvlhczyDN+cwf+5ptvjhs3zsvLS16iJW9lkKTNXkfezXDkyJH169fLCx5mzpwphZLkSRonb03N3QglCCCAgJUFSOOsPPuMHQGtBDZt2iTLbAsWLPjrX/8qKV337t1z9CQvuZc33AcHB0u5vGJLErXsCvIe1YULF8qf5cqVq1Spkvyw2WySz7322mtahUu7CCCAgJoCpHFqzhtRI2BsgejoaHnXluRhEqb9O0e806ZNy36TvZxOzXM08+bNkyU9+6bGjRtXrlx53759edakEAEEELCmAGmcNeedUSOgrYC/v39MTIz99oVr167l7kwumztz5kzu8uySd999t0KFCj179swuOXv2bIMGDQrYhU0IIICA1QRI46w244wXAT0E5CyqXOIWEhKyZs2agIAAOceao9fJkyeHhoamp6fnGY28I/X06dOzZs3K3vrJJ59069Ytv3W7PBuhEAEEEDC9AGmc6aeYASLgAoGmTZsuXbp0y5Ytct1b3759e/TokSOIsmXLjh49+q233pLyDRs2DBo0KCwsbPjw4YsWLZJbGcaOHfvLL79IoXwkHYyNjf3yyy+HDRvmgpHQJQIIIGBgAQ8Dx0ZoCCCgsMCTtz8FDKBLly5yE2tcXFzv2587ayYmJt75p+R2d67MFdAmmxBAAAFLCZDGWWq6GSwCzhfw9vZ2cyvmur7cyupIQDNmzHCkmkZ1fHx88jv5q1GPNIsAAgg4KFDMf3wdbJ1qCCBgeoHq1asfPXrUxMOUs701atQw8QAZGgIIqCtAGqfu3BE5AoYQaNSokbkXq2R0cpeGIawJAgEEEPijAGkcRwQCCJRIoHbt2nfffbe8raFErRh1Z3kQcb169WrWrGnUAIkLAQQsLWDLysqyNACDRwABZwi888478pS4ESNGyFN/ndGe69u4evWqPPdEnl337LPPuj4aIkAAAQTyEiCNy0uFMgQQKLrAZ7c/N27c0DqTk7OcHh7a3p4lzy729fXt37+/vEys6BLsgQACCOgkQBqnEzTdIGARAXlng6xjaTrYli1bHj58WNMu/Pz87K9z1bQXGkcAAQRKKEAaV0JAdkcAAb0FgoKCdu/erXev9IcAAggYT4BbHIw3J0SEAAIFCkRGRha4nY0IIICAVQRYjbPKTDNOBEwjYLPxD5dpJpOBIIBAiQRYjSsRHzsjgID+AnLhmv6d0iMCCCBgQAH+p9aAk0JICCBQkACrcQXpsA0BBKwkwGqclWabsSKAAAIIIICAiQRI40w0mQwFAWsINGvWzBoDZZQIIIBAIQKcVC0EiM0IIGA0AU6qGm1GiAcBBFwlwGqcq+TpFwEEiinQrl27Yu7JbggggIC5BFiNM9d8MhoELCDAapwFJpkhIoCAQwKsxjnERCUEEEAAAQQQQMBoAqRxRpsR4kEAgUIEGjZsWEgNNiOAAALWEOCkqjXmmVEiYCIBTqqaaDIZCgIIlEiA1bgS8bEzAgjoJnDjxo2kpCTprlOnTvItv6VEt97pCAEEEDCgAGmcASeFkBBAIA8BHx+fXr16RURE7Ny5U77lt5TkUY8iBBBAwDICpHGWmWoGioD6Ak888URgYGCDBg3kW36rPyBGgAACCJRIgGvjSsTHzgggoLNA7dq1o6Ki7r777osXL+rcNd0hgAACRhNgNc5oM0I8CCBQkMDMmTNls/27oHpsQwABBCwgwGqcBSaZISJgeIGNGzd+u337reTkS1euFBrsuXPn7rnnnkKr1bqruleZssFdujz22GOFVqYCAgggoKIAaZyKs0bMCJhHICsra3D/fu6/XMpMiC+fmZHl1JHddHN3q+ibddfdn6xeLY8pcWrbNIYAAgi4XoA0zvVzQAQIWFlgUN++7meOV8tI0w7hqrunLeDeTz5fo10XtIwAAgi4RIBr41zCTqcIIPCbwPvvvuvx8zlNczjpxU9yxPNnP/rgA9ARQAABkwmQxplsQhkOAioJbPjPf7xv6vEIX++kxA3r1qlEQ6wIIICAAwKkcQ4gUQUBBDQQSElJ8S7t6Z2VqUHbOZssl5XhXiorNTU15wb+RgABBFQWII1TefaIHQGVBSSNu3ItXrcRXI1PuHXrlm7d0RECCCCggwBpnA7IdIEAAs4XeGn9ltJlyzq/XVpEAAEE1BHwUCdUIkUAAUsIPDxqTIeBQxLj4tw9PZMS4v81/rnrsTGWGDmDRAABBIoowGpcEcGojgAC2gt8veS9f/yl19ze3SN+2Ndx+AjtO6QHBBBAQEkB0jglp42gEbCIQNTxoz5Vqspg67ZoOWH1ugmfrx84a667Z+k7hz9127f2P+/r0bPn+IkWkWGYCCCAgAiQxnEYIICAQQU8vbyaP/zIubBDcnZ1SOj8ZWNHv9W/z63ExKBBQw0aMWEhgAAC+gpwbZy+3vSGAAIOCP1vhZ0AACAASURBVHR5amSbP/+lWt179n62ct+az6rXbyg7NX+4u3y7eXrUax24a8UyB5qhCgIIIGByAdI4k08ww0NARYEdS5fsXvVx0OAn/O6pl5WZWcpmS7qeEHXsqIxFvpNv5HxisJu7e2ZGhoojJWYEEECgJAKcVC2JHvsigICGAt9/vqpJcMfKNWtdPXfWu6JvwtUr5w4f9Pb19SrnfWev8b9cbtDmASm5u2kzDaOhaQQQQMB4AqRxxpsTIkIAgdsCGWlp2z96v8fz4+XHyldCnnrngxdWrrmv+6PR4Sdl6/mww3LBnPzY8s6CgTPnPPPhvzxKeyGHAAIIWErAlpWVZakBM1gEEDCIQHx8/GOPPto6/hd94vmhov9XW7f6+Pjo0x29IIAAAjoIsBqnAzJdIIAAAggggAACzhcgjXO+KS0igIAjAr6+vqnp6ZmOVC1xHbn9ITMzk6W4EkPSAAIIGEuANM5Y80E0CFhKoNE999x0c9dhyDfdPBrXq6dDR3SBAAII6ClAGqenNn0hgMAfBJ5+9tnLPpV1QLnsU+npMWN06IguEEAAAT0FSOP01KYvBBD4g0DHjh37Dh0WUc5XU5cz5Xz/OvzJoKAgTXuhcQQQQEB/Ae5U1d+cHhFA4A8CH777f19v3HA9NsYnJTndzWn/b+mZlXndq2yFqn7d+vR56pnRoCOAAALmEyCNM9+cMiIE1BOIjY09ceJEVFRUYmJiodFPnz592rRphVaTGxpq1arVrFmzypX1OG9baDxUQAABBJwuQBrndFIaRAABbQU6dOiwZ88ebfugdQQQQEAFAdI4FWaJGBFA4A4Bm41/uDggEEAAgd8EnHYZCpwIIICAPgJNmzbVpyN6QQABBAwuwP/UGnyCCA8BBHIKsBqXU4S/EUDAqgKsxll15hk3AsoKsBqn7NQROAIIOFmA1Tgng9IcAghoLcBqnNbCtI8AAqoIsBqnykwRJwII/C7QqVMnLBBAAAEERIDVOA4DBBBQTIDVOMUmjHARQEAzAVbjNKOlYQQQQAABBBBAQEsB0jgtdWkbAQQQQAABBBDQTIA0TjNaGkYAAQQQQAABBLQUII3TUpe2EUBAAwFucdAAlSYRQEBJAW5xUHLaCBoBKwtwi4OVZ5+xI4DAnQKsxnE8IICAGgKpqan2QJs1a2b/kV2ixgCIEgEEEHC2AGmcs0VpDwEEtBHIzMwcOnRoSkrKsWPH5Ft+S4k2XdEqAgggoIYAaZwa80SUCCBQpkyZhg0btm/fvn79+vItv6UEFgQQQMDKAlwbZ+XZZ+wIKCaQkJBQq1atxMTE8uXL//zzzxUrVlRsAISLAAIIOFWA1TinctIYAghoKSB5W0hIiPQg3+RwWkrTNgIIqCHgoUaYRIkAAioInDx5Mjw8PCYmRrtgK1WqdNddd8n3kiVLtOulWrVqTZo0CQgI0K4LWkYAAQRKLsBJ1ZIb0gICCJSSew6eHDHyl9iExLTSWe7KX7Jmy0gp75F6l3+lfy79wMvLiwlGAAEEjClAGmfMeSEqBFQSkByuT78hv9rqlirrp1LchcaadOUuz0tffPZx6dKlC61LBQQQQEB/AdI4/c3pEQGzCQwc/ETEjWpmy+Hss5R0pUmVhI//tdRsc8Z4EEDAFALc4mCKaWQQCLhOQK6Hk3Op5szhRNXbPyo65tSpU64DpmcEEEAgXwHSuHxp2IAAAo4IyD0Ncj2cIzUVrZOY7iWpqqLBEzYCCJhbgDTO3PPL6BDQXEDuS81yL6t5N67rQEZ35coV1/VPzwgggEC+AqRx+dKwAQEEEEAAAQQQMLIAz40z8uwQGwIKC5T39po4omvAPdVvpabv2H/qn+v2KTwYQkcAAQQMKcBqnCGnhaAQUF9g1tjHDp2IGvDi0pGvr2xYx69Xx2bqj4kRIIAAAsYSYDXOWPNBNAiYQ6BWdV9fn7Lrd/wkw0m5lTb93c0ZGZny28PdbcLwh5o3qlnKVmrhih0/Hr/YpW2jToGNKpQvU7dGlQUrdrQIqBnUqn701YSQeWvTMzL//Y8RW/ee7Nou4HJswvK134/6a3D92lVnL/nv7kNnzQHFKBBAAIGSCLAaVxI99kUAgbwFJCc7fykue1tqmmRxWfLn4w+1yCqVNXTSP1+Y8/nrY3p6erhLoX/VCuNC17wQ+nnohD5b95yUBTybzdahZX377j+dujT4peXJKWlDe7d9fvbql+avGz3wwbx7pRQBBBCwmACrcRabcIaLgC4Ckp9lZP62/Caf6c/1lCvkZGltyEvL29xbN+bajYGPtpZyKalTo7L8OBFxWb4vRMfFX08OP/fbPaGHT0b5VfGx737s9taw8J9lxU5+HDsTXfH2Dz4IIIAAAqzGcQwggIDzBS5ejqvp72tvd9rizc+/sdr+22YrFRkVe/LsZflv2uJNl2MS7uw7LT3D/mf6/35kb83eJCWZtxf2+CCAAAIIkMZxDCCAgPMFzkbFutlsD7cPkKblerhuHZrY+zhw7EKD2tWOnok+GflLYLM6N5NTnd83LSKAAAKWESCNs8xUM1AE9BWYtGCd3Jrw2fynlkwfHJdw09752m1hct3bqnkj3pk84PSFq/pGRG8IIICA2QRsWVmcnjDbpDIeBPQUWLJkyQerd9sq/0nPTvXsKyvu+Mj+HUaNGqVnp/SFAAIIOCLAapwjStRBAAEEEEAAAQQMJ0AaZ7gpISAEEEAAAQQQQMARAdI4R5SogwACCCCAAAIIGE6ANM5wU0JACCCAAAIIIICAIwKkcY4oUQcBBBBAAAEEEDCcAG9xMNyUEBAC6glkJJe6dU29sB2MWEbHBwEEEDCkAGmcIaeFoBBQSqCK5/Wq5aKUCrkIwcYmXy9CbaoigAACOgqQxumITVcImFTgL3/pa+LHqsmD8Xi+pkmPXIaFgPICXBun/BQyAAQQQAABBBCwpgBpnDXnnVEjgAACCCCAgPICpHHKTyEDQAABBBBAAAFrCpDGWXPeGTUCCCCAAAIIKC9AGqf8FDIABBBAAAEEELCmAGmcNeedUSNgCIGEhISoKCc8qeTo0aOGGA9BIIAAAvoKkMbp601vCFhDYP369bbbHw8Pj549e6ampuY57ilTpiQlJcmmFStWVK9effPmzXlWk0J5oEnVqlVv3rxpr7B8+fI+ffoEBgbu3btXShYuXHj+/Pn89qUcAQQQMKsAaZxZZ5ZxIeB6gYMHD0pm9uWXX27bti13NLt27apRo0bjxo23b9++Y8eOsWPH5q5jL5k+fXqrVq0kabP/mZaWduTIEckUP/7445kzZ0rhnDlzJk+enN/ulCOAAAJmFSCNM+vMMi4EXC9Q/vZH4qhUqVKOaFJSUhYvXhwSEiLl999//0cffeTu7p5d5/3339+6dWt8fPzTTz8tj94dM2bMnY8X9vT0lOU3qVyuXDl7y35+ft26dVu5cqXrx0wECCCAgI4CpHE6YtMVAhYTkJW2oKCgHj16NGrUKMfQ586d++KLL0pCJuW+vr5y7vXOCiNHjly9evXAgQNfeeUVOTMrp1PzlJs3b96QIUPsm4YPH75u3bobN27kWZNCBBBAwJQCpHGmnFYGhYAhBBITE5OTk0+cOLFgwYIcAbVt23b//v35RSnXwMXFxclK26VLl/Kr8+6771aoUEEuvLNXkKU7Wc/z8fHJrz7lCCCAgPkESOPMN6eMCAGjCJw9ezYiIuLWrVu5s6tHHnlE0rsLFy7kGausq73xxhty6ds333yT5/tMly1bdvr06VmzZmXvLndLyCV0ebZGIQIIIGBWAdI4s84s40LA9QItWrS499575Qq2wYMH545GkjDJvaRcUr1BgwbJlW1ypvWZZ56RkmHDhjVp0kTOtE6bNk1Oqm7YsEEqhIWFyZnTRYsWycKb3A/xyy+/SKF85I6HnTt31qxZM/ep29ydUoIAAgiYSeAP16OYaWCMBQEEXCggTwPJcxXtzpCqVasm9yV8/fXXXbt2XbVqVQHR9r79ubOCnK698095XskHH3xQQAtsQgABBEwpQBpnymllUAioISCrbk4JVM6xOqUdGkEAAQTUEuCkqlrzRbQIIIAAAggggMDvAqRxHAoIIIAAAggggICSAqRxSk4bQSOAAAIIIIAAAqRxHAMIIIAAAggggICSAqRxSk4bQSOAAAIIIIAAAqRxHAMIIOAygcjIyKSkpBzdy8NEzp0757KY6BgBBBBQR4A0Tp25IlIElBKQl6I2bNhQXlovr7fPyMjIHXtqaurEiRPlDVqySd58Ly9OlXdwyW83Nzd53Wp6enruXShBAAEEELhTgDSO4wEBBJwvIMts8tL6zp07L168eOPGjfKM39x9vPnmm+PGjfPy8pKXaLVq1SowMNBex9vb+9lnn50/f37uXShBAAEEELhTgMf/cjwggIDzBTZt2iTLbAsWLJA3ccnb6+U7Rx/h4eG//vprcHCwlI8ZM0aW4uQ9qtl15L0Oa9eulVey1q9f3/nB0SICCCBgFgFW48wyk4wDASMJREdHy7u27Nlb7hxOIpWXpWa/yV5yuNyxyxtXp06dmrucEgQQQACBbAHSOA4GBBBwvoC/v39MTIz99oVr167l7kAumztz5kzu8uwSWa4LCAgooAKbEEAAAQRI4zgGEEDA+QLdu3dPS0sLCQlZs2aNZGNyjjVHH5MnTw4NDc3vPga5++Gtt96aNGmS8yOjRQQQQMBEAqRxJppMhoKAYQSaNm26dOnSLVu2yHVvffv27dGjR47QypYtO3r0aMnVpHzDhg2DBg0KCwsbPnz4okWLpEQyPLn7oXTp0oYZEIEggAACRhTgFgcjzgoxIWACgSdvfwoYSJcuXeQm1ri4uN63P9k1r169mpCQEBQUVMC+bEIAAQQQEAHSOA4DBBAokUCFChXk/GnxmpBbWXPvKI+aM9TTRuQBKB4e/FOZe6IoQQAB1wtwUtX1c0AECCgtULdu3f379ys9hIKD37t3b7169Qquw1YEEEDAJQKkcS5hp1MEzCPQunXrlJQU84znjyPJysqStUZ5OrFZB8i4EEBAaQHSOKWnj+ARcL2AnHCUWxOee+4514eiQQTyPgm5wo+TqhrQ0iQCCDhBgAs+nIBIEwhYXEBexiDP+O3Tp8/f/vY3eSCcPPhXdRB56J081u6jjz6SpxDfd999qg+H+BFAwKwCNjllYNaxMS4EENBTQN7c8Mknnxw/flxuNdW0XzmHW6ZMGU27kNssmjVrNmzYsOrVq2vaEY0jgAACJREgjSuJHvsigIALBGw2/uFyATtdIoCAAQW4Ns6Ak0JICCBQkICvr29Bm9mGAAIIWEaANM4yU81AETCLQPPmzc0yFMaBAAIIlEiAcxMl4mNnBBDQX4CTqvqb0yMCCBhTgNU4Y84LUSGAQL4CDz74YL7b2IAAAghYSYDVOCvNNmNFwBQCrMaZYhoZBAIIOEGA1TgnINIEAgjoKVClShU9u6MvBBBAwLACrMYZdmoIDAEE8hZgNS5vF0oRQMB6AqzGWW/OGTECCCCAAAIImEKANM4U08ggELCSgLz7y0rDZawIIIBAvgKcVM2Xhg0IIGBMAU6qGnNeiAoBBPQXYDVOf3N6RACBEgnUqVOnRPuzMwIIIGAWAVbjzDKTjAMBywiwGmeZqWagCCBQiACrcYUAsRkBBBBAAAEEEDCmAGmcMeeFqBBAIKdAbGzs4cOHpTQgIEC+5beU5KzE3wgggICVBEjjrDTbjBUBlQWqVq06fvz49evXh4eHy7f8lhKVB0TsCCCAQEkFuDaupILsjwACugns3Lmzc+fO5cuXT0xM/Oabbzp16qRb13SEAAIIGFCANM6Ak0JICCCQr0C7du3279/ftm3bffv25VuJDQgggIA1BEjjrDHPjBIBFQSuXr1aaJiSvfXr12/NmjWSzxVa2c/Pr9A6VEAAAQTUFSCNU3fuiBwBkwjIGdI5M6Z/t2dvHX+/S7G/FjqqpKQkb2/vQqvVrFr5wpWYBzt0ePX11x2pX2iDVEAAAQSMJkAaZ7QZIR4ErCXw8/nzAwYObJQYVy4zw7NUlnMHn1bKdtPNPbxcpS9Wr67BQ4Odi0trCCBgAAHSOANMAiEgYFUBWVd7qHPndjditAb43qfqrm+/8/Ly0roj2kcAAQT0FOCBI3pq0xcCCPxBYO6MGY1uXtMBpfHN+DnTp+vQEV0ggAACegqQxumpTV8IIPAHgW/37CmfmaEDSrmszO/27NGhI7pAAAEE9BQgjdNTm74QQOD/C8THx1evXKm0s6+Hy5PYKyuzWsUK169fz3MrhQgggICiAqRxik4cYSNgBoGfY/R7m1ZUTKzNZjODGmNAAAEE/idAGsexgAACSgq8tH5L6bJllQydoBFAAAEnCXg4qR2aQQABBJwj8PCoMR0GDkmMi3P39ExKiP/X+Oeux2p+K6tzQqcVBBBAQF8BVuP09aY3BBBwQODrJe/94y+95vbuHvHDvo7DRziwB1UQQAABKwqQxllx1hkzAqoIRB0/6lOlqkRbt0XLCavXTfh8/cBZc909S98Z/9Rt39r/vK9Hz57jJ6oyNOJEAAEESi5AGldyQ1pAAAFNBDy9vJo//Mi5sENydnVI6PxlY0e/1b/PrcTEoEFDNemPRhFAAAHVBLg2TrUZI14ELCDQ5amRbf78l2p179n72cp9az6rXr+hDLr5w93l283To17rwF0rllmAgSEigAAChQiQxhUCxGYEENBfYMfSJbtXfRw0+Am/e+plZWaWstmSridEHTsqkch38o0bOUJyc3fPzNDjMcL6U9AjAgggUIAAJ1ULwGETAgi4UuD7z1c1Ce5YuWatq+fOelf0Tbh65dzhg96+vl7lvO8MK/6Xyw3aPCAldzdt5spw6RsBBBDQXYA0TndyOkQAAccEMtLStn/0fo/nx8uPla+EPPXOBy+sXHNf90ejw09KA+fDDssFc/JjyzsLBs6c88yH//Io7eVYw9RCAAEETCJgy8rKMslQGAYCCCglIC/jeuzRR1vH/6JP1D9U9P9q61YfHx99uqMXBBBAQAcBVuN0QKYLBBDIQyAzM/OuKpXz2KBNUY0qlfi/Vm1oaRUBBFwmQBrnMno6RsDiApUrV75yLT61lB7vOZVeYhNuVKhQweLmDB8BBEwmQBpnsgllOAioJNChXbskm7sOEd+0ubdv106HjugCAQQQ0FOAa+P01KYvBBD4g8CVK1f++ufHW8Vf0drlx4r+/9m4sWrV314IwQcBBBAwjQCrcaaZSgaCgHoC/v7+S5Z8eLiiX6JNq3+LpOVDFf2WL1tGDqfe8UHECCBQmACrcYUJsR0BBDQWuHjx4luhc3b/cKBehfLxqWmF9paenu7hUfijy329Skcm3Ahu0+bFV1+tVatWoc1SAQEEEFBOgDROuSkjYARMK3DmzBm5fbXQ4bVs2fLw4cOFVnNzc2vY8Le3ePFBAAEEzCpAGmfWmWVcCJhWICgoaPfu3aYdHgNDAAEEHBbQ6noUhwOgIgIIIFA0gcjIyKLtQG0EEEDApAKsxpl0YhkWAuYVsNn4h8u8s8vIEECgKAKsxhVFi7oIIGAAAT8/PwNEQQgIIICA6wX4n1rXzwERIIBAkQRYjSsSF5URQMDEAqzGmXhyGRoCCCCAAAIImFmANM7Ms8vYEDClQLNmzUw5LgaFAAIIFFWAk6pFFaM+Agi4WICTqi6eALpHAAHDCLAaZ5ipIBAEEHBMoB0vuXcMiloIIGB6AVbjTD/FDBABswmwGme2GWU8CCBQXAFW44orx34IIIAAAggggIBLBUjjXMpP5wggUHQB3pRadDP2QAABcwpwUtWc88qoEDCxACdVTTy5DA0BBIokwGpckbiojAACLhO4ceNGUlKSdN+pUyf5lt9S4rJo6BgBBBAwgABpnAEmgRAQQMABAR8fn169ekVEROzcuVO+5beUOLAfVRBAAAHTCpDGmXZqGRgC5hN44oknAgMDGzRoIN/y23wDZEQIIIBAkQS4Nq5IXFRGAAEXC9SuXTsqKuruu+++ePGii0OhewQQQMDVAqzGuXoG6B8BBIoiMHPmTKlu/y7KftRFAAEETCjAapwJJ5UhIeASAbnnYOmyf/54KCwhPk7TAM6dO3fPPfdo2kVF38ptWrd8asTfypQpo2lHNI4AAgiURIA0riR67IsAAr8L/HjoyJgxozPKNy7lVTHLvazqLraM5FK3EtxvhL///oct72um+nCIHwEEzCpAGmfWmWVcCOgn8P2+Ay9PmZVUub1+XerVU9m4Pe8tnN2sGZmcXuL0gwACRREgjSuKFnURQCCXQGZm5mOP//VK6Zal3DxybVS/IDPNP+3IpnWr5ZnD6g+GESCAgNkEuMXBbDPKeBDQWeDQoUPxianmzOGE0s3z+s1bMkadVekOAQQQcESANM4RJeoggEC+AmfPnr3lXjnfzepvSLJVljGqPw5GgAACJhQgjTPhpDIkBPQUSEhIyMrK1LNHvfvKyrx27ZrendIfAggg4IAAaZwDSFRBAAEEEEAAAQSMJ2DGS5KNp0xECFhQoLy318QRXQPuqX4rNX3H/lP/XLfPgggMGQEEENBUgNU4TXlpHAHrCswa+9ihE1EDXlw68vWVDev49erIMzusezAwcgQQ0EiA1TiNYGkWAUsL1Kru6+tTdv2On0Qh5Vba9Hc3Z2T8dv2ch7vbhOEPNW9Us5St1MIVO348frFL20adAhtVKF+mbo0qC1bsaBFQM6hV/eirCSHz1qZnZP77HyO27j3ZtV3A5diE5Wu/H/XX4Pq1q85e8t/dh7jnwNIHGINHAAG7AKtxHAkIIOB8AcnJzl/6/6/kSk2TLC5Lunn8oRZZpbKGTvrnC3M+f31MT08Pdyn0r1phXOiaF0I/D53QZ+uek7KAJw9p69Cyvj2sn05dGvzS8uSUtKG92z4/e/VL89eNHvig8yOmRQQQQEBBAVbjFJw0QkbA8AKSn2Vk/n776vTnesoVcrK0NuSl5W3urRtz7cbAR1vLCKSkTo3fnlRyIuKyfF+Ijou/nhx+7or8Pnwyyq+Kj32Ux25vDQv/WVbs5MexM9EVb//ggwACCCDAahzHAAIIOF/g4uW4mv6+9nanLd78/Bur7b/lVQiRUbEnz16W/6Yt3nQ5JuHOvtPSM+x/pv/vR/bW7E1Sknl7YY8PAggggABpHMcAAgg4X+BsVKybzfZw+wBpWq6H69ahib2PA8cuNKhd7eiZ6JORvwQ2q3MzOdX5fdMiAgggYBkB0jjLTDUDRUBfgUkL1smtCZ/Nf2rJ9MFxCTftna/dFibXva2aN+KdyQNOX7iqb0T0hgACCJhNwJaVxekJs00q40FAT4ElS5Z8sHq3rfKf9OxUz76y4o6P7N9h1KhRenZKXwgggIAjAqzGOaJEHQQQQAABBBBAwHACpHGGmxICQgABBBBAAAEEHBEgjXNEiToIIIAAAggggIDhBEjjDDclBIQAAggggAACCDgiQBrniBJ1EEAAAQQQQAABwwnwFgfDTQkBIaCeQEpMqWsn1AvbwYhldHwQQAABQwqQxhlyWggKAaUE7m969/33369UyEUI9uDBg0WoTVUEEEBARwHSOB2x6QoBkwpIDmfix6rJg/F4vqZJj1yGhYDyAlwbp/wUMgAEEEAAAQQQsKYAaZw1551RI4AAAggggIDyAqRxyk8hA0AAAQQQQAABawqQxllz3hk1AggggAACCCgvQBqn/BQyAATUFUhISIiKiipq/ImJiefOnSvqXtRHAAEEzCdAGme+OWVECLheYP369bbbHw8Pj549e6ampuYZ05QpU5KSkmTTihUrqlevvnnz5jyrSaHcCVu1atWbN2/Kbzc3txdffDE9PT2/ypQjgAACFhEgjbPIRDNMBFwgIE9ck8zsyy+/3LZtW+7ud+3aVaNGjcaNG2/fvn3Hjh1jx47NXcdeMn369FatWgUGBtr/9Pb2fvbZZ+fPn59ffcoRQAABiwiQxllkohkmAi4QKH/7Ix1XqlQpR/cpKSmLFy8OCQmRcnns3EcffeTu7p5d5/3339+6dWt8fPzTTz8tz2wbM2ZMjufSde3a9cKFC2fPnnXBqOgSAQQQMIwAaZxhpoJAEDCdgKy0BQUF9ejRo1GjRjkGN3fuXDkx6unpKeW+vr5y7vXOCiNHjly9evXAgQNfeeUVOTMrp1Nz28yaNWvq1Km5yylBAAEErCNAGmeduWakCOgtIPciJCcnnzhxYsGCBTn6btu27f79+/MLSK6Bi4uLkzW8S5cu5VcnPDw8ICAgv62UI4AAAlYQII2zwiwzRgRcIyAnPSMiIm7duuXj45MjgkceeUTSOzkxmmdk69ate+ONNz7++ONvvvkmzxdhyT0Tb7311qRJk/LcnUIEEEDAIgKkcRaZaIaJgAsEWrRoce+995YrV27w4MG5u5ezonKnqpRLqjdo0KCVK1fKmdZnnnlGSoYNG9akSRM50zpt2jQ5qbphwwapEBYWNnz48EWLFkmF0NDQcePGlS5dOnezlCCAAALWEfjD9SjWGTYjRQABTQX69OmT5yranZ1Wq1atW7duX3/9tdyvsGrVqgLi6X37k13h6tWr8sA5uequgF3YhAACCFhBgDTOCrPMGBEwqICsuhUjMj8/P542Ugw3dkEAAfMJcFLVfHPKiBBAAAEEEEDAEgKkcZaYZgaJAAIIIIAAAuYTII0z35wyIgQQQAABBBCwhABpnCWmmUEigAACCCCAgPkESOPMN6eMCAEEEEAAAQQsIUAaZ4lpZpAIGFMgMjIyKSkpR2zy7odz584ZM2CiQgABBAwlQBpnqOkgGATMIyAvRW3YsKE8HEReb5+RkZF7YPImhokTJ7q7u8smefO9vDhV3sElv93c3OR1q+np6bl3oQQBBBBA4E4B0jiOBwQQcL6ALLMNGTKkc+fOixcv3rhxozzjN3cfb775e2OlWgAAEthJREFUpryJwcvLa/r06a1atQoMDLTX8fb2fvbZZ3kyXG4xShBAAIEcAjz+l0MCAQScL7Bp0yZZZluwYIG8iatnz57ynaMPebH9r7/+GhwcLOVjxoyRpTh5j2p2HXmvw9q1a+WVrPXr13d+cLSIAAIImEWA1TizzCTjQMBIAtHR0fKuLXv2ljuHk0jlZamyCGcPWXK43LHLG1enTp2au5wSBBBAAIFsAdI4DgYEEHC+gL+/f0xMjP32hWvXruXuQC6bO3PmTO7y7BJZrgsICCigApsQQAABBEjjOAYQQMD5At27d09LSwsJCVmzZo1kY3KONUcfkydPDg0Nze8+Brn74a233po0aZLzI6NFBBBAwEQCpHEmmkyGgoBhBJo2bbp06dItW7bIdW99+/bt0aNHjtDKli07evRoydWkfMOGDYMGDQoLCxs+fPiiRYukRDI8ufuhdOnShhkQgSCAAAJGFOAWByPOCjEhYAKBJ29/ChhIly5d5CbWuLi43rc/2TWvXr2akJAQFBRUwL5sQgABBBAQAdI4DgMEEHCZgNzKmrtvedQcTxvJzUIJAgggkFuAk6q5TShBAIEiCMgdqbnfxFCE/Q1fVR5KnOe9tIYPnAARQMD8AqRx5p9jRoiApgJyz+mRI0c07cK1jR86dEgu9XNtDPSOAAII5ClAGpcnC4UIIOCoQLNmzWw2mzwfxNEdlKp3/Phxec9EkyZNlIqaYBFAwCoCpHFWmWnGiYB2AnKJm9xzKi/g0q4Ll7QcERHx9ttv22+ndUkAdIoAAggULGDLysoquAZbEUAAgUIF4uPjR44cWadOHXl9llwtV2h9g1eQZxefO3fu/PnzS5YsqVixosGjJTwEELCsAGmcZaeegSPgfIHdu3fL2VV5Yojzm76jxY8//njYsGGadiF3y8qJ1A4dOmjaC40jgAACJRQgjSshILsjgIDeAnIpHqcR9EanPwQQMKQA18YZcloICgEEEEAAAQQQKEyANK4wIbYjgIDBBB544AGDRUQ4CCCAgGsEODfhGnd6RQCBYgtwUrXYdOyIAAImE2A1zmQTynAQML9AQECA+QfJCBFAAAEHBFiNcwCJKgggYCQBT0/PtLQ0I0VELAgggIBrBEjjXONOrwggUGwBTqoWm44dEUDAZAKcVDXZhDIcBBBAAAEEELCKAGmcVWaacSJgGoEyZcqYZiwMBAEEECiJACdVS6LHvggg4AIBTqq6AJ0uEUDAkAKsxhlyWggKAQTyF2jTpk3+G9mCAAIIWEiA1TgLTTZDRcAcAqzGmWMeGQUCCJRcgNW4khvSAgII6CrQunVrXfujMwQQQMCoAqzGGXVmiAsBBPIRYDUuHxiKEUDAcgKsxlluyhkwAggggAACCJhDgDTOHPPIKBCwkECrVq0sNFqGigACCOQvQBqXvw1bEEDAkAKHDh3KHdegQYPOnj2buzy7RN7f9dVXX+VZITAwMM/yPAuvXr36/PPP57mJQgQQQEBnAdI4ncHpDgEESirg5+dXjCbi4uKWLl1ajB1z7CK9v/POO8VoR/LIwYMH+/v7nzp1qhi7swsCCCCQW4A0LrcJJQggYGgBWQ/LM74PP/ywU6dODz30kGRsUuHll1/u1avX448/fuTIEfnzySef3L179/jx4+V3SEhIt27dunfvHhERIX9mZmZOnDixefPmM2bMyN2ydNe/f39paujQoSkpKZKEDRs2LD4+/rHbn5YtW8pCoOw1ZcoU6Ss4OPjEiRPy57///e9ly5bJj8WLF2/cuFF+PPHEE1Khffv2ubugBAEEECimQBYfBBBAQCkB+ccud7wDBw5cu3atlC9atOi1117LyMiQpE3+3LVrl+RP8uP8+fP9+vWTH9u2bZOUTn6Eh4dLgiU/6tSpI7marJbVrl1bErUcjS9fvlzalELJz+x7ST5nryP5n2SNx48f37lz59/+9jcpPHnyZOfOneWHbBo5cqR0LWdg7ZVjY2Plh2Ry0m+OLvgTAQQQKJ4Aq3HFTH/ZDQEEXCXw4IMP5tm1LKdJueRJBw8edHNzu3nzpqy6yRLd9evX76y/b98+WYeTksaNG8sam/yodvvj4eEhLUiylaPxLl26SCMLFy7MfTJXztJ26NChadOmkjJK/jd//vzNmzfbV+PkqSjt2rWTvrKX36pUqZJn2BQigAACxRYgjSs2HTsigIBrBL799ttCO5ZTn7Nnz5ZTpaGhoYVWzq4gmVzuyrJEt337dnd396CgoDszQlnAkzTu1VdflV3kf6MlKZS8TT5ffPGFlEg+t3//fknp5L6KHTt25G6WEgQQQKDkAqRxJTekBQQQMISA/Ro4OU8qTySRa9caNWok9xMcPXo0R3CSacl5VSmMjo5etWpVoaHLilpSUpKcG5WzpfaVNvsuEyZMmDNnjpeXl/wpa3Jy0la+mzVrdvr0aSnp2LHje++9J8mfpHrSY6G9UAEBBBAohgBpXDHQ2AUBBFwpkN9z4w4cOPDwww+vWbNm3Lhxbdq0kZOqcoJVluWSk5MPHz4sp0QvXLggNzF07drV19f30UcfHTFihNygUOhIKlSo8Mwzz8hdDrLklv0esMjIyA0bNrz99tt//vOf5V4KyfCqV68up2jlXtQ//elP0mb58uXlvKr8kEzO29tbfsybN0/C27Nnj1xFJ4EV2i8VEEAAgUIFeBlXoURUQAABYwnwMi5jzQfRIICA6wTyuBDEdcHQMwIIIFC4QO5bDQrfpyg1ZOFN7lfI3uPTTz+VBbmiNEBdBBBAQCcBVuN0gqYbBBBwlgCrcc6SpB0EEFBdgGvjVJ9B4kcAAQQQQAABiwqQxll04hk2AuoKyKsa1A2eyBFAAAEnCnBS1YmYNIUAAnoIcFJVD2X6QAABFQRYjVNhlogRAQTuELjrrrvwQAABBBAQAVbjOAwQQEAxAVbjFJswwkUAAc0EWI3TjJaGEUAAAQQQQAABLQVI47TUpW0EENBAoF69ehq0SpMIIICAegKcVFVvzogYAYsLcFLV4gcAw0cAgWwBVuM4GBBAQDGBpk2bKhYx4SKAAALaCLAap40rrSKAgGYCrMZpRkvDCCCgmACrcYpNGOEiYFmBa9euzZgxI3v48ltKLKvBwBFAAAERII3jMEAAATUEKlWqdO7cueDg4MDAQHmRg/yWEjVCJ0oEEEBAGwFOqmrjSqsIIKCBwNmzZxs0aGBvOCIion79+hp0QpMIIICAMgKsxikzVQSKAAKStz355JPiIN/kcBwPCCCAgAcECCCAgP4CsbGxZ86cuXLlSkZGRpF6b9u27aZNm+T7iy++KNKO7u7u1atXl8W8qlWrFmlHKiOAAAKGFeCkqmGnhsAQMK3AP/7xjyNHjpQvX7527dopKSn6jNPLyysqKurmzZstW7YcP368Pp3SCwIIIKCpAGmcprw0jgACOQXkDtNq1aoNHDgw5wa9/v7000/j4+OnTJmiV4f0gwACCGglQBqnlSztIoBAbgFZh5NFuAEDBuTepGeJZHLp6enjxo3Ts1P6QgABBJwuwC0OTielQQQQyFsgLi7uhx9+cHkOJ8ENGTJk9+7dCQkJeQdKKQIIIKCIAGmcIhNFmAioLyD3NBjnSW++vr4Sj/qojAABBCwtQBpn6eln8AjoKSD3pdaqVUvPHgvoSyKReAqowCYEEEDA+AKkccafIyJEwCQCmZmZt27dMshgUlNTJR6DBEMYCCCAQPEESOOK58ZeCCCgq4CsnP3nP/8pUpcrV668fv16kXahMgIIIKCWAGmcWvNFtAhYVODixYs7d+50fPBZWVlr165NTEx0fBdqIoAAAsoJkMYpN2UEjIDZBD755JMHHnigffv2CxcutI/tvvvus/+QFTh5zpy8SnXs2LFbtmx56qmnpPzll1+eOXPmo48+KtU2btwoJatWrZo7d659l3bt2smp2+nTpx84cGDw4MFFSv7MJst4EEDA7AK8jMvsM8z4EDC2QHh4+Icffrht2zZPT89BgwbJKxY6duyYI2R5fWpoaKisrr399tv2TVL5yy+/lLcydO/evVOnTrmH+Prrr8vDTT766KMaNWrk3koJAgggYA4BVuPMMY+MAgFVBb777rtHHnlEngksL8vq06fPrl27HBlJq1atpNrdd9/dokULSQQd2YU6CCCAgPkESOPMN6eMCAGVBOQiNpvNlh2x/Gn/LW9ZcHAY9htOHa/vYLNUQwABBIwvQBpn/DkiQgTMLBAcHPzVV18lJyenpaXJhW4PPvigjFbOhMoqnfw4cuRInoPfu3evlF+6dCksLKxJkyZSX0oyMjJiY2Ojo6Pz3IVCBBBAwHwCpHHmm1NGhIBKApKEjRgx4qGHHpJL3ORGh86dO0v0r7zyygsvvNCvX7/s58w1aNDgxx9/DAkJsY/N3d29d+/ePXv2lGvmKlSoILmgn59fhw4d5J2t1atXt9dp06bN8OHDDx8+rBIHsSKAAAJFEbBln8Ioyl7URQABBIossG7dOknFXnzxxSLv+ccd5E5VSfu6detWknbmzZsnWeNjjz1WkkbYFwEEEHCtAKtxrvWndwQQQAABBBBAoJgCpHHFhGM3BBAoqkC5cuUqV65c1L00ql+pUiWJR6PGaRYBBBDQR4A0Th9nekEAgVLy+Df7rQkltJAn/ZbwjKoEIJFIPCWMhN0RQAAB1wqQxrnWn94RsJBAvXr1/P39ExISXD7muLi4mjVr1qlTx+WREAACCCBQEgHSuJLosS8CCBRNQO4/ffXVV4u2jwa1p0yZMm7cOA0apkkEEEBAVwHuVNWVm84QQOD8+fPDhg0bPXq0vINBnvdmf3ivDixubm7ySDl5f9fixYs/++wz6V2HTukCAQQQ0FSANE5TXhpHAIE8BFJSUuQ9qvLk3sTERN3Osco9Dd7e3vfdd9+oUaNKly6dR1gUIYAAAqoJkMapNmPEiwACCCCAAAII3Bbg2jgOBAQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQACB/wcOJ1VZwS9mowAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAI6CAIAAACFOm87AAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu3dC5xO1f74cc9cDMMwbjNCyHU4IjKImVwSieg4HPd01CEpoVEKySVGjkh+XRTOUXGSHNd0iChEwshtMMZlMmKmMcOYGXP9f/N05q+5PjPz7P3stffnefV6Xs+svfZa3/Ve++X1be2bLSsrqxQfBBBAAAEEEEAAAdUE3FQLmHgRQAABBBBAAAEEfhMgjeM4QAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBQgjVNy2ggaAQQQQAABBBAgjeMYQAABBBBAAAEElBTwUDJqgkYAAbMIZGVlHTx48MyZM9evX7fZbE4fVqVKlerXr9+yZUstGnd6tDSIAAIIFEnAJv+GFmkHKiOAAALOEoiIiJg1a5anp6ekWampqc5q9s52PDw8Dh06lJmZ+dprr9WrV0+LLmgTAQQQcJUAaZyr5OkXAasLREZGzp49e+rUqRUqVNDaIiEhQfLFKVOm1K1bV+u+aB8BBBDQTYA0TjdqOkIAgT8IBAYGfvXVV25uOl2hm5aW1rt373379jENCCCAgGkEdPoH1DReDAQBBJwi8Omnnw4YMEC3HE5illO3f/7znz/77DOnxE8jCCCAgBEESOOMMAvEgIDlBE6cOKH/lWrS47FjxyxnzYARQMC8AqRx5p1bRoaAgQViYmLkHlKdA6xcufLVq1d17pTuEEAAAe0ESOO0s6VlBBAomsC6devkjoei7UNtBBBAwMICpHEWnnyGjoDBBHr16vXKK6+UJKgrV6785z//KUkL7IsAAggoJEAap9BkESoCJheQZ7x5e3uXZJAXL17cuXNnSVpgXwQQQEAhAd7ioNBkESoCJhfYsGHDjz/+OGPGjJdffrls2bIHDhy4fPnykiVLWrduLZv++9//xsbGhoeH9+/fX54AJxb33XdfWFiY/JAVuKNHjw4ZMmTs2LG//vprYmLi0qVLTY7F8BBAAIFSpViN4yhAAAEjCnh5eW3evHnatGlvvvmmPb6ff/555cqVe/bs+fbbb/fu3Zs7aHnpVmhoaI8ePcjhcuNQggACphQgjTPltDIoBJQXuP/++2UMHTt2vHTpkn0wLVq0cHd3L1++fJ8+ffbv36/8CBkAAgggUGIB0rgSE9IAAghoJiDP7M2zbXlHqr08PT09zwoUIoAAAlYQII2zwiwzRgTMICArcJK9JSUlyXVybdu2lSHVqFHju+++kx9HjhwxwwgZAwIIIFBEAdK4IoJRHQEEXCTQoEGDYcOGtW/fvkOHDkFBQRKFPJ3khRde6Nev361bt+xBSR25SSIkJMRFMdItAgggoKsAd6rqyk1nCCBQgIC8ul4+UmHu3Ln2auXKlZN7Guy/q1Sp8n//93937h4cHPzTTz/dWVKzZs3s+gV0xCYEEEDAHAKsxpljHhkFAggggAACCFhOgDTOclPOgBEwgkCtWrWyb1PQLR7psXbt2rp1R0cIIICA1gKkcVoL0z4CCOQh4Ofnd/z48Tw25FMkJ1vlscD5bHS0+NixY/7+/o7Wph4CCCBgeAHSOMNPEQEiYEaBzp07R0ZG6jyyc+fOderUSedO6Q4BBBDQToA0TjtbWkYAgXwFGjduLPecZr+hId96ztsgt01IDie3sjqvSVpCAAEEXCxgy8rKcnEIdI8AAlYVWLNmjdxY2qRJk6ZNm5YuXVoLhtTU1BMnTsjp1C5dujz++ONadEGbCCCAgKsESONcJU+/CCDwm4AkWNu2bYuJiblw4YKDItHR0fLgXwcr16lTR67D69atm2SKDu5CNQQQQEAVAdI4VWaKOBFA4HcBHx+fGzduwIEAAgggQBrHMYAAAooJ2Gz8w6XYlBEuAghoJMAtDhrB0iwCCGglwN2mWsnSLgIIqCbA/9SqNmPEi4DlBViNs/whAAACCPwuwGochwICCCgm0KpVK8UiJlwEEEBAGwFW47RxpVUEENBMgNU4zWhpGAEEFBNgNU6xCSNcBBBAAAEEEEDALkAax5GAAAKKCQQHBysWMeEigAAC2ghwUlUbV1pFAAHNBDipqhktDSOAgGICrMYpNmGEiwACCCCAAAII2AVI4zgSEEAAAQQQQAABJQVI45ScNoJGwMoCvB3VyrPP2BFA4E4Bro3jeEAAAcUEuDZOsQkjXAQQ0EyA1TjNaGkYAQQQQAABBBDQUoA0Tktd2kYAAQQQQAABBDQTII3TjJaGEUBAG4FOnTpp0zCtIoAAAooJcG2cYhNGuAggwLVxHAMIIICAXYDVOI4EBBBAAAEEEEBASQHSOCWnjaARQAABBBBAAAHSOI4BBBBAAAEEEEBASQHSOCWnjaARsLJA69atrTx8xo4AAghkC3CLAwcDAggoJsAtDopNGOEigIBmAqzGaUZLwwgggAACCCCAgJYCpHFa6tI2AggggAACCCCgmQBpnGa0NIwAAggggAACCGgpQBqnpS5tI4CABgK8xUEDVJpEAAElBUjjlJw2gkbAygI7d+7MPfxBgwadPXs2d3l2SVpa2ldffZVnhcDAwDzL8yy8evXq888/n+cmChFAAAGdBUjjdAanOwQQcI1AXFzc0qVLS963n5/fO++8U4x2fvrpp379+nXr1q1///4nT54sRgvsggACCOQQII3jkEAAAZMIfPjhh3K+9aGHHpKMTYb08ssv9+rV6/HHHz9y5Ij8+eSTT+7evXv8+PHyOyQkRNKp7t27R0REyJ+ZmZkTJ05s3rz5jBkzclvI8pskXtLU0KFDU1JSTp06NWzYsPj4+Mduf1q2bCkLgbLXlClTpK/g4OATJ07In//+97+XLVsmPxYvXrxx40b5ERoa+ve//33r1q0DBw6cN29e7o4oQQABBIoqQBpXVDHqI4CAQQXatm0r51sll3r77bclM+vdu/emTZsmTJjw1ltvScTvv/9+UFDQggULvv76619//VXSqUWLFoWHh8sm+fOll146dOiQLNfdunUrx/C+/PLLBx98UJqaPHlymTJl7Ft9fX0lOduwYUOVKlWmTp26a9eu6OjodevWSSr53HPPSZ0BAwbs379/+PDhp0+flmxPSjp06HD48OFr166FhYVJJAZFJCwEEFBKgDROqekiWAQQKFWqadOmeTLIcpqUSxp38OBBNze3mzdvyqqb5FXXr1+/s/6+fftkHU5KGjduLGts8qPa7Y+Hh4e0EBsbm6PxLl26SCMLFy6U06k5NknaJ8mZxCPrfLJQN3/+/M2bN9tX4+QZxe3atZO+2rdvb9+rb9++kvb17Nnzu+++syd2eY6CQgQQQMBxAdI4x62oiQAChhCw50kFhyKnPmfPni2nSuVUZsE179wqmVzuyrVr196+fbu7u7ssod2ZEcrJVknjXn31VdklKytLkkLJ2+TzxRdfSInkc7IaJ6HKfRU7duyQkieeeGLFihV79+6VVUA5u5q7I0oQQACBogqQxhVVjPoIIGBQAfs1cHKus1WrVnLtWqNGjfz9/Y8ePZojXMm0tm3bJoVyGnTVqlWFDkZW1JKSkuTu1M6dO9+ZQcrp2jlz5nh5eUkLsiZ3/vx5+W7WrJmcRZWSjh07vvfee5L8SaonPUrJ5cuX5VSv/JCcT34X2i8VEEAAgUIF8vhfz0L3oQICCCBgQIEDBw5I5pSRkbFmzZpKlSrJopecYJXcKzk5WS5KCwgIuHDhgtzE8Nprr23ZsuXRRx+VpEpOlRY6kAoVKjzzzDPly5evWrVq69at7Y81iYyMlDOkct5WrsOTfHHu3LlysZ2copUUbdq0adKm1Le3LJmct7e3/JbYZEFOrq5LTU0t3r2uhYZKBQQQsJqATf7RsdqYGS8CCCgtIJed8Q+X0jNI8Agg4CwBVuOcJUk7CCBgEgF5vIjcr5A9mE8//VQW5EwyNoaBAALmEuB/as01n4wGAQsI1K1bVy5Es8BAGSICCCBQiABpXCFAbEYAAaMJcFLVaDNCPAgg4CoB7lR1lTz9IoAAAggggAACJRIgjSsRHzsjgAACCCCAAAKuEiCNc5U8/SKAAAIIIIAAAiUSII0rER87I4CA/gJt2rTRv1N6RAABBAwowC0OBpwUQkIAgYIEuMWhIB22IYCAlQRYjbPSbDNWBBBAAAEEEDCRAGmciSaToSCAAAIIIICAlQRI46w024wVAQQQQAABBEwkQBpnoslkKAhYQ+Cuu+6yxkAZJQIIIFCIALc4FALEZgQQMJoAtzgYbUaIBwEEXCXAapyr5OkXAQQQQAABBBAokQBpXIn42BkBBBBAAAEEEHCVAGmcq+TpFwEEiikQHBxczD3ZDQEEEDCXANfGmWs+GQ0CFhDg2jgLTDJDRAABhwRYjXOIiUoIIIAAAggggIDRBEjjjDYjxIMAAoUIlC9fvpAabEYAAQSsIcBJVWvMM6NEwEQCnFQ10WQyFAQQKJEAq3El4mNnBBBAAAEEEEDAVQKkca6Sp18EECimQL169Yq5J7shgAAC5hIgjTPXfDIaBMwrEBcXt2nTJhlfZGSkfMtvKTHvcBkZAgggULiAR+FVqIEAAggYQKBy5cqLFy/evXu3xDJp0qQjR4706tXLAHERAgIIIOAyAW5xcBk9HSOAQFEF9u3b98ADD9hvcdi/f3+bNm2K2gL1EUAAATMJcFLVTLPJWBAwuUC7du26du2alZXVrVs3cjiTTzbDQwABBwQ4qeoAElUQQMBhgdjY2JiYGIerF7nik08+uXfv3hEjRpw8ebLIOzu8Q7Vq1apWrepwdSoigAACrhHgpKpr3OkVAfMJLFv+r5WrViUn33IvXVbT0aWkpJQpU0bTLjJSk729yw4ZPPjJ4UM17YjGEUAAgZIIkMaVRI99EUDgd4FXps7YdeB0armGpdy1TbD0E09P8Uw81eWBP70xfbJ+ndITAgggUBQBro0rihZ1EUAgL4E35ry588fI1Ar3mieHk2F6lEnzbfHND2fmhP4jr0FThgACCLhegDTO9XNABAgoLXDx4sXvfzya5tNE6VHkF3yqT5M9P4RFRUXlV4FyBBBAwIUCpHEuxKdrBMwgcOrUqdj4JDOMJJ8xxCYkyxjz2UgxAggg4EoB0jhX6tM3AiYQuHLlSrqHrwkGkt8Q0twrXr58Ob+tlCOAAAIuFCCNcyE+XSNgBoGkpKSsjDQzjCS/MWSmyxjz20g5Aggg4EIB0jgX4tM1AggggAACCCBQfAEe/1t8O/ZEAIECBMp7e00c0TXgnuq3UtN37D/1z3X7CqjMJgQQQACBYgiwGlcMNHZBAIHCBWaNfezQiagBLy4d+frKhnX8enVsVvg+1EAAAQQQKIoAq3FF0aIuAgg4JlCruq+vT9n1O36S6im30qa/uzkjI1N+e7i7TRj+UPNGNUvZSi1csePH4xe7tG3UKbBRhfJl6taosmDFjhYBNYNa1Y++mhAyb216Rua//zFi696TXdsFXI5NWL72+1F/Da5fu+rsJf/dfeisY4FQCwEEEDCzAKtxZp5dxoaAqwQkJzt/KS6799Q0yeKy5M/HH2qRVSpr6KR/vjDn89fH9PT0cJdC/6oVxoWueSH089AJfbbuOSkLeDabrUPL+vbdfzp1afBLy5NT0ob2bvv87NUvzV83euCDrhoX/SKAAAKGEmA1zlDTQTAImERA8rOMzN+W3+Qz/bmecoWcLK0NeWl5m3vrxly7MfDR1lIuJXVqVJYfJyJ+e5zHhei4+OvJ4eeuyO/DJ6P8qvjYdz92e2tY+M+yYic/jp2Jrnj7Bx8EEEAAAVbjOAYQQMD5Ahcvx9X0//1hctMWb37+jdX2Pmy2UpFRsSfPXpb/pi3edDkm4c6+09Iz7H+m/+9H9tbsTVKSeXthjw8CCCCAAGkcxwACCDhf4GxUrJvN9nD7AGlarofr1uH3V3UdOHahQe1qR89En4z8JbBZnZvJqc7vmxYRQAABywiQxllmqhkoAvoKTFqwTm5N+Gz+U0umD45LuGnvfO22MLnubdW8Ee9MHnD6wlV9I6I3BBBAwGwCtqwsTk+YbVIZDwJ6CixZsuSD1bttlf+kZ6d69pUVd3xk/w6jRo3Ss1P6QgABBBwRYDXOESXqIIAAAggggAAChhMgjTPclBAQAggggAACCCDgiABpnCNK1EEAAQQQQAABBAwnQBpnuCkhIAQQQAABBBBAwBEB0jhHlKiDAAIIIIAAAggYToC3OBhuSggIAeUEvJLPlvk1WrmwHQw4JSW5VKkODlamGgIIIKCnAGmcntr0hYA5Bfr36zds2DBzjq1UqU8++cSsQ2NcCCCgugBpnOozSPwIuF7A29u7atWqro9DmwhkdDxfUxtaWkUAgZIKcG1cSQXZHwEEEEAAAQQQcIkAaZxL2OkUAQQQQAABBBAoqQBpXEkF2R8BBBBAAAEEEHCJAGmcS9jpFAEEEEAAAQQQKKkAaVxJBdkfAQSKLZCQkBAVFVXs3bN3PHr0aMkboQUEEEBAOQHSOOWmjIARUEBg/fr1ttsfDw+Pnj17pqam5hn0lClTkpKSZNOKFSuqV6++efNme7X9+/f37du3bdu27733Xp47LliwYMCAAf379//000+lwsKFC8+fP59nTQoRQAABEwvwwBETTy5DQ8DFAgcPHoyJiXnkkUe2bdsmyVyOaHbt2lWjRo3GjRtv3759x44dY8eOza6wdu1aSezkSR+yddSoUW5uf/gfzszMzGXLlskK3K1bt9q3bz9kyJA5c+aMHz/entK5eMx0jwACCOgowGqcjth0hYDFBMrf/sigK1WqlGPoKSkpixcvDgkJkfL777//o48+cnd3z64zd+5c2VGyN1mik+/Dhw/PnDlTHt72/PPPX758WUruueees2fPSibXvHlz2cvPz69bt24rV660GDDDRQABqwuQxln9CGD8CGgnIGtpQUFBPXr0aNSoUY5eJFF78cUXPT09pdzX11fOveYO44svvnjggQekvGXLlvJ4YWmqe/fud911l5QMGjRo6NCho0ePHj58uH1H+bFu3bobN27kbocSBBBAwKwCpHFmnVnGhYDrBRITE5OTk0+cOCGXsuWIRq57kwvgCghRtv7rX/9644037HVOnz4tSWF4eLj8+euvv8rC2/fff3/gwIHXXnstIyNDCuPj42U9z8fHp4A22YQAAgiYTIA0zmQTynAQMJCAnPeMiIiQK9hyZ1dywZykdxcuXMgzXPtZVMnV7Mt1YWFhcg2cXA9XtmxZOakaGxublpZm3zEuLk7al99yt8T06dPzbI1CBBBAwKwCeZzIMOtQGRcCCOgs0KJFC+mxfv36gwcPzt31rFmzJkyY8PHHH0uqN3XqVMnqKlasuHHjxvfff/+pp56Sk6d///vfZa9Jkybdd/sjv8eMGSPfsqlVq1aSCEoyJzdAyJ0QO3furFmzZu5Tt7k7pQQBBBAwkwBpnJlmk7EgYBSBPn36FPo6+WrVqsl9CV9//XXXrl1XrVp1Z+iHDh0qeCSzZ8++s4Lc1vrBBx8UvAtbEUAAAfMJkMaZb04ZEQLKCAwbNswpscr5Vqe0QyMIIICAWgJcG6fWfBEtAggggAACCCDwuwBpHIcCAggggAACCCCgpABpnJLTRtAIIIAAAggggABpHMcAAggggAACCCCgpABpnJLTRtAIIIAAAggggABpHMcAAgi4TCAyMjIpKanQ7n/66adC61ABAQQQsKAAaZwFJ50hI6CHwOrVqxs2bCgvrX/66aft78vK0WtqaurEiRPlDVpSLk/xlbem3rx5015n+fLl8uS5wMDAvXv3Sol8f/7553oETR8IIICAUgKkcUpNF8EioIiALLMNGTKkc+fOixcvlhczyDN+cwf+5ptvjhs3zsvLS16iJW9lkKTNXkfezXDkyJH169fLCx5mzpwphZLkSRonb03N3QglCCCAgJUFSOOsPPuMHQGtBDZt2iTLbAsWLPjrX/8qKV337t1z9CQvuZc33AcHB0u5vGJLErXsCvIe1YULF8qf5cqVq1Spkvyw2WySz7322mtahUu7CCCAgJoCpHFqzhtRI2BsgejoaHnXluRhEqb9O0e806ZNy36TvZxOzXM08+bNkyU9+6bGjRtXrlx53759edakEAEEELCmAGmcNeedUSOgrYC/v39MTIz99oVr167l7kwumztz5kzu8uySd999t0KFCj179swuOXv2bIMGDQrYhU0IIICA1QRI46w244wXAT0E5CyqXOIWEhKyZs2agIAAOceao9fJkyeHhoamp6fnGY28I/X06dOzZs3K3vrJJ59069Ytv3W7PBuhEAEEEDC9AGmc6aeYASLgAoGmTZsuXbp0y5Ytct1b3759e/TokSOIsmXLjh49+q233pLyDRs2DBo0KCwsbPjw4YsWLZJbGcaOHfvLL79IoXwkHYyNjf3yyy+HDRvmgpHQJQIIIGBgAQ8Dx0ZoCCCgsMCTtz8FDKBLly5yE2tcXFzv2587ayYmJt75p+R2d67MFdAmmxBAAAFLCZDGWWq6GSwCzhfw9vZ2cyvmur7cyupIQDNmzHCkmkZ1fHx88jv5q1GPNIsAAgg4KFDMf3wdbJ1qCCBgeoHq1asfPXrUxMOUs701atQw8QAZGgIIqCtAGqfu3BE5AoYQaNSokbkXq2R0cpeGIawJAgEEEPijAGkcRwQCCJRIoHbt2nfffbe8raFErRh1Z3kQcb169WrWrGnUAIkLAQQsLWDLysqyNACDRwABZwi888478pS4ESNGyFN/ndGe69u4evWqPPdEnl337LPPuj4aIkAAAQTyEiCNy0uFMgQQKLrAZ7c/N27c0DqTk7OcHh7a3p4lzy729fXt37+/vEys6BLsgQACCOgkQBqnEzTdIGARAXlng6xjaTrYli1bHj58WNMu/Pz87K9z1bQXGkcAAQRKKEAaV0JAdkcAAb0FgoKCdu/erXev9IcAAggYT4BbHIw3J0SEAAIFCkRGRha4nY0IIICAVQRYjbPKTDNOBEwjYLPxD5dpJpOBIIBAiQRYjSsRHzsjgID+AnLhmv6d0iMCCCBgQAH+p9aAk0JICCBQkACrcQXpsA0BBKwkwGqclWabsSKAAAIIIICAiQRI40w0mQwFAWsINGvWzBoDZZQIIIBAIQKcVC0EiM0IIGA0AU6qGm1GiAcBBFwlwGqcq+TpFwEEiinQrl27Yu7JbggggIC5BFiNM9d8MhoELCDAapwFJpkhIoCAQwKsxjnERCUEEEAAAQQQQMBoAqRxRpsR4kEAgUIEGjZsWEgNNiOAAALWEOCkqjXmmVEiYCIBTqqaaDIZCgIIlEiA1bgS8bEzAgjoJnDjxo2kpCTprlOnTvItv6VEt97pCAEEEDCgAGmcASeFkBBAIA8BHx+fXr16RURE7Ny5U77lt5TkUY8iBBBAwDICpHGWmWoGioD6Ak888URgYGCDBg3kW36rPyBGgAACCJRIgGvjSsTHzgggoLNA7dq1o6Ki7r777osXL+rcNd0hgAACRhNgNc5oM0I8CCBQkMDMmTNls/27oHpsQwABBCwgwGqcBSaZISJgeIGNGzd+u337reTkS1euFBrsuXPn7rnnnkKr1bqruleZssFdujz22GOFVqYCAgggoKIAaZyKs0bMCJhHICsra3D/fu6/XMpMiC+fmZHl1JHddHN3q+ibddfdn6xeLY8pcWrbNIYAAgi4XoA0zvVzQAQIWFlgUN++7meOV8tI0w7hqrunLeDeTz5fo10XtIwAAgi4RIBr41zCTqcIIPCbwPvvvuvx8zlNczjpxU9yxPNnP/rgA9ARQAABkwmQxplsQhkOAioJbPjPf7xv6vEIX++kxA3r1qlEQ6wIIICAAwKkcQ4gUQUBBDQQSElJ8S7t6Z2VqUHbOZssl5XhXiorNTU15wb+RgABBFQWII1TefaIHQGVBSSNu3ItXrcRXI1PuHXrlm7d0RECCCCggwBpnA7IdIEAAs4XeGn9ltJlyzq/XVpEAAEE1BHwUCdUIkUAAUsIPDxqTIeBQxLj4tw9PZMS4v81/rnrsTGWGDmDRAABBIoowGpcEcGojgAC2gt8veS9f/yl19ze3SN+2Ndx+AjtO6QHBBBAQEkB0jglp42gEbCIQNTxoz5Vqspg67ZoOWH1ugmfrx84a667Z+k7hz9127f2P+/r0bPn+IkWkWGYCCCAgAiQxnEYIICAQQU8vbyaP/zIubBDcnZ1SOj8ZWNHv9W/z63ExKBBQw0aMWEhgAAC+gpwbZy+3vSGAAIOCP1vhZ0AACAASURBVHR5amSbP/+lWt179n62ct+az6rXbyg7NX+4u3y7eXrUax24a8UyB5qhCgIIIGByAdI4k08ww0NARYEdS5fsXvVx0OAn/O6pl5WZWcpmS7qeEHXsqIxFvpNv5HxisJu7e2ZGhoojJWYEEECgJAKcVC2JHvsigICGAt9/vqpJcMfKNWtdPXfWu6JvwtUr5w4f9Pb19SrnfWev8b9cbtDmASm5u2kzDaOhaQQQQMB4AqRxxpsTIkIAgdsCGWlp2z96v8fz4+XHyldCnnrngxdWrrmv+6PR4Sdl6/mww3LBnPzY8s6CgTPnPPPhvzxKeyGHAAIIWErAlpWVZakBM1gEEDCIQHx8/GOPPto6/hd94vmhov9XW7f6+Pjo0x29IIAAAjoIsBqnAzJdIIAAAggggAACzhcgjXO+KS0igIAjAr6+vqnp6ZmOVC1xHbn9ITMzk6W4EkPSAAIIGEuANM5Y80E0CFhKoNE999x0c9dhyDfdPBrXq6dDR3SBAAII6ClAGqenNn0hgMAfBJ5+9tnLPpV1QLnsU+npMWN06IguEEAAAT0FSOP01KYvBBD4g0DHjh37Dh0WUc5XU5cz5Xz/OvzJoKAgTXuhcQQQQEB/Ae5U1d+cHhFA4A8CH777f19v3HA9NsYnJTndzWn/b+mZlXndq2yFqn7d+vR56pnRoCOAAALmEyCNM9+cMiIE1BOIjY09ceJEVFRUYmJiodFPnz592rRphVaTGxpq1arVrFmzypX1OG9baDxUQAABBJwuQBrndFIaRAABbQU6dOiwZ88ebfugdQQQQEAFAdI4FWaJGBFA4A4Bm41/uDggEEAAgd8EnHYZCpwIIICAPgJNmzbVpyN6QQABBAwuwP/UGnyCCA8BBHIKsBqXU4S/EUDAqgKsxll15hk3AsoKsBqn7NQROAIIOFmA1Tgng9IcAghoLcBqnNbCtI8AAqoIsBqnykwRJwII/C7QqVMnLBBAAAEERIDVOA4DBBBQTIDVOMUmjHARQEAzAVbjNKOlYQQQQAABBBBAQEsB0jgtdWkbAQQQQAABBBDQTIA0TjNaGkYAAQQQQAABBLQUII3TUpe2EUBAAwFucdAAlSYRQEBJAW5xUHLaCBoBKwtwi4OVZ5+xI4DAnQKsxnE8IICAGgKpqan2QJs1a2b/kV2ixgCIEgEEEHC2AGmcs0VpDwEEtBHIzMwcOnRoSkrKsWPH5Ft+S4k2XdEqAgggoIYAaZwa80SUCCBQpkyZhg0btm/fvn79+vItv6UEFgQQQMDKAlwbZ+XZZ+wIKCaQkJBQq1atxMTE8uXL//zzzxUrVlRsAISLAAIIOFWA1TinctIYAghoKSB5W0hIiPQg3+RwWkrTNgIIqCHgoUaYRIkAAioInDx5Mjw8PCYmRrtgK1WqdNddd8n3kiVLtOulWrVqTZo0CQgI0K4LWkYAAQRKLsBJ1ZIb0gICCJSSew6eHDHyl9iExLTSWe7KX7Jmy0gp75F6l3+lfy79wMvLiwlGAAEEjClAGmfMeSEqBFQSkByuT78hv9rqlirrp1LchcaadOUuz0tffPZx6dKlC61LBQQQQEB/AdI4/c3pEQGzCQwc/ETEjWpmy+Hss5R0pUmVhI//tdRsc8Z4EEDAFALc4mCKaWQQCLhOQK6Hk3Op5szhRNXbPyo65tSpU64DpmcEEEAgXwHSuHxp2IAAAo4IyD0Ncj2cIzUVrZOY7iWpqqLBEzYCCJhbgDTO3PPL6BDQXEDuS81yL6t5N67rQEZ35coV1/VPzwgggEC+AqRx+dKwAQEEEEAAAQQQMLIAz40z8uwQGwIKC5T39po4omvAPdVvpabv2H/qn+v2KTwYQkcAAQQMKcBqnCGnhaAQUF9g1tjHDp2IGvDi0pGvr2xYx69Xx2bqj4kRIIAAAsYSYDXOWPNBNAiYQ6BWdV9fn7Lrd/wkw0m5lTb93c0ZGZny28PdbcLwh5o3qlnKVmrhih0/Hr/YpW2jToGNKpQvU7dGlQUrdrQIqBnUqn701YSQeWvTMzL//Y8RW/ee7Nou4HJswvK134/6a3D92lVnL/nv7kNnzQHFKBBAAIGSCLAaVxI99kUAgbwFJCc7fykue1tqmmRxWfLn4w+1yCqVNXTSP1+Y8/nrY3p6erhLoX/VCuNC17wQ+nnohD5b95yUBTybzdahZX377j+dujT4peXJKWlDe7d9fvbql+avGz3wwbx7pRQBBBCwmACrcRabcIaLgC4Ckp9lZP62/Caf6c/1lCvkZGltyEvL29xbN+bajYGPtpZyKalTo7L8OBFxWb4vRMfFX08OP/fbPaGHT0b5VfGx737s9taw8J9lxU5+HDsTXfH2Dz4IIIAAAqzGcQwggIDzBS5ejqvp72tvd9rizc+/sdr+22YrFRkVe/LsZflv2uJNl2MS7uw7LT3D/mf6/35kb83eJCWZtxf2+CCAAAIIkMZxDCCAgPMFzkbFutlsD7cPkKblerhuHZrY+zhw7EKD2tWOnok+GflLYLM6N5NTnd83LSKAAAKWESCNs8xUM1AE9BWYtGCd3Jrw2fynlkwfHJdw09752m1hct3bqnkj3pk84PSFq/pGRG8IIICA2QRsWVmcnjDbpDIeBPQUWLJkyQerd9sq/0nPTvXsKyvu+Mj+HUaNGqVnp/SFAAIIOCLAapwjStRBAAEEEEAAAQQMJ0AaZ7gpISAEEEAAAQQQQMARAdI4R5SogwACCCCAAAIIGE6ANM5wU0JACCCAAAIIIICAIwKkcY4oUQcBBBBAAAEEEDCcAG9xMNyUEBAC6glkJJe6dU29sB2MWEbHBwEEEDCkAGmcIaeFoBBQSqCK5/Wq5aKUCrkIwcYmXy9CbaoigAACOgqQxumITVcImFTgL3/pa+LHqsmD8Xi+pkmPXIaFgPICXBun/BQyAAQQQAABBBCwpgBpnDXnnVEjgAACCCCAgPICpHHKTyEDQAABBBBAAAFrCpDGWXPeGTUCCCCAAAIIKC9AGqf8FDIABBBAAAEEELCmAGmcNeedUSNgCIGEhISoKCc8qeTo0aOGGA9BIIAAAvoKkMbp601vCFhDYP369bbbHw8Pj549e6ampuY57ilTpiQlJcmmFStWVK9effPmzXlWk0J5oEnVqlVv3rxpr7B8+fI+ffoEBgbu3btXShYuXHj+/Pn89qUcAQQQMKsAaZxZZ5ZxIeB6gYMHD0pm9uWXX27bti13NLt27apRo0bjxo23b9++Y8eOsWPH5q5jL5k+fXqrVq0kabP/mZaWduTIEckUP/7445kzZ0rhnDlzJk+enN/ulCOAAAJmFSCNM+vMMi4EXC9Q/vZH4qhUqVKOaFJSUhYvXhwSEiLl999//0cffeTu7p5d5/3339+6dWt8fPzTTz8tj94dM2bMnY8X9vT0lOU3qVyuXDl7y35+ft26dVu5cqXrx0wECCCAgI4CpHE6YtMVAhYTkJW2oKCgHj16NGrUKMfQ586d++KLL0pCJuW+vr5y7vXOCiNHjly9evXAgQNfeeUVOTMrp1PzlJs3b96QIUPsm4YPH75u3bobN27kWZNCBBBAwJQCpHGmnFYGhYAhBBITE5OTk0+cOLFgwYIcAbVt23b//v35RSnXwMXFxclK26VLl/Kr8+6771aoUEEuvLNXkKU7Wc/z8fHJrz7lCCCAgPkESOPMN6eMCAGjCJw9ezYiIuLWrVu5s6tHHnlE0rsLFy7kGausq73xxhty6ds333yT5/tMly1bdvr06VmzZmXvLndLyCV0ebZGIQIIIGBWAdI4s84s40LA9QItWrS499575Qq2wYMH545GkjDJvaRcUr1BgwbJlW1ypvWZZ56RkmHDhjVp0kTOtE6bNk1Oqm7YsEEqhIWFyZnTRYsWycKb3A/xyy+/SKF85I6HnTt31qxZM/ep29ydUoIAAgiYSeAP16OYaWCMBQEEXCggTwPJcxXtzpCqVasm9yV8/fXXXbt2XbVqVQHR9r79ubOCnK698095XskHH3xQQAtsQgABBEwpQBpnymllUAioISCrbk4JVM6xOqUdGkEAAQTUEuCkqlrzRbQIIIAAAggggMDvAqRxHAoIIIAAAggggICSAqRxSk4bQSOAAAIIIIAAAqRxHAMIIIAAAggggICSAqRxSk4bQSOAAAIIIIAAAqRxHAMIIOAygcjIyKSkpBzdy8NEzp0757KY6BgBBBBQR4A0Tp25IlIElBKQl6I2bNhQXlovr7fPyMjIHXtqaurEiRPlDVqySd58Ly9OlXdwyW83Nzd53Wp6enruXShBAAEEELhTgDSO4wEBBJwvIMts8tL6zp07L168eOPGjfKM39x9vPnmm+PGjfPy8pKXaLVq1SowMNBex9vb+9lnn50/f37uXShBAAEEELhTgMf/cjwggIDzBTZt2iTLbAsWLJA3ccnb6+U7Rx/h4eG//vprcHCwlI8ZM0aW4uQ9qtl15L0Oa9eulVey1q9f3/nB0SICCCBgFgFW48wyk4wDASMJREdHy7u27Nlb7hxOIpWXpWa/yV5yuNyxyxtXp06dmrucEgQQQACBbAHSOA4GBBBwvoC/v39MTIz99oVr167l7kAumztz5kzu8uwSWa4LCAgooAKbEEAAAQRI4zgGEEDA+QLdu3dPS0sLCQlZs2aNZGNyjjVHH5MnTw4NDc3vPga5++Gtt96aNGmS8yOjRQQQQMBEAqRxJppMhoKAYQSaNm26dOnSLVu2yHVvffv27dGjR47QypYtO3r0aMnVpHzDhg2DBg0KCwsbPnz4okWLpEQyPLn7oXTp0oYZEIEggAACRhTgFgcjzgoxIWACgSdvfwoYSJcuXeQm1ri4uN63P9k1r169mpCQEBQUVMC+bEIAAQQQEAHSOA4DBBAokUCFChXk/GnxmpBbWXPvKI+aM9TTRuQBKB4e/FOZe6IoQQAB1wtwUtX1c0AECCgtULdu3f379ys9hIKD37t3b7169Qquw1YEEEDAJQKkcS5hp1MEzCPQunXrlJQU84znjyPJysqStUZ5OrFZB8i4EEBAaQHSOKWnj+ARcL2AnHCUWxOee+4514eiQQTyPgm5wo+TqhrQ0iQCCDhBgAs+nIBIEwhYXEBexiDP+O3Tp8/f/vY3eSCcPPhXdRB56J081u6jjz6SpxDfd999qg+H+BFAwKwCNjllYNaxMS4EENBTQN7c8Mknnxw/flxuNdW0XzmHW6ZMGU27kNssmjVrNmzYsOrVq2vaEY0jgAACJREgjSuJHvsigIALBGw2/uFyATtdIoCAAQW4Ns6Ak0JICCBQkICvr29Bm9mGAAIIWEaANM4yU81AETCLQPPmzc0yFMaBAAIIlEiAcxMl4mNnBBDQX4CTqvqb0yMCCBhTgNU4Y84LUSGAQL4CDz74YL7b2IAAAghYSYDVOCvNNmNFwBQCrMaZYhoZBAIIOEGA1TgnINIEAgjoKVClShU9u6MvBBBAwLACrMYZdmoIDAEE8hZgNS5vF0oRQMB6AqzGWW/OGTECCCCAAAIImEKANM4U08ggELCSgLz7y0rDZawIIIBAvgKcVM2Xhg0IIGBMAU6qGnNeiAoBBPQXYDVOf3N6RACBEgnUqVOnRPuzMwIIIGAWAVbjzDKTjAMBywiwGmeZqWagCCBQiACrcYUAsRkBBBBAAAEEEDCmAGmcMeeFqBBAIKdAbGzs4cOHpTQgIEC+5beU5KzE3wgggICVBEjjrDTbjBUBlQWqVq06fvz49evXh4eHy7f8lhKVB0TsCCCAQEkFuDaupILsjwACugns3Lmzc+fO5cuXT0xM/Oabbzp16qRb13SEAAIIGFCANM6Ak0JICCCQr0C7du3279/ftm3bffv25VuJDQgggIA1BEjjrDHPjBIBFQSuXr1aaJiSvfXr12/NmjWSzxVa2c/Pr9A6VEAAAQTUFSCNU3fuiBwBkwjIGdI5M6Z/t2dvHX+/S7G/FjqqpKQkb2/vQqvVrFr5wpWYBzt0ePX11x2pX2iDVEAAAQSMJkAaZ7QZIR4ErCXw8/nzAwYObJQYVy4zw7NUlnMHn1bKdtPNPbxcpS9Wr67BQ4Odi0trCCBgAAHSOANMAiEgYFUBWVd7qHPndjditAb43qfqrm+/8/Ly0roj2kcAAQT0FOCBI3pq0xcCCPxBYO6MGY1uXtMBpfHN+DnTp+vQEV0ggAACegqQxumpTV8IIPAHgW/37CmfmaEDSrmszO/27NGhI7pAAAEE9BQgjdNTm74QQOD/C8THx1evXKm0s6+Hy5PYKyuzWsUK169fz3MrhQgggICiAqRxik4cYSNgBoGfY/R7m1ZUTKzNZjODGmNAAAEE/idAGsexgAACSgq8tH5L6bJllQydoBFAAAEnCXg4qR2aQQABBJwj8PCoMR0GDkmMi3P39ExKiP/X+Oeux2p+K6tzQqcVBBBAQF8BVuP09aY3BBBwQODrJe/94y+95vbuHvHDvo7DRziwB1UQQAABKwqQxllx1hkzAqoIRB0/6lOlqkRbt0XLCavXTfh8/cBZc909S98Z/9Rt39r/vK9Hz57jJ6oyNOJEAAEESi5AGldyQ1pAAAFNBDy9vJo//Mi5sENydnVI6PxlY0e/1b/PrcTEoEFDNemPRhFAAAHVBLg2TrUZI14ELCDQ5amRbf78l2p179n72cp9az6rXr+hDLr5w93l283To17rwF0rllmAgSEigAAChQiQxhUCxGYEENBfYMfSJbtXfRw0+Am/e+plZWaWstmSridEHTsqkch38o0bOUJyc3fPzNDjMcL6U9AjAgggUIAAJ1ULwGETAgi4UuD7z1c1Ce5YuWatq+fOelf0Tbh65dzhg96+vl7lvO8MK/6Xyw3aPCAldzdt5spw6RsBBBDQXYA0TndyOkQAAccEMtLStn/0fo/nx8uPla+EPPXOBy+sXHNf90ejw09KA+fDDssFc/JjyzsLBs6c88yH//Io7eVYw9RCAAEETCJgy8rKMslQGAYCCCglIC/jeuzRR1vH/6JP1D9U9P9q61YfHx99uqMXBBBAQAcBVuN0QKYLBBDIQyAzM/OuKpXz2KBNUY0qlfi/Vm1oaRUBBFwmQBrnMno6RsDiApUrV75yLT61lB7vOZVeYhNuVKhQweLmDB8BBEwmQBpnsgllOAioJNChXbskm7sOEd+0ubdv106HjugCAQQQ0FOAa+P01KYvBBD4g8CVK1f++ufHW8Vf0drlx4r+/9m4sWrV314IwQcBBBAwjQCrcaaZSgaCgHoC/v7+S5Z8eLiiX6JNq3+LpOVDFf2WL1tGDqfe8UHECCBQmACrcYUJsR0BBDQWuHjx4luhc3b/cKBehfLxqWmF9paenu7hUfijy329Skcm3Ahu0+bFV1+tVatWoc1SAQEEEFBOgDROuSkjYARMK3DmzBm5fbXQ4bVs2fLw4cOFVnNzc2vY8Le3ePFBAAEEzCpAGmfWmWVcCJhWICgoaPfu3aYdHgNDAAEEHBbQ6noUhwOgIgIIIFA0gcjIyKLtQG0EEEDApAKsxpl0YhkWAuYVsNn4h8u8s8vIEECgKAKsxhVFi7oIIGAAAT8/PwNEQQgIIICA6wX4n1rXzwERIIBAkQRYjSsSF5URQMDEAqzGmXhyGRoCCCCAAAIImFmANM7Ms8vYEDClQLNmzUw5LgaFAAIIFFWAk6pFFaM+Agi4WICTqi6eALpHAAHDCLAaZ5ipIBAEEHBMoB0vuXcMiloIIGB6AVbjTD/FDBABswmwGme2GWU8CCBQXAFW44orx34IIIAAAggggIBLBUjjXMpP5wggUHQB3pRadDP2QAABcwpwUtWc88qoEDCxACdVTTy5DA0BBIokwGpckbiojAACLhO4ceNGUlKSdN+pUyf5lt9S4rJo6BgBBBAwgABpnAEmgRAQQMABAR8fn169ekVEROzcuVO+5beUOLAfVRBAAAHTCpDGmXZqGRgC5hN44oknAgMDGzRoIN/y23wDZEQIIIBAkQS4Nq5IXFRGAAEXC9SuXTsqKuruu+++ePGii0OhewQQQMDVAqzGuXoG6B8BBIoiMHPmTKlu/y7KftRFAAEETCjAapwJJ5UhIeASAbnnYOmyf/54KCwhPk7TAM6dO3fPPfdo2kVF38ptWrd8asTfypQpo2lHNI4AAgiURIA0riR67IsAAr8L/HjoyJgxozPKNy7lVTHLvazqLraM5FK3EtxvhL///oct72um+nCIHwEEzCpAGmfWmWVcCOgn8P2+Ay9PmZVUub1+XerVU9m4Pe8tnN2sGZmcXuL0gwACRREgjSuKFnURQCCXQGZm5mOP//VK6Zal3DxybVS/IDPNP+3IpnWr5ZnD6g+GESCAgNkEuMXBbDPKeBDQWeDQoUPxianmzOGE0s3z+s1bMkadVekOAQQQcESANM4RJeoggEC+AmfPnr3lXjnfzepvSLJVljGqPw5GgAACJhQgjTPhpDIkBPQUSEhIyMrK1LNHvfvKyrx27ZrendIfAggg4IAAaZwDSFRBAAEEEEAAAQSMJ2DGS5KNp0xECFhQoLy318QRXQPuqX4rNX3H/lP/XLfPgggMGQEEENBUgNU4TXlpHAHrCswa+9ihE1EDXlw68vWVDev49erIMzusezAwcgQQ0EiA1TiNYGkWAUsL1Kru6+tTdv2On0Qh5Vba9Hc3Z2T8dv2ch7vbhOEPNW9Us5St1MIVO348frFL20adAhtVKF+mbo0qC1bsaBFQM6hV/eirCSHz1qZnZP77HyO27j3ZtV3A5diE5Wu/H/XX4Pq1q85e8t/dh7jnwNIHGINHAAG7AKtxHAkIIOB8AcnJzl/6/6/kSk2TLC5Lunn8oRZZpbKGTvrnC3M+f31MT08Pdyn0r1phXOiaF0I/D53QZ+uek7KAJw9p69Cyvj2sn05dGvzS8uSUtKG92z4/e/VL89eNHvig8yOmRQQQQEBBAVbjFJw0QkbA8AKSn2Vk/n776vTnesoVcrK0NuSl5W3urRtz7cbAR1vLCKSkTo3fnlRyIuKyfF+Ijou/nhx+7or8Pnwyyq+Kj32Ux25vDQv/WVbs5MexM9EVb//ggwACCCDAahzHAAIIOF/g4uW4mv6+9nanLd78/Bur7b/lVQiRUbEnz16W/6Yt3nQ5JuHOvtPSM+x/pv/vR/bW7E1Sknl7YY8PAggggABpHMcAAgg4X+BsVKybzfZw+wBpWq6H69ahib2PA8cuNKhd7eiZ6JORvwQ2q3MzOdX5fdMiAgggYBkB0jjLTDUDRUBfgUkL1smtCZ/Nf2rJ9MFxCTftna/dFibXva2aN+KdyQNOX7iqb0T0hgACCJhNwJaVxekJs00q40FAT4ElS5Z8sHq3rfKf9OxUz76y4o6P7N9h1KhRenZKXwgggIAjAqzGOaJEHQQQQAABBBBAwHACpHGGmxICQgABBBBAAAEEHBEgjXNEiToIIIAAAggggIDhBEjjDDclBIQAAggggAACCDgiQBrniBJ1EEAAAQQQQAABwwnwFgfDTQkBIaCeQEpMqWsn1AvbwYhldHwQQAABQwqQxhlyWggKAaUE7m969/33369UyEUI9uDBg0WoTVUEEEBARwHSOB2x6QoBkwpIDmfix6rJg/F4vqZJj1yGhYDyAlwbp/wUMgAEEEAAAQQQsKYAaZw1551RI4AAAggggIDyAqRxyk8hA0AAAQQQQAABawqQxllz3hk1AggggAACCCgvQBqn/BQyAATUFUhISIiKiipq/ImJiefOnSvqXtRHAAEEzCdAGme+OWVECLheYP369bbbHw8Pj549e6ampuYZ05QpU5KSkmTTihUrqlevvnnz5jyrSaHcCVu1atWbN2/Kbzc3txdffDE9PT2/ypQjgAACFhEgjbPIRDNMBFwgIE9ck8zsyy+/3LZtW+7ud+3aVaNGjcaNG2/fvn3Hjh1jx47NXcdeMn369FatWgUGBtr/9Pb2fvbZZ+fPn59ffcoRQAABiwiQxllkohkmAi4QKH/7Ix1XqlQpR/cpKSmLFy8OCQmRcnns3EcffeTu7p5d5/3339+6dWt8fPzTTz8tz2wbM2ZMjufSde3a9cKFC2fPnnXBqOgSAQQQMIwAaZxhpoJAEDCdgKy0BQUF9ejRo1GjRjkGN3fuXDkx6unpKeW+vr5y7vXOCiNHjly9evXAgQNfeeUVOTMrp1Nz28yaNWvq1Km5yylBAAEErCNAGmeduWakCOgtIPciJCcnnzhxYsGCBTn6btu27f79+/MLSK6Bi4uLkzW8S5cu5VcnPDw8ICAgv62UI4AAAlYQII2zwiwzRgRcIyAnPSMiIm7duuXj45MjgkceeUTSOzkxmmdk69ate+ONNz7++ONvvvkmzxdhyT0Tb7311qRJk/LcnUIEEEDAIgKkcRaZaIaJgAsEWrRoce+995YrV27w4MG5u5ezonKnqpRLqjdo0KCVK1fKmdZnnnlGSoYNG9akSRM50zpt2jQ5qbphwwapEBYWNnz48EWLFkmF0NDQcePGlS5dOnezlCCAAALWEfjD9SjWGTYjRQABTQX69OmT5yranZ1Wq1atW7duX3/9tdyvsGrVqgLi6X37k13h6tWr8sA5uequgF3YhAACCFhBgDTOCrPMGBEwqICsuhUjMj8/P542Ugw3dkEAAfMJcFLVfHPKiBBAAAEEEEDAEgKkcZaYZgaJAAIIIIAAAuYTII0z35wyIgQQQAABBBCwhABpnCWmmUEigAACCCCAgPkESOPMN6eMCAEEEEAAAQQsIUAaZ4lpZpAIGFMgMjIyKSkpR2zy7odz584ZM2CiQgABBAwlQBpnqOkgGATMIyAvRW3YsKE8HEReb5+RkZF7YPImhokTJ7q7u8smefO9vDhV3sElv93c3OR1q+np6bl3oQQBBBBA4E4B0jiOBwQQcL6ALLMNGTKkc+fOixcv3rhxozzjN3cfb775e2OlWgAAEthJREFUpryJwcvLa/r06a1atQoMDLTX8fb2fvbZZ3kyXG4xShBAAIEcAjz+l0MCAQScL7Bp0yZZZluwYIG8iatnz57ynaMPebH9r7/+GhwcLOVjxoyRpTh5j2p2HXmvw9q1a+WVrPXr13d+cLSIAAIImEWA1TizzCTjQMBIAtHR0fKuLXv2ljuHk0jlZamyCGcPWXK43LHLG1enTp2au5wSBBBAAIFsAdI4DgYEEHC+gL+/f0xMjP32hWvXruXuQC6bO3PmTO7y7BJZrgsICCigApsQQAABBEjjOAYQQMD5At27d09LSwsJCVmzZo1kY3KONUcfkydPDg0Nze8+Brn74a233po0aZLzI6NFBBBAwEQCpHEmmkyGgoBhBJo2bbp06dItW7bIdW99+/bt0aNHjtDKli07evRoydWkfMOGDYMGDQoLCxs+fPiiRYukRDI8ufuhdOnShhkQgSCAAAJGFOAWByPOCjEhYAKBJ29/ChhIly5d5CbWuLi43rc/2TWvXr2akJAQFBRUwL5sQgABBBAQAdI4DgMEEHCZgNzKmrtvedQcTxvJzUIJAgggkFuAk6q5TShBAIEiCMgdqbnfxFCE/Q1fVR5KnOe9tIYPnAARQMD8AqRx5p9jRoiApgJyz+mRI0c07cK1jR86dEgu9XNtDPSOAAII5ClAGpcnC4UIIOCoQLNmzWw2mzwfxNEdlKp3/Phxec9EkyZNlIqaYBFAwCoCpHFWmWnGiYB2AnKJm9xzKi/g0q4Ll7QcERHx9ttv22+ndUkAdIoAAggULGDLysoquAZbEUAAgUIF4uPjR44cWadOHXl9llwtV2h9g1eQZxefO3fu/PnzS5YsqVixosGjJTwEELCsAGmcZaeegSPgfIHdu3fL2VV5Yojzm76jxY8//njYsGGadiF3y8qJ1A4dOmjaC40jgAACJRQgjSshILsjgIDeAnIpHqcR9EanPwQQMKQA18YZcloICgEEEEAAAQQQKEyANK4wIbYjgIDBBB544AGDRUQ4CCCAgGsEODfhGnd6RQCBYgtwUrXYdOyIAAImE2A1zmQTynAQML9AQECA+QfJCBFAAAEHBFiNcwCJKgggYCQBT0/PtLQ0I0VELAgggIBrBEjjXONOrwggUGwBTqoWm44dEUDAZAKcVDXZhDIcBBBAAAEEELCKAGmcVWaacSJgGoEyZcqYZiwMBAEEECiJACdVS6LHvggg4AIBTqq6AJ0uEUDAkAKsxhlyWggKAQTyF2jTpk3+G9mCAAIIWEiA1TgLTTZDRcAcAqzGmWMeGQUCCJRcgNW4khvSAgII6CrQunVrXfujMwQQQMCoAqzGGXVmiAsBBPIRYDUuHxiKEUDAcgKsxlluyhkwAggggAACCJhDgDTOHPPIKBCwkECrVq0sNFqGigACCOQvQBqXvw1bEEDAkAKHDh3KHdegQYPOnj2buzy7RN7f9dVXX+VZITAwMM/yPAuvXr36/PPP57mJQgQQQEBnAdI4ncHpDgEESirg5+dXjCbi4uKWLl1ajB1z7CK9v/POO8VoR/LIwYMH+/v7nzp1qhi7swsCCCCQW4A0LrcJJQggYGgBWQ/LM74PP/ywU6dODz30kGRsUuHll1/u1avX448/fuTIEfnzySef3L179/jx4+V3SEhIt27dunfvHhERIX9mZmZOnDixefPmM2bMyN2ydNe/f39paujQoSkpKZKEDRs2LD4+/rHbn5YtW8pCoOw1ZcoU6Ss4OPjEiRPy57///e9ly5bJj8WLF2/cuFF+PPHEE1Khffv2ubugBAEEECimQBYfBBBAQCkB+ccud7wDBw5cu3atlC9atOi1117LyMiQpE3+3LVrl+RP8uP8+fP9+vWTH9u2bZOUTn6Eh4dLgiU/6tSpI7marJbVrl1bErUcjS9fvlzalELJz+x7ST5nryP5n2SNx48f37lz59/+9jcpPHnyZOfOneWHbBo5cqR0LWdg7ZVjY2Plh2Ry0m+OLvgTAQQQKJ4Aq3HFTH/ZDQEEXCXw4IMP5tm1LKdJueRJBw8edHNzu3nzpqy6yRLd9evX76y/b98+WYeTksaNG8sam/yodvvj4eEhLUiylaPxLl26SCMLFy7MfTJXztJ26NChadOmkjJK/jd//vzNmzfbV+PkqSjt2rWTvrKX36pUqZJn2BQigAACxRYgjSs2HTsigIBrBL799ttCO5ZTn7Nnz5ZTpaGhoYVWzq4gmVzuyrJEt337dnd396CgoDszQlnAkzTu1VdflV3kf6MlKZS8TT5ffPGFlEg+t3//fknp5L6KHTt25G6WEgQQQKDkAqRxJTekBQQQMISA/Ro4OU8qTySRa9caNWok9xMcPXo0R3CSacl5VSmMjo5etWpVoaHLilpSUpKcG5WzpfaVNvsuEyZMmDNnjpeXl/wpa3Jy0la+mzVrdvr0aSnp2LHje++9J8mfpHrSY6G9UAEBBBAohgBpXDHQ2AUBBFwpkN9z4w4cOPDwww+vWbNm3Lhxbdq0kZOqcoJVluWSk5MPHz4sp0QvXLggNzF07drV19f30UcfHTFihNygUOhIKlSo8Mwzz8hdDrLklv0esMjIyA0bNrz99tt//vOf5V4KyfCqV68up2jlXtQ//elP0mb58uXlvKr8kEzO29tbfsybN0/C27Nnj1xFJ4EV2i8VEEAAgUIFeBlXoURUQAABYwnwMi5jzQfRIICA6wTyuBDEdcHQMwIIIFC4QO5bDQrfpyg1ZOFN7lfI3uPTTz+VBbmiNEBdBBBAQCcBVuN0gqYbBBBwlgCrcc6SpB0EEFBdgGvjVJ9B4kcAAQQQQAABiwqQxll04hk2AuoKyKsa1A2eyBFAAAEnCnBS1YmYNIUAAnoIcFJVD2X6QAABFQRYjVNhlogRAQTuELjrrrvwQAABBBAQAVbjOAwQQEAxAVbjFJswwkUAAc0EWI3TjJaGEUAAAQQQQAABLQVI47TUpW0EENBAoF69ehq0SpMIIICAegKcVFVvzogYAYsLcFLV4gcAw0cAgWwBVuM4GBBAQDGBpk2bKhYx4SKAAALaCLAap40rrSKAgGYCrMZpRkvDCCCgmACrcYpNGOEiYFmBa9euzZgxI3v48ltKLKvBwBFAAAERII3jMEAAATUEKlWqdO7cueDg4MDAQHmRg/yWEjVCJ0oEEEBAGwFOqmrjSqsIIKCBwNmzZxs0aGBvOCIion79+hp0QpMIIICAMgKsxikzVQSKAAKStz355JPiIN/kcBwPCCCAgAcECCCAgP4CsbGxZ86cuXLlSkZGRpF6b9u27aZNm+T7iy++KNKO7u7u1atXl8W8qlWrFmlHKiOAAAKGFeCkqmGnhsAQMK3AP/7xjyNHjpQvX7527dopKSn6jNPLyysqKurmzZstW7YcP368Pp3SCwIIIKCpAGmcprw0jgACOQXkDtNq1aoNHDgw5wa9/v7000/j4+OnTJmiV4f0gwACCGglQBqnlSztIoBAbgFZh5NFuAEDBuTepGeJZHLp6enjxo3Ts1P6QgABBJwuwC0OTielQQQQyFsgLi7uhx9+cHkOJ8ENGTJk9+7dCQkJeQdKKQIIIKCIAGmcIhNFmAioLyD3NBjnSW++vr4Sj/qojAABBCwtQBpn6eln8AjoKSD3pdaqVUvPHgvoSyKReAqowCYEEEDA+AKkccafIyJEwCQCmZmZt27dMshgUlNTJR6DBEMYCCCAQPEESOOK58ZeCCCgq4CsnP3nP/8pUpcrV668fv16kXahMgIIIKCWAGmcWvNFtAhYVODixYs7d+50fPBZWVlr165NTEx0fBdqIoAAAsoJkMYpN2UEjIDZBD755JMHHnigffv2CxcutI/tvvvus/+QFTh5zpy8SnXs2LFbtmx56qmnpPzll1+eOXPmo48+KtU2btwoJatWrZo7d659l3bt2smp2+nTpx84cGDw4MFFSv7MJst4EEDA7AK8jMvsM8z4EDC2QHh4+Icffrht2zZPT89BgwbJKxY6duyYI2R5fWpoaKisrr399tv2TVL5yy+/lLcydO/evVOnTrmH+Prrr8vDTT766KMaNWrk3koJAgggYA4BVuPMMY+MAgFVBb777rtHHnlEngksL8vq06fPrl27HBlJq1atpNrdd9/dokULSQQd2YU6CCCAgPkESOPMN6eMCAGVBOQiNpvNlh2x/Gn/LW9ZcHAY9htOHa/vYLNUQwABBIwvQBpn/DkiQgTMLBAcHPzVV18lJyenpaXJhW4PPvigjFbOhMoqnfw4cuRInoPfu3evlF+6dCksLKxJkyZSX0oyMjJiY2Ojo6Pz3IVCBBBAwHwCpHHmm1NGhIBKApKEjRgx4qGHHpJL3ORGh86dO0v0r7zyygsvvNCvX7/s58w1aNDgxx9/DAkJsY/N3d29d+/ePXv2lGvmKlSoILmgn59fhw4d5J2t1atXt9dp06bN8OHDDx8+rBIHsSKAAAJFEbBln8Ioyl7URQABBIossG7dOknFXnzxxSLv+ccd5E5VSfu6detWknbmzZsnWeNjjz1WkkbYFwEEEHCtAKtxrvWndwQQQAABBBBAoJgCpHHFhGM3BBAoqkC5cuUqV65c1L00ql+pUiWJR6PGaRYBBBDQR4A0Th9nekEAgVLy+Df7rQkltJAn/ZbwjKoEIJFIPCWMhN0RQAAB1wqQxrnWn94RsJBAvXr1/P39ExISXD7muLi4mjVr1qlTx+WREAACCCBQEgHSuJLosS8CCBRNQO4/ffXVV4u2jwa1p0yZMm7cOA0apkkEEEBAVwHuVNWVm84QQOD8+fPDhg0bPXq0vINBnvdmf3ivDixubm7ySDl5f9fixYs/++wz6V2HTukCAQQQ0FSANE5TXhpHAIE8BFJSUuQ9qvLk3sTERN3Osco9Dd7e3vfdd9+oUaNKly6dR1gUIYAAAqoJkMapNmPEiwACCCCAAAII3Bbg2jgOBAQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQAAB0jiOAQQQQAABBBBAQEkB0jglp42gEUAAAQQQQACB/wcOJ1VZwS9mowAAAABJRU5ErkJggg==", "text/plain": [ "" ] }, - "execution_count": 14, + "execution_count": 13, "metadata": { "image/png": { "height": 500 @@ -899,7 +931,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -915,7 +947,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -931,7 +963,7 @@ " 7: (21.0, 81.0)}" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -949,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -997,7 +1029,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/mnist_example_convolutional.ipynb b/docs/notebooks/neuralnet/mnist_example_convolutional.ipynb index d33266c6..1de8f770 100644 --- a/docs/notebooks/neuralnet/mnist_example_convolutional.ipynb +++ b/docs/notebooks/neuralnet/mnist_example_convolutional.ipynb @@ -25,7 +25,7 @@ "- `torch`: the machine learning language we use to train our neural network\n", "- `torchvision`: a package containing the MNIST dataset\n", "- `pyomo`: the algebraic modeling language for Python, it is used to define the optimization model passed to the solver\n", - "- `onnx`: used to express trained neural network models\n", + "- `onnx`: used to express trained neural network models\n", "- `omlt`: the package this notebook demonstates. OMLT can formulate machine learning models (such as neural networks) within Pyomo\n", "\n", "**NOTE:** This notebook also assumes you have a working MIP solver executable (e.g., CBC, Gurobi) to solve optimization problems in Pyomo. The open-source solver CBC is called by default." @@ -33,9 +33,19 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:34:36.631157: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-05-16 17:34:36.660941: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "#Import requisite packages\n", "#data manipulation\n", @@ -70,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -94,7 +104,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -133,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -176,52 +186,52 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Train Epoch: 0 [0/60000 (0%)]\tLoss: 2.301070\n", - "Train Epoch: 0 [12800/60000 (21%)]\tLoss: 1.012006\n", - "Train Epoch: 0 [25600/60000 (43%)]\tLoss: 0.381090\n", - "Train Epoch: 0 [38400/60000 (64%)]\tLoss: 0.395724\n", - "Train Epoch: 0 [51200/60000 (85%)]\tLoss: 0.263946\n", + "Train Epoch: 0 [0/60000 (0%)]\tLoss: 2.322958\n", + "Train Epoch: 0 [12800/60000 (21%)]\tLoss: 0.536660\n", + "Train Epoch: 0 [25600/60000 (43%)]\tLoss: 0.259742\n", + "Train Epoch: 0 [38400/60000 (64%)]\tLoss: 0.356392\n", + "Train Epoch: 0 [51200/60000 (85%)]\tLoss: 0.196987\n", "\n", - "Test set: Average loss: 0.3262, Accuracy: 9075/10000 (91%)\n", + "Test set: Average loss: 0.3235, Accuracy: 9024/10000 (90%)\n", "\n", - "Train Epoch: 1 [0/60000 (0%)]\tLoss: 0.524031\n", - "Train Epoch: 1 [12800/60000 (21%)]\tLoss: 0.282691\n", - "Train Epoch: 1 [25600/60000 (43%)]\tLoss: 0.493126\n", - "Train Epoch: 1 [38400/60000 (64%)]\tLoss: 0.268222\n", - "Train Epoch: 1 [51200/60000 (85%)]\tLoss: 0.199386\n", + "Train Epoch: 1 [0/60000 (0%)]\tLoss: 0.392934\n", + "Train Epoch: 1 [12800/60000 (21%)]\tLoss: 0.356313\n", + "Train Epoch: 1 [25600/60000 (43%)]\tLoss: 0.350179\n", + "Train Epoch: 1 [38400/60000 (64%)]\tLoss: 0.324098\n", + "Train Epoch: 1 [51200/60000 (85%)]\tLoss: 0.309080\n", "\n", - "Test set: Average loss: 0.2783, Accuracy: 9183/10000 (92%)\n", + "Test set: Average loss: 0.2853, Accuracy: 9160/10000 (92%)\n", "\n", - "Train Epoch: 2 [0/60000 (0%)]\tLoss: 0.396457\n", - "Train Epoch: 2 [12800/60000 (21%)]\tLoss: 0.449215\n", - "Train Epoch: 2 [25600/60000 (43%)]\tLoss: 0.221934\n", - "Train Epoch: 2 [38400/60000 (64%)]\tLoss: 0.314683\n", - "Train Epoch: 2 [51200/60000 (85%)]\tLoss: 0.140539\n", + "Train Epoch: 2 [0/60000 (0%)]\tLoss: 0.594435\n", + "Train Epoch: 2 [12800/60000 (21%)]\tLoss: 0.523681\n", + "Train Epoch: 2 [25600/60000 (43%)]\tLoss: 0.236852\n", + "Train Epoch: 2 [38400/60000 (64%)]\tLoss: 0.260963\n", + "Train Epoch: 2 [51200/60000 (85%)]\tLoss: 0.184333\n", "\n", - "Test set: Average loss: 0.2462, Accuracy: 9295/10000 (93%)\n", + "Test set: Average loss: 0.2406, Accuracy: 9291/10000 (93%)\n", "\n", - "Train Epoch: 3 [0/60000 (0%)]\tLoss: 0.490455\n", - "Train Epoch: 3 [12800/60000 (21%)]\tLoss: 0.305711\n", - "Train Epoch: 3 [25600/60000 (43%)]\tLoss: 0.286548\n", - "Train Epoch: 3 [38400/60000 (64%)]\tLoss: 0.306441\n", - "Train Epoch: 3 [51200/60000 (85%)]\tLoss: 0.280397\n", + "Train Epoch: 3 [0/60000 (0%)]\tLoss: 0.270577\n", + "Train Epoch: 3 [12800/60000 (21%)]\tLoss: 0.211996\n", + "Train Epoch: 3 [25600/60000 (43%)]\tLoss: 0.167667\n", + "Train Epoch: 3 [38400/60000 (64%)]\tLoss: 0.139197\n", + "Train Epoch: 3 [51200/60000 (85%)]\tLoss: 0.104304\n", "\n", - "Test set: Average loss: 0.2280, Accuracy: 9360/10000 (94%)\n", + "Test set: Average loss: 0.2217, Accuracy: 9354/10000 (94%)\n", "\n", - "Train Epoch: 4 [0/60000 (0%)]\tLoss: 0.212264\n", - "Train Epoch: 4 [12800/60000 (21%)]\tLoss: 0.144381\n", - "Train Epoch: 4 [25600/60000 (43%)]\tLoss: 0.381677\n", - "Train Epoch: 4 [38400/60000 (64%)]\tLoss: 0.124658\n", - "Train Epoch: 4 [51200/60000 (85%)]\tLoss: 0.205714\n", + "Train Epoch: 4 [0/60000 (0%)]\tLoss: 0.190964\n", + "Train Epoch: 4 [12800/60000 (21%)]\tLoss: 0.364933\n", + "Train Epoch: 4 [25600/60000 (43%)]\tLoss: 0.268525\n", + "Train Epoch: 4 [38400/60000 (64%)]\tLoss: 0.141043\n", + "Train Epoch: 4 [51200/60000 (85%)]\tLoss: 0.414204\n", "\n", - "Test set: Average loss: 0.2085, Accuracy: 9401/10000 (94%)\n", + "Test set: Average loss: 0.2092, Accuracy: 9406/10000 (94%)\n", "\n" ] } @@ -257,7 +267,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -266,7 +276,7 @@ "" ] }, - "execution_count": 60, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -317,7 +327,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -350,7 +360,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -382,7 +392,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -411,7 +421,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -429,9 +439,364 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,6]' to a numeric value `0`\n", + "outside the bounds (0.3284117877483368, 0.33041176199913025).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,7]' to a numeric value `0`\n", + "outside the bounds (0.724490225315094, 0.7264901995658875).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,8]' to a numeric value `0`\n", + "outside the bounds (0.6225294470787048, 0.6245294213294983).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,9]' to a numeric value `0`\n", + "outside the bounds (0.5911568999290466, 0.5931568741798401).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,10]' to a numeric value `0`\n", + "outside the bounds (0.2342941164970398, 0.23629412055015564).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,7,11]' to a numeric value `0`\n", + "outside the bounds (0.14017647504806519, 0.14217647910118103).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,6]' to a numeric value `0`\n", + "outside the bounds (0.8695882558822632, 0.8715882301330566).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,7]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,8]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,9]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,10]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,11]' to a numeric value `0`\n", + "outside the bounds (0.9440980553627014, 0.9460980296134949).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,12]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,13]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,14]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,15]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,16]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,17]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,18]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,19]' to a numeric value `0`\n", + "outside the bounds (0.7754706144332886, 0.777470588684082).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,20]' to a numeric value `0`\n", + "outside the bounds (0.6656666994094849, 0.6676666736602783).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,8,21]' to a numeric value `0`\n", + "outside the bounds (0.2029215693473816, 0.20492157340049744).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,6]' to a numeric value `0`\n", + "outside the bounds (0.2617451250553131, 0.26374509930610657).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,7]' to a numeric value `0`\n", + "outside the bounds (0.44605883955955505, 0.4480588138103485).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,8]' to a numeric value `0`\n", + "outside the bounds (0.2813529670238495, 0.28335294127464294).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,9]' to a numeric value `0`\n", + "outside the bounds (0.44605883955955505, 0.4480588138103485).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,10]' to a numeric value `0`\n", + "outside the bounds (0.6382157206535339, 0.6402156949043274).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,11]' to a numeric value `0`\n", + "outside the bounds (0.8891960978507996, 0.891196072101593).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,12]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,13]' to a numeric value `0`\n", + "outside the bounds (0.881352961063385, 0.8833529353141785).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,14]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,15]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,16]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,17]' to a numeric value `0`\n", + "outside the bounds (0.9793921709060669, 0.9813921451568604).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,18]' to a numeric value `0`\n", + "outside the bounds (0.8970392346382141, 0.8990392088890076).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,19]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,20]' to a numeric value `0`\n", + "outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,9,21]' to a numeric value `0`\n", + "outside the bounds (0.5480196475982666, 0.5500196218490601).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,11]' to a numeric value\n", + "`0` outside the bounds (0.06566666811704636, 0.0676666721701622).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,12]' to a numeric value\n", + "`0` outside the bounds (0.25782355666160583, 0.2598235309123993).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,13]' to a numeric value\n", + "`0` outside the bounds (0.05390196293592453, 0.05590195953845978).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,14]' to a numeric value\n", + "`0` outside the bounds (0.2617451250553131, 0.26374509930610657).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,15]' to a numeric value\n", + "`0` outside the bounds (0.2617451250553131, 0.26374509930610657).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,16]' to a numeric value\n", + "`0` outside the bounds (0.2617451250553131, 0.26374509930610657).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,17]' to a numeric value\n", + "`0` outside the bounds (0.23037254810333252, 0.23237255215644836).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,18]' to a numeric value\n", + "`0` outside the bounds (0.08135294169187546, 0.0833529457449913).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,19]' to a numeric value\n", + "`0` outside the bounds (0.924490213394165, 0.9264901876449585).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,20]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,10,21]' to a numeric value\n", + "`0` outside the bounds (0.41468629240989685, 0.4166862666606903).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,11,18]' to a numeric value\n", + "`0` outside the bounds (0.3244902193546295, 0.326490193605423).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,11,19]' to a numeric value\n", + "`0` outside the bounds (0.9911568760871887, 0.9931568503379822).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,11,20]' to a numeric value\n", + "`0` outside the bounds (0.8186078667640686, 0.8206078410148621).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,11,21]' to a numeric value\n", + "`0` outside the bounds (0.06958823651075363, 0.07158824056386948).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,12,17]' to a numeric value\n", + "`0` outside the bounds (0.08527451008558273, 0.08727451413869858).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,12,18]' to a numeric value\n", + "`0` outside the bounds (0.9127255082130432, 0.9147254824638367).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,12,19]' to a numeric value\n", + "`0` outside the bounds (0.9990000128746033, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,12,20]' to a numeric value\n", + "`0` outside the bounds (0.3244902193546295, 0.326490193605423).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,13,17]' to a numeric value\n", + "`0` outside the bounds (0.5048823952674866, 0.50688236951828).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,13,18]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,13,19]' to a numeric value\n", + "`0` outside the bounds (0.9323333501815796, 0.934333324432373).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,13,20]' to a numeric value\n", + "`0` outside the bounds (0.1715490221977234, 0.17354902625083923).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,14,16]' to a numeric value\n", + "`0` outside the bounds (0.23037254810333252, 0.23237255215644836).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,14,17]' to a numeric value\n", + "`0` outside the bounds (0.9754706025123596, 0.9774705767631531).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,14,18]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,14,19]' to a numeric value\n", + "`0` outside the bounds (0.24213725328445435, 0.2441372573375702).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,15,16]' to a numeric value\n", + "`0` outside the bounds (0.5205686688423157, 0.5225686430931091).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,15,17]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,15,18]' to a numeric value\n", + "`0` outside the bounds (0.7323333621025085, 0.734333336353302).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,15,19]' to a numeric value\n", + "`0` outside the bounds (0.018607843667268753, 0.0206078439950943).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,16,15]' to a numeric value\n", + "`0` outside the bounds (0.03429412096738815, 0.0362941175699234).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,16,16]' to a numeric value\n", + "`0` outside the bounds (0.8029215931892395, 0.804921567440033).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,16,17]' to a numeric value\n", + "`0` outside the bounds (0.9715490341186523, 0.9735490083694458).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,16,18]' to a numeric value\n", + "`0` outside the bounds (0.22645097970962524, 0.2284509837627411).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,17,15]' to a numeric value\n", + "`0` outside the bounds (0.49311766028404236, 0.4951176345348358).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,17,16]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,17,17]' to a numeric value\n", + "`0` outside the bounds (0.7127255201339722, 0.7147254943847656).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,18,14]' to a numeric value\n", + "`0` outside the bounds (0.2931176722049713, 0.29511764645576477).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,18,15]' to a numeric value\n", + "`0` outside the bounds (0.9833137392997742, 0.9853137135505676).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,18,16]' to a numeric value\n", + "`0` outside the bounds (0.9401764869689941, 0.9421764612197876).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,18,17]' to a numeric value\n", + "`0` outside the bounds (0.22252941131591797, 0.2245294153690338).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,19,13]' to a numeric value\n", + "`0` outside the bounds (0.07350980490446091, 0.07550980895757675).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,19,14]' to a numeric value\n", + "`0` outside the bounds (0.8656666874885559, 0.8676666617393494).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,19,15]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,19,16]' to a numeric value\n", + "`0` outside the bounds (0.6499804258346558, 0.6519804000854492).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,20,12]' to a numeric value\n", + "`0` outside the bounds (0.010764705948531628, 0.012764706276357174).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,20,13]' to a numeric value\n", + "`0` outside the bounds (0.795078456401825, 0.7970784306526184).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,20,14]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,20,15]' to a numeric value\n", + "`0` outside the bounds (0.8578235507011414, 0.8598235249519348).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,20,16]' to a numeric value\n", + "`0` outside the bounds (0.1362549066543579, 0.13825491070747375).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,21,12]' to a numeric value\n", + "`0` outside the bounds (0.14801961183547974, 0.15001961588859558).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,21,13]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,21,14]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,21,15]' to a numeric value\n", + "`0` outside the bounds (0.30096080899238586, 0.3029607832431793).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,22,11]' to a numeric value\n", + "`0` outside the bounds (0.12056862562894821, 0.12256862968206406).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,22,12]' to a numeric value\n", + "`0` outside the bounds (0.8774313926696777, 0.8794313669204712).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,22,13]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,22,14]' to a numeric value\n", + "`0` outside the bounds (0.44998040795326233, 0.4519803822040558).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,22,15]' to a numeric value\n", + "`0` outside the bounds (0.0029215686954557896, 0.004921569023281336).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,23,11]' to a numeric value\n", + "`0` outside the bounds (0.5205686688423157, 0.5225686430931091).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,23,12]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,23,13]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,23,14]' to a numeric value\n", + "`0` outside the bounds (0.2029215693473816, 0.20492157340049744).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,24,10]' to a numeric value\n", + "`0` outside the bounds (0.23821568489074707, 0.24021568894386292).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,24,11]' to a numeric value\n", + "`0` outside the bounds (0.9480196237564087, 0.9500195980072021).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,24,12]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,24,13]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,24,14]' to a numeric value\n", + "`0` outside the bounds (0.2029215693473816, 0.20492157340049744).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,25,10]' to a numeric value\n", + "`0` outside the bounds (0.473509818315506, 0.47550979256629944).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,25,11]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,25,12]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,25,13]' to a numeric value\n", + "`0` outside the bounds (0.8578235507011414, 0.8598235249519348).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,25,14]' to a numeric value\n", + "`0` outside the bounds (0.1558627486228943, 0.15786275267601013).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,26,10]' to a numeric value\n", + "`0` outside the bounds (0.473509818315506, 0.47550979256629944).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,26,11]' to a numeric value\n", + "`0` outside the bounds (0.995078444480896, 0.9970784187316895).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,26,12]' to a numeric value\n", + "`0` outside the bounds (0.810764729976654, 0.8127647042274475).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[0,26,13]' to a numeric value\n", + "`0` outside the bounds (0.06958823651075363, 0.07158824056386948).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n" + ] + } + ], "source": [ "#create pyomo model\n", "m = pyo.ConcreteModel()\n", @@ -450,7 +815,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -467,7 +832,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -475,152 +840,164 @@ "output_type": "stream", "text": [ "Welcome to the CBC MILP Solver \n", - "Version: 2.10.5 \n", - "Build Date: Oct 15 2020 \n", + "Version: 2.10.10 \n", + "Build Date: Apr 19 2023 \n", "\n", - "command line - /home/jhjalvi/anaconda3/envs/tensorflow/bin/cbc -printingOptions all -import /tmp/tmptpf8ezli.pyomo.lp -stat=1 -solve -solu /tmp/tmptpf8ezli.pyomo.soln (default strategy 1)\n", + "command line - /opt/conda/bin/cbc -printingOptions all -import /tmp/tmpm8l62uuz.pyomo.lp -stat=1 -solve -solu /tmp/tmpm8l62uuz.pyomo.soln (default strategy 1)\n", "Option for printingOptions changed from normal to all\n", - "Presolve 1243 (-2356) rows, 1675 (-1912) columns and 9017 (-5270) elements\n", + "Presolve 1216 (-2382) rows, 1655 (-1931) columns and 8081 (-6315) elements\n", "Statistics for presolved model\n", "Original problem has 398 integers (398 of which binary)\n", - "Presolved problem has 171 integers (171 of which binary)\n", - "==== 1665 zero objective 11 different\n", - "1 variables have objective of -0.799653\n", - "1 variables have objective of -0.692429\n", - "1 variables have objective of -0.432872\n", - "1 variables have objective of -0.381614\n", - "1 variables have objective of -0.166969\n", - "1 variables have objective of -0.0541137\n", - "1665 variables have objective of 0\n", - "1 variables have objective of 0.25157\n", - "1 variables have objective of 0.258075\n", - "1 variables have objective of 0.551109\n", - "1 variables have objective of 0.969763\n", - "==== absolute objective values 11 different\n", - "1665 variables have objective of 0\n", - "1 variables have objective of 0.0541137\n", - "1 variables have objective of 0.166969\n", - "1 variables have objective of 0.25157\n", - "1 variables have objective of 0.258075\n", - "1 variables have objective of 0.381614\n", - "1 variables have objective of 0.432872\n", - "1 variables have objective of 0.551109\n", - "1 variables have objective of 0.692429\n", - "1 variables have objective of 0.799653\n", - "1 variables have objective of 0.969763\n", - "==== for integers 171 zero objective 1 different\n", - "171 variables have objective of 0\n", + "Presolved problem has 229 integers (229 of which binary)\n", + "==== 1649 zero objective 7 different\n", + "1 variables have objective of -0.576795\n", + "1 variables have objective of -0.489737\n", + "1649 variables have objective of 0\n", + "1 variables have objective of 0.206289\n", + "1 variables have objective of 0.207359\n", + "1 variables have objective of 0.905509\n", + "1 variables have objective of 1.00525\n", + "==== absolute objective values 7 different\n", + "1649 variables have objective of 0\n", + "1 variables have objective of 0.206289\n", + "1 variables have objective of 0.207359\n", + "1 variables have objective of 0.489737\n", + "1 variables have objective of 0.576795\n", + "1 variables have objective of 0.905509\n", + "1 variables have objective of 1.00525\n", + "==== for integers 229 zero objective 1 different\n", + "229 variables have objective of 0\n", "==== for integers absolute objective values 1 different\n", - "171 variables have objective of 0\n", + "229 variables have objective of 0\n", "===== end objective counts\n", "\n", "\n", - "Problem has 1243 rows, 1675 columns (10 with objective) and 9017 elements\n", + "Problem has 1216 rows, 1655 columns (6 with objective) and 8081 elements\n", "Column breakdown:\n", - "0 of type 0.0->inf, 1142 of type 0.0->up, 0 of type lo->inf, \n", - "362 of type lo->up, 0 of type free, 0 of type fixed, \n", - "0 of type -inf->0.0, 0 of type -inf->up, 171 of type 0.0->1.0 \n", + "0 of type 0.0->inf, 885 of type 0.0->up, 0 of type lo->inf, \n", + "541 of type lo->up, 0 of type free, 0 of type fixed, \n", + "0 of type -inf->0.0, 0 of type -inf->up, 229 of type 0.0->1.0 \n", "Row breakdown:\n", - "347 of type E 0.0, 0 of type E 1.0, 0 of type E -1.0, \n", - "9 of type E other, 0 of type G 0.0, 0 of type G 1.0, \n", - "0 of type G other, 716 of type L 0.0, 0 of type L 1.0, \n", - "171 of type L other, 0 of type Range 0.0->1.0, 0 of type Range other, \n", + "320 of type E 0.0, 0 of type E 1.0, 0 of type E -1.0, \n", + "6 of type E other, 0 of type G 0.0, 0 of type G 1.0, \n", + "0 of type G other, 658 of type L 0.0, 0 of type L 1.0, \n", + "229 of type L other, 0 of type Range 0.0->1.0, 3 of type Range other, \n", "0 of type Free \n", - "Continuous objective value is -2.12429 - 0.02 seconds\n", - "Cgl0003I 3 fixed, 0 tightened bounds, 0 strengthened rows, 0 substitutions\n", - "Cgl0004I processed model has 937 rows, 1367 columns (115 integer (115 of which binary)) and 11817 elements\n", - "Cbc0038I Initial state - 72 integers unsatisfied sum - 20.8814\n", - "Cbc0038I Pass 1: suminf. 0.00000 (0) obj. 11.809 iterations 335\n", - "Cbc0038I Solution found of 11.809\n", - "Cbc0038I Relaxing continuous gives 11.7955\n", - "Cbc0038I Before mini branch and bound, 43 integers at bound fixed and 641 continuous\n", - "Cbc0038I Full problem 937 rows 1367 columns, reduced to 619 rows 530 columns - 16 fixed gives 607, 518 - still too large\n", - "Cbc0038I Full problem 937 rows 1367 columns, reduced to 554 rows 470 columns\n", - "Cbc0038I Mini branch and bound improved solution from 11.7955 to 11.7944 (0.48 seconds)\n", - "Cbc0038I Freeing continuous variables gives a solution of 11.7937\n", - "Cbc0038I Round again with cutoff of 11.7921\n", - "Cbc0038I Pass 2: suminf. 0.20702 (1) obj. 11.7921 iterations 174\n", - "Cbc0038I Pass 3: suminf. 0.39088 (1) obj. 11.7921 iterations 64\n", - "Cbc0038I Pass 4: suminf. 0.31986 (1) obj. 11.7921 iterations 254\n", - "Cbc0038I Pass 5: suminf. 0.24400 (1) obj. 11.7921 iterations 35\n", - "Cbc0038I Pass 6: suminf. 0.31986 (1) obj. 11.7921 iterations 49\n", - "Cbc0038I Pass 7: suminf. 0.56513 (2) obj. 11.7921 iterations 321\n", - "Cbc0038I Pass 8: suminf. 0.81697 (2) obj. 11.7921 iterations 63\n", - "Cbc0038I Pass 9: suminf. 0.56513 (2) obj. 11.7921 iterations 66\n", - "Cbc0038I Pass 10: suminf. 1.29356 (7) obj. 11.7921 iterations 295\n", - "Cbc0038I Pass 11: suminf. 1.35733 (4) obj. 11.7921 iterations 165\n", - "Cbc0038I Pass 12: suminf. 1.27012 (4) obj. 11.7921 iterations 13\n", - "Cbc0038I Pass 13: suminf. 0.77889 (3) obj. 11.7921 iterations 57\n", - "Cbc0038I Pass 14: suminf. 0.75944 (3) obj. 11.7921 iterations 7\n", - "Cbc0038I Pass 15: suminf. 1.47773 (4) obj. 11.7921 iterations 33\n", - "Cbc0038I Pass 16: suminf. 1.33195 (4) obj. 11.7921 iterations 20\n", - "Cbc0038I Pass 17: suminf. 1.38082 (4) obj. 11.7921 iterations 56\n", - "Cbc0038I Pass 18: suminf. 1.25857 (4) obj. 11.7921 iterations 18\n", - "Cbc0038I Pass 19: suminf. 1.01070 (4) obj. 11.7921 iterations 326\n", - "Cbc0038I Pass 20: suminf. 0.94775 (5) obj. 11.7921 iterations 16\n", - "Cbc0038I Pass 21: suminf. 1.08402 (4) obj. 11.7921 iterations 63\n", - "Cbc0038I Pass 22: suminf. 1.05834 (4) obj. 11.7921 iterations 6\n", - "Cbc0038I Pass 23: suminf. 1.03028 (3) obj. 11.7921 iterations 72\n", - "Cbc0038I Pass 24: suminf. 0.97431 (3) obj. 11.7921 iterations 10\n", - "Cbc0038I Pass 25: suminf. 0.72150 (2) obj. 11.7921 iterations 87\n", - "Cbc0038I Pass 26: suminf. 0.64025 (2) obj. 11.7921 iterations 33\n", - "Cbc0038I Pass 27: suminf. 0.63795 (2) obj. 11.7921 iterations 65\n", - "Cbc0038I Pass 28: suminf. 0.59735 (2) obj. 11.7921 iterations 12\n", - "Cbc0038I Pass 29: suminf. 0.56341 (2) obj. 11.7921 iterations 324\n", - "Cbc0038I Pass 30: suminf. 0.74595 (2) obj. 11.7921 iterations 42\n", - "Cbc0038I Pass 31: suminf. 0.61016 (2) obj. 11.7921 iterations 40\n", + "Continuous objective value is 11.399 - 0.03 seconds\n", + "Cgl0004I processed model has 1000 rows, 1439 columns (229 integer (229 of which binary)) and 11386 elements\n", + "Cbc0038I Initial state - 147 integers unsatisfied sum - 33.3817\n", + "Cbc0038I Pass 1: suminf. 0.16220 (3) obj. 11.4839 iterations 832\n", + "Cbc0038I Solution found of 11.4839\n", + "Cbc0038I Relaxing continuous gives 11.4374\n", + "Cbc0038I Before mini branch and bound, 82 integers at bound fixed and 547 continuous\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 685 rows 704 columns - 29 fixed gives 654, 673 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 586 rows 608 columns - too large\n", + "Cbc0038I Mini branch and bound did not improve solution (0.18 seconds)\n", + "Cbc0038I Round again with cutoff of 11.4336\n", + "Cbc0038I Pass 2: suminf. 0.35199 (3) obj. 11.4336 iterations 310\n", + "Cbc0038I Pass 3: suminf. 0.09461 (1) obj. 11.4336 iterations 626\n", + "Cbc0038I Pass 4: suminf. 0.28351 (1) obj. 11.4336 iterations 355\n", + "Cbc0038I Pass 5: suminf. 0.35646 (5) obj. 11.4336 iterations 775\n", + "Cbc0038I Pass 6: suminf. 0.12369 (2) obj. 11.4336 iterations 588\n", + "Cbc0038I Pass 7: suminf. 0.30731 (2) obj. 11.4336 iterations 400\n", + "Cbc0038I Pass 8: suminf. 0.61796 (3) obj. 11.4336 iterations 718\n", + "Cbc0038I Pass 9: suminf. 0.45612 (3) obj. 11.4336 iterations 249\n", + "Cbc0038I Pass 10: suminf. 0.37185 (1) obj. 11.4336 iterations 348\n", + "Cbc0038I Pass 11: suminf. 0.30010 (3) obj. 11.4336 iterations 337\n", + "Cbc0038I Pass 12: suminf. 1.07965 (14) obj. 11.4336 iterations 833\n", + "Cbc0038I Pass 13: suminf. 1.07524 (15) obj. 11.4336 iterations 25\n", + "Cbc0038I Pass 14: suminf. 0.42849 (2) obj. 11.4336 iterations 483\n", + "Cbc0038I Pass 15: suminf. 0.41940 (2) obj. 11.4336 iterations 184\n", + "Cbc0038I Pass 16: suminf. 0.48151 (5) obj. 11.4336 iterations 778\n", + "Cbc0038I Pass 17: suminf. 0.45259 (1) obj. 11.4336 iterations 224\n", + "Cbc0038I Pass 18: suminf. 0.43680 (1) obj. 11.4336 iterations 157\n", + "Cbc0038I Pass 19: suminf. 0.89838 (4) obj. 11.4336 iterations 649\n", + "Cbc0038I Pass 20: suminf. 0.48534 (1) obj. 11.4336 iterations 281\n", + "Cbc0038I Pass 21: suminf. 0.44387 (1) obj. 11.4336 iterations 115\n", + "Cbc0038I Pass 22: suminf. 1.13864 (15) obj. 11.4336 iterations 826\n", + "Cbc0038I Pass 23: suminf. 0.48847 (3) obj. 11.4336 iterations 478\n", + "Cbc0038I Pass 24: suminf. 0.48408 (3) obj. 11.4336 iterations 21\n", + "Cbc0038I Pass 25: suminf. 0.49814 (1) obj. 11.4336 iterations 145\n", + "Cbc0038I Pass 26: suminf. 0.45900 (1) obj. 11.4336 iterations 117\n", + "Cbc0038I Pass 27: suminf. 1.35634 (10) obj. 11.4336 iterations 647\n", + "Cbc0038I Pass 28: suminf. 1.20108 (11) obj. 11.4336 iterations 35\n", + "Cbc0038I Pass 29: suminf. 0.82478 (5) obj. 11.4336 iterations 323\n", + "Cbc0038I Pass 30: suminf. 0.81980 (5) obj. 11.4336 iterations 10\n", + "Cbc0038I Pass 31: suminf. 0.54350 (4) obj. 11.4336 iterations 206\n", "Cbc0038I No solution found this major pass\n", - "Cbc0038I Before mini branch and bound, 14 integers at bound fixed and 517 continuous\n", - "Cbc0038I Full problem 937 rows 1367 columns, reduced to 666 rows 669 columns - 46 fixed gives 617, 620 - still too large\n", - "Cbc0038I Full problem 937 rows 1367 columns, reduced to 593 rows 599 columns - too large\n", - "Cbc0038I Mini branch and bound did not improve solution (0.70 seconds)\n", - "Cbc0038I After 0.70 seconds - Feasibility pump exiting with objective of 11.7937 - took 0.55 seconds\n", - "Cbc0012I Integer solution of 11.7937 found by feasibility pump after 0 iterations and 0 nodes (0.78 seconds)\n", - "Cbc0038I Full problem 937 rows 1367 columns, reduced to 813 rows 1247 columns - 42 fixed gives 771, 1205 - still too large\n", - "Cbc0012I Integer solution of 11.792721 found by DiveCoefficient after 944 iterations and 0 nodes (1.27 seconds)\n", - "Cbc0031I 106 added rows had average density of 32.424528\n", - "Cbc0013I At root node, 106 cuts changed objective from 11.777607 to 11.789992 in 10 passes\n", - "Cbc0014I Cut generator 0 (Probing) - 1 row cuts average 16.0 elements, 0 column cuts (0 active) in 0.013 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 1 (Gomory) - 381 row cuts average 82.5 elements, 0 column cuts (0 active) in 0.022 seconds - new frequency is 1\n", - "Cbc0014I Cut generator 2 (Knapsack) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.018 seconds - new frequency is -100\n", + "Cbc0038I Before mini branch and bound, 12 integers at bound fixed and 249 continuous\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 863 rows 1093 columns - 24 fixed gives 838, 1068 - still too large\n", + "Cbc0038I Mini branch and bound did not improve solution (0.59 seconds)\n", + "Cbc0038I After 0.59 seconds - Feasibility pump exiting with objective of 11.4374 - took 0.51 seconds\n", + "Cbc0012I Integer solution of 11.437437 found by feasibility pump after 0 iterations and 0 nodes (0.64 seconds)\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 791 rows 1230 columns - 88 fixed gives 703, 1142 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 674 rows 1113 columns - too large\n", + "Cbc0012I Integer solution of 11.430827 found by DiveCoefficient after 3020 iterations and 0 nodes (1.33 seconds)\n", + "Cbc0031I 247 added rows had average density of 37.910931\n", + "Cbc0013I At root node, 247 cuts changed objective from 11.399027 to 11.416462 in 10 passes\n", + "Cbc0014I Cut generator 0 (Probing) - 349 row cuts average 2.1 elements, 0 column cuts (104 active) in 0.014 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 1 (Gomory) - 663 row cuts average 78.3 elements, 0 column cuts (0 active) in 0.034 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 2 (Knapsack) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.015 seconds - new frequency is -100\n", "Cbc0014I Cut generator 3 (Clique) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.000 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 33 row cuts average 20.0 elements, 0 column cuts (0 active) in 0.009 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 5 (FlowCover) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.019 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 6 (TwoMirCuts) - 295 row cuts average 54.4 elements, 0 column cuts (0 active) in 0.025 seconds - new frequency is -100\n", - "Cbc0010I After 0 nodes, 1 on tree, 11.792721 best solution, best possible 11.789992 (1.38 seconds)\n", - "Cbc0012I Integer solution of 11.79261 found by DiveCoefficient after 1301 iterations and 4 nodes (2.22 seconds)\n", - "Cbc0001I Search completed - best objective 11.79260967177679, took 1540 iterations and 7 nodes (2.45 seconds)\n", - "Cbc0032I Strong branching done 172 times (2219 iterations), fathomed 1 nodes and fixed 13 variables\n", - "Cbc0035I Maximum depth 3, 0 variables fixed on reduced cost\n", - "Cuts at root node changed objective from 11.7776 to 11.79\n", - "Probing was tried 10 times and created 1 cuts of which 0 were active after adding rounds of cuts (0.013 seconds)\n", - "Gomory was tried 22 times and created 447 cuts of which 0 were active after adding rounds of cuts (0.032 seconds)\n", - "Knapsack was tried 10 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.018 seconds)\n", + "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 441 row cuts average 11.9 elements, 0 column cuts (0 active) in 0.015 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 5 (FlowCover) - 3 row cuts average 3.3 elements, 0 column cuts (0 active) in 0.012 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 6 (TwoMirCuts) - 576 row cuts average 76.8 elements, 0 column cuts (0 active) in 0.030 seconds - new frequency is -100\n", + "Cbc0010I After 0 nodes, 1 on tree, 11.430827 best solution, best possible 11.416462 (1.36 seconds)\n", + "Cbc0012I Integer solution of 11.43068 found by DiveCoefficient after 3132 iterations and 1 nodes (1.60 seconds)\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 688 rows 1127 columns - 6 fixed gives 682, 1121 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 645 rows 1084 columns - too large\n", + "Cbc0012I Integer solution of 11.430373 found by rounding after 5500 iterations and 65 nodes (4.04 seconds)\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 694 rows 1133 columns - 10 fixed gives 684, 1123 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 649 rows 1088 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 722 rows 1161 columns - 17 fixed gives 705, 1144 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 668 rows 1107 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 617 rows 771 columns - 17 fixed gives 603, 756 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 581 rows 735 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 617 rows 771 columns - 16 fixed gives 604, 757 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 582 rows 736 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 621 rows 775 columns - 19 fixed gives 605, 758 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 583 rows 737 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 606 rows 794 columns - 10 fixed gives 598, 785 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 576 rows 764 columns - too large\n", + "Cbc0012I Integer solution of 11.430259 found by rounding after 46471 iterations and 982 nodes (19.93 seconds)\n", + "Cbc0010I After 1000 nodes, 15 on tree, 11.430259 best solution, best possible 11.416475 (20.00 seconds)\n", + "Cbc0012I Integer solution of 11.430193 found by rounding after 47023 iterations and 1040 nodes (20.27 seconds)\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 615 rows 769 columns - 15 fixed gives 602, 755 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 581 rows 735 columns - too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 638 rows 792 columns - 20 fixed gives 621, 774 - still too large\n", + "Cbc0038I Full problem 1000 rows 1439 columns, reduced to 598 rows 752 columns - too large\n", + "Cbc0001I Search completed - best objective 11.43019346267776, took 55037 iterations and 1209 nodes (23.48 seconds)\n", + "Cbc0032I Strong branching done 4126 times (63874 iterations), fathomed 86 nodes and fixed 436 variables\n", + "Cbc0035I Maximum depth 55, 199 variables fixed on reduced cost\n", + "Cuts at root node changed objective from 11.399 to 11.4165\n", + "Probing was tried 245 times and created 1770 cuts of which 104 were active after adding rounds of cuts (0.147 seconds)\n", + "Gomory was tried 236 times and created 2134 cuts of which 0 were active after adding rounds of cuts (0.271 seconds)\n", + "Knapsack was tried 10 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.015 seconds)\n", "Clique was tried 10 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", - "MixedIntegerRounding2 was tried 10 times and created 33 cuts of which 0 were active after adding rounds of cuts (0.009 seconds)\n", - "FlowCover was tried 10 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.019 seconds)\n", - "TwoMirCuts was tried 10 times and created 295 cuts of which 0 were active after adding rounds of cuts (0.025 seconds)\n", + "MixedIntegerRounding2 was tried 236 times and created 1628 cuts of which 0 were active after adding rounds of cuts (0.235 seconds)\n", + "FlowCover was tried 10 times and created 3 cuts of which 0 were active after adding rounds of cuts (0.012 seconds)\n", + "TwoMirCuts was tried 10 times and created 576 cuts of which 0 were active after adding rounds of cuts (0.030 seconds)\n", "ZeroHalf was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "\n", "Result - Optimal solution found\n", "\n", - "Objective value: 11.79260967\n", - "Enumerated nodes: 7\n", - "Total iterations: 1540\n", - "Time (CPU seconds): 2.79\n", - "Time (Wallclock seconds): 3.16\n", + "Objective value: 11.43019346\n", + "Enumerated nodes: 1209\n", + "Total iterations: 55037\n", + "Time (CPU seconds): 23.57\n", + "Time (Wallclock seconds): 25.18\n", "\n", - "Total time (CPU seconds): 2.82 (Wallclock seconds): 3.19\n", + "Total time (CPU seconds): 23.62 (Wallclock seconds): 25.21\n", "\n" ] }, { "data": { "text/plain": [ - "{'Problem': [{'Name': 'unknown', 'Lower bound': 11.79260967, 'Upper bound': 11.79260967, 'Number of objectives': 1, 'Number of constraints': 1243, 'Number of variables': 1675, 'Number of binary variables': 398, 'Number of integer variables': 398, 'Number of nonzeros': 10, 'Sense': 'minimize'}], 'Solver': [{'Status': 'ok', 'User time': -1.0, 'System time': 2.82, 'Wallclock time': 3.19, 'Termination condition': 'optimal', 'Termination message': 'Model was solved to optimality (subject to tolerances), and an optimal solution is available.', 'Statistics': {'Branch and bound': {'Number of bounded subproblems': 7, 'Number of created subproblems': 7}, 'Black box': {'Number of iterations': 1540}}, 'Error rc': 0, 'Time': 3.2129950523376465}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Name': 'unknown', 'Lower bound': 11.43019346, 'Upper bound': 11.43019346, 'Number of objectives': 1, 'Number of constraints': 1216, 'Number of variables': 1655, 'Number of binary variables': 398, 'Number of integer variables': 398, 'Number of nonzeros': 6, 'Sense': 'minimize'}], 'Solver': [{'Status': 'ok', 'User time': -1.0, 'System time': 23.62, 'Wallclock time': 25.21, 'Termination condition': 'optimal', 'Termination message': 'Model was solved to optimality (subject to tolerances), and an optimal solution is available.', 'Statistics': {'Branch and bound': {'Number of bounded subproblems': 1209, 'Number of created subproblems': 1209}, 'Black box': {'Number of iterations': 55037}}, 'Error rc': 0, 'Time': 25.219436407089233}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 67, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -657,7 +1034,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/mnist_example_dense.ipynb b/docs/notebooks/neuralnet/mnist_example_dense.ipynb index ccc84365..e7af1f06 100644 --- a/docs/notebooks/neuralnet/mnist_example_dense.ipynb +++ b/docs/notebooks/neuralnet/mnist_example_dense.ipynb @@ -24,7 +24,7 @@ "- `torch`: the machine learning language we use to train our neural network\n", "- `torchvision`: a package containing the MNIST dataset\n", "- `pyomo`: the algebraic modeling language for Python, it is used to define the optimization model passed to the solver\n", - "- `onnx`: used to express trained neural network models\n", + "- `onnx`: used to express trained neural network models\n", "- `omlt`: the package this notebook demonstates. OMLT can formulate machine learning models (such as neural networks) within Pyomo\n", "\n", "**NOTE:** This notebook also assumes you have a working MIP solver executable (e.g., CBC, Gurobi) to solve optimization problems in Pyomo. The open-source solver CBC is called by default." @@ -34,7 +34,17 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:36:49.569530: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-05-16 17:36:49.599228: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "#Import requisite packages\n", "#data manipulation\n", @@ -69,91 +79,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100.0%\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "102.8%\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100.0%\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "112.7%" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "#set training and test batch sizes\n", "train_kwargs = {'batch_size': 64}\n", @@ -175,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -211,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -254,52 +182,52 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Train Epoch: 0 [0/60000 (0%)]\tLoss: 2.312474\n", - "Train Epoch: 0 [12800/60000 (21%)]\tLoss: 0.433773\n", - "Train Epoch: 0 [25600/60000 (43%)]\tLoss: 0.337540\n", - "Train Epoch: 0 [38400/60000 (64%)]\tLoss: 0.466846\n", - "Train Epoch: 0 [51200/60000 (85%)]\tLoss: 0.088567\n", + "Train Epoch: 0 [0/60000 (0%)]\tLoss: 2.309185\n", + "Train Epoch: 0 [12800/60000 (21%)]\tLoss: 0.233512\n", + "Train Epoch: 0 [25600/60000 (43%)]\tLoss: 0.294385\n", + "Train Epoch: 0 [38400/60000 (64%)]\tLoss: 0.198371\n", + "Train Epoch: 0 [51200/60000 (85%)]\tLoss: 0.192688\n", "\n", - "Test set: Average loss: 0.1634, Accuracy: 9508/10000 (95%)\n", + "Test set: Average loss: 0.1485, Accuracy: 9534/10000 (95%)\n", "\n", - "Train Epoch: 1 [0/60000 (0%)]\tLoss: 0.137867\n", - "Train Epoch: 1 [12800/60000 (21%)]\tLoss: 0.057379\n", - "Train Epoch: 1 [25600/60000 (43%)]\tLoss: 0.045729\n", - "Train Epoch: 1 [38400/60000 (64%)]\tLoss: 0.377446\n", - "Train Epoch: 1 [51200/60000 (85%)]\tLoss: 0.218694\n", + "Train Epoch: 1 [0/60000 (0%)]\tLoss: 0.091085\n", + "Train Epoch: 1 [12800/60000 (21%)]\tLoss: 0.186301\n", + "Train Epoch: 1 [25600/60000 (43%)]\tLoss: 0.122492\n", + "Train Epoch: 1 [38400/60000 (64%)]\tLoss: 0.110627\n", + "Train Epoch: 1 [51200/60000 (85%)]\tLoss: 0.084353\n", "\n", - "Test set: Average loss: 0.1208, Accuracy: 9630/10000 (96%)\n", + "Test set: Average loss: 0.1107, Accuracy: 9662/10000 (97%)\n", "\n", - "Train Epoch: 2 [0/60000 (0%)]\tLoss: 0.133075\n", - "Train Epoch: 2 [12800/60000 (21%)]\tLoss: 0.137646\n", - "Train Epoch: 2 [25600/60000 (43%)]\tLoss: 0.026231\n", - "Train Epoch: 2 [38400/60000 (64%)]\tLoss: 0.020423\n", - "Train Epoch: 2 [51200/60000 (85%)]\tLoss: 0.073325\n", + "Train Epoch: 2 [0/60000 (0%)]\tLoss: 0.132310\n", + "Train Epoch: 2 [12800/60000 (21%)]\tLoss: 0.084304\n", + "Train Epoch: 2 [25600/60000 (43%)]\tLoss: 0.181169\n", + "Train Epoch: 2 [38400/60000 (64%)]\tLoss: 0.031130\n", + "Train Epoch: 2 [51200/60000 (85%)]\tLoss: 0.014465\n", "\n", - "Test set: Average loss: 0.1031, Accuracy: 9677/10000 (97%)\n", + "Test set: Average loss: 0.1083, Accuracy: 9694/10000 (97%)\n", "\n", - "Train Epoch: 3 [0/60000 (0%)]\tLoss: 0.037360\n", - "Train Epoch: 3 [12800/60000 (21%)]\tLoss: 0.119995\n", - "Train Epoch: 3 [25600/60000 (43%)]\tLoss: 0.018661\n", - "Train Epoch: 3 [38400/60000 (64%)]\tLoss: 0.071436\n", - "Train Epoch: 3 [51200/60000 (85%)]\tLoss: 0.048075\n", + "Train Epoch: 3 [0/60000 (0%)]\tLoss: 0.073255\n", + "Train Epoch: 3 [12800/60000 (21%)]\tLoss: 0.186617\n", + "Train Epoch: 3 [25600/60000 (43%)]\tLoss: 0.009313\n", + "Train Epoch: 3 [38400/60000 (64%)]\tLoss: 0.120100\n", + "Train Epoch: 3 [51200/60000 (85%)]\tLoss: 0.045455\n", "\n", - "Test set: Average loss: 0.0930, Accuracy: 9713/10000 (97%)\n", + "Test set: Average loss: 0.0945, Accuracy: 9732/10000 (97%)\n", "\n", - "Train Epoch: 4 [0/60000 (0%)]\tLoss: 0.031118\n", - "Train Epoch: 4 [12800/60000 (21%)]\tLoss: 0.022899\n", - "Train Epoch: 4 [25600/60000 (43%)]\tLoss: 0.052135\n", - "Train Epoch: 4 [38400/60000 (64%)]\tLoss: 0.047121\n", - "Train Epoch: 4 [51200/60000 (85%)]\tLoss: 0.053384\n", + "Train Epoch: 4 [0/60000 (0%)]\tLoss: 0.184483\n", + "Train Epoch: 4 [12800/60000 (21%)]\tLoss: 0.061680\n", + "Train Epoch: 4 [25600/60000 (43%)]\tLoss: 0.044517\n", + "Train Epoch: 4 [38400/60000 (64%)]\tLoss: 0.044902\n", + "Train Epoch: 4 [51200/60000 (85%)]\tLoss: 0.024778\n", "\n", - "Test set: Average loss: 0.0881, Accuracy: 9728/10000 (97%)\n", + "Test set: Average loss: 0.0930, Accuracy: 9728/10000 (97%)\n", "\n" ] } @@ -335,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -344,7 +272,7 @@ "" ] }, - "execution_count": 12, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -392,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -456,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -484,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -502,9 +430,352 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING (W1002): Setting Var 'nn.scaled_inputs[202]' to a numeric value `0`\n", + "outside the bounds (0.27941176295280457, 0.3794117867946625).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[203]' to a numeric value `0`\n", + "outside the bounds (0.6754902005195618, 0.7754902243614197).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[204]' to a numeric value `0`\n", + "outside the bounds (0.5735294222831726, 0.6735294461250305).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[205]' to a numeric value `0`\n", + "outside the bounds (0.5421568751335144, 0.6421568989753723).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[206]' to a numeric value `0`\n", + "outside the bounds (0.18529412150382996, 0.2852941155433655).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[207]' to a numeric value `0`\n", + "outside the bounds (0.09117648005485535, 0.19117647409439087).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[230]' to a numeric value `0`\n", + "outside the bounds (0.820588231086731, 0.9205882549285889).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[231]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[232]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[233]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[234]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[235]' to a numeric value `0`\n", + "outside the bounds (0.8950980305671692, 0.9950980544090271).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[236]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[237]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[238]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[239]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[240]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[241]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[242]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[243]' to a numeric value `0`\n", + "outside the bounds (0.7264705896377563, 0.8264706134796143).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[244]' to a numeric value `0`\n", + "outside the bounds (0.6166666746139526, 0.7166666984558105).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[245]' to a numeric value `0`\n", + "outside the bounds (0.15392157435417175, 0.2539215683937073).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[258]' to a numeric value `0`\n", + "outside the bounds (0.21274511516094208, 0.3127451241016388).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[259]' to a numeric value `0`\n", + "outside the bounds (0.3970588147640228, 0.49705883860588074).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[260]' to a numeric value `0`\n", + "outside the bounds (0.23235295712947845, 0.33235296607017517).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[261]' to a numeric value `0`\n", + "outside the bounds (0.3970588147640228, 0.49705883860588074).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[262]' to a numeric value `0`\n", + "outside the bounds (0.5892156958580017, 0.6892157196998596).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[263]' to a numeric value `0`\n", + "outside the bounds (0.8401960730552673, 0.9401960968971252).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[264]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[265]' to a numeric value `0`\n", + "outside the bounds (0.8323529362678528, 0.9323529601097107).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[266]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[267]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[268]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[269]' to a numeric value `0`\n", + "outside the bounds (0.9303921461105347, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[270]' to a numeric value `0`\n", + "outside the bounds (0.8480392098426819, 0.9480392336845398).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[271]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[272]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[273]' to a numeric value `0`\n", + "outside the bounds (0.4990196228027344, 0.5990196466445923).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[291]' to a numeric value `0`\n", + "outside the bounds (0.01666666939854622, 0.11666667461395264).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[292]' to a numeric value `0`\n", + "outside the bounds (0.2088235467672348, 0.3088235557079315).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[293]' to a numeric value `0`\n", + "outside the bounds (0.004901960492134094, 0.10490196198225021).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[294]' to a numeric value `0`\n", + "outside the bounds (0.21274511516094208, 0.3127451241016388).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[295]' to a numeric value `0`\n", + "outside the bounds (0.21274511516094208, 0.3127451241016388).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[296]' to a numeric value `0`\n", + "outside the bounds (0.21274511516094208, 0.3127451241016388).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[297]' to a numeric value `0`\n", + "outside the bounds (0.18137255311012268, 0.2813725471496582).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[298]' to a numeric value `0`\n", + "outside the bounds (0.03235294297337532, 0.13235294818878174).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[299]' to a numeric value `0`\n", + "outside the bounds (0.8754901885986328, 0.9754902124404907).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[300]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[301]' to a numeric value `0`\n", + "outside the bounds (0.3656862676143646, 0.46568629145622253).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[326]' to a numeric value `0`\n", + "outside the bounds (0.2754901945590973, 0.3754902184009552).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[327]' to a numeric value `0`\n", + "outside the bounds (0.9421568512916565, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[328]' to a numeric value `0`\n", + "outside the bounds (0.7696078419685364, 0.8696078658103943).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[329]' to a numeric value `0`\n", + "outside the bounds (0.020588237792253494, 0.12058824300765991).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[353]' to a numeric value `0`\n", + "outside the bounds (0.036274511367082596, 0.136274516582489).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[354]' to a numeric value `0`\n", + "outside the bounds (0.863725483417511, 0.9637255072593689).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[355]' to a numeric value `0`\n", + "outside the bounds (0.949999988079071, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[356]' to a numeric value `0`\n", + "outside the bounds (0.2754901945590973, 0.3754902184009552).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[381]' to a numeric value `0`\n", + "outside the bounds (0.45588237047195435, 0.5558823943138123).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[382]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[383]' to a numeric value `0`\n", + "outside the bounds (0.8833333253860474, 0.9833333492279053).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[384]' to a numeric value `0`\n", + "outside the bounds (0.12254902720451355, 0.22254902124404907).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[408]' to a numeric value `0`\n", + "outside the bounds (0.18137255311012268, 0.2813725471496582).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[409]' to a numeric value `0`\n", + "outside the bounds (0.9264705777168274, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[410]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[411]' to a numeric value `0`\n", + "outside the bounds (0.1931372582912445, 0.29313725233078003).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[436]' to a numeric value `0`\n", + "outside the bounds (0.47156864404678345, 0.5715686678886414).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[437]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[438]' to a numeric value `0`\n", + "outside the bounds (0.6833333373069763, 0.7833333611488342).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[464]' to a numeric value `0`\n", + "outside the bounds (0.7539215683937073, 0.8539215922355652).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[465]' to a numeric value `0`\n", + "outside the bounds (0.9225490093231201, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[466]' to a numeric value `0`\n", + "outside the bounds (0.1774509847164154, 0.2774509787559509).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[491]' to a numeric value `0`\n", + "outside the bounds (0.44411763548851013, 0.5441176295280457).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[492]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[493]' to a numeric value `0`\n", + "outside the bounds (0.6637254953384399, 0.7637255191802979).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[518]' to a numeric value `0`\n", + "outside the bounds (0.24411766231060028, 0.344117671251297).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[519]' to a numeric value `0`\n", + "outside the bounds (0.9343137145042419, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[520]' to a numeric value `0`\n", + "outside the bounds (0.8911764621734619, 0.9911764860153198).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[521]' to a numeric value `0`\n", + "outside the bounds (0.17352941632270813, 0.27352941036224365).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[545]' to a numeric value `0`\n", + "outside the bounds (0.02450980618596077, 0.12450981140136719).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[546]' to a numeric value `0`\n", + "outside the bounds (0.8166666626930237, 0.9166666865348816).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[547]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[548]' to a numeric value `0`\n", + "outside the bounds (0.6009804010391235, 0.7009804248809814).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[573]' to a numeric value `0`\n", + "outside the bounds (0.7460784316062927, 0.8460784554481506).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[574]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[575]' to a numeric value `0`\n", + "outside the bounds (0.8088235259056091, 0.908823549747467).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[576]' to a numeric value `0`\n", + "outside the bounds (0.08725491166114807, 0.1872549057006836).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[600]' to a numeric value `0`\n", + "outside the bounds (0.0990196168422699, 0.19901961088180542).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[601]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[602]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[603]' to a numeric value `0`\n", + "outside the bounds (0.25196078419685364, 0.35196080803871155).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[627]' to a numeric value `0`\n", + "outside the bounds (0.07156862318515778, 0.1715686321258545).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[628]' to a numeric value `0`\n", + "outside the bounds (0.8284313678741455, 0.9284313917160034).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[629]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[630]' to a numeric value `0`\n", + "outside the bounds (0.4009803831577301, 0.5009803771972656).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[655]' to a numeric value `0`\n", + "outside the bounds (0.47156864404678345, 0.5715686678886414).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[656]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[657]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[658]' to a numeric value `0`\n", + "outside the bounds (0.15392157435417175, 0.2539215683937073).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[682]' to a numeric value `0`\n", + "outside the bounds (0.18921568989753723, 0.28921568393707275).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[683]' to a numeric value `0`\n", + "outside the bounds (0.8990195989608765, 0.9990196228027344).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[684]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[685]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[686]' to a numeric value `0`\n", + "outside the bounds (0.15392157435417175, 0.2539215683937073).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[710]' to a numeric value `0`\n", + "outside the bounds (0.42450979351997375, 0.5245097875595093).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[711]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[712]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[713]' to a numeric value `0`\n", + "outside the bounds (0.8088235259056091, 0.908823549747467).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[714]' to a numeric value `0`\n", + "outside the bounds (0.10686275362968445, 0.20686274766921997).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[738]' to a numeric value `0`\n", + "outside the bounds (0.42450979351997375, 0.5245097875595093).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[739]' to a numeric value `0`\n", + "outside the bounds (0.9460784196853638, 1.0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[740]' to a numeric value `0`\n", + "outside the bounds (0.7617647051811218, 0.8617647290229797).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n", + "WARNING (W1002): Setting Var 'nn.scaled_inputs[741]' to a numeric value `0`\n", + "outside the bounds (0.020588237792253494, 0.12058824300765991).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n" + ] + } + ], "source": [ "#create pyomo model\n", "m = pyo.ConcreteModel()\n", @@ -523,7 +794,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -540,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "metadata": { "scrolled": true }, @@ -550,168 +821,141 @@ "output_type": "stream", "text": [ "Welcome to the CBC MILP Solver \n", - "Version: 2.10.5 \n", - "Build Date: Oct 15 2020 \n", + "Version: 2.10.10 \n", + "Build Date: Apr 19 2023 \n", "\n", - "command line - /home/jhjalvi/anaconda3/envs/tensorflow/bin/cbc -printingOptions all -import /tmp/tmpdwk9ljju.pyomo.lp -stat=1 -solve -solu /tmp/tmpdwk9ljju.pyomo.soln (default strategy 1)\n", + "command line - /opt/conda/bin/cbc -printingOptions all -import /tmp/tmpoznymvux.pyomo.lp -stat=1 -solve -solu /tmp/tmpoznymvux.pyomo.soln (default strategy 1)\n", "Option for printingOptions changed from normal to all\n", - "Presolve 332 (-1777) rows, 1029 (-1664) columns and 31506 (-14801) elements\n", + "Presolve 359 (-1749) rows, 1048 (-1644) columns and 38227 (-8079) elements\n", "Statistics for presolved model\n", "Original problem has 100 integers (100 of which binary)\n", - "Presolved problem has 71 integers (71 of which binary)\n", - "==== 979 zero objective 51 different\n", + "Presolved problem has 74 integers (74 of which binary)\n", + "==== 998 zero objective 51 different\n", "==== absolute objective values 51 different\n", - "==== for integers 71 zero objective 1 different\n", - "71 variables have objective of 0\n", + "==== for integers 74 zero objective 1 different\n", + "74 variables have objective of 0\n", "==== for integers absolute objective values 1 different\n", - "71 variables have objective of 0\n", + "74 variables have objective of 0\n", "===== end objective counts\n", "\n", "\n", - "Problem has 332 rows, 1029 columns (50 with objective) and 31506 elements\n", + "Problem has 359 rows, 1048 columns (50 with objective) and 38227 elements\n", "Column breakdown:\n", - "0 of type 0.0->inf, 759 of type 0.0->up, 0 of type lo->inf, \n", - "199 of type lo->up, 0 of type free, 0 of type fixed, \n", - "0 of type -inf->0.0, 0 of type -inf->up, 71 of type 0.0->1.0 \n", + "0 of type 0.0->inf, 746 of type 0.0->up, 0 of type lo->inf, \n", + "228 of type lo->up, 0 of type free, 0 of type fixed, \n", + "0 of type -inf->0.0, 0 of type -inf->up, 74 of type 0.0->1.0 \n", "Row breakdown:\n", "0 of type E 0.0, 0 of type E 1.0, 0 of type E -1.0, \n", - "87 of type E other, 0 of type G 0.0, 0 of type G 1.0, \n", - "0 of type G other, 174 of type L 0.0, 0 of type L 1.0, \n", - "71 of type L other, 0 of type Range 0.0->1.0, 0 of type Range other, \n", + "95 of type E other, 0 of type G 0.0, 0 of type G 1.0, \n", + "0 of type G other, 190 of type L 0.0, 0 of type L 1.0, \n", + "74 of type L other, 0 of type Range 0.0->1.0, 0 of type Range other, \n", "0 of type Free \n", - "Continuous objective value is -8.70513 - 0.03 seconds\n", - "Cgl0003I 0 fixed, 0 tightened bounds, 54 strengthened rows, 0 substitutions\n", - "Cgl0003I 0 fixed, 0 tightened bounds, 1 strengthened rows, 0 substitutions\n", - "Cgl0004I processed model has 258 rows, 955 columns (63 integer (63 of which binary)) and 52403 elements\n", - "Cbc0038I Initial state - 45 integers unsatisfied sum - 16.9175\n", - "Cbc0038I Pass 1: suminf. 6.67376 (26) obj. 8.1543 iterations 369\n", - "Cbc0038I Pass 2: suminf. 0.00000 (0) obj. 10.7826 iterations 1051\n", - "Cbc0038I Solution found of 10.7826\n", - "Cbc0038I Relaxing continuous gives 7.01412\n", - "Cbc0038I Before mini branch and bound, 18 integers at bound fixed and 356 continuous\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 195 rows 558 columns - 6 fixed gives 189, 552 - still too large\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 167 rows 535 columns - too large\n", - "Cbc0038I Mini branch and bound did not improve solution (0.35 seconds)\n", - "Cbc0038I Round again with cutoff of 5.95662\n", - "Cbc0038I Pass 3: suminf. 7.02236 (29) obj. 5.95662 iterations 60\n", - "Cbc0038I Pass 4: suminf. 1.95668 (13) obj. 5.95662 iterations 412\n", - "Cbc0038I Pass 5: suminf. 0.37202 (1) obj. 5.95662 iterations 778\n", - "Cbc0038I Pass 6: suminf. 0.20711 (1) obj. 5.95662 iterations 35\n", - "Cbc0038I Pass 7: suminf. 1.75379 (6) obj. 5.95662 iterations 390\n", - "Cbc0038I Pass 8: suminf. 0.24439 (2) obj. 5.95662 iterations 172\n", - "Cbc0038I Pass 9: suminf. 0.31716 (1) obj. 5.95662 iterations 129\n", - "Cbc0038I Pass 10: suminf. 0.15007 (1) obj. 5.95662 iterations 46\n", - "Cbc0038I Pass 11: suminf. 2.30947 (9) obj. 5.95662 iterations 233\n", - "Cbc0038I Pass 12: suminf. 0.21814 (1) obj. 5.95662 iterations 221\n", - "Cbc0038I Pass 13: suminf. 0.37586 (1) obj. 5.95662 iterations 44\n", - "Cbc0038I Pass 14: suminf. 3.21707 (16) obj. 5.95662 iterations 266\n", - "Cbc0038I Pass 15: suminf. 2.95868 (15) obj. 5.95662 iterations 20\n", - "Cbc0038I Pass 16: suminf. 2.95331 (15) obj. 5.95662 iterations 22\n", - "Cbc0038I Pass 17: suminf. 0.31716 (1) obj. 5.95662 iterations 812\n", - "Cbc0038I Pass 18: suminf. 0.15007 (1) obj. 5.95662 iterations 39\n", - "Cbc0038I Pass 19: suminf. 3.13470 (12) obj. 5.95662 iterations 403\n", - "Cbc0038I Pass 20: suminf. 2.54532 (10) obj. 5.95662 iterations 94\n", - "Cbc0038I Pass 21: suminf. 5.93299 (26) obj. 5.95662 iterations 340\n", - "Cbc0038I Pass 22: suminf. 0.28804 (1) obj. 5.95662 iterations 562\n", - "Cbc0038I Pass 23: suminf. 0.10862 (1) obj. 5.95662 iterations 48\n", - "Cbc0038I Pass 24: suminf. 2.17321 (10) obj. 5.95662 iterations 298\n", - "Cbc0038I Pass 25: suminf. 0.28804 (1) obj. 5.95662 iterations 289\n", - "Cbc0038I Pass 26: suminf. 0.10862 (1) obj. 5.95662 iterations 48\n", - "Cbc0038I Pass 27: suminf. 3.49937 (14) obj. 5.95662 iterations 289\n", - "Cbc0038I Pass 28: suminf. 0.37176 (1) obj. 5.95662 iterations 208\n", - "Cbc0038I Pass 29: suminf. 0.20074 (1) obj. 5.95662 iterations 26\n", - "Cbc0038I Pass 30: suminf. 0.91276 (5) obj. 5.95662 iterations 120\n", - "Cbc0038I Pass 31: suminf. 2.70655 (11) obj. 5.95662 iterations 250\n", - "Cbc0038I Pass 32: suminf. 2.64846 (13) obj. 5.95662 iterations 32\n", - "Cbc0038I Rounding solution of 6.24461 is better than previous of 7.01412\n", - "\n", - "Cbc0038I Before mini branch and bound, 3 integers at bound fixed and 353 continuous\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 200 rows 566 columns - 10 fixed gives 190, 556 - still too large\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 163 rows 534 columns - too large\n", - "Cbc0038I Mini branch and bound did not improve solution (1.01 seconds)\n", - "Cbc0038I Round again with cutoff of 4.05313\n", - "Cbc0038I Pass 32: suminf. 7.70811 (30) obj. 4.05313 iterations 7\n", - "Cbc0038I Pass 33: suminf. 4.89653 (23) obj. 4.05313 iterations 121\n", - "Cbc0038I Pass 34: suminf. 4.88223 (23) obj. 4.05313 iterations 23\n", - "Cbc0038I Pass 35: suminf. 1.20216 (3) obj. 4.05313 iterations 1192\n", - "Cbc0038I Pass 36: suminf. 0.91596 (3) obj. 4.05313 iterations 61\n", - "Cbc0038I Pass 37: suminf. 0.90941 (3) obj. 4.05313 iterations 27\n", - "Cbc0038I Pass 38: suminf. 2.77624 (12) obj. 4.05313 iterations 160\n", - "Cbc0038I Pass 39: suminf. 1.18048 (3) obj. 4.05313 iterations 356\n", - "Cbc0038I Pass 40: suminf. 0.86798 (2) obj. 4.05313 iterations 73\n", - "Cbc0038I Pass 41: suminf. 0.85671 (3) obj. 4.05313 iterations 39\n", - "Cbc0038I Pass 42: suminf. 2.64239 (10) obj. 4.05313 iterations 103\n", - "Cbc0038I Pass 43: suminf. 1.20892 (3) obj. 4.05313 iterations 119\n", - "Cbc0038I Pass 44: suminf. 0.90215 (3) obj. 4.05313 iterations 59\n", - "Cbc0038I Pass 45: suminf. 0.89043 (3) obj. 4.05313 iterations 43\n", - "Cbc0038I Pass 46: suminf. 4.06118 (14) obj. 4.05313 iterations 330\n", - "Cbc0038I Pass 47: suminf. 3.86419 (13) obj. 4.05313 iterations 33\n", - "Cbc0038I Pass 48: suminf. 0.92252 (3) obj. 4.05313 iterations 242\n", - "Cbc0038I Pass 49: suminf. 4.29719 (14) obj. 4.05313 iterations 350\n", - "Cbc0038I Pass 50: suminf. 4.17818 (15) obj. 4.05313 iterations 53\n", - "Cbc0038I Pass 51: suminf. 0.91809 (3) obj. 4.05313 iterations 188\n", - "Cbc0038I Pass 52: suminf. 0.89043 (3) obj. 4.05313 iterations 61\n", - "Cbc0038I Pass 53: suminf. 1.21047 (3) obj. 4.05313 iterations 106\n", - "Cbc0038I Pass 54: suminf. 0.89965 (3) obj. 4.05313 iterations 72\n", - "Cbc0038I Pass 55: suminf. 2.95986 (11) obj. 4.05313 iterations 232\n", - "Cbc0038I Pass 56: suminf. 2.80081 (11) obj. 4.05313 iterations 64\n", - "Cbc0038I Pass 57: suminf. 0.97287 (3) obj. 4.05313 iterations 198\n", - "Cbc0038I Pass 58: suminf. 0.95556 (3) obj. 4.05313 iterations 53\n", - "Cbc0038I Pass 59: suminf. 1.23943 (3) obj. 4.05313 iterations 110\n", - "Cbc0038I Pass 60: suminf. 0.96379 (3) obj. 4.05313 iterations 73\n", - "Cbc0038I Pass 61: suminf. 3.20098 (12) obj. 4.05313 iterations 340\n", + "Continuous objective value is -8.72226 - 0.06 seconds\n", + "Cgl0004I processed model has 298 rows, 987 columns (74 integer (74 of which binary)) and 60742 elements\n", + "Cbc0038I Initial state - 57 integers unsatisfied sum - 21.3774\n", + "Cbc0038I Pass 1: suminf. 7.64588 (38) obj. 6.842 iterations 304\n", + "Cbc0038I Pass 2: suminf. 0.79348 (10) obj. 7.42356 iterations 472\n", + "Cbc0038I Solution found of 7.42356\n", + "Cbc0038I Relaxing continuous gives 5.71541\n", + "Cbc0038I Before mini branch and bound, 16 integers at bound fixed and 528 continuous\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 222 rows 410 columns - 10 fixed gives 212, 400 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 172 rows 366 columns\n", + "Cbc0038I Mini branch and bound did not improve solution (0.29 seconds)\n", + "Cbc0038I Freeing continuous variables gives a solution of 5.71541\n", + "Cbc0038I Round again with cutoff of 4.27163\n", + "Cbc0038I Pass 3: suminf. 8.08526 (38) obj. 4.27163 iterations 20\n", + "Cbc0038I Pass 4: suminf. 4.83676 (28) obj. 4.27163 iterations 252\n", + "Cbc0038I Pass 5: suminf. 2.47587 (17) obj. 4.27163 iterations 245\n", + "Cbc0038I Pass 6: suminf. 2.46886 (18) obj. 4.27163 iterations 20\n", + "Cbc0038I Pass 7: suminf. 0.96572 (8) obj. 4.27163 iterations 144\n", + "Cbc0038I Pass 8: suminf. 0.94235 (9) obj. 4.27163 iterations 22\n", + "Cbc0038I Pass 9: suminf. 0.53923 (2) obj. 4.27163 iterations 738\n", + "Cbc0038I Pass 10: suminf. 0.53608 (2) obj. 4.27163 iterations 23\n", + "Cbc0038I Pass 11: suminf. 0.46778 (2) obj. 4.27163 iterations 55\n", + "Cbc0038I Pass 12: suminf. 0.42897 (1) obj. 4.27163 iterations 30\n", + "Cbc0038I Pass 13: suminf. 3.59727 (16) obj. 4.27163 iterations 200\n", + "Cbc0038I Pass 14: suminf. 3.35016 (14) obj. 4.27163 iterations 18\n", + "Cbc0038I Pass 15: suminf. 0.53923 (2) obj. 4.27163 iterations 257\n", + "Cbc0038I Pass 16: suminf. 0.53608 (2) obj. 4.27163 iterations 23\n", + "Cbc0038I Pass 17: suminf. 0.46778 (2) obj. 4.27163 iterations 55\n", + "Cbc0038I Pass 18: suminf. 0.42897 (1) obj. 4.27163 iterations 30\n", + "Cbc0038I Pass 19: suminf. 2.88596 (13) obj. 4.27163 iterations 313\n", + "Cbc0038I Pass 20: suminf. 2.65913 (14) obj. 4.27163 iterations 113\n", + "Cbc0038I Pass 21: suminf. 2.24821 (12) obj. 4.27163 iterations 22\n", + "Cbc0038I Pass 22: suminf. 0.65487 (3) obj. 4.27163 iterations 314\n", + "Cbc0038I Pass 23: suminf. 0.56714 (2) obj. 4.27163 iterations 80\n", + "Cbc0038I Pass 24: suminf. 0.53781 (2) obj. 4.27163 iterations 24\n", + "Cbc0038I Pass 25: suminf. 0.64231 (2) obj. 4.27163 iterations 46\n", + "Cbc0038I Pass 26: suminf. 0.63473 (2) obj. 4.27163 iterations 29\n", + "Cbc0038I Pass 27: suminf. 4.08453 (19) obj. 4.27163 iterations 210\n", + "Cbc0038I Pass 28: suminf. 3.85029 (20) obj. 4.27163 iterations 28\n", + "Cbc0038I Pass 29: suminf. 1.17777 (8) obj. 4.27163 iterations 217\n", + "Cbc0038I Pass 30: suminf. 1.17106 (8) obj. 4.27163 iterations 35\n", + "Cbc0038I Pass 31: suminf. 0.55352 (4) obj. 4.27163 iterations 168\n", + "Cbc0038I Pass 32: suminf. 0.52158 (4) obj. 4.27163 iterations 29\n", "Cbc0038I No solution found this major pass\n", - "Cbc0038I Before mini branch and bound, 6 integers at bound fixed and 376 continuous\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 196 rows 538 columns - 6 fixed gives 190, 532 - still too large\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 164 rows 512 columns - too large\n", - "Cbc0038I Mini branch and bound did not improve solution (1.49 seconds)\n", - "Cbc0038I After 1.49 seconds - Feasibility pump exiting with objective of 6.24461 - took 1.35 seconds\n", - "Cbc0012I Integer solution of 6.2446143 found by feasibility pump after 0 iterations and 0 nodes (1.54 seconds)\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 215 rows 912 columns - 30 fixed gives 184, 881 - still too large\n", - "Cbc0031I 34 added rows had average density of 383.97059\n", - "Cbc0013I At root node, 34 cuts changed objective from -3.5608111 to 0.11409384 in 100 passes\n", - "Cbc0014I Cut generator 0 (Probing) - 132 row cuts average 52.4 elements, 0 column cuts (0 active) in 0.083 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 1 (Gomory) - 1147 row cuts average 815.8 elements, 0 column cuts (0 active) in 1.221 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 2 (Knapsack) - 3 row cuts average 3.7 elements, 0 column cuts (0 active) in 0.073 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 3 (Clique) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.003 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 3392 row cuts average 281.4 elements, 0 column cuts (0 active) in 0.717 seconds - new frequency is 1\n", - "Cbc0014I Cut generator 5 (FlowCover) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 1.634 seconds - new frequency is -100\n", - "Cbc0014I Cut generator 6 (TwoMirCuts) - 290 row cuts average 367.1 elements, 0 column cuts (0 active) in 0.132 seconds - new frequency is 1\n", - "Cbc0010I After 0 nodes, 1 on tree, 6.2446143 best solution, best possible 0.11409384 (9.72 seconds)\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 215 rows 910 columns - 18 fixed gives 195, 890 - still too large\n", - "Cbc0038I Full problem 258 rows 955 columns, reduced to 212 rows 907 columns - 18 fixed gives 192, 887 - still too large\n", - "Cbc0001I Search completed - best objective 6.244614291599583, took 69539 iterations and 156 nodes (29.56 seconds)\n", - "Cbc0032I Strong branching done 1052 times (53050 iterations), fathomed 1 nodes and fixed 0 variables\n", - "Cbc0035I Maximum depth 31, 2 variables fixed on reduced cost\n", - "Cuts at root node changed objective from -3.56081 to 0.114094\n", - "Probing was tried 100 times and created 132 cuts of which 0 were active after adding rounds of cuts (0.083 seconds)\n", - "Gomory was tried 100 times and created 1147 cuts of which 0 were active after adding rounds of cuts (1.221 seconds)\n", - "Knapsack was tried 100 times and created 3 cuts of which 0 were active after adding rounds of cuts (0.073 seconds)\n", - "Clique was tried 100 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.003 seconds)\n", - "MixedIntegerRounding2 was tried 446 times and created 11432 cuts of which 0 were active after adding rounds of cuts (3.153 seconds)\n", - "FlowCover was tried 100 times and created 0 cuts of which 0 were active after adding rounds of cuts (1.634 seconds)\n", - "TwoMirCuts was tried 446 times and created 290 cuts of which 0 were active after adding rounds of cuts (0.406 seconds)\n", + "Cbc0038I Before mini branch and bound, 9 integers at bound fixed and 388 continuous\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 230 rows 554 columns - 38 fixed gives 192, 516 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 165 rows 495 columns - too large\n", + "Cbc0038I Mini branch and bound did not improve solution (0.77 seconds)\n", + "Cbc0038I After 0.77 seconds - Feasibility pump exiting with objective of 5.71541 - took 0.65 seconds\n", + "Cbc0012I Integer solution of 5.7154098 found by feasibility pump after 0 iterations and 0 nodes (0.84 seconds)\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 245 rows 934 columns - 38 fixed gives 206, 895 - still too large\n", + "Cbc0031I 65 added rows had average density of 239.36923\n", + "Cbc0013I At root node, 65 cuts changed objective from -8.72226 to -4.1250558 in 36 passes\n", + "Cbc0014I Cut generator 0 (Probing) - 7 row cuts average 255.9 elements, 0 column cuts (18 active) in 0.021 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 1 (Gomory) - 115 row cuts average 671.1 elements, 0 column cuts (0 active) in 0.402 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 2 (Knapsack) - 2 row cuts average 7.0 elements, 0 column cuts (0 active) in 0.032 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 3 (Clique) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.001 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 4 (MixedIntegerRounding2) - 1363 row cuts average 255.4 elements, 0 column cuts (0 active) in 0.207 seconds - new frequency is 1\n", + "Cbc0014I Cut generator 5 (FlowCover) - 0 row cuts average 0.0 elements, 0 column cuts (0 active) in 0.490 seconds - new frequency is -100\n", + "Cbc0014I Cut generator 6 (TwoMirCuts) - 152 row cuts average 379.7 elements, 0 column cuts (0 active) in 0.063 seconds - new frequency is 1\n", + "Cbc0010I After 0 nodes, 1 on tree, 5.7154098 best solution, best possible -4.1250558 (3.78 seconds)\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 257 rows 946 columns - 31 fixed gives 225, 914 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 261 rows 950 columns - 28 fixed gives 229, 918 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 185 rows 660 columns - 21 fixed gives 171, 643 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 155 rows 631 columns - too large\n", + "Cbc0012I Integer solution of 5.1974607 found by rounding after 49300 iterations and 229 nodes (18.59 seconds)\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 201 rows 596 columns - 23 fixed gives 178, 573 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 150 rows 550 columns - too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 209 rows 525 columns - 24 fixed gives 185, 501 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 200 rows 516 columns - 25 fixed gives 175, 491 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 213 rows 529 columns - 28 fixed gives 185, 501 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 210 rows 525 columns - 27 fixed gives 183, 498 - still too large\n", + "Cbc0038I Full problem 298 rows 987 columns, reduced to 157 rows 479 columns - too large\n", + "Cbc0010I After 1000 nodes, 24 on tree, 5.1974607 best solution, best possible -4.1250558 (37.52 seconds)\n", + "Cbc0001I Search completed - best objective 5.197460746436284, took 152711 iterations and 1107 nodes (42.02 seconds)\n", + "Cbc0032I Strong branching done 2298 times (79340 iterations), fathomed 33 nodes and fixed 3 variables\n", + "Cbc0035I Maximum depth 54, 2 variables fixed on reduced cost\n", + "Cuts at root node changed objective from -8.72226 to -4.12506\n", + "Probing was tried 36 times and created 7 cuts of which 18 were active after adding rounds of cuts (0.021 seconds)\n", + "Gomory was tried 36 times and created 115 cuts of which 0 were active after adding rounds of cuts (0.402 seconds)\n", + "Knapsack was tried 36 times and created 2 cuts of which 0 were active after adding rounds of cuts (0.032 seconds)\n", + "Clique was tried 36 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.001 seconds)\n", + "MixedIntegerRounding2 was tried 1273 times and created 32180 cuts of which 0 were active after adding rounds of cuts (6.526 seconds)\n", + "FlowCover was tried 36 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.490 seconds)\n", + "TwoMirCuts was tried 1273 times and created 154 cuts of which 0 were active after adding rounds of cuts (0.787 seconds)\n", "ZeroHalf was tried 1 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds)\n", "\n", "Result - Optimal solution found\n", "\n", - "Objective value: 6.24461429\n", - "Enumerated nodes: 156\n", - "Total iterations: 69539\n", - "Time (CPU seconds): 29.77\n", - "Time (Wallclock seconds): 31.00\n", + "Objective value: 5.19746075\n", + "Enumerated nodes: 1107\n", + "Total iterations: 152711\n", + "Time (CPU seconds): 42.15\n", + "Time (Wallclock seconds): 43.81\n", "\n", - "Total time (CPU seconds): 29.80 (Wallclock seconds): 31.04\n", + "Total time (CPU seconds): 42.27 (Wallclock seconds): 43.87\n", "\n" ] }, { "data": { "text/plain": [ - "{'Problem': [{'Name': 'unknown', 'Lower bound': 6.24461429, 'Upper bound': 6.24461429, 'Number of objectives': 1, 'Number of constraints': 332, 'Number of variables': 1029, 'Number of binary variables': 100, 'Number of integer variables': 100, 'Number of nonzeros': 50, 'Sense': 'minimize'}], 'Solver': [{'Status': 'ok', 'User time': -1.0, 'System time': 29.8, 'Wallclock time': 31.04, 'Termination condition': 'optimal', 'Termination message': 'Model was solved to optimality (subject to tolerances), and an optimal solution is available.', 'Statistics': {'Branch and bound': {'Number of bounded subproblems': 156, 'Number of created subproblems': 156}, 'Black box': {'Number of iterations': 69539}}, 'Error rc': 0, 'Time': 31.065782070159912}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Name': 'unknown', 'Lower bound': 5.19746075, 'Upper bound': 5.19746075, 'Number of objectives': 1, 'Number of constraints': 359, 'Number of variables': 1048, 'Number of binary variables': 100, 'Number of integer variables': 100, 'Number of nonzeros': 50, 'Sense': 'minimize'}], 'Solver': [{'Status': 'ok', 'User time': -1.0, 'System time': 42.27, 'Wallclock time': 43.87, 'Termination condition': 'optimal', 'Termination message': 'Model was solved to optimality (subject to tolerances), and an optimal solution is available.', 'Statistics': {'Branch and bound': {'Number of bounded subproblems': 1107, 'Number of created subproblems': 1107}, 'Black box': {'Number of iterations': 152711}}, 'Error rc': 0, 'Time': 43.88876152038574}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 19, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -740,7 +984,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/notebooks/neuralnet/neural_network_formulations.ipynb b/docs/notebooks/neuralnet/neural_network_formulations.ipynb index d08674ca..3317acd9 100644 --- a/docs/notebooks/neuralnet/neural_network_formulations.ipynb +++ b/docs/notebooks/neuralnet/neural_network_formulations.ipynb @@ -44,14 +44,23 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "ced8f89b", + "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-05-16 17:40:18.850942: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2024-05-16 17:40:18.880227: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "#Start by importing the following libraries\n", "#data manipulation and plotting\n", @@ -106,8 +115,7 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "50d7b6d2", + "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" @@ -132,8 +140,7 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "b2738994", + "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" @@ -142,7 +149,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABgwAAALsCAYAAAA/G5wPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5d7G8XvTISShQ+g1dJHepHdUFBFFiiB6FCt6rFgQKxbUg8gR2wHErljpHekQeu+B0EsgIYH0ef/gZc2mbpLdnd3N93Nde13zzD4zcydZZWZ/M89jMQzDEAAAAAAAAAAAKNJ8zA4AAAAAAAAAAADMR8EAAAAAAAAAAABQMAAAAAAAAAAAABQMAAAAAAAAAACAKBgAAAAAAAAAAABRMAAAAAAAAAAAAKJgAAAAAAAAAAAARMEAAAAAAAAAAACIggEAAAAAAAAAABAFAwDwKNOnT5fFYpHFYtHIkSNdeuzrx7VYLC49LgAAAOApatSoYT1njoqKMjtOtqKioqwZa9SoYXYct2HW3278+PHW444fP95lxwWAnFAwAODVMp4MO+o1ffp0s38suFCXLl1y/CwEBQWpQoUKqlu3rm666SY9/vjjmjZtmo4ePWp2bAAAALfz999/65FHHlHLli1Vrlw5BQQEqFixYipfvrxatGihe+65RxMnTtT69euVnp5udlzkYuTIkQ69xqJwUfQsX748x8+Dj4+PwsLCVK1aNTVp0kQDBw7U22+/rUWLFik1NdXs6IDX8zM7AAAAniopKUlnz57V2bNndfDgQa1evVqS5OPjo169eumJJ55Q3759TcnWpUsXrVixQpK0bNkydenSxZQcAAAA+/bt06hRo7RmzZos76WkpCgxMVHnzp3T5s2b9cMPP0iSqlev7rZ36ANwLsMwFBcXp7i4OEVHR2vnzp369ddfJUnh4eEaNWqUnnrqKZUpU8bl2ZYvX66uXbtKkjp37qzly5e7PAPgbBQMAHi10NBQPfroo7n22bBhgzZu3ChJqlSpkgYMGJBr/wYNGjgsHzxLq1at1Lp1a2s7PT1dsbGxunTpknbt2mV9siA9PV3z58/X/PnzNXz4cE2ePFlhYWFmxQYAADDN9u3b1bVrV8XExFjXlStXTq1atVLFihXl4+OjmJgY7d69W/v377c+WXDp0iWTEsMePXr0UIkSJXLtM2XKFOvy7bffrsqVK+fY14wvfuFeMl+3JyYm6uLFizp16pS2bt2qq1evSpJOnTqlt956S1999ZW++uor9evXz4y4gFezGIZhmB0CAMw0fvx4vfbaa5K4QwBZZbxT/9VXX811XNHTp09r5syZ+vjjj3X8+HHr+ubNm2vlypUqXry4s+Na8YQBAAAwW0pKipo2bao9e/ZIkipUqKBPPvlEAwYMkK+vb5b+MTEx+vPPP/XNN99o06ZNunjxoqsjF1qNGjWsN5EcOXLELYfaiYqKUs2aNSU590mOjHOfcT6KzDLeqS9de6ogJykpKVq9erUmTZqkP/74w6bv999/r8GDBzs1a0Y8YYCigDkMAABwkIoVK+rZZ5/Vnj17NGjQIOv6zZs369577zUxGQAAgOv98ccf1mJBUFCQli1bpjvvvDPbYoEklS5dWiNHjtTixYsVGRnpyqgA3Ji/v7+6dOmi3377TXPmzFHp0qWt79133338/wJwMAoGAAA4WIkSJfTjjz/qlltusa6bNWsWd58AAIAiZeHChdbl/v3752toz9q1azsjEgAP17dvX/3111/y87s2ynpiYqKeeeYZk1MB3oWCAQDYYeTIkbJYLLJYLJo+fbqka+OqTpo0SZ06dVLlypXl5+cni8WSZbzVs2fPatq0aRoxYoSaNWum0qVLy9/fXyVLllT9+vV13333acGCBXblmD59ujXHyJEjs+2zfPlya5+Mj/0uXbpUgwcPVq1atRQUFKQyZcqoU6dO+uSTT5SSkpLnsa/vM+OjxZnVqFHD2uf6o83Hjx/XK6+8oqZNm6pkyZIKDg5W/fr19fjjj1sf17bX3LlzNXDgQFWpUkVBQUGqXLmyunfvrunTp1t/huz+VmawWCyaMWOGQkJCrOveeuutXLfZtGmTJkyYoFtuuUW1atVSiRIlFBAQoAoVKqh9+/Z66aWXdOzYsTyPa7FYrMMRSVLXrl1t/n65/X4c+XkFAABFW8YhGq8PgeNoaWlp+umnn3TvvfeqXr16KlWqlPz9/VWmTBm1bdtWY8aM0ZIlS3Ic7iQ9PV0rV67UuHHj1KtXL1WrVk3FixdXUFCQKlWqpG7duuntt9/W+fPnnZI/JSVFM2fO1F133aVatWopJCREwcHBqlmzpu655x799ttvuQ7VktnFixf1+uuvq1mzZipZsqRCQkLUoEEDPfHEE9q9e7dTfobCiIqKsp6bZhy+adWqVXrggQdUv359hYWFyWKx6Mknn7TZ1tF/u+yuZTLr0qWLtc/1m4FiYmL07rvvqlWrVipbtqyKFSumWrVq6f7779fOnTvzPO748eOt+8xp+NOcrgN/++033XrrrapWrZoCAwNVvnx59erVS998802+Pjfnz5/Xq6++qhtvvFFhYWE2n5vrTwnl9LcyQ/v27fXcc89Z2ytWrNDq1atz7B8bG6vvv/9eDz30kNq0aaOyZcsqICBAoaGhqlOnjoYMGaKff/7ZOodKdq7/nTIOo7RixYpsr7Oy+/2Y/f8aIF8MACjiXn31VUOSIcno3Llztn1GjBhh7TNt2jRj1apVRtWqVa3rMr4uXrxo3W7SpEmGr69vtv0yv7p162acP38+16zTpk2z9h8xYkS2fZYtW2bz8yQlJRkPPvhgrsdu3ry5ce7cuVyPnbF/TqpXr27tc+TIEeO3334zwsLCcjxusWLFjNmzZ+d6XMMwjMTEROOuu+7K9Wdo166dceLEiSx/q8Lq3LmzdX+vvvpqvrd//PHHrdtbLBbjwoUL2fZr1aqVXZ8Tf39/4913383xePbsI6ffj6M/rwAAoGjr16+f9dzhrrvucvj+//77byMiIsKuc5fnn38+y/bJyclG5cqV7do+ODjYmDlzZp6ZMp8P52bZsmVG7dq18zx227ZtjePHj+d57GXLlhkVKlTIcT8BAQHGp59+ahw5csS6rnr16nnut6AyHnvZsmXZ9smcJSkpyRg9enS2+ceMGWPdzqy/XcZrg2XLlhmrVq3KNYevr6/x+eef53rcjNejOV1vZL4OvHTpktG/f/9cf+4+ffoYV65cyfPnXrBggVG2bNlcPzdTp051+Ocm43WrlP+vJ0+dOmUEBARYt3/iiSey7Tdr1iwjMDDQrs/KjTfemOPfPuPfKa9X5t+PMz6vgDNde34HAGC3gwcP6sknn1RsbKxCQkLUqVMnVapUSRcvXtTff/9t0/fkyZNKS0uTJNWqVUsNGjRQuXLlFBQUpEuXLmnHjh3atWuXpGtPAPTo0UPr1q1TYGCgw/I+9NBDmj59unx8fNSmTRvVr19f6enpWrdunfbt2yfpnzH2586d67DjLlmyRA899JDS0tJUrVo1tWvXTqGhoTpy5IiWL1+u1NRUXb16VXfddZd27tyZ411nhmHorrvu0p9//mldV65cOXXp0kVhYWGKiorSihUrtHbtWt1xxx2qU6eOw34GRxg0aJAmT54s6drPsnLlSt12221Z+l1/ciAwMFCNGjVSnTp1FBYWJsMwdOrUKa1fv17nz59XSkqKnn/+eUmyuavmukcffVTStbuNTp48KUm6/fbbVbly5Sx9Mw8L4A6fVwAA4D0ynpfNnj1be/bsydewRLn54YcfdO+999o8KRsREaHmzZsrLCxMsbGx2rVrl3bt2qX09HQlJiZm2UdaWppOnDgh6dqQko0aNVKtWrUUGhqqlJQUHT9+XOvWrVNcXJwSEhI0fPhw+fv76+677y50/p9//llDhw615g8KClLbtm1Vo0YN+fr6av/+/Vq7dq1SU1O1bt06tWvXThs3blSFChWy3d+GDRt0yy23KCEhQdK1p07btGmjhg0b6urVq1q1apWio6P18MMP6z//+U+h8zvLU089palTp0qSmjRpoqZNm8rf31/79++Xj88/g2SY+be7bufOnRo7dqzi4+NVvnx5dezYUWXKlNGJEye0dOlSXb16VWlpaRo9erQaN26sdu3aOeS4aWlpGjhwoJYsWaKAgAC1b99etWvXVmJiolauXGm9rpg/f77+/e9/69NPP81xX6tXr9btt9+uq1evSrr2uWnXrp3q16+vxMRErVmzRlFRURo9erQmTZrkkPyOUrFiRd10001aunSpJGW5Fr/u7NmzSkpKkiRVqVJFDRs2VMWKFVW8eHHFx8drz5492rx5swzD0NatW9WxY0dt3bpVZcqUsdlP69at9eijj+rEiRP6/fffJUmVKlXSgAEDshwz87bu8HkF8sXcegUAmC+/Txj4+fkZkoxHH33UuHz5sk2/5ORkIy0tzdr+6quvjMmTJ+d6R9C2bduMli1bWvf/xhtv5Ng3v08YXL+TolWrVsaePXts+qWnpxv/+c9/bO5mWLFiRY7HztgvJxnvygkMDLTeHZGenm7Tb+fOnTZ3WNx333057vOzzz6zOfZLL71kJCcn2/Q5duyY0aFDB5ufWXKPJwwSEhKsnxlJxtixY7Pt9/DDDxtz5szJ8S6g1NRUY9q0aUZwcLAhXXvS4PDhw3blzumOrswc/XkFAABFW+Y7iMuVK2d8+OGHxsmTJwu1382bNxtBQUHW/TZr1sxYt25dtn1PnTplvP/++9k+oZmUlGTcd999xrJly7KcX16XmJhovPfee9bzuZIlS2a5BsjInrvUd+7caRQvXtza78knn8z2KdRDhw4ZN910k7Vf3759c8xYv359a78aNWoYGzdutOmTnp5ufPTRR4aPj4/NXdnu9ITB9Sddq1atavz9999Z+iYmJlqXzfrbZTzHDgwMNHx9fY0PPvjASElJsel37Ngxo3Hjxta+Xbt2zfG4+X3C4Pr1Tt++fbOct6ekpBjPPPOMta/FYsnxZ7ly5YrNEy5169Y1tm7dmqXf559/bvj5+dlcZ7nDEwaGYRhjx461bu/j45PttdSff/5pTJgwwThw4ECO+zl8+LDRu3dv677uv/9+u3Ln9P1BZs74vALORMEAQJGX34KBJOOBBx5waIZLly4ZFStWNCQZ4eHhRmpqarb98lswuH7il9uJxp133mntO3r06Bz75bdgYLFYjHnz5uXYd/bs2da+JUqUyHKSbRjXTnjDw8Ot/R5//PEc9xcXF5flkW53KBgYhmHUqFHDuo9Ro0YVKs8PP/xg3ddzzz2XY7+CFAzsZe/nFQAA4Pbbb88y5IbFYjHq1atnDB8+3Jg0aZKxfv36bM8Fc3L9RhFJRsuWLV3ypdo777xjPeZ///vfHPvZ86Vzt27drH3efPPNXI8bHx9vNGjQwNo/u8JIxhtsihUrZuzfv9+un8PdCgaSjOLFixv79u1zaA5H/u0ynmNLMj777LMc97djxw7DYrFYP/M5FcryWzCQZHTs2DHH/2bS09Nthjt95513su33ySefWPuEhIQYUVFROf4sU6ZMcfjnxhEFg+nTp9vs49ixYwXOk5ycbNxwww2GJCMoKMiIiYnJM7e9BYP8sPfzCjgTkx4DQD4FBQXpvffec+g+w8LCrI8ynjp1yqETkr3zzjsqUaJEju+PGjXKurxx40aHHfeWW25Rnz59cny/X79+qlixoiQpPj5ee/fuzdJn/vz5OnXqlKRrj26++eabOe4vJCREr7/+eiFTO0dYWJh1+eLFi4Xa15133mn9ey5evLhQ+yooZ35eAQCAd/nmm280aNAgm3WGYWjfvn2aOXOmxowZozZt2qhUqVIaMmSIVqxYkev+1q9fb53c1GKxaMaMGbme6zrKfffdZ10uzDnYtm3brEOoRERE6IUXXsi1f3BwsMaNG2dtf/vtt1n6fPnll9blMWPGqG7dujnu7+mnn3baBNSO8NhjjykiIsKh+3TU3y6zJk2a6MEHH8zx/caNG6tVq1aSrn3mN23a5LBjf/TRR/Lzy36UcYvFYvMz53SNN23aNOvyU089perVq+d4vNGjR6tevXoFTOs8Ga+zpMJda/n7+2vo0KGSpMTERK1atapQ2QrKWZ9XID+YwwAA8qlXr14qVapUvrc7e/as1q1bpz179ujixYtKSEiQYRjW9yMjI63LW7duVZMmTQqdNSgoSLfcckuufZo1a2ZdjoqKKvQxr8t8YZiZxWJR06ZNdfr0aeuxGzdubNNn+fLl1uVbbrlFoaGhue5zwIABKlasmHUMTneR8SL28uXLefbfsWOHNm/erKioKMXFxVnH3LzOYrFY+6Wnp9uM5+ooZnxeAQCA9wkODtZPP/2kRYsW6cMPP9TixYuVmpqapV98fLy+//57ff/99+rfv7+mT5+e7Tn3/Pnzrcvdu3dXw4YNHZIzPT1dmzZt0tatW3X8+HHFxcXZzI+Q0datWwt8nIxzhg0aNEi+vr55btOtWzfrcuYvMS9fvmzzRfTw4cNz3Zefn5+GDBmit956y97ILjV48OB8b+Oqv11meV3vSNeutTZs2CDJcddatWrVUosWLfI87nXZHffy5cvasmWLtT1kyJBc9+fj46N77rlH48ePz1dWZ8tcLMzrWuvSpUtat26ddu3apQsXLig+Pl7p6enW9zPexLZ161bdeuutjg0s8z6vQH5QMACAfMrr5Cyz3bt36/nnn9e8efOsE8rm5fz58wWJlkW9evUUEBCQa5+MEzLFxsY65LiS7PoCOa9jZzxBat26dZ77K1asmBo3buzQJyUcIeOJa25FjxkzZujtt9/W/v377dpvSkqKYmNjC1TAyomZn1cAAOC9evbsqZ49e+rChQtasWKF1qxZo82bN2vz5s1ZzgP//PNPdezYUWvXrlVISIjNe+vWrbMud+3atdC5UlNTNXnyZH344Yc6fvy4XdsU5txn7dq1NsuPPfZYnttkvGkjOjra5r3t27dbv/AMDQ21a1Lptm3b2hvXpfz9/fN1E4qr/3aZOeJ6x6zjbtu2zeZzY8/TA9eflnAnmQsEOV1rHT9+XC+88IJ++eWXLDdj5cTR1zhmf16B/KBgAAD5VK5cObv7LliwQLfddpvdJyXX2XMXuj0yP6KZHX9/f+tydnd7uerY2d1VkfEEqUqVKnYdt3Llym5XMMh4kl66dOks7xuGofvvv9/msWB7Xb582WEFA7M/rwAAwPuVKVNGd9xxh+644w5J/9xt+8033+iLL76wPim6a9cuvfTSS/r4449ttj9z5ox1uVatWoXKkpSUpP79+2vhwoX52q4w5z4nT560Li9dutQ6PJG9Mg+5cu7cOetylSpVrE+i5qZq1ar5OqarlCpVKsdhdjIz42+XmSOud8w6bkGvs9xN5mJIdtdaW7ZsUffu3fM9XJEjPyvu8HkF8oM5DAAgn4oVK2ZXv3Pnzunuu++2fvlas2ZNvfvuu1q9erVOnjypK1euKD09Xca1Cej16quvWrfN+FhkYdhzweAsjjh2fHy8dbl48eJ2bRMcHFzo4zpSQkKCzR0k1+dtyOiLL76wKRbccsstmjlzpnbu3KmLFy8qKSnJ+jkxDMNmfFFHfVbc4fMKAACKHh8fH7Vq1UqTJk3Spk2bbM6VMhYQrsv4BVph5y547bXXrF/g+fj4aMiQIfr555+1Z88excbGKjk52eYc7LqMy/lV2LvMMz8B6g3ny9fZe50lmfO3y8ysay2us/6RcQghX19flS1b1ub9pKQkDRw40FosqFChgl599VUtX75c0dHRSkhIsLnGyXhN5shrHHf4vAL5wRMGAOAkX3zxhfWCoFmzZvr7779zvajh7oGsMp6UXrlyxa5tEhISnBWnQCIjI20u7LJ7BHzixInW5bfeeksvvvhirvt0xmeFzysAADBbgwYN9MEHH9hMPLpx40Z16tTJ2ifjEEUZv/TMr6SkJE2ePNna/vrrr63HzY6jzn0ynt/+/vvvuu222wq1v4zna556vpxfZv3tvIk3XGdJ1yZBv65Zs2YKDAy0eX/WrFk6cuSIpGtPUkRGRqpChQo57s8ZnxU+r/BEPGEAAE6yZMkS6/LLL7+c5x1QR48edXYkj5PxDhF7x3k8ceKEs+IUyE8//WRd9vHxUYcOHWzej46O1oEDByRdewz7ueeey3V/cXFx+X6c1h58XgEAgDvo27evTfvUqVM27Yxf9l3/IrAgNmzYYC04NGnSJNcv8CTHnftkzH/9HLAwMg6XGh0dbdcdyZnnQfA0Zv3tvEnG6yx7r5/c7Trr5MmTWr16tbXdsWPHLH0yXuM89dRTuRYLJOd8Vvi8whNRMAAAJ8k4PmmjRo1y7ZuWlmZzsoNrbrzxRuvyhg0b8ux/9epV7dy504mJ8uf8+fP6+uuvre3evXurZMmSNn0yfk7q1auX57itq1atsutCML+PKvN5BQAA7iAoKMimnfmO4YxPa+Z3/P+M8nPuI0l///13gY+VUZs2bazLCxYsKPT+brjhBvn4XPtq5/Lly9q9e3ee22ScONoTmfW38yZNmza1Xi/ExsZq3759eW7jbvPETZ482WZ+hsGDB2fp44zPijOvs+zNADgbBQMAcJLrJ+5S3o95/v777zp9+rSzI3mcLl26WJdnz56tuLi4XPv/9ttvWca5NYthGBoxYoTNo/IvvfRSln75+ZxI0qeffmrX8TNebNszwRqfVwAA4A62bt1q065WrZpNO+MTCEuWLNGePXsKdJz8nPukp6fr888/L9BxMrvlllusy0uWLNGOHTsKtb+QkBC1aNHC2v7mm29y7Z+amqrvvvuuUMc0m1l/O28SGhqqZs2aWdt5fSbS09P1/fffOzuW3dasWWMzrGuPHj3UunXrLP3y81nZtGmTXUURZ15n8XmFu6BgAABOUqtWLevyH3/8kWO/c+fO6amnnnJFJI/Tt29f68R38fHxeuWVV3Lse/nyZY0bN85V0XIVHx+vwYMHa+7cudZ1Q4cOzTIckXRtcuHrd6ns3LlThw4dynG/P/74o2bPnm1XhjJlyliX7Xl8mM8rAABwtA8//FCLFy+2u39qaqrN+VyFChVsnjiVpNatW1vPqQzD0L333luguQwynvusWLEi18mI33//fW3bti3fx8hO69atrTfFGIahYcOG5XlTzHXJycnZDk15//33W5c//vjjXIc6+uCDDwo1lJM7MOtv523uu+8+6/JHH32U61A4U6dOtespBFeYP3++br31VqWmpkq6NmlzxuJBRvZe41y5ckUPPvigXccvzHUWn1d4CgoGAOAkGe8eeuedd7K922fz5s3q3LmzoqOjbSaewjV+fn42F40ff/yxXn755Sx3ckRHR6tfv346dOhQlsfWXen06dOaOHGiGjZsaDN3QZs2bfTll19mu03ZsmWtj6anp6dr0KBBWU7G09PTNWXKFA0fPly+vr5ZHtXPTpMmTazLv/zyS57DGPF5BQAAjrZhwwb17NlTLVq00OTJk7PMR5DRzp071bdvX5sCw/PPP29zd+51H3/8sfWcLzIyUp06dcpx+Mrr52fvv/++zfpmzZqpcuXKkq4NyTJo0CCboUOka5OVjhs3Ti+88IJDz30mT55snS9q+/btat26da6FlYMHD+qtt95SzZo1sx0WcsSIEYqIiJB07YvP3r17KzIy0qaPYRiaNGmSXnzxRQUEBDjsZzGDmX87bzJq1CjVrFlT0rWbr3r27Jntl9VffPGFxowZY+p1VmpqqlasWKGBAwfq5ptvVkxMjKRrwwPNnDlTTZs2zXa7jNc4X3/9tT744AOlpaXZ9Dl48KB69eqlzZs32/VZqVWrlrXf0aNH8xw6l88rPFHuAyUDAAps5MiR+vDDD7V//34lJSVp+PDhevvtt9W0aVMFBQVp586d1hP5pk2bqnfv3nrvvfdMTu1+Ro8erTlz5mjOnDmSpLfeekuff/65unTporCwMEVFRWnFihVKSUlRmzZtVLt2besjtdldYBbG3Llzdf78eWs7PT1dcXFxunTpknbv3p3t3VqjRo3SpEmTcv2S/80331SvXr2Unp6uLVu2qEmTJurQoYNq1aql+Ph4rVy50nqBff3nz2syrDvuuENjx46VYRiaM2eObrjhBrVv314hISHWPoMHD1bLli0l8XkFAADOs3nzZm3evFlPPPGEatSooSZNmqhs2bLy9/fXxYsXtX379iw3TAwYMECPP/54tvtr3ry5vvrqK40cOVKpqanasmWL2rRpo3r16qlZs2YKCwtTbGysdu/erZ07dyo9PV1jxoyx2YePj4/eeOMNjRo1SpK0aNEiRUREqH379qpevbouXLig5cuXW+/o//zzz/OcrNRejRs31vfff6+7775bV65c0b59+9SzZ09VrVpVrVq1UtmyZZWcnKxz585p27ZtOn78eK77CwoK0owZM9S9e3dduXJFR44cUevWrdW2bVs1aNBAiYmJWrlypXWy43fffdejnxg182/nTYoXL67p06erV69eSkpK0oEDB9SsWTO1a9dO9evXV2JiotasWaOoqChJ155Ouf7fkaOvsyTpscces2knJibq0qVLOn36tDZv3pxl6NnKlStr2rRp6tmzZ4777N27tzp37qwVK1bIMAw988wzmjJlipo3b66wsDAdOHBAa9asUVpamipXrqwxY8boueeeyzWnj4+Pbr/9dn377beSpK5du6pPnz6qVq2afH19JUmlS5fWiy++aO3P5xUexwCAIu7VV181JBmSjM6dO2fbZ8SIEdY+06ZNs3vf+/btM2rVqmXdNrtXhw4djOPHj9vkePXVV7Pd37Rp06x9RowYkW2fZcuW5fnzZJYxT2H6VK9e3drnyJEjeR7X3t/r1atXjYEDB+b6e2zXrp1x4sQJY8iQIdZ1v/76a54Z8tK5c+dcj5vdy8fHx+jXr5+xcOFCu4/z6aefGn5+frnuc9y4cUZ6errdv+eXX34515yZf+eO/rwCAICi7fPPPzdq1qyZr/OoYsWKGa+//rqRkpKS5/6XLFli9/5feumlbPfx4osv5rpdUFCQ8emnnxqG4fjz4a1btxotWrSw+3dTo0YNY8uWLbn+PsqXL5/j9v7+/saUKVOMI0eOWNdVr149r19zgWU89rJly7LtU5gsZvztMl4b5PQzZWTPObOjrgMzys/vdd68eUaZMmVy/D0GBAQYU6dONfbv329dd8MNN+SZIS8Zr1vz86pcubLxyiuvGDExMXYd5/Tp00bz5s1z3WfDhg2NXbt22f17PnbsmFGpUqUc95fd79zRn1fAmXjCAACcKCIiQlu2bNGUKVP066+/at++fUpOTlbFihXVpEkTDRkyRIMGDZKfH/87zk1QUJB++eUXzZkzR1999ZXWr1+v8+fPq0yZMmrQoIGGDh2q4cOHy9/f3/p4qiSVLFnSqbkCAgIUGhqqsLAwVahQQc2aNVPLli3VvXt3Va1aNV/7Gj16tDp06KCPPvpIy5Yt08mTJ1WsWDFVrlxZ3bp106hRo2wmJrPHG2+8oQ4dOuh///ufIiMjdebMmVwn2uLzCgAAHOlf//qX/vWvf2nnzp1asWKF1q1bp7179+ro0aOKjY2VYRgKCQlRxYoVdcMNN6hbt2668847VapUKbv2361bN+3bt08//PCDZs+ercjISJ09e1ZJSUkKCwtTnTp11K5dOw0YMEAdO3bMdh9vvfWW+vbtq08++USrVq3SuXPnFBISoipVqqhPnz66//77VbduXUf+WqyaNm2qyMhILVy4UL///rtWr16tkydP6tKlSwoMDFS5cuUUERGhtm3bqnfv3mrXrp117qucfh979uzR5MmT9dtvv+nw4cNKT09XlSpV1L17dz388MNq3Lix9Y5xT2fm386b9OnTx/q5+eOPP3TkyBEZhqEqVaqoR48eevjhh9WwYUOtX7/euo2zr7MsFotKlCih0NBQlSxZUhEREWrZsqXatGmjLl26WO/kt0eFChW0Zs0affnll/rhhx+0c+dOXblyReXLl1e9evV09913a+jQoSpevHiewwtdV7VqVW3btk2TJ0/WwoULtW/fPl2+fNk6r0J2+LzCk1gMI49BjQEA8CCVK1e2jgl56tQp66TJAAAAAICC+eKLL6wTAz/00EOaOnWqyYkAOAuTHgMAvMb1u7IkqUqVKhQLAAAAAMABfvrpJ+tyq1atTEwCwNkoGAAAvEJKSor+/e9/W9v33HOPiWkAAAAAwDv88ccfWrx4sSQpMDBQAwYMMDkRAGeiYAAAcHvjxo3Txx9/rAsXLmT7/p49e9SjRw/rmJPFixfXI4884sqIAIAiICoqSl988YWGDRumpk2bqlSpUvL391fp0qV1ww036KGHHtKKFSscftzx48fLYrHk6/XNN984PAcAwLscO3ZMd911l9asWaPsRixPTk7WJ598orvvvtu67v7771fp0qVdGROAizFrIQDA7R07dkxvvPGGnn76aTVt2lT16tVTaGioLl++rJ07d2r79u02J7j/+c9/VKNGDfMCAwC8ypYtWzR69OgcJ0O8ePGiLl68qB07dujzzz9Xly5dNGPGDFWrVs3FSQEAsF96erp+/vln/fzzz6pYsaKaN2+u8PBwWSwWnTx5UmvXrtXFixet/evXr693333XxMQAXIGCAQDAY6SmpmrTpk3atGlTtu+Hhobq448/1ogRI1ycDADgzfbt25elWBAREaHGjRurbNmyunTpktasWaPjx49LkpYvX6527dpp5cqVqlWrlkOztGrVSq1bt86zX7169Rx6XACAdzt9+rTmzp2b4/vdunXTjz/+qBIlSrgwFQAzUDAAALi9//znP+rSpYuWLl2q3bt369y5czp37pwMw1Dp0qXVqFEj9ejRQw888ACPxwIAnKZOnTp64IEHNGzYMFWuXNnmvfT0dE2bNk1PPPGErly5opMnT2ro0KFas2aNLBaLwzL069dP48ePd9j+AABFV40aNbR+/Xr99ddfWrt2rU6cOKHz58/r0qVLCgkJUXh4uDp06KC77rpLPXr0MDsuABehYOAh0tPTdfLkSYWEhDj0ggMAPIGPj4/uuOMO3XHHHXn2jYuLc0EiAHAMwzB0+fJlVapUST4+TC/mrsLDwzVt2jQNHz5cvr6+2fbx8fGxjut8/d+rdevWaeHCherdu7cr4xYa1x4AUHTUr19f9evXz7Mf11mAZ8vPdQcFAw9x8uRJVa1a1ewYAAAAcILo6GhVqVLF7BjIQefOndW5c2e7+g4YMECtW7e2DmE0Z84cjysYcO0BAADgney57qBg4CFCQkIkXfujhoaGmpwGAAAAjhAXF6eqVataz/XgHTp06GAtGERFRZkbpgC49gAAAPAu+bnuoGDgIa4/ChwaGspJOwAAgJdh2BfvkvHvmZaWZmKSguHaAwAAwDvZc91BwQAAAAAAHGjHjh3WZUcP7XPmzBnNnDlT+/fvV0JCgkqVKqVq1aqpY8eOqlWrlkOPBQAAgKKHggEAAAAAOEh0dLSWLl1qbffo0cOh+586daqmTp2a7XsdOnTQ+PHjHX5MAAAAFB25T4kMAAAAALDbU089ZR2GqFq1arr11ltdduzVq1erV69eevnll112TAAAAHgXCgYAAAAA4AAzZszQrFmzrO0JEyYoMDDQIftu3LixXnvtNf399986c+aMkpOTFRcXp82bN+v1119X2bJlJUmGYeitt97Su+++a/e+k5KSFBcXZ/MCAABA0WQxDMMwOwTyFhcXp7CwMMXGxjLxGAAAgJfgHM97REZGqmPHjkpMTJQk3X333frhhx8csu+YmBiVLl061z5nzpxR//79tWHDBkmSv7+/9uzZo9q1a+e5//Hjx+u1117Lsp7PJQAAgHfIz3UHTxgAAAAAQCEcOXJEt956q7VY0KRJE3322WcO239exQJJqlChgmbPnm3tm5KSoo8++siu/Y8dO1axsbHWV3R0dKHyAgAAwHNRMAAAAACAAjp16pR69uyp06dPS5Jq1aqlBQsWKCwszOVZypUrp0cffdTanjdvnl3bBQYGKjQ01OYFAACAoomCAQAAAAAUwIULF9SzZ08dOnRIkhQeHq7FixcrPDzctEzdu3e3Lh8+fFjJycmmZQEAAIDnoWAAAAAAAPkUFxenPn36aNeuXZKkMmXKaNGiRapZs6apuTIXKy5cuGBSEgAAAHgiCgYAAAAAkA8JCQnq16+fIiMjJUmhoaFasGCBGjVqZHKya9kyCg4ONikJAAAAPBEFAwAAAACwU2Jiovr376/Vq1dLkooXL665c+eqRYsWJie7ZsuWLdbl4OBg5iMAAABAvlAwAAAAAAA7pKSkaODAgVq6dKmka5MF//HHH+rQoYPJyf4xffp063KnTp3MCwIAAACPRMEAAAAAAPKQlpamIUOGaO7cuZIkPz8//fTTT+rRo4dTjxsfH29330mTJmnlypXW9rBhw5wRCQAAAF6MggEAAAAA5MIwDD3wwAP65ZdfJEk+Pj6aOXOm+vfvX+B9RkVFyWKxWF/Lly/Ptt8HH3ygXr166bffflNiYmK2fc6dO6cxY8boySeftK5r2bKlBg8eXOB8AAAAKJr8zA4AAAAAAO7s008/tRnqp3bt2lq1apVWrVqV57ZlypTRa6+9VuBjG4ahRYsWadGiRQoKClLjxo1Vu3ZthYWFKSkpSYcOHdKGDRuUnJxs3aZ69er6/fff5ePD/WEAAADIHwoGAAAAAJCLs2fP2rQPHDigAwcO2LVt9erVC1UwyCgxMVGRkZGKjIzM9n2LxaKBAwdq6tSpKlOmjEOOCQAAgKKFggEAAAAAuKlnn31WnTp10tq1a7Vu3TodPXpU58+fV0xMjHx8fFSqVCnVq1dP7du317Bhw1S/fn2zIwMAAMCDWQzDMMwOgbzFxcUpLCxMsbGxCg0NNTsOAAAAHIBzPLgjPpcAAADeJT/ndwxqCQAAAAAAAAAAKBgAAAAAAAAAAAAKBgAAAAAAAAAAQBQMAAAAAAAAAACAKBgAAAAAAAAAAABRMAAAAAAAAAAAAKJggFws3XtGff7zt3afjDM7CgAAAAAvlZyarrs/W6v35u81OwoAAECRR8EAORo1PVJ7T19Wv49Xmh0FAAAAgJdatPuM1h+J0X+XH1JiSprZcQAAAIo0CgYAAAAAANMkp/1TJFh14LyJSQAAAEDBAAAAAADgFlbsP2d2BAAAgCKNggEAAAAAwDQWWazLM9cdNTEJAAAAKBjALkmpjCUKAAAAwPGW7D1rdgQAAAD8PwoGsMvvW06YHQEAAACAFzpw5rLZEQAAAPD/KBjALt+tP2Z2BAAAAABeqHiAr9kRAAAA8P8oGMAu247Hmh0BAAAAgBcKDvSzaZ+JSzQpCQAAACgYAAAAAABM82zvejbtHzdGm5QEAAAAFAyQo2d6Rdi09zO2KAAAAAAHu6FKSZv2h4v2mxMEAAAAFAyQs04R5Wzah8/Fm5QEAAAAAAAAAOBsFAyQI8Owbc/fedqcIAAAAAAAAAAAp6NggBzVqxhi0+5Qp6xJSQAAAAB4s+plipsdAQAAAKJggFwE+fvatE/FJpqUBAAAAIA3+2pES7MjAAAAQBQMkA9MPgYAAADAGWqVLWHT3nMqzqQkAAAARRsFA+RLWrqRdycAAAAAyAcfH4tNu++klSYlAQAAKNooGCBXg1pUsWl/v+GYSUkAAAAAAAAAAM5EwQC5emtAE5v28n1nTUoCAAAAwJvd0ayy2REAAACKPAoGyFWAn+1HZPEeCgYAAAAAHC+iYohN2zAYDhUAAMDVKBgAAAAAAExnydSOjrlqSg4AAICijIIBAAAAAMB0/r62l6fJaWkmJQEAACi6KBggTyPb17Bp82gwAAAAAEcb0qaaTXvRboZDBQAAcDUKBsjT+P6NbNqHzyeYlAQAAACAtwry97Vpvzt/r0lJAAAAii4KBsg3HjAAAAAAAAAAAO9DwQD59vf+c2ZHAAAAAOCFOtYta3YEAACAIo2CAezStGpJ6/Lrs3ebFwQAAACA1/rv0OY27YSkVJOSAAAAFE0UDGCXzhHlbNrp6YxLBAAAAMCxQoL8bdrP/rLNpCQAAABFEwUD2OVfHWvatE9cumpSEgAAAADeLKzYP0WDuTtOm5gEAACg6KFgALtkvtNn6opDJiUBAAAA4M3G929odgQAAIAii4IBCuTb9cfMjgAAAADAC/VvWtnsCAAAAEUWBQMAAAAAgNvw9bGYHQEAAKDIomAAAAAAAHBbf207aXYEAACAIoOCAezWpHKY2REAAAAAFDHP/LzN7AgAAABFBgUD2G1M97pmRwAAAABQxCSlppsdAQAAoMigYAC7dYwoa9OOvZpiUhIAAAAAAAAAgKNRMIDdAv18bdoX4pNMSgIAAADAm/VoUMHsCAAAAEUSBQMUWLcPVpgdAQAAAHCZqKgoffHFFxo2bJiaNm2qUqVKyd/fX6VLl9YNN9yghx56SCtWOPccOT4+Xp9++qm6du2qKlWqKDAwUFWqVFG3bt00depUxcfHO/X4rlIuJNCmfTmRp5sBAABcwc/sAAAAAADgzrZs2aLRo0drw4YN2b5/8eJFXbx4UTt27NDnn3+uLl26aMaMGapWrZpDc6xdu1ZDhw7VkSNHbNafOHFCJ06c0LJly/T+++/ru+++U5s2bRx6bFdrVrWkvt9wzNr+a9spDWnj2N8nAAAAsuIJA+TLjw+2NTsCAAAA4FL79u3LUiyIiIjQHXfcoQcffFB33XWXqlSpYn1v+fLlateunQ4fPuywDNu3b1fv3r2txQJ/f3/17t1b999/v3r16iU/v2v3gh0+fFi9evXSzp07HXZsM9zZoopNu2JYYA49AQAA4Eg8YYB8aVOrjNkRAAAAAFPUqVNHDzzwgIYNG6bKlSvbvJeenq5p06bpiSee0JUrV3Ty5EkNHTpUa9askcViKdRxU1JSdMcdd+jy5cuSpKZNm+qPP/5Q9erVrX2ioqJ0++23a9u2bYqLi9PAgQO1a9cuayHB0/j42P7OfAr5OwQAAIB9eMIAhZKWbpgdAQAAAHCq8PBwTZs2TXv37tXzzz+fpVggST4+Prr//vv1zTffWNetW7dOCxcuLPTxv/jiCx06dEiSVKpUKc2bN8+mWCBJNWrU0Lx581SqVClJ0v79+/W///2v0Md2F8v3nTM7AgAAQJFAwQCF8tpfu8yOAAAAADhV586dNXLkSPn6+ubZd8CAAWrdurW1PWfOnEIff8qUKdblZ555RuHh4dn2Cw8P19NPP53tdp5u+poosyMAAAAUCRQMUChfrz1qdgQAAADArXTo0MG6HBUVVah9HTx4ULt377a2R44cmWv/jO9v377d+mSCJ6pcspjZEQAAAIocCgYAAAAA4EAZ5yxIS0sr1L6WLl1qXY6IiFClSpVy7V+5cmXVrVvX2l62bFmhjm+m129rZNM+H59kUhIAAICig4IBAAAAADjQjh07rMtVq1Yt1L727NljXW7evLld22Tsl3F7T1M8wHbC5j+3njQpCQAAQNFBwQD5NqpDTbMjAAAAAG4pOjra5qmAHj16FGp/+/btsy5nnug4J9WqVbMu7927t1DHN1PbWqVt2ilp6SYlAQAAKDooGCDfRneuZdOOS0wxKQkAAADgXp566inrMETVqlXTrbfeWqj9XbhwwbpcoUIFu7apWLGidTkmJqZQxzdTxqGdJGnVwfMmJQEAACg6KBgg38qHBtm0n/t5u0lJAAAAAPcxY8YMzZo1y9qeMGGCAgMDC7XP+Ph463KxYvZNApyxX8btc5KUlKS4uDiblztaeYCCAQAAgLNRMEChzd912uwIAAAAgKkiIyM1evRoa/vuu+/WkCFDCr3fxMRE63JAQIBd22QsUly9ejXP/hMmTFBYWJj1Vdh5F5wpLd0wOwIAAIBXo2AAAAAAAIVw5MgR3XrrrdYv95s0aaLPPvvMIfsOCvrn6d7k5GS7tklKSrIu2/NUwtixYxUbG2t9RUdH5z+ok/w8up1Ne/Z2Jj4GAABwJgoGTvbUU0/JYrFYXzVq1DA7kkN8dHdTsyMAAAAApjt16pR69uyp06evPXVbq1YtLViwQGFhYQ7Zf4kSJazL9jwtkLlfxu1zEhgYqNDQUJuXu2hVw3bi49+2nDApCQAAQNFAwcCJNmzYoI8//tjsGE5hkSXvTgAAAIAXu3Dhgnr27KlDhw5JksLDw7V48WKFh4c77BhlypSxLp85c8auba4XLySpdOnSufT0PHtOuef8CgAAAN6CgoGTpKSk6IEHHlB6errZUZwiwM/2o/OfxftNSgIAAAC4XlxcnPr06aNdu3ZJuvbF/qJFi1SzZk2HHqdevXrW5aNHj9q1zbFjx6zL9evXd2ges52JS8q7EwAAAAqMgoGTvPvuu9qxY4ckOWSyM3fTq2EFm/Z/Fh8wKQkAAADgWgkJCerXr58iIyMlSaGhoVqwYIEaNWrk8GM1aNDAurxlyxa7ttm8eXO22wMAAAB5oWDgBHv37tWbb74pSRo6dKh69uxpciLH8/PlowMAAICiJzExUf3799fq1aslScWLF9fcuXPVokULpxyva9eu1uV9+/bp1KlTufY/efKkDhz452aejNt7qp6ZblYCAACA8/Ctr4MZhqEHHnhASUlJKlWqlD788EOzIwEAAABwgJSUFA0cOFBLly6VdG2y4D/++EMdOnRw2jHr1q2rhg0bWtszZszItX/G95s0aaLatWs7LZurjGhXw6a9fN9Zc4IAAAAUARQMHOzTTz+13m30/vvvq3z58iYnAgAAAFBYaWlpGjJkiObOnStJ8vPz008//aQePXo4/diPPPKIdXnixIk5Tn58+vRpTZw40dp+9NFHnZ7NFZpWDbNpz9p8wqQkAAAA3o+CgQMdP35cL7zwgiSpY8eOGjVqlMmJXOtKcqrZEQAAAACHu/4U8S+//CJJ8vHx0cyZM9W/f/8C7zMqKkoWi8X6Wr58eY59H3zwQeuTAhcuXFDfvn1tJjaWrk2I3LdvX8XExEiSIiIidP/99xc4nzsJ8LO9bF3BEwYAAABO42d2AG/y8MMP6/LlywoICNBnn30mi8VidiSn2vBid7V+e4m1/ewv2zVlSHMTEwEAAACO9+mnn2r69OnWdu3atbVq1SqtWrUqz23LlCmj1157rVDH9/f316xZs3TTTTcpPj5eW7ZsUZ06ddS9e3dVqVJF0dHRWrp0qVJSUiRJISEhmjVrlvz8vONyL9DP16Ydl8iNSgAAAM7iHWeQbuCHH37Q7NmzJUnPP/+8GjRoYHIi5ysfGmTTnrP9lKYMMSkMAAAA4CRnz9re0X7gwAGbiYVzU7169UIXDCSpadOmWrhwoYYOHaojR44oJSVF8+fPz9KvVq1a+vbbb9W4ceNCHxMAAABFD0MSOcCFCxc0ZswYSdcmJXvppZdMTgQAAADA27Rr107bt2/XlClT1LlzZ4WHhysgIEDh4eHq3LmzpkyZom3btqlt27ZmR3W4yiWLmR0BAACgSOAJAwd46qmnrHcdffbZZwoMDCz0PpOSkpSUlGRtx8XFFXqfAAAAAPJv/PjxGj9+vEP3WaNGDRmGke/tSpQooUceecRmIuSioGGlUJ24dNXa3ns6TvUrhpqYCAAAwDvxhEEhLVy4UDNnzpQkjRgxQl27dnXIfidMmKCwsDDrq2rVqg7Zr6O1rlna7AgAAAAAvNy7A2+waT/8zWaTkgAAAHg3CgaFkJCQoIceekjStcnMJk6c6LB9jx07VrGxsdZXdHS0w/btSF8Mb2nT3n78kjlBAAAAAHit0sEBNu0j5xNMSgIAAODdGJKoEF566SVFRUVJkj744AOVLVvWYfsODAx0yNBGzubna7Fpn4pN1A1VTAoDAAAAAAAAACgwnjAooM2bN2vy5MmSpK5du2rEiBEmJzKHxbZeoAW7TpsTBAAAAAAAAABQKDxhUEDbt29Xenq6JOnYsWNq27Ztjn3PnTtnXT516pRN31deeUU333yz84I6WTF/X5v2r5tP6MO7bjQnDAAAAIAiIyUtXf6+3AMHAADgSBQMHODQoUM6dOiQXX2Tk5O1fv16aztjMcETWTI/YgAAAAAATvDyzQ305pw91vaVpDSFFadgAAAA4EicXQEAAAAA3N7g1tVs2n9uO2FSEgAAAO9FwaCARo4cKcMw7HpNmzbNul316tVt3hs5cqR5P4SDjL+1odkRAAAAAHi5EoG2D8gfPBtvUhIAAADvRcEAhZb5Th8AAAAAcLZ0w+wEAAAA3oeCAQotKNPExwAAAADgDAObV7EupxlUDAAAAByNggEcbt/py2ZHAAAAAOCFDP1TJPhu/TETkwAAAHgnCgZwuN7/+dvsCAAAAAC8UaaHClLT0s3JAQAA4KUoGAAAAAAAPMLdraratD9fedikJAAAAN6JgoELjBw5UoZhyDAMRUVFmR3HKWqVDbZp7zkVZ1ISAAAAAN6qTa0yNu335u8zKQkAAIB3omAAh5gxqrVN+9C5eJOSAAAAAAAAAAAKgoIBHKJq6eJmRwAAAABQBBQP8DU7AgAAgNeiYACnMIy8+wAAAABAfpUI9DM7AgAAgNeiYACnuHgl2ewIAAAAALxQ5nkMAAAA4DgUDOAU4/7YZXYEAAAAAF5o3C0NbdrL9p01KQkAAID3oWAAp0lISjU7AgAAAAAvUyY4wKZ937SNJiUBAADwPgz+CIcZ0a66Zqw9am0fOZ+gxpXDTEwEAADMZBiGzsUnae72U7JYLCoVHKC09HSt3H9eG6JidFfLqnqgY00VD+CUFID9fHwsZkcAAABuJik1TQt3nZHFIm0/Hqs7W1TRtNVROnc5SScuXdXke25UnfIhZsf0CFydwWEGtaxqUzDYfSqOggEAAEXU/jOX1eujv3Pt8+Gi/fpw0X7tf7Ov/H0tslj4EhAAAACA/eISU/Tot5u18sB5m/Wf/33Ypt3jw7817b5W6hJRjuuOPFAwgMNkLg4898t23dWyqklpAACAGZbuPaNR0yPztU3Ey/MkSZPvaaYG4aGqU76EM6IBAAAA8BLp6YZqvTg3X9tcH8awWuni+mx4C9UqF6xAP19nxPNozGEAAAAAh1iw63S+iwUZPf79FvX4cIXWH77gwFQAvFGniHI2bcMwTEoCAABc7WpyWr6LBRkdi7mivpNWqs3bSxyYyntQMAAAAEChHTwbr4dmbnLIvu7+fJ2W7DnjkH0B8E5DWts+ybxoN//PAACgqGgwbr5D9nPpSooe/36LEpJSHbI/b0HBAA71Qt/6ZkcAAAAu9tuW4+rx4QqH7vP+GZGq8cIcvfjbDp2NS3TovgF4vt6NKtq0D51LMCkJAABwlSvJqarxwhyH7vOvbSfV6NUFevqnbfpty3GH7ttTMYcBHKpOOcYcBgCgqFi296zum77Rqcf4bv0xfbf+mDa+1EPlQgKdeiwAniPzZIXpDEkEAIDXupqcpn4fr9SR8867QWDW5uOatfm4thy7pNf6NyrSEyPzhAEcqks927FEk1LTTEoCAACcKSUt3enFgoxavbVYe0/Huex4ANzfK7c0tC7vP3PZxCQAAMCZHvh6o1OLBRl9vfaoWr652CXHclcUDOBQfr62H6lJiw+YlAQAADjLleRU1X1pnsuP2+c/KxWXmOLy4wJwT3e1rGJd/mPrSROTAAAAZ1m8+4xWH7zg0mNeSEjW2F93uPSY7oSCAZzqv8sPmR0BAAA42Ftz9ph27BvGL9SyfWdlMPwIUOT5+3I5CwCANzMMQw98HWnKsb/fcExTlh0skvOpcYYFAAAAuzV4Zb6+XX/M1Az3TduommPn6vC5eFNzADBXAAUDAAC81saoGNUcO9fUDO8v2KfWby/Rw99sMjWHq3GGBYe7tWklsyMAAAAnuZpS8PmJbr4hXD4OnDus2wcrHLczAB7Hx5H/QwEAAG5l0NS1hdq+Y92yDkoizdt5WluOXXTY/tydn9kB4H3ubllVf21jDFEAALzNN+uO5nub+U921H+XHdKgllXUsW45GYah7zdEK7xkkEoVD9DtU1YXKlPdl+bqtf6NNaRNtULtB4Dn23UyVo0qhZkdAwAAFNLV5PzfpDTuloaKvZqixNQ0Pdk9QsUCfBV1PkG/bj6uh7vUUYNx8wuVacB/16h/00p66eYGqhAaVKh9uTuLwQCwHiEuLk5hYWGKjY1VaGio2XFytfLAOQ3/aoO1/eqtDXVfh5omJgIAAIWVmpauOnZOdFyzbLCGtqmm3o0qqmrp4rn2TU5N1/bjlzR1xWEt3nOmwPk+vqeZ+nvgU46edI6HosOTPpc1Xphj045652aTkgAAAEfJ/O97bj4Z0kzphvK8FjAMQ+fikzR9dVSh51z1xPON/Jzf8YQBHO7GqiVt2q/9tZuCAQAAHs7eYoEkLf53Z/naOVRIgJ+PWtYorS9rlJYknbucpFZvLc53vie+36Kb6pRV6eCAfG8LAAAAwD0sycdNRLMebq8W1UvZ1ddisah8SJCe61Nfz/Wpr7R0Q5OWHNDHSw7kO+ODX0fqkyHNFeDnnaP9e+dPBVOFBPmbHQEAADjQ1uhLdvVb8nRnHZnQz+5iQXbKhQTq7QFNCrRt8zcWqcYLc3TkfEKBjw/As7x35w1mRwAAAA50/4zIPPvc07qqdr/e2+5iQXZ8fSx6oludAm27cPcZRbw8Tz9sOFbg47szCgZwivoVQ8yOAAAAHGD/mct2zTMw+/GbVLtcCVkshZ+EdEibatr2ai+1qlFKY7rXzff2XScuL3QGAJ7hrpZVbdqRUTEmJQEAAIVhGIZe/n1Hnv3ubllVE+64QcUDCj9wjp+vj6LeuVlj+9Yv0CTJL/y6Q6dirxY6h7uhYACnoGAAAIB36PXR33n22flabzWu7NiJRsOK+evn0e31VM+IAm2/51ScQ/MA8AwT5u01OwIAACiANYcu6Jt1ud+x/1CnWnrXCU8XPtS5tmbe30ZPF+DaY8gX6x2ex2wUDOAUaZmm0t59kot2AAA8zcGz8Xn22ftGH5UIdO60WF/e2zLf29w/faNqvDDHK+/4AZCzTUcvmh0BAADkU3q6oaFf5v3F+9h+DZya41+dauV7myPnE9T8jUX6cNF+JyQyBwUDOEWXiHI27TE/bDEpCQAAKKgeH67I9f2hbaopyN/X+TkaVtDO13rrjdsb273NydhESVK7CUv17x+3KjUt3VnxAAAAABTC9DVRefZZO7ab03ME+fvqyIR++T5WTEKyPl5yQHd/ttYrbl6gYACnGNCssk374Lm871AEAADu43x8Uq7vv3FbI71VwMmJC6JEoJ+GtammHg3K53vbX7ecUJ2X5skwjLw7A/A4y57pYnYEAABQCK/P3p3r+/ve7KPwsGIuyWKxWBQeVkzzxnTM97brj8Ro4KdrtOtkrBOSuQ4FAziFj49FrWuUNjsGAAAooKd+3Jrje2vHdtPwdjVcluU6i8WiL0e00qG3+xVo+5pj56rGC3MUeyXFwckAmKlm2WCzIwAAgAI6cSn3IUSPTOinQD/nP9WcWYPwUB16u582vdwj39ve/PEq1Xhhjn7dfNwJyZyPggGcxs/XYl3mhj4AADxHcmq6Vh44n+P7rrq7Jye+PhZteaVngbdv+vpCbYu+pLhECgcAAACAmTq8szTH9+pVCJHFYsnxfWfz9bGoTInAAm//75+2aeeJWO097Vlzu1IwgNP0blTR7AgAAKAAxv66w+wIeSoVHKAZo1rrntbVCrT9bVNW64bxCzV/5ykHJwNgtv1nLpsdAQAA2OFiQnKu77/Qt76LkuRu7xt9dPMN4QXa9pbJq9TnPyvV5f1lSk71jHnVKBjAaW67sZJN+2xcoklJAABAfszK4dHZkEA/bRvXy8VpctY5opwm3NFEAX4FP6Ud/c1m1Xhhjmq8MEcv/baDeQ6Qp7S0NG3fvl1fffWVHn74YbVs2VIBAQGyWCyyWCzq0qWLU447fvx46zHsfX3zzTdOyeLuBk1da3YEAABgh/+tPpLje78/2kFd6+d//jJnCPL31ZQhzfXXYzcVeB9RF64o4uV5qvHCHDV/Y5F2nnDfeQ78zA4A75V5fLEkD6miAQBQlO07nf2dud3ql9f/RrZycRr77H+zrz5ctF8fLzlQqP18u/6YTsUmuu3PCfP9/vvvGjp0qK5cuWJ2FOQi9irDjQEA4O4Mw9DkpQezfW/vG30U5O/6eQvy0qRKmHaM76Um4xcWaj8xCcm6ZfIqRb1zs4OSORYFAziNT6ab/c7FJ6lq6eLmhAEAAHa5c+qabNdHVAhxcZL8+XfPiEIXDCRp6d6zDkgDb3Xp0iW3KBa0atVKrVu3zrNfvXr1XJAGAAAg/7Ydz/kOe3csFlwXEuSvcbc01Ouzdxd6XwfPxqtO+RIOSOVYFAzgNAG+thWDcX/s1OzHO5qUBgAA5GXf6cu6nJia7XuPdq3t4jT5d2RCP33+92FNmLfX7CjwchUqVFCrVq2srwULFmjSpEkuO36/fv00fvx4lx0PAADAkQzD0Auztmf73tRhzV2cJv9G3VRTXeuXV9eJywu1n4tXcp/DwSwUDOA0mWcx33nCs2YEBwCgqOn9n79zfC8kyN+FSQrGYrHooc61VbK4v56f5f4TN8Pz9OnTR0ePHlW1araTba9fv96kRLiuaZUwmzsVE1PS3PruRAAAirJVB89rbw5DofZpXLDJhV2tZtlg7X2jj+q/Mr/A+0hNc8/505j0GAAAAEpNy3muoQHNKrswSeHd3aqavnugjdkx4IUqVqyYpVgA9zD5Htu7Ec/EJZqUBAAA5GX4VxvMjuAQQf6+OvR2vwJvn5ZOwQBF0Ku3NjQ7AgAAsMOnyw/l+N7EQU1dmMQx2tcpq6h3blazaiXNjgLABaqVsZ0r7fC5BJOSAACA3KTn8iX5tJGtXJjEMXx9LIp652b9+GDbfG+bkp7zTVtmomAAp7qxakmb9tELnLgDAOBu4pNS9cGi/dm+9/ujHeTrY8n2PU8wa3R7DW5V1ewYAFzsvukbzY4AAACyUevFuTm+17V+eRcmcaw2tcpoyys987WNuw5JxBwGcKrgQNuP2JI9ZzXqppompQEAANmZMHdPju81qRzmwiSO5+Nj0TsDb9Bzferr7OVE3fvVBp29nGR2LKBQzpw5o5kzZ2r//v1KSEhQqVKlVK1aNXXs2FG1atUyOx4AAEC+fXxPM7MjFFqp4AAdfrufTsUl6tPlB/XNumO59s9tWFgzUTCAU9UtX8Km/frs3RQMAABwM9+uz/5E9utRrT366YKMSgcHqHRwgDa81EPRMVc05oct2nzsktmxgAKZOnWqpk6dmu17HTp00Pjx49WjRw8XpzLfuwObMOE5AABubOWBczm+179pJRcmcR4fH4sqlyymN29votf7N9b7C/flOvyrO2JIIjiVxWLRkDZMDAcAgLs6l8vd9p0iyrkwietULV1cvz7SIctcS8/1qVeoScsAd7B69Wr16tVLL7/8stlRXO7uVlx3AADgznKa7HjqsOYuTuIaPj4WPd+nvlY820WlivvbvLft1V7q07iiSclyxxMGcLo2NUvruwx3LhqGIYvFO+5WBADA07V6a3G265tW8eyhiOxxX4eauq9DTS3efUan4hI1vG11syMBuWrcuLEGDRqkrl27ql69eipVqpQSExN18OBBzZ49Wx9//LHOnz8vwzD01ltvKSQkRM8//3ye+01KSlJS0j/Fw7i4OGf+GC7z/oK9erZ3fbNjAAAASQfOXM7xvS71PHfuAntULxOsLeN66ezlRH23/pgGtayqsGL+eW9oEp4wgNP1bFjBpp2Wy2zoAADAPcx6uL3ZEVymR8MKFAvg9p544gnt2LFD48aNU8eOHVW+fHn5+/srJCREzZo10yuvvKKdO3eqdevW1m1eeeUVHTqU9yPwEyZMUFhYmPVVtap3TBQ+ZZlnPf4PAIA3e2/BvmzX//RQOwX5+7o4jTnKhwTpyR4RqlyymNlRckXBAE5XPMD2QZbZ20+ZlAQAAGS04UhMtuuf6RUhP19OEwF3Urp06Tz7VKhQQbNnz7b2TUlJ0UcffZTndmPHjlVsbKz1FR0dXei8Zgny5/9dAAC4o0W7z2S7vnXNvM9x4FqcTcHlJszbY3YEAAAg6akft2a7fnTn2q4NAsBhypUrp0cffdTanjdvXp7bBAYGKjQ01OblqRJT0s2OAAAA7NS9vncPReSpKBjA5c7E5Ty5IgAAcJ0Tl65mu56nCwDP1r17d+vy4cOHlZycbGIaAACA7D3dq57ZEZANrgYBAABg9ddjN5kdAUAhhYeH27QvXLhgUhIAAIDsdYoop4aVPPepRm9GwQAAAKAI+nR59pOBNqkS5uIkABwtISHBph0cHGxSEtdb8WwX2/b+c+YEAQAAkqSDZ+N1w/gFWdZ/Paq1CWlgDwoGcIk3bmtk005MSTMpCQAAkKR35+/Nsq5fk4omJAHgaFu2bLEuBwcHe/ScBPlVvYxtceSV33ealAQAAEjSiP9tUFxiqtkxkA8UDOASmR8x+iky2qQkAABg7aHshyeZOKipi5MAcIbp06dblzt16mReEDdwLOaK2REAACjSsps37ZMhzUxIAntRMIBLtKhe2qb9xcrDJiUBAADvzNuT7friAX4uTgLAHvHx8Xb3nTRpklauXGltDxs2zBmRAAAACuymOmXNjoBcUDCAKaJjslYXAQCA8xmGoW3HY7Os//5fbU1IAxRtUVFRslgs1tfy5cuz7ffBBx+oV69e+u2335SYmJhtn3PnzmnMmDF68sknretatmypwYMHOyG5e7u5SXjenQAAgNMt3n0my7rGlUNVsniACWlgL24jAwAAKEL2nLqc7fp2tcu4OAngmfr166eTJ0/arDt9+rR1OTIyUjfeeGOW7ebOnatKlSoV6JiGYWjRokVatGiRgoKC1LhxY9WuXVthYWFKSkrSoUOHtGHDBiUnJ1u3qV69un7//Xf5+BS9e8TubFlFc3acsrYvxCepTIlAExMBAFA0PfB1ZJZ1sx/vaEIS5AcFAwAAgCJk1cFzZkcAPNru3bt19OjRHN9PSEjQtm3bsqzP+GV+YSQmJioyMlKRkVkvwCXJYrFo4MCBmjp1qsqUKZqFwPoVQ2zaaYZhUhIAAIoug39/PRYFA7hMgK+PktPSre20dEO+PhYTEwEAUPS8PXdvlnUVQrnzFnBnzz77rDp16qS1a9dq3bp1Onr0qM6fP6+YmBj5+PioVKlSqlevntq3b69hw4apfv36Zkc2VfmQIJv2b5tP6KHOtU1KAwBA0fT3gfNmR0ABUTCAyzzdK0IT5v3zJcWqg+fVOaKciYkAAIAkLX+mq9kRAI8RFRXlsH3VqFHDrrvvgoOD1a1bN3Xr1s1hx/Zmme9JmjBvLwUDAABcbMT/NmRZ996dN5iQBPlV9Aa0hGnubVfDpp2a4WkDAADgfNl9Mbl1XE8VC/A1IQ0AOIfFwlPMAAC4m6qli+mullXNjgE7UDCAy2T+MuL4xasmJQEAoGiqOXZulnUliweYkAQAAACAt/pty/Es6359uIMJSVAQFAxgmlf/3GV2BAAAiowL8UlmRwAAl+nZsIJNm4kXAQBwnad+3JZlnSH+LfYUFAwAAACKgFOxiWZHAACXmTT4Rpv2ot1nzAkCAAAkScEBTKXrKSgYwFQpzGMAAIBLDPjv6izr5o3paEISAHC+4pm+lBjP080AALhETk/1BQdSMPAUFAzgUk90r2vTPhPH3Y4AALhCSlrWE/cG4aEmJAEA1zvJU1YAALjEDxujs6xrUb2UCUlQUBQM4FKPda1j045PSjUpCQAAAABvdkezymZHAACgyHn1j6xP9X02vIUJSVBQFAzgUgF+th+5CXP3mpQEAICi44EZG7OsCw3ikWAA3q12+RJmRwAAoEg5H5+k5GyGHy9bItCENCgoCgYw1Yr958yOAACA11u852yWdetf7GFCEgBwnfIhfDkBAIArtXxzsdkR4AAUDAAAALxYTsX5YgG+Lk4CAK7Vq1FFsyMAAFDkfXN/G7MjIJ8oGMDlutYrZ9NOSk0zKQkAAN5vxP82ZFnXs2EFE5IAgGuFFfO3ab83n+FQAQBwloQc5im9qW5ZFydBYVEwgMs1rBRq01598LxJSQAAKJomDmpqdgQAcLn/Lj9kdgQAALzWW3P3ZFn35b0tTUiCwqJgAJd7pEsdm3ZKmmFSEgAAip7J9zTLctctAHirJpXDzI4AAECR8N36Y1nW9eDJZo9EwQAuFxzoZ9N+YdZ2k5IAAODdzl5OzLKuVPEAE5IAgDlG3VTDpp2cmm5OEAAAAA9BwQCmu3glxewIAAB4pdZvLcmyrn3tMiYkAQBz+FgsNu3D5+NNSgIAgPc6eDbrv6+331jJhCRwBAoGcAuGwbBEAAA4W9kSAfLxseTdEQC8RObhT/t/stqkJAAAeK8/t53Mso550zwXBQO4hWMxV8yOAACA15s3ppPZEQDApTI/VcWQRAAAON7KA+eyrPPz5WtnT8VfDqYYf2tDm3YSJ+4AADhUdDbF+NBiftn0BADvValkMbMjAADg9bYcu2R2BDgQBQOYYkib6jbt07FZJ2UEAAAF1+/jlVnWBfr5mpAEAAAAgLfafOxilnWPdq1tQhI4CreZFVJMTIwiIyO1ceNGRUZG6ujRozp//rzOnTsni8WiUqVKqXHjxurSpYvuvfdeVa5c2ezIbsHf13b85Me/36Jtr/YyKQ0AAN7ncmKqTfu/Q5ublAQAAACAt/rvskNZ1j3ds54JSeAoFAwK6d5779WcOXNyfP/q1as6efKkFi5cqPHjx2vs2LEaN26cfHyK9sMdFottwSD2aopJSQAAKBqaVA4zOwIAmOLFfvX19ty9ZscAAMArLd5zJss6Hx9LNj3hKSgYOFCFChVUv359VatWTcHBwbpy5YoOHDigjRs3KjU1VcnJyXrttdcUFRWl6dOnmx0XAAB4qRX7s046Vjo4wIQkAGC+0sGBNu2UtHT5MxEjAABOUaUU8wd5OgoGhdSlSxfddttt6tGjh2rWrJltn9OnT2vMmDH66aefJEkzZszQrbfeqoEDB7oyqtupVS5Yh88lmB0DAACvM+J/G2zabWuVVnAgp30AiqZbm4brmZ+3WdvJqRQMAABwhFOxV7Os+/vZriYkgSNxllRIzzzzjP71r3/lWCyQpIoVK+qHH35Qly5drOs+++wzF6Rzb8/1rm/TTkhKzaEnAAAojH5Nws2OAACmyTzh+5tzdpuUBAAA77Jy//ks6xiOyPNRMHARi8WiUaNGWdubN282MY176NWwgk37wZmRJiUBAMB7xF7JOi9Q5rmDAKAo+35DtNkRAADwCs/N2m52BDgBBQMXKl++vHX58uXLJiZxD5krjqsPXjApCQAA3uPpDMNuXNeqRikTkgCA+7ixakmzIwAA4FWyu1EJ3oGCgQvt2bPHuly9enUTkwAAAG+1ZO+ZLOvqVww1IQkAuA/D7AAAAHiZ+OSsQ4tPG9nKhCRwNAoGLnLy5ElNnDjR2i7qEx4DAADHMwxDRqZvxaqXKW5OGABwIyPa2d6wdfBsvElJAADwDkv3ZL1RqUu9ciYkgaNRMHCiq1evavfu3frggw/UrFkznThxQpIUERGhF154weR07uHRrrXNjgAAgNdYsf9clnWzHm5vQhIAcC8DmlW2aX/+9yGTkgAA4B1e+WOXTdvXx8LcaV7Cz+wA3mTVqlXq2LFjrn369Omjb7/9VmFhYS5K5d7Klgi0acdeTVFYMX+T0gAA4NlGTtuYZV3mf2sBoCjK/AXGT5HH9d6dTU1KAwCAZ0tOTc+ybsu4niYkgTPwhIGLlCxZUt9++63mzZun0qVL59k/KSlJcXFxNi9v1LFuWZv2878wuzoAAAAAAADgrv7cdjLLukA/vmb2Fjxh4ECVKlXSo48+KunaGMKXL1/Wvn37tHnzZl26dElDhw7Vl19+qalTpyoiIiLXfU2YMEGvvfaaK2Kbqk75EJv2/F2nTUoCAAAAwJs1DA/V7lP/3IiVmpYuP1++3AAAIL/m78z6/Z2/D/+megsKBg5Uq1YtffLJJ1nWnzx5Ui+99JKmT5+uZcuWqW3btlq2bJmaNs35EdixY8fq3//+t7UdFxenqlWrOiU3AADwfPvPXM6ybkz3uiYkAQD31KdxRZuCwcaoi2pXu4yJiQAA8EyLs5nw2MeH+Qu8BaUfF6hUqZKmTZumJ554QpJ08eJF3XPPPUpLS8txm8DAQIWGhtq8AAAAcnI5MTXLulEdapqQBADc0x3NbSc+PnohwaQkAAAA7ouCgQtNmDDB+sX/nj17NG/ePJMTAQAAb5FuGFnWhRX3NyEJALinzJPAvzVnj0lJAADwLn8/29XsCHAgCgYuVLx4cbVv397aXr16tYlp3MfTPW3ncziQzZAKAAAgd9uiL9m0W1QvZU4QAHBTQf6+Nu3LSVmfzAIAALmLz+bfz2plipuQBM5CwcDFSpX65+L9woULJiZxH8PaVrdpD/lyvUlJAADwXG9mulN24qCc50oCAAAAgIL414xIsyPAySgYuNipU6esy6VLlzYxifsoFRxg0z53OcmkJAAAeKaNUTFZ1tUsG2xCEgAAAADebO1h2xug5z/Z0aQkcBYKBi504cIFrV271tpu0KCBiWkAAIC3GDR1bd6dAAD6bHgLm/bFhGSTkgAA4B3KBAfm3QkehYJBIcTEZL2bLyeGYeixxx5TUtK1u+cDAwN1yy23OCsaAAAAACCTciG2X2pEX7xiUhIAADyPYRhZ1mX+txWej4JBIXz99ddq1aqVvv76a8XFxeXYb/v27erbt69++OEH67pnn31WZcqUcUVMjzC4VVWbdmJKmklJAADwLMmp6VnWrRvb3YQkAOD+6lUIsWkP+YL50wAAsNd/Fh+wabevzXeb3sjP7ACeLjIyUiNGjJCfn5/q16+vevXqqVSpUrJYLLpw4YK2b9+ugwcP2mwzcOBAvfrqqyYldk9v3t5YP2yMtrbfX7BPr9zS0MREAAB4hqV7z2ZZVzEsyIQkAOD+ggP91LdxRc3beVqSFJ+UanIiAAA8x6QltgWDGaNam5QEzkTBoBACA/955CY1NVU7d+7Uzp07c+wfEhKi8ePHa8yYMfL19XVFRI/h52v7sMvvW05QMAAAwA7fbThmdgQA8CiPdq1jLRgAAAD7ZDcaiL8vg9d4IwoGhfDwww+re/fuWrx4sdavX69du3bp2LFjunTpkiQpNDRU4eHhuvHGG9WjRw8NHDhQJUqUMDe0h7jA5GMAANjl7/3nzI4AFClpaWnatWuXNm7cqMjISG3cuFHbt29XSkqKJKlz585avny5UzPEx8dr5syZ+umnn3TgwAGdO3dO5cqVU0REhO666y4NGzaM645c+PpYzI4AAIDHOXg23uwIcBEKBoUUERGhiIgIPfLII2ZHAQAA4Ak9wIl+//13DR06VFeumDdR7tq1azV06FAdOXLEZv2JEyd04sQJLVu2TO+//76+++47tWnTxqSU7i1zwSAt3aCIAABAHtYdvmB2BLgIz43AbaWkZZ3EEQAA/ONqctbHgke0q25CEqBouHTpkqnFgu3bt6t3797WYoG/v7969+6t+++/X7169ZKf37X7wQ4fPqxevXrlOlxqUVYhxHaelxlroswJAgCAB3lzzh6b9oInO5mUBM5GwQBuo2mVMJv2V6uO5NATAABI0keL99u0D73dL8u8QAAcr0KFCrrlllv02muvae7cuRozZozTj5mSkqI77rhDly9fliQ1bdpUBw4c0Pz58/Xll19qwYIFOnDggJo2bSpJiouL08CBA5WayqS+mYUV97dpvz57t0lJAADwXPUqhpgdAU7CFSXcxmfDW9q0P8408zoAALD1+d+HbdoMqQE4V58+fXT06FGdPn1af/31l8aNG6e+ffuqZMmSTj/2F198oUOHDkmSSpUqpXnz5ql6ddsnimrUqKF58+apVKlSkqT9+/frf//7n9OzAQAA75aebti0b7kh3KQkcAUKBnAbFUIDbdpXshlmAQAAADBLxYoVVa1aNVOOPWXKFOvyM888o/Dw7C/Uw8PD9fTTT2e7Hf7xRPe6ZkcAAMBjPPPzNpv2+P6NTEoCV6BgALdhsXBXJAAA9sp8l0+tssEmJQHgbAcPHtTu3f8MmzNy5Mhc+2d8f/v27dYnE/CPp3pQMAAAwF6/bjlh0y5bIjCHnvAGFAwAAAA8UHJauk27SuniJiUB4GxLly61LkdERKhSpUq59q9cubLq1v3nC/Fly5Y5LZun4mYlAACA7FEwgFsZ0a563p0AAIBOXrpq037ztsYmJQHgbHv27LEuN2/e3K5tMvbLuD2yt+dUnNkRAAAA3AIFA7iV25pVtmmvPHDOpCQAALi3bh+ssGlXK8MTBoC32rdvn3U580THOck418LevXsdnsnb9J200uwIAAC4pQ1HYmzag1tVNSkJXIWCAdxK82qlbNqTlxw0KQkAAADgHi5cuGBdrlChgl3bVKxY0bocExOTS08AAICczdp03KZdItDPpCRwFf7CcGsbori4AQAAQNEWHx9vXS5WrJhd22Tsl3H77CQlJSkpKcnajosrmsPzGIbB3AYAAGTyY2S0TTu0mL9JSeAqPGEAAAAAAG4sMTHRuhwQEGDXNoGBgdblq1ev5tJTmjBhgsLCwqyvqlWLxlAD/+pY06adbpgUBAAAD/KvjrXMjgAno2AAAADgYTJPeLzsmS7mBAHgEkFBQdbl5ORku7bJ+MRAXk8ljB07VrGxsdZXdHR0rv29xYj2NWzas7efNCcIAAAepFiAr9kR4GQUDOB22tUqY9M2DG71AQAgox4f2k54XLNssElJALhCiRIlrMt5PS2QXb+M22cnMDBQoaGhNq+iICTQdkiFMT9sNScIAABuKjLTUOEbX+phUhK4EgUDuJ2pw1vYtP/afsqkJAAAuKcryWlmRwDgQmXK/HNDzZkzZ+za5vTp09bl0qVLOzyTNwgrzhjMAADkZsGu0zbtciGBOfSEN6FgALcTlmnylOX7zpqUBAAA95P5ybsG4UXjTmCgKKtXr551+ejRo3Ztc+zYMety/fr1HZ7JWzzbu17enQAAKKK+WHnE7AgwAQUDuKUaZYpbl3/dfMLEJAAAuJftx2Nt2s/2jjApCQBXadCggXV5y5Ytdm2zefPmbLeHrftvsp34ODrmiklJAAAA3AMFA7ilO1tUMTsCAABu6bYpq23avj6czgHermvXrtblffv26dSp3IfsPHnypA4cOJDt9rAV5G87ceOTP241JwgAAG4m8/wFKDq4woRb8vflowkAQGbp6UaWde1rl8mmJwBvUrduXTVs2NDanjFjRq79M77fpEkT1a5d22nZvM3FK8lmRwAAwC3cOXWt2RFgEr6VhVsqHmB7p8+mo1Q1AQBIM7IWDCiyA0XDI488Yl2eOHFijpMfnz59WhMnTrS2H330Uadn8yaHzyWYHQEAALd0T+uqZkeAi3CFCbd08w2VbNoDP6WqCQDAhiMU0AFvEhUVJYvFYn0tX748x74PPvig9UmBCxcuqG/fvjYTG0vXJkTu27evYmKu/b8iIiJC999/v9Pye6vMk8sDAADpzdubmB0BLuJndgAgO6WDA8yOAACA2/lm3VGbdlgxf5OSAEVXv379dPLkSZt1p0+fti5HRkbqxhtvzLLd3LlzValSpSzr7eXv769Zs2bppptuUnx8vLZs2aI6deqoe/fuqlKliqKjo7V06VKlpKRIkkJCQjRr1iz5+XHJl5cnutfVx0v+mfMhNd2Qv6/FxEQAAJgrNS09yzpfH/5tLCo4ewQAAPAQ83aetmlPGnyjOUGAImz37t06evRoju8nJCRo27ZtWdYnJxd+bPymTZtq4cKFGjp0qI4cOaKUlBTNnz8/S79atWrp22+/VePGjQt9zKKgdHHb4uu6wxfUsW45k9IAAGC+TUcvmh0BJmJIIritvo0rmh0BAAC31rJGabMjAHCxdu3aafv27ZoyZYo6d+6s8PBwBQQEKDw8XJ07d9aUKVO0bds2tW3b1uyoHqNLvfI27ed/2W5SEgAA3EN2c6eh6OAJA7itT4Y0V+0X51rbcYkpCg1i6AUAAK4rEcipHOBqUVFRDttXjRo1CjRefokSJfTII4/YTISMgqtRNtimfTI20aQkAAC4h/WHbedOmzqshUlJYAaeMIDbyjw22uQM44oCAFDULNh1Ou9OAIACueWGcLMjAADgFpJT0zUp03dwfRgFpEihYACP8cXKI2ZHAADANA/N3GTTnjioqUlJAMD7DGxexaadmJJmUhIAAMy1eM8ZsyPAZBQMAAAAPNCdLark3QkAYB/bh5v11SpuVgIAFE3boi/ZtP/VsaY5QWAaCgYAAABu7lTsVbMjAIBX87HYVgzOxjGPAQCgaPrs78M27ZvqljMpCcxCwQAeJSUt3ewIAAC43C+Rx82OAABerXLJIJv2r1tOmJQEAAD34u9rybsTvAoFA7i1yfc0s2mfusSdPgCAomfysoM27ef71DcpCQB4pzrlQ2zalxNTTUoCAIB7aVG9lNkR4GIUDODWbm1ayaadZhgmJQEAwDzJqbZP2D3cpbZJSQAAAAB4q7jEFJt2vQohCvTzNSkNzELBAB6l68TlZkcAAMClrianmR0BAIqkQ+fizY4AAIBL/WtGpE3b14fhiIoiCgbwOAZPGQAAipDLSSl5dwIAFNovo9vZtLt/sMKkJAAAmGP9kRib9pgedU1KAjNRMIDbu7lJuE17xf5zJiUBAMD1Fuw8bdNe/2J3k5IAgHdjjGYAAP4RUaGEejeqaHYMmMDP7ABAXoa0qaY5O05Z27tOxqlLvfImJgIAwHW2RF+yaVcIDTInCIqMUaNGOf0YFotFX331ldOPA+SHxcKwCwAAXHdTnXJmR4BJKBjA7aVnGoLo/QX79GjXOialAQAA8G7Tp093yRenFAzgCZJT0xXgx4P5AICip0cDbtYtqjjzgdurVzHE7AgAAJjm180nzI6AIsgwDLtfefXP7n3AUyzZc8bsCAAAuMT6wxds2u3rlDUpCczGEwZwe+VDGHoBAFA0HTx72ewIKIKmTZuWZ5+jR4/q7bffVnJysiSpQ4cOatu2rapWrarg4GAlJCQoOjpa69at05o1ayRJgYGBGjt2rKpXr+7U/EBhPNS5lj5bcdjaTk2nwAUAKBru/nyd2RHgJigYwCOEFfNX7NUUazsmIVmlgwNMTAQAgPMN/HSt2RFQBI0YMSLX99esWaOnnnpKKSkp6tevnyZNmqTatWvn2P/gwYMaM2aM5s2bp0mTJumvv/5S+/btHR0bcIhne9WzKRiM/3OXbm1aycREAAAArsWQRPAIfz/X1ab99E9bzQkCAIALZSyWS1LjyqEmJQGuuXDhggYNGqTY2FgNHz5cf/31V67FAkmqU6eO5syZo2HDhunixYsaNGiQzp8/76LEQP74+dpeIl9ISDYpCQAAgDkoGMAjhBXzt2kv23fOpCQAAJjnxb4NzI6AIu6LL77QqVOnFBISoilTpuRrcuT//ve/Cg0N1enTp/X55587MSUAAADy43RsotkR4EYoGAAAALihK8mpWdYx8RjMNmvWLFksFnXr1k3BwcH52rZEiRLq1q2bDMPQr7/+6qSEgOMlp6abHQEAAKdqO2GJTXvNC91MSgJ3QMEAHsswmIAMAOC9th+PNTsCkEVUVJQkqVy5cgXa/vp2R48edVQkwOkW7j5tdgQAAFyqUsliZkeAiSgYwGOtOXTB7AgAADjN/J22X1A90yvCpCTAP65cuSJJOn78eIG2v77d9f0A7qhmWdunZx77botJSQAAcD6epENmFAzgMVrXLG3TPhPH+GoAAO81fU2UTTvzfD6AGSpXrizDMLRs2TKdO5e/OaXOnDmjpUuXymKxqHLlyk5KCBTenCduMjsCAAAus/YwN+TCFgUDeIxhbavbtP/90zaTkgAA4HrMXwB30KtXL0lSUlKShg8frqSkJLu2S0pK0r333mvtf30/gDsqHuCXZd35ePs+6wAAeBqeMEBmFAzgMUpyZyUAoAirXrq42REAPfbYYwoICJAkLVq0SG3bttXixYtz3WbRokVq06aNtV9AQIAee+wxp2cFHOnwuQSzIwAA4BQUDJBZ1lsnADfVsS53VgIAiqbOEeXk58t9HjBf/fr19d577+nJJ5+UxWLR9u3b1bt3b1WoUEGtWrVStWrVVLx4cV25ckXHjh3Txo0bdebMGUmSYRiSpAkTJqh+/fpm/hhAnr59oI2Gfrne2k5ISjUxDQAAzvPBon027U0v9zApCdwFBQN4DIvFovcG3qDnZm23rjt3OUnlQgJNTAUAgONd/2L1uv8ObW5SEiCrJ554Qr6+vnrmmWesQwydPn1as2fPztI342c5MDBQ7733nh5//HGXZQUKqkOmYeAe/naT9r7R16Q0AAA4T+an6MqU4Hu2oo5b1eBRbsr0lMFPkdEmJQEAwHmOXrhidgQgV48++qi2bdumwYMHKzDw2kWlYRhZXtK1IYgGDx6sLVu2UCyAx0pMYbgGAABQNPCEATyKkan925YTerRrHVOyAADgLF0mLrdp+/pYzAkC5CIiIkLfffedLl26pDVr1mjr1q06d+6c4uPjVaJECZUrV0433nij2rdvr5IlS5odFwAAAJl8ufKwTbtUceYPBQUDeJjM35ccPBtvThAAAFwoyN/X7AhAjkqWLKl+/fqpX79+ZkcBnOp8fJLKMkwDAMCLvDlnj0170uBmJiWBO2FIIniUiqFBZkcAAMCpYq+kmB0BACBpWNtqNu1xf+w0KQkAAK5RqWQxsyPADVAwgEexWBiSAQDg3WauizI7AgBAUp9G4TbtpXvPmpQEAADXKBMcYHYEuAGGJILHKR7gqyvJadb2mbhEVeDJAwCAl0hKtZ1Y84GbapqUBMhbYmKi5s+fr1WrVik6OloXL15UWlqalixZYtPPMAxdvXpVkuTv7y9/f8bHhftrWaOUTZuJjwEA3q4UBQOIggE80NA21fTFyiPW9pAv1mnJ013MCwQAgAOtPxxj076PggHc1MSJE/Xee+/pwoUL1nWGYWT7RGhMTIyqV6+uq1evqk2bNlqzZo0rowIFwvwxAABvlp5umB0BboohieBx/tWxlk370LkEk5IAAOB4G6JsCwaVGUcUbiYlJUU333yznn/+eV24cEGGYVhfOSlTpoxGjhwpwzC0fv16HTx40IWJAQAAkNmUZbbnY8ue6WJOELgdCgbwOOWzGX4ojaooAMALvX5bI7MjAFk8/PDDmjdvngzDUGBgoB566CH9+OOPuu2223LdbtiwYdbluXPnOjsm4BR/bD1hdgQAABzig0X7bdo1ywablATuhoIBvMLf+8+ZHQEAgELLfId2m5plTEoCZG/Tpk2aNm2aLBaLqlSpos2bN+vTTz/VoEGDVKVKlVy3bdu2rUqWLClJWrlypQvSAoXXp1FFm/aYH7aaEwQAAMBFKBjAK5yMvWp2BAAACm3BrtM27XoVQ0xKAmRv2rRp1sLWzJkzVb9+/Xxt36xZMxmGoT179jgjHuBwr/ZvaHYEAAAAl6JgAI+0fXwvm/ZLv+00KQkAAI7z2l+7zY4A5GrZsmWSpMaNG6tz58753r5y5cqSpBMnGNYFniE8LOs8MglJqSYkAQDAeXx9LGZHgBuhYACPFBrkb3YEAAAc7lRsotkRgFydPHlSFotFzZo1K9D2wcHXxsZNSEhwZCzAqaqXKW7TXnvogklJAABwjL+2nbRpP9SplklJ4I4oGMBrpKSlmx0BAIACYyJNeILExGtFraCgoAJtHxcXJ0kqUaKEwzIBzhbga3vZ/MDXkSYlAQDAMR7/fotN+9amlUxKAndEwQBeIzXNyLsTAABu6tfNtgWDYv6+JiUBclauXDlJ1540KIidO3fa7AfwBINa5j6hNwAAnq4+c6chAwoG8FhNKofZtEdM22BSEgAACm/F/nM27a/vb21SEiBn9evXl2EYWrdunVJT8zeO+759+7Rz505ZLBa1atXKSQkBx3vgpqzDNFxNTjMhCQAAhXfi0tUs6ywW5jDAPygYwGN9fm8Lm/aGIzEmJQEAwPFa1ShtdgQgiz59+kiSLly4oGnTpuVr22eeeUaGce2J0N69ezs8G+AsPtlMBJl57GcAADzFqgO2NyrVKc9QkbBFwQAeKzysmNkRAAAAipSRI0cqLOzaU57PPPOMVq9enec2ycnJeuCBBzRnzhxZLBZVqlRJgwcPdnZUwKHa1LQt4p6LTzIpCQAAhfP+gv027WkjefITtigYwKtEx1wxOwIAAIDXKl26tN58800ZhqH4+Hh17dpVDz30kJYuXWqd0FiS4uPjtXnzZk2YMEF169a1eRrho48+kr+/vxnxHSY5OVkzZ85Uv379VL16dQUFBSk8PFzt27fXxIkTdf78eYceb/z48bJYLPl6ffPNNw7NUNQ916eeTfv9BftMSgIAQOGcz1T0rlq6uElJ4K78zA4AFMZNdcpq1cF/LsjemrNHU4e3yGULAADcT3q6YXYEwG6PPvqoDh48qEmTJiktLU1ffvmlvvzyS+v7hmFYn0LIuE6SXnnlFd15550uzetoe/fu1ZAhQ7Rlyxab9adPn9bp06e1du1avf/++5o2bZr69etnUko4WovqDBMHAACKBgoG8GgT7miiju8ts7bn7zptYhoAAArmz0xjYb/Wv5FJSQD7fPTRR2rSpImeeeYZXbp0SZKsd7ZL/xQIritZsqQ++ugjjRgxwtVRHer48ePq3r27Tp689t+sxWJRp06dVKdOHZ09e1aLFy/W1atXdfbsWd1+++2aN2+eunfv7tAMrVq1UuvWeU+KXq9evTz7oHCiY65wVyYAAPA6FAzg0ThBBwB4g8ijMTbt4W2rm5QEsN+oUaN011136X//+5/mzp2rtWvX6vLly9b3AwMD1bp1a91yyy166KGHFBoaamJaxxg6dKi1WFC9enX9+eefuuGGG6zvnz9/XoMHD9aSJUuUkpKiu+66S4cOHVLJkiUdlqFfv34aP368w/aHglt/JIbrEQCAR/v2gTZmR4AbYg4DeB3mMQAAeJrjF6/atH18LCYlAfKnRIkSeuKJJzR//nzFxsbq8uXLOn78uC5evKirV69qxYoVevbZZ72iWDB37lz9/fffkqSAgAD99ddfNsUCSSpbtqz++OMP1apVS5IUExOj9957z+VZ4RyfZRr69Jmft5mUBACAgklNS7dp168YYlISuDMKBvB4C5/qZNMe++sOk5IAAJB/5y4nafm+c2bHABwiODhYlSpVyjKHgTeYMmWKdXnEiBFq0qRJtv2Cg4P1+uuvW9ufffaZUlNTnZ4Pzte7UUWzIwAAUCg9P/rbpu1j4UYlZEXBAB7PN9NdmBknQQYAwN1tyjQc0WNd65iUBEBO4uPjtWTJEmv7vvvuy7X/nXfeqZCQa3fsxcTEWJ9MAAAAMNOR8wk27dBi/iYlgTujYACPl3lSPQAAPElquu2/Y0/3ijApCYCcrFmzRklJSZKuPUHQqlWrXPsHBgaqbdu21vbSpUudmg/mOXs50ewIAAAUSKWwoCw34QISkx47RFRUlBYtWqQVK1Zox44dOnbsmOLj4xUSEqIqVaqoXbt2GjJkiDp37mx2VK9UqWQxsyMAAFBgKZnGEbXwWDDgdvbs2WNdbtKkifz88r6Mat68uRYtWpRl+8I6c+aMZs6cqf379yshIUGlSpVStWrV1LFjR+vcCXCeAc0q67ctJ6ztL/4+rJdubmhiIgAACmZo2+pmR4CbomBQCFu2bNHo0aO1YcOGbN+/ePGiLl68qB07dujzzz9Xly5dNGPGDFWrVs3FSb1b8QA+xgAAz/XUj0yaCffiii+dLRaLDh065PTjOMq+ffusy9Wr23dxnfGcf+/evQ7LMnXqVE2dOjXb9zp06KDx48erR48eDjsebE0c1NSmYHDgbLyJaQAAsN/CXadt2oNaVDEpCdwd37QWwr59+7IUCyIiItS4cWOVLVtWly5d0po1a3T8+HFJ0vLly9WuXTutXLmSu38cLMDPR8mp/9yhueXYRTWrVsrERAAAAJ4pKirKqU+6GIbhcU/SXLhwwbpcoUIFu7apWPGfCXJjYmJy6ek4q1evVq9evfTiiy/qzTffdMkxi5rMQzcwaT0AwFM8OHOTTZsBvpETCgYOUKdOHT3wwAMaNmyYKleubPNeenq6pk2bpieeeEJXrlzRyZMnNXToUK1Zs8bjLpQ8yYD/rlHUOzebHaNISU1LlyHJ35epUQAA8HTMEWUrPv6fu8iLFbNvOMyM/TJuX1CNGzfWoEGD1LVrV9WrV0+lSpVSYmKiDh48qNmzZ+vjjz/W+fPnZRiG3nrrLYWEhOj555+3a99JSUnWORokKS4urtB5i5LIqBi1rFHa7BhFSmJKmoL8fc2OAQAerUQgXwsje3wyCiE8PFzTpk3T8OHD5eub/cmKj4+P7r//fpUuXVp33HGHJGndunVauHChevfu7cq4Xu1/I1pp2FfrzY5R5Jy9nKipyw/rprplNP7P3YpPStVPD7XTrM3HdVfLqioXEsg/QACQiwNnLtu0x3Sva1IS4B9HjhwxO4LbSUz8Z2LbgIAAu7YJDAy0Ll+9erVQx3/iiSc0fvz4LOv9/f3VrFkzNWvWTA8++KD69+9vfQL6lVde0Z133qnatWvnuf8JEybotddeK1TGouzOqWu5WckFvlt/TKfjEhUa5Kc35+zRh3c1VUJymoIDfNWlXnmVDrbvv00AwDXBfF+DHPDJKITOnTvbPZHxgAED1Lp1a+sJ/Jw5cygYONBNdctmWbf7ZJwaVgo1IY13u5qcplsmr9ShcwnWdf9b/c8XCz0+XCFJ+nT5tXGJB7Woojdub8wdQACQjYe/3WzTrhgWZFIS4B/2jtFflAQF/fPfZnJysl3bZLxj396nEnJSunTed69XqFBBs2fPVv369RUTE6OUlBR99NFH+uSTT/LcduzYsfr3v/9tbcfFxalq1aqFyuzNXurXQG/NddxE1sjZ3B2n9Mi3mxUS5KfLiak27/37p6xzAC3+d2fVKV/CVfEAAPBKjB3iQh06dLAuR0VFmRekiOj38UqzI3id1LR0NRg336ZYkJefNx3XDa8tdGIqAPBcBzNNlnlH88o59ARgphIl/vkC0t6nBTL2y7i9M5UrV06PPvqotT1v3jy7tgsMDFRoaKjNCzkL8OMy2hXenb9Xj/x/YT1zsSAnPT5coaTUNGfGAgCPlJhi+//Gz4a3MCkJPAFnOi6Ucc6CtDROYhztkS55P26NgklMSdPJS1e16ejFAm2fnJquGi/M0Tfrjjo4GQB4l0A/nsYC3FGZMmWsy2fOnLFrm9OnT1uX7XlCwFG6d+9uXT58+LDdT0TAfn0bV8yy7tiFKyYk8U6nYxMVHXPF+sRyftV7eb7qvjSXwgEAZNDro79t2w0rmJQEnoCCgQvt2LHDuswjvo73XJ/6ZkfwSscvXlH9V+ar/TtLdffn6wq1r5d/36lnfs766DAAFEUHz17OuxMAt1CvXj3r8tGj9t0AcezYMety/fquO08NDw+3aV+4cMFlxy4qyocG6e6Wttdz83aeMimN90hOTderf+xU2wlL1PG9ZYXaV0qaoXovz1dKWrqD0gGAZzsWY1vYznhTM5AZBQMXiY6O1tKlS63tHj16mJim6Lh0hTuqCuNCfJJuerdwJ+uZ/bLpuKatZjJFANh72rZg8N0DbUxKAiAvDRo0sC7v2LFDqal5D4+yefM/c5Rk3N7ZEhJsh44MDg522bGLkp82Rdu0J8zba1IS7xHx8jzNWOvYJ5LrvjSPogEAAPnEpMcu8tRTT1mHIapWrZpuvfVWkxMVDeP+2KWP72lmdgyPtP34JfX/ZLVT9v3aX7tVr2KI2tfOOlk1ABRV7evw/0R4nn379mnx4sXaunWrzp8/r8uXLys9Pe8v5ywWi5YsWeKChI7Rvn17BQYGKikpSQkJCYqMjFTbtm1z7J+UlKR16/55MrNbt26uiClJ2rJli3U5ODiY+QicxDDMTuA90tMNDfmycE8y56buS/O0780+DPsHAP/vzhZVzI4AN0fBwAVmzJihWbNmWdsTJkxQYGBgrtskJSUpKSnJ2o6Li3NaPm/257aTFAwKwJnFguuGfLFenw1vod6Nso4BCwBFwXfrj+XdCXBThw8f1ujRowv0pb9hGB73GHyJEiXUvXt3zZ07V5I0ffr0XAsGv/76qy5fvvYUUalSpdSpUyeX5JSuZbvOlcctah64qaa+XGX71GxMQrJKBweYlMgzpaUb6vHhCh05n5B350Ko9/J8HXyrr/x8GWQBQNGTefSNzhHlTEoCT8G/lk4WGRmp0aNHW9t33323hgwZkud2EyZMUFhYmPXFnAf2Gds36/iwaenc/pNfzi4WXPfQzE1KSMr7kX4A8EZrDjGuODzT1q1b1bx5cy1ZskSGYeT5ui5z29M88sgj1uVp06Zp165d2fa7cuWKxo0bZ20/9NBD8vMr+H1a8fHxdvedNGmSVq5caW0PGzaswMdF7l7I5rpj9DebTEji2ebsOOX0YsF1bSd4zlNNAOBI98+ItGn7eNiNG3A9CgZOdOTIEd16661KTEyUJDVp0kSfffaZXduOHTtWsbGx1ld0dHTeG0EPda6dZd2PG/nd2etyYopqvDDHpcf8OZK/D4CiJ/ZqitkRgAJJSUnRHXfcobi4OBmGob59++rHH3/U7bffLunaUEPLli3Tn3/+qcmTJ2vQoEEKCAiQYRgqUaKEPvvsMy1btsxmbi9PcfPNN6tjx46SpOTkZN1yyy3asWOHTZ8LFy7o9ttv18GDByVJpUuX1vPPP5/t/qKiomSxWKyv5cuXZ9vvgw8+UK9evfTbb79ZrysyO3funMaMGaMnn3zSuq5ly5YaPHhwPn9K2MvP10fv3XmDzboNR2JMSuOZ3py9W098vyXvjg5yPp757QAUTZuOXrRp161QwqQk8BQMSeQkp06dUs+ePXX69GlJUq1atbRgwQKFhYXZtX1gYGCewxbBPkv3ntGQNtXMjuERmoxf6PJjjv9rt0Z2qOny4wKAmZ7+aatN28+Hu3zgGb755hvrF93Dhw+3Dn/z999/W/t07tzZuvzoo4/q5MmTevDBBzV37lw9++yzmj9/fq7D+biz7777Tq1bt9apU6cUFRWlG2+8UZ07d1atWrV07tw5LV68WFeuXJEk+fn56aefflLJkiULdUzDMLRo0SItWrRIQUFBaty4sWrXrq2wsDAlJSXp0KFD2rBhg5KT//kytHr16vr999/l48P9Yc5ULoTrtYLaezouy5BOrrDrZKwaVbLvmhwAvFVEhRCzI8DNcQbpBBcuXFDPnj116NAhSVJ4eLgWL16s8PBwk5MVTYv3nDU7gkfYf+ZyobYvzHitdV+aq6vJaYU6PgB4ksz/No3v38ikJED+zJ49W9K1L8MnTpxo1zaVKlXSn3/+qf79+ysuLk6DBw9WbGysM2M6TZUqVbR06VLdeOONkqT09HQtW7ZMX331lf78809rsaBcuXL6/fff1b17d4cePzExUZGRkfrxxx/1+eefa8aMGVq1apW1WGCxWHTnnXdq06ZNqly5skOPjayaVilpdgSPlJCUqj7/WZl3Rye4+eNVWneYIQEBFB2paelmR4AH4gkDB4uLi1OfPn2sY5qWKVNGixYtUs2a3EHtKtte7aWmr9neKZ+UmqZAP1+TErm/tYcu6J4v1uV7u8+Ht1CxAF+1rlna+vu9kpyq1HRDGw7H6IGvI/PYwzUpaYYmLtynV25pmO8MAOANejWsYHYEwC6bN2+WxWJR69atVbZsWbu38/Hx0Weffab58+crOjpaM2bM0BNPPOHEpM5Tv359rV+/Xj/88IO+//577dq1S2fOnFHJkiVVq1YtDRgwQKNGjcrX7yc3zz77rDp16qS1a9dq3bp1Onr0qM6fP6+YmBj5+PioVKlSqlevntq3b69hw4apfv2sY+vDObK7YebnyGgNasn8czlJSzfU6NUF+d7uzdsbKzjQV+1qlVXFsCDr+rNxibJYLGr11mK79zX483WKeufmfGcAAE/0v9Wuf5oLno+CgQMlJCSoX79+ioy89iVpaGioFixYoEaNuGvQlcKK+WdZd+hsghpWCjUhjWfIb7Hgi3tbqnNEOQX4ZX1IqXjAtf+t9GhYQd/9q42GfLHern1+teqIbqxaUrc2rZSvLADgDcqUYFgLeIbz589LkurUqWOz3tf3nxszrl69qmLFimXZtkKFCurUqZMWL16sX375xWMLBpIUEBCge++9V/fee2+B91GjRg27JoEODg5Wt27d1K1btwIfC85TpVQxHb941dp+9pftFAxy8cnSg/nq/0yvCN12Y2VVLV082/fLh14rHux/s68GfbZW26Iv2bXfGi/MoWgAoEh4e+5em/YHg5qalASexCFDEr3yyis6cqRoV6wSExPVv39/rV69WpJUvHhxzZ07Vy1atDA5GSTpTFz2E8RB+p+dY4c+cFNNPdG9rta/2F09G1bItliQWfvaZXVkQj+91r+RbqqT9112j7tw0jMAcCe+zGEAD3F96JvixW2/vAsJ+Wcs3HPnzuW4fY0aNSRJhw8fdnw4wARlKfjaLTk1XR8t3p9nvzuaVda97apr2shWeqxb3RyLBRkF+Pnoj0c7aPUL3dS2Vmm78lxOTLGrHwB4k/43cpMm8uaQgsFbb72lunXrqnv37vrhhx9sJtwqClJSUjRw4EAtXbpU0rUJi//44w916NDB5GS47r7pG82O4JaSU9P1+uzddvV9+ZaG+nfPCFUIDcq7cwYWi0Uj2tfQNw+00dsDmuTZ/0J8Ur72DwCeJjnVdhzRG6uWNCcIUAClSpWSdO3J2ozKlStnXd6/P+cvBM+evTZ/x/UnFQBPV7tciSzrLiYUrethexiGoV82Hber74d336jXb2usrvXL5/s4lUsW0w8PttO6sXnPH3LfNK4RARQ9vhZuVELeHDbpsWEYWr58uYYOHarw8HCNGTNG27Ztc9Tu3VZaWpqGDBmiuXPnSro2AdxPP/2kHj16mJwMmaWn5/3Id1ESHXNFES/Ps6vvyue6OuSYQ9pUy7NPizcXK42/FQAvNmWZ7XAMr9zSwKQkQP7VrVtXhmHo+HHbL/6aNPnnpoBFixZlu21iYqI2brz2BV1oKENFwju8fUfjLOsG/He1CUnc2+DP1+nF33bk2e/hLrUdcryKYUH6ZEizXPtEHr2oGWuiHHI8APAUPjzZDDs4pGAwePBgBQYGyjAMGYahixcv6pNPPlHz5s3VqlUrffbZZ4qLi3PEodyKYRh64IEH9Msvv0i6NpnbzJkz1b9/f5OT4fXbss4bsSX6oglJ3FfH95bZ1W/t2G52PQZsL3uKDyv2n3XY8QDA3UxacsCmHVYs66SZgLtq3ry5JGnXrl0269u2bWsdlujzzz/XgQMHsmz7yiuv6NSpU7JYLGrWLPcv8gBPEejnm2Vd1IUrJiRxX/N2nNL6IzF59ntrQGM938dxk3bf3CQ8zz6v/rlLqWnpefYDAE8Ue5Wh11AwDpn0+LvvvlNsbKy++eYbTZs2TZs3b7ZO4LV582Y98sgjevrpp3XnnXdq1KhR6tSpkyMOa7pPP/1U06dPt7Zr166tVatWadWqVXluW6ZMGb322mtOTFe0DWldTeP+sL2QXXc4Ri2q2zeeJa5Z80I3hYdlnbSwMKqWLq5t43qp6esLc+wzanqkto3rpbDiWSewBgBvU6d81uEsAHfVrVs3TZ48WWfPntXu3bvVsGFDSVKxYsU0fPhw/fe//1VcXJxatWqlkSNHqlGjRrpy5Yr++OMPrVixwrqfESNGmPUjAHCxh7/dnGefYW2raWib6g49rsViUdQ7N6vRuPlKSE7LsV+fSSu1+N+dHXpsAHAH83acsmnPeri9SUngaSzG9W/2HWjbtm368ssv9f333ysm5p87CSz/P05WnTp1dP/992vEiBGqUKGCow/vMuPHjy/wl/7Vq1dXVFSU3f3j4uIUFham2NhYHuG2U40X5mRZd/CtvvLzddhIXB7p0Ll4Df58nc5dzn2ugGn3tVLXevkfN9Re2f19MhretrreuD3rI94A4Oky/v/vy3tbqkdDzz0XQuF52jleYmKiypUrp4SEBL300kt64403rO9dvHhRN954o6Kjo63n/ZkZhqHevXtr3jz7hkWEOTztc2m2P7ae0Jgfttqse3dgE93dKu/hOL3dc79s00+Rec9dEPXOzU7LcOzCFXV6P/enq515fAAwy9hfd+j7Dcesbf5fV7Tl5/zOKd+cNm3aVJMnT9bJkyf13XffqWfPnvLx8bEOWXTw4EGNHTtWVatW1YABAzRnzhylp/MYIBzryR51s6zjcaxr/2DkVSz4/dEOTi0WSNLu13vn+v7xizzKDcD7pGQa9sCRQ74BrhAUFKQlS5Zo3rx5uvXWW23eK1WqlFauXKn27dtbz/szviTp3nvv1a+//mpGdMBpspuc9/lZeY/XXxSYXSyQpGpliuuxrnVy7cMcagC8UcZiAZAfTr3VOiAgQIMHD9aCBQt0+PBhjRs3TtWrV7deNKSmpurPP/9U//79VbVqVb388ss6dOiQMyM51Pjx47O9GLLnlZ+nC1AwY7pnLRhA2mDH+KE3Vi3p9BzFA/y05/U+Ob6/bN85fbXqiNNzAIArfbbC9jynfEigSUmAgmvdurV69+6t1q1bZ3mvWrVqWrVqlVavXq3XX39do0eP1iOPPKKJEydq9+7dmj59uooVc+xwh4DZQoMYRjM7W6Mv5dln0VOuGa74md711KZmzsPT9vxwhZJTuYkRgPegEIrCcNnYLNWqVdP48eN15MgRLViwIMtEyadOndKECRMUERGhbt266eeff1ZaWs7jDAJ5ye5R+Fmb877DxZv9tDE6zz4bXurugiTXFAvwVe9GOQ/F8cbs3S7LAgCuMHHhfpt2qWAmPIZ3ateunV5++WX997//1SeffKJ///vfqlevntmxAKcZ0KxylnVOGP3XYySmpOn2Katz7TNjVGvVrRDiokTSFyNa5vje4fMJ2nEi1mVZAMDZZm8/adNm3jTkhymDuXfs2FF9+/ZVo0aNJF37YtdisViLBytWrNDgwYNVt25dffvtt2ZEhJeoWtr2Dra35+41KYn5Liem6LlZ23Pts+DJTiofEuSiRNdMGtws1/ev5jJBGQAAAOAO3hqQde6t6JirJiRxD7d9knuxYEz3uuocUc5Faa4JDfLXO3c0yfF9e26uAgBPcTo20ab9/p03mJQEnuj/2Lvv8CjKtY/j96ZDCr0ECITeQ++d0LGAlaIUsWM5dlFEBBULerBwAEXAg2JDjqL0Ir1I7x1C6JBQQhLS9/2D14XNzG42ye48W76f68p17TwzO/PjuCeZ2fsphhYMtm3bJk8//bRERkbKsGHDZMeOHZZCQUBAgHTt2lVCQ0Otpu0ZMmSIDBw40Kd7Z6DgPrxH+wvxYlKazpHeLTk9SxqOXWr3mBnDmkvt8sb18PlHSKC/xH3QVz66V/+PV90xiw1OBAAAAORP0aAATVteC+16q3nbT8uhC9ftHvNC91oGpbE2oGVl2TWmh+6+n7aekvhE1lED4B1yz0hUrQwjDOA4lxcMLl++LJ9//rk0btxYWrZsKdOmTZNr165ZigI1atSQDz/8UE6fPi3Lly+X8+fPy1dffSUxMTe/PDSbzfLzzz/LF1984eqo8EItdeapnPzXUQVJ1Lr3PxvyPMbVixzn5YEWUTb3McoAgDdqGW17LmXAnS1dulTmz58vy5cvz9f7li9fXqD3AfAcO09dlRd/3mX3mPnPtDMojb5iRQNl6+huuvsemLbR4DQA4BofLraeYaNYEdbbgeNcVjBYtmyZDBgwQCpWrCgvvPCC7Nmzx1IkCA4OlgEDBsiKFSvk0KFD8sorr0iZMjeHI4aGhsqjjz4qO3fulM8++8xyvpkzZ7oqKrxYgL/2I/7txpMKkqiz7eTlPHv4xH3QV3fNB6PteKu7bvszc7YbnAQAnG/z8USr7bqRxo/qAgpr//790qtXL+nfv78sWLAgX+/9888/pX///tKrVy85duxY3m8APMyTnapr2tYfTVCQRA2z2ZznugXLX+wkMZWKGxPIjtJhwbrt55PS5OxV351KCgAAEScXDOLj4+Wdd96R6Oho6dWrl/zyyy+Snp5uKRTUqVNHJk6cKKdPn5Y5c+ZIly5d7J7v2WeflU6dOonZbJbDhw/bPRbIj7RM3+mxfu8U+71kFjzX3qAkebO1+OeKgxcNTgIAzvfEd9ustlVNxwAUxty5cy2vH3vssXy997HHHrM8F/z000/OjgYo17WOdsTu4OmbFSRRY+Ge83b3t6lWyiMW3Xx/4QHVEQCgUHJ/56U3+wZgj1MKBj///LP07NlTqlWrJuPGjZNTp05ZHgZCQkJk8ODBsnr1atm/f7+8+OKLUqpUKYfP/c/URGlpvjfvPJyjdJj2S+hpq48rSGK8DXn0aNo0KlbqVyhmUJrC2RJ3WXUEACiUq6mZVtvFi+oXSQF3tmbNGhERiY6Olnr16uXrvfXr15fo6GgREVm9erWzowHKNa1cXHUEZTKzc2RkHqOCf3i8tUFpHPNGnzq67X/uPmdwEgBwrgu51u78+uHmipLAUzmlYDBgwABZvny55OTkWAoF9evXl0mTJsmZM2dk9uzZ0qFDhwKdOyiIh2kUzt9vaOenTM3MUpDEWBeS0mRQHj2aykXoD8VV6YuBTXTb75/KfKIAAKh24MABMZlM0rhx4wK9v0mTJmI2m+XAAXrwwvvoTYfqK2q+ucju/qkPNTUoieMe76idQuofB88nGZgEAJzrji/WWW2HBPnu3ycUjNM+MWazWYoUKSJDhw6VdevWyZ49e+S5556TEiVKFOq8AwYMkJkzZ8qMGTOclBS+xs9POzf/D5vjxWw26xztPVq9v8Lu/iFtqrjFugW53RETaXPf9vgrBiYBAOdJSE632rbVqxFwd4mJN9fi+Gf9sfz6530JCb4zrzt8S6zOtEQnElIUJDHOigMX8jymVwPb9/gq6a07ISLS57O1BicBAOe5nmbdSTY4wF9REngqpxQMYmJi5IsvvpBz587JzJkzpW3bts44rYiINGvWTIYOHSpDhw512jnhe/o0LG+1nZSWJfN3nVWUxvVyDz/TM+aO/E0jYBSTySS/PNlGd98q1jIA4KEOn7defN4T5nAG9AQGBopIwacLZZpReLuvhminfegycZXxQQw04tutdvevfqWzMUEK4LVetXXbc7y7bxkAAHY5pWCwc+dOGTlypERERDjjdIDTfT5AO83N8z/uND6IQfIaXbD+9a5uPWS6RbT+gjyfrzwql66n6+4DAHf2Xq4FFNtUK60oCVA4pUvf/OweOXKkQO8/fPiw1XkAb+PvZ5JSodppdY9eTFaQxvX+uzHO7v43+9SVKqVCjQlTACaTSSY92Fh3X/TrC4wNAwBOkJWdozoCvID7fmMIOJGtL8e9cVqin7eesru/c+0yUrF4EYPSFNywttG67Y/M2mJsEABwgn1nredCDgrgFgyeqWHDhmI2m2XLli1y9mz+RmueOXNGtmzZIiaTKd8LJgOe5OWe2l7r3T71voW+LyalyZjf99k95rGO1QxKU3B3Napgc583Pi8C8G6Z2da/t5pXKdxU8fBNPK3CZ7TU6bV+75QNCpK4zo2MbHl17m6b+4sE+su0h5sZmKjgutUtp9u+58w1g5MAgPP566yvA3iCHj16iIhIdna2vPzyy/l670svvSTZ2dkiItKzZ0+nZwPcRf8mFVVHMETLPEY1//lse4OSFI7emnf/mLE+zrggAOAEf+SafvsVnSI2kBcKBvAZ/x3RUtO2Pf6q8UFc6Ns8hgQfGN/LYxa7aVejlBQvGqi7LzUjS7cdAAC41tChQ6VEiZs91X766Sd55plnJDMz0+57MjMzZeTIkfLzzz+LiEhERIQMGzbM1VEBZUICPeN+uzCy85jkf+6TbaRBxWIGpSm8mcNb6LaP/3O/wUkAoHDeX2Q9FWrRoABFSeDJKBjAZ9i6cfeWYaZHL16XDxYdtLn/g3saGpim8Ewmk+wc00N3X70xSwxOAwAFl3se0cZRxdUEAZwgPDxc3nvvPcv905QpU6R27doyYcIE2bRpk1y8eFFSU1Pl4sWLsnnzZpkwYYLUrl1bpk6dKiI3/76PGzfOUnQAvFWATq/1pfvOK0jiGtXfWGh3f3Mba5K5qy61y8pbd+hPlZaWmW1wGgAouKup1h056ldgvVnkH2Um+LxBX2+WHx5vrTpGoXX7dI3d/QNaVjYoiXOVDguWhGQWOgbguXpOsv79/MXAJoqSAM7x5JNPyv79++XLL78Uk8kkcXFxMnr0aLvv+afA8NRTT8mzzz5rRExAqS8HNZUnv9tm1fb47G0S90FfRYmcZ28eU4SGh3jm1wztapTSbT+ZmCq1y4cbnAYA8i8lXTsbg71p1wBbGGEAnxLor/1FufF4ooIkcNSSf3XQbc/JYxg0ALiLY5dSrLajShZVlARwns8//1z+85//SFhYmIjcLAjY+wkLC5PJkyfLl19+qTg5YIzW1fR72HvD1Jp3fLHO7v4l/+poUBLnqlNevxfuhmMJBicBgILZlOv7rc61yyhKAk9HwQA+5auHm6uO4BL/XnbY7v5973juwoKlwoJ123/becbgJAAA4HZPPvmknDx5Uj744APp3LmzFClSxGp/kSJFpHPnzvLhhx9KfHy8PPXUU4qSAsYrXjRIt33hHs+eluhEQord/Z8+0EgqFC9i9xh3pjct0Tt/sI4BAM9w8Px1q+0GFTxnLRm4F88cKwgUkK3q6vW0TAkP0V9g1919uvSQfL7yqM39n9zfSEKDve//6i/+vEvuaVpJdQwAyJcHmvN7C96lePHi8uqrr8qrr74qIiLXr1+X69evS3h4uISHM4UHfFud8uGaL2/+3H1W7mvmmX8LcnLM0mXiKrvHePr9ua11htIys31iMWsAnu3jJYestp/oVE1REng6RhjAp5hMJpmgs/jvl3a+cHd39ooFz8fWlHs99IHkdr8+1UZ1BAAokFOXU622H2wRpSgJYIzw8HCpUKECxQJAROY/017TturQJQVJnON4HqMLjr/fx6AkrtO0cnHd9iupGcYGAQAn8NSOsVCPggF8jt6QrGlrjitIUngrD16wu/+F7rUMSuJazarozwE7YdEBg5MAQP5sibtstZ2emaMoCQDAaEEB+o/bnrgWV0p6lvT9fK3N/VMfauoVC2uaTCZ5uYf2GardByslMTldQSIAAIxHwQA+p0FF/cWssj3sxv1EQoo8Mmurzf2rX+lsXBhFpq32zEIPAN+R+2+LZ/2lAQonPT1dVq1aJT/99JOsXLlS0tP5sg2+54uBTTRtc7edVpCkcHp9tkbSs2wXvXs1iDQwjWv115lWKccs8vXaEwrSAABgPAoG8Dkmk0kWPtdB0179jYUK0hRMZnZOnvOHVikVakwYgxwc30u3ffVhzx3WDcD75ZitSwT1IvWL1oCnyMrKkhkzZsiMGTNkwYIFNo/79ddfpXLlyhIbGyuDBg2S7t27S/ny5WXGjBkGpgXUu7NRBXmwufV0dK/+ulsOnk9SlCj/3vptr5y6fMPm/nF31zcwjetVtLFo89TVxwxOAgCAGhQM4JPqVYiQWcNbaNr3nrmmIE3+/ZpHr6RH21c1KIlxbC0yNnTG3wYnAQDHHTqfbLVdIjRIURLAOTZu3CiPPvqoPPbYY7J7927dY9auXSsPPvigJCQkiNlstvxcu3ZNHnvsMYoG8Dkf3hejaes1yfb0Pu5m9qaTdvc/3LqKQUmM8/cbsbrtnjYqHYDvWvFSJ9UR4MEoGMBnlQ4L1rTd8cU6BUny7/V5e2zuG923roy+o56BaYzzZp+6qiMAQL7MWH9r+oKhbbzvCxX4niVLllheDxw4UPeYF198UXJybk5dEhwcLE2bNpXIyJvTlZjNZnnxxRclISHB9WEBNxefmKo6Qp5O5LHQ8eF3e4vJ5PlrF+RWNiJEt/3nracMTgIAjjl+ybqjUvUyYYqSwBtQMIDPqlUuXLf9elqmwUnyZ87meLv7H/LCHj7/eNjGl22Z2SwiCsD9pGZkqY4AON369etFRCQ6Olqio6M1+7dv3y7btm0Tk8kk0dHRcuDAAdm6davEx8fLQw89JCIi169fl9mzZxsZG3BLHT/+S3UEu3JyzHanQX2mSw2bCzt7q89XHFEdAQB0df1kteoI8CK+9dcduI2tm9uGY5canCR/3vif7dEFIran7vEGtv5tk/86anASAMjbm//ba7V9f645rAFPdOHCBTGZTNKwYUPd/fPnz7e8Hjt2rKWo4O/vL59++qkEBd2clmvpUve+3wKMcvTiddURbDqcR7aXe9Y2KIka/3u6rabt3LU0BUkAwD6mS4OzUTAAdJjN7vfL1mw2S/TrthcXFBGZcI/+w7s3WfpCR03bpOX09AHgfv6344zVdoOKxRQlAZzn0qVLIiJSpkwZ3f2rV9/s3RYYGCj9+/e32le6dGlp27atmM1m2bdvn2uDAm7G1sLAny47bHASx3yz7oRHrbPgCk0ql9Bt33byssFJAMC+naeuWG23rlZSURJ4CwoG8GkvdKul275o73mDk+Rt4Neb7O6vXS5cBrasbFAadWxNJeUpC1YDAODJrl27+fc2MDBQsy8rK0v+/vtvMZlM0rx5cwkL086dW6lSJRERSUxMdG1QwM0MaROt275wj/s9d5jNZhn/5367xxx6t5dBadRa/qK2s9K9UzYqSAIAtu2Iv2q1fW/TSmqCwGtQMIBPe7ZrDd32p7/fbnAS+9Iys2XTcfs9Wf79YGNjwriBzwc20bQlpmQoSAIA+g6cS1IdAXCJ0NBQERG5fFl7X7Jt2za5ceOGiIh06NBB9/1FihQRkZvFBcDXRJcqqtvubosfj52f9wig4ADvnQb1diwaCsATvLvggNV2q6qlFCWBt6BgAJ/m52eSJztV1923+vAlg9PYVuetxXb3P9OlhtSrEGFQGvXualRB0/bNuhMKkgCAvvNJ1nMcj7cxFQXgaaKiosRsNsuOHTs0+xYsuDV1YseO2l65IiJXrtwcMh8erj9iEPBmfzzbXrfdnRY//nLlEfl240m7xxx/v49BadQzmUyqIwBAvlW2UaAGHEXBAD7vpR760xINnfG3wUn0/bz1VJ7HPNVZv+jhS9YcviSZ2TmqYwCAiIi8+NNOq+3qZemhCO/QsmVLERE5evSo1cLFqampMnPmTBERCQoKsjnCYP/+m9OcVK7s/dMoArmFh2in8vrH1VT3GC07can9NRXa1Sglfn6+9SV6Q501iNx17QkAvufIBfsL1AMFQcEAPi/Azg3vycQUA5NoZWTlyKtzd9s9Zv4z7SQ0OMCgRO6jdFiwpm3Scm7cAbiHK6mZVtttqjEsGN5h8ODBltf333+/jBkzRr744gvp2LGjnDlzRkwmk9x999266xdcvXpVDh06JCaTSerXZ9QNcLu87vmNkNeaYEEBfvLdiFYGpXEfnw1orGn7fMUR44MAgI6l+y9YbZcJ135XAuQXBQP4PJPJJJ1rl9Hd1+njVcaGyaXW6EV29wcH+ElMpeLGhHEz617rommbtT7O+CAA4ACmNIC36NKli9x5551iNpslOTlZ3nvvPfnXv/5lmaIoKChI3nrrLd33zp8/X7Kzs0VEpHXr1oZlBtzJwuf0R98s3X9BzGazwWluOXv1htzxxTq7xxx+t7dP/j2rxjoGANzYx0sOWW1PGdxUURJ4EwoGgIjMGt7S5r5L19MNTHLLmas38jxm5cudXR/ETYUEahdaS8nIVpAEAADfMmfOHLn77rvFbDZb/YSFhcl3331nc/TA9OnTLa+7detmVFzArdSrECHfP6rfS7/FeysMTnNTRlaOtP1gpd1jhrSpYlAa9zSyi3YKWJUFHgCwJaok6xeg8HxvHhMgn1q8t1z2j+spRYOM+7/LH7vOyrM/aBcTvN03Q5tLxeJFDErkOTKzcyTQn1ooAPcxum9d1REApwoNDZX//e9/smvXLlm3bp0kJSVJ5cqVpU+fPlKiRAnd9yQmJkqNGjWkevXqEh4eLrVr1zY4NeA+bE0nmpCcLt9uiJOhbaMNy5KRlZPnqGYRkXF3NzAgjfsa3q6qTP7rmFXb+D8PyJg76ylKBAA33dWogszfddayXS4iRGEaeAu+VQP+n735OP/1407DcmRk5eRZLBAR6VRLfxolX/LN0OaatvunblSQBABuyd3jsF5khKIkgGs1atRIRo4cKaNGjZLBgwfbLBaIiJQqVUpmzJghM2fOlM8//9zAlK6RkZEhs2fPlj59+kiVKlUkJCREIiMjpW3btjJx4kRJSEhw2bWTk5NlypQp0qVLF6lUqZIEBwdLpUqVpGvXrjJ16lRJTk522bXhHI0qaRfR/cfb8/cZmCTvKVBFRF7vXceAJO6tZNEgTduM9ScYZQAA8EoUDID/175maZv7ci8i4yo5OWZ59L9b8zzuswGNJYBe9BJbt5ymbeepq8YHAYDbtHzfekqJSiUYFgw4auzYsVKtWjWpXl07/Ye7OHjwoLRu3VqGDBkiixYtkvj4eElPT5fz58/Lxo0b5ZVXXpH69evLwoULnX7tjRs3SkxMjDz99NOyatUqOXPmjGRkZMiZM2fkr7/+kqeeekoaNWokmzdvdvq14Twmk0kGtapsc39yepYhOY5dcqy49ETHai5O4v78/EzyWIeqmvZTl/OeRhYAXOVCUprV6ALAWfjGEbjNU51tP5w+/I3rH7wmLDogaw5fsntMuYhgubtxRZdnAQAUTO61byqXomAAOCoxMVHi4uIkLi5OdRRdp0+fltjYWMsizyaTSTp16iQjRoyQO++8U4oUuTld5MWLF6Vfv36yYoXz5qTfvXu39OzZU06cOCEiIoGBgdKzZ08ZMWKE9OjRQwICbk5zc/z4cenRo4fs3bvXadeG871tZyqbBm8vkbRM167NdSUlQ2I/WZ3ncYfe7eWTCx3raVipuKbthy3xxgcBgP+X+/d4+xq2O8IC+UHBALjNqz1tz6e79ojrhpaLiMxcf0K+Xnsiz+N+eaKtS3N4mn6NK2jaFu89ryAJAADwdoMHD5azZ2/25KtSpYrs3LlTVq1aJdOnT5f58+dLfHy8xMbGiohIZmamPPDAA3L16tVCXzczM1PuueceuX79uojcnA7qyJEjsnjxYpk+fbosWbJEjhw5Io0aNRIRkaSkJLn33nslK8uYnurIv+AAf/lXt5o2909afsRl105Ky5Qm45fledzE+xtJcIC/y3J4mr4NIzVtU1Yd0zkSAIyRe0Tac7G2/64A+UHBALiNyWSSGDtzirpqjspNxxPlnT/253lcj3rl6Kmay73NKmnanvxum4IkAADAmy1cuFDWrFkjIiJBQUHyxx9/SExMjNUxpUuXlt9//12qVbs5hcvly5flo48+KvS1v/76azl27OYXkyVKlJBFixZJlSpVrI6Jjo6WRYsWWdaSOHz4sMyYMaPQ14brPNy6is19c7edctl1Y8Yudei4+3Tus32Zvx8jLQC4t8hiLHgM56BgAOQy57HWNve1en+FS+YUHfDVJoeOm/pQM6df29PZGnLn6mHcAOCIBc+1Vx0BgJNMnjzZ8nro0KHSsGFD3eNCQ0Nl3Lhxlu1p06YVuqf/7dd++eWXJTJS29NZRCQyMlJeeukl3ffB/ZQKC5aOtcro7ktIzpA/dzt/Xur4xFSHjps5rIXTr+0NRrTXrmMwe9NJBUkAQCuqJB1M4RwUDIBcwoID5M0+dXX3XbyeLg3eXiIz15+QnBznjDb4ycF5L5e/2En86NWiYTKZdP97Hb3o2CJuAOBMl1MyrLbrV7A9ag2A50hOTrZaj2D48OF2j7/vvvskPDxcRG6OMvhnZEJBHD16VPbvvzUSddiwYXaPv33/7t27LSMT4J5mDG1uc98zc3ZIjTcWav62FFR8Yqp0/Pgvh47tUqesU67pbfSeO976jfVCAKjHAvVwJgoGgI5HdHqO3O6dP/bLHV+skyuFuHk/c/WGpKRnyWu/7snz2IEtK0uNsmEFvpa3KxsRrGnbdDxRQRIAvq6pA3NCA/A8GzZskPT0mwuah4aGSosW9ntfBwcHS+vWt0atrly5ssDXvv29tWrVkgoVtOs33a5ixYpSs+atOYz/+suxL4ihRoC//UfyrByzNB2/THafvlrga6RnZcvJxBR58KuNDh2/Z2yPAl/L29nqwOWqqWsBwJbca6g0qVxCURJ4IwoGgA5H5qfcfy5JmoxfJikFmKJo1voT0u6DlVL/7SV5HlusSKBMuEd/yDtu6lGvvKbt3QUHFCQB4MsuJqWpjgDARQ4cuHVf0bBhQwkICMjzPU2bNtV9f2Guffs5jbg2jPH7yHZ5HnPXl+sLNEXRpevpUnv0Yun08So5dy3vv1PrX+8q4SGB+b6Or1tx4KLqCAB8zIeLD1pt96xfTlESeCMKBoAN+8f1lOCAvP8vUv/tJdJr0hrJyMqxe5zZbJYD55LkydnbZKwDCxyLiHw2oLHsepsePnkpEuQvL3WvpToGAB+37miC1fa7/RooSgLA2Q4dOmR5nXuxYVsqV65seX3w4EE7R7rvtWGMRlHF5eP7YvI87pk5OyT69QUSl5CS57FJaZnyzboT0uK95Q5lCA8JkCPv9ZaKxYs4dLwvW/daF03bsz/sUJAEAG4xmZjCGs5DwQCwoWhQgBx6t7dDxx48f10avL1EUtKzdIejZmbnSNVRC6X3Z2tl8b7zDme4u3FFh4/1dc/G1sz7IABwodWHL1ltD25V2caRADxNYuKtqQ7LlXOsB1/58rdGQF6+fNkjrw3j3N88SuY82sqhYztPXCXX0zLlRka2Zl9Wdo78svWUxIxdKuP/dKyTksjNjkqBeUyPhJsqlSgq7WuUtmq7kan9bwEAgKfKeywtAIdkZOdYphiaPKipjJyzXXEibI+/Ik2Zxw+AQX7faT1VBL18AO+RnJxseV2kiGM9sG8/7vb3u+O109PTLWs0iIgkJSXlIyGcJT/zTzccu1RERJpWLi7d65XXTE2RX22qlc77IFi817+BdPp4leoYAHxUGkVKuBhdCIA8/Pls+3y/p7DFgg/vbSj73ulZqHP4oqJB/lbb9/xng6IkAADAm6Sl3Zr7PSgoyKH3BAcHW17fuHHDra89YcIEKVasmOUnKioq/0FRaEVy3cs6Ynv81UIXC/58tn2Bru3LykWEaNriE1MVJAHgi3KPIGtXo5SiJPBWFAyAPDSoWExGtK9q6DUfbFFZQoMZAJRfA1tqp//gxh0AABRWSMitLwczMjIces/tPfYdHRmg6tqjRo2Sa9euWX5OnTqV/6BwihMT+hh6veUvdpQGFYsZek1voDd90/R1xxUkAeCLTub6nuOdu1g7Dc5FwQBwwCs9axt2LUfnLoWW3n+nYTP/VpAEAAB4k7CwMMtrR0cL3H7c7e93x2sHBwdLRESE1Q/UMJlMMu/ptoZdr0bZcMOu5U38/UzyWAfrTmX/3XhSURoAvib3uimVSrBgPZyLggHggJBAf9k2upvLr3P0vd7StgbzhxZUSKB2KPXxhBQFSQD4muwc7YL3ALxHqVK3hvpfuHDBofecP3/e8rpkyZIeeW2oYcQaXHXKh0vcB31dfh1v1k7nue1KimOjgACgMLadvGK1HRzA17twLj5RgINKhQVL/yYVXXb+j+6NkQCdoa3In+e61lAdAYAPmvN3vNX2h/c2VJQEgCvUrn1rFOPJk471Io6Pv/V7oU6dOh55bahz6N1eLjt33cgI+fUp40YxeKv2OgWD9xYeUJAEgK8zmUyqI8DL8O0kkA+fPtBIJt7fSCJCnLu+wJY3u8kDLVhczhme6VpTdQQAPmhn/FWr7f5NKqkJAsAl6tata3m9Z88eycrKyvM927dv131/Ya69Y8cOh97jrGtDneAAf1n1cmd5qLV2ja7C6NOwvCx6vgPrpTmBXmevY5eSFSQB4Msebl1FdQR4IQoGQD6YTCa5r1kl+ftN50xPFBESIOte6yJlwoOdcj7cnE8UAIz26/bTVttBDAuGl3rrrbfkxIkTLjt/nz595O2335YxY8a47BoF0bZtWwkOvnm/lpKSIlu3brV7fHp6umzatMmy3bVr1wJfu0uXLpbXhw4dknPnztk9/uzZs3LkyBHd98OzRJcOlXf7NZRyEc55Vpj0YGP5cmBTp5wL+m5kZOd9EAAUwu7TV622+zSMVBMEXo2nWaAAQgL9Zc5jhVuc+MSEPrJ7bE+pVKKok1JB5GbBoGW09Vy9yel59wIEgII6e9WxRUgBb/Dee+9JzZo1JTY2Vn788UfJyHDufN29e/eWt99+W95++22nnrewwsLCJDY21rI9a9Ysu8fPmzdPrl+/LiIiJUqUkI4dOxb42jVr1pR69epZtr/99lu7x9++v2HDhlK9evUCXxvuYf1rXSW8ECOc94/rKScm9JF+TSqKH51rnGr969bFQO4JALjaXV+ut9ou66SiMnA7CgZAAbWtXlpOTOhToPceGNeLOeZc6NMHG1ltN3h7iaRn0dsHgGtcT7MuSi57oeBfDAKewGw2y6pVq2Tw4MESGRkpzz//vOzatUt1LJd7+umnLa9nzpwp+/bt0z0uNTXVaoTEE088IQEBhZv+5fZrT5w40ebix+fPn5eJEydatkeOHFmo68I9BPj7yZ6xPWXuk23y/d6XuteSokEBPHu4SMXiRay2k9Ky5L8b49SEAeBz/P1MUr1MmOoY8EIUDIBCMJlMsuYVx4d5//1mrBx6t5cUCfJ3YSrojdpYsk//wRoACmt7/BWr7ZrlwhUlAVxvwIABEhwcLGazWcxms1y5ckW+/PJLadq0qbRo0UKmTZsmSUlJqmO6RN++faVDhw4iIpKRkSF33HGH7Nmzx+qYxMRE6devnxw9elREREqWLCmvvfaa7vni4uLEZDJZflatWmXz2o8//rhlpEBiYqL07t3bamFjkZsLIvfu3VsuX74sIiK1atWSESNGFOjfCvfUPLqkDG3j2FzVM4Y1l4Pje8mzsazvZbQxv+sXEwGgsHJyzFbbj3WopigJvJ3JbDab8z4MqiUlJUmxYsXk2rVrEhERoToOdFxOyZBNxxNl9aFL0q9JRQkK8JNz127IM3N2SIViIfLdo62kGpVfw0S/vkDTFvdBXwVJAHi73L9v+F2D/PDEe7xr167Jd999JzNnzrRaXPefHsxFihSR++67Tx555JFCTcXjjk6fPi0tW7a0rCPg5+cnnTp1kmrVqsmlS5dk+fLlkpqaKiIiAQEBsnjxYqupjG4XFxcnVatWtWz/9ddf0rlzZ5vX3rVrl7Rv316Sk28uqhoYGCixsbFSqVIlOXXqlKxcuVIyMzNFRCQ8PFw2bNggDRo0KNC/0xM/l74kIytH9py5JuuPJkhKRpY82r6aHL5wXT5cfFB2n74m7/ZrIA+xCKZhJi0/LJOWH7Fq414AgCtM/uuofLzkkGX7k/sbyb3NKilMBE+Sn/s7CgYegpt2IH+2nbwi907ZYNXGjTsAZzObzVJ11EKrNn7XID88/R5v165dMn36dPnhhx8sPdtFbhUPatSoISNGjJChQ4dKuXLlVMV0qoMHD8rAgQNl586dNo8pU6aMzJw5U/r2tf37IL8FAxGRjRs3yuDBg+0uPF2tWjX5/vvvpXXr1nbPZY+nfy4BI2XnmKX6G9b3AjOHt5AutcsqSgTAW+XuqLT21S4SVZJ1MeGY/NzfMSURAK/UrEoJ1REA+ICL19NVRwCUatSokXzxxRdy9uxZmTNnjnTv3l38/PwsUxYdPXpURo0aJVFRUdK/f39ZsGCB5OTkqI5dKHXq1JHNmzfLt99+K7169ZKoqCgJCgqSsmXLSuvWreXDDz+U/fv32y0WFFSbNm1k9+7dMnnyZOnUqZNERkZKUFCQREZGSqdOnWTy5Mmya9euQhULAOSPv59Jxt5Zz6pt8sqjitIA8CWB/nytC9dghIGHoJcPkH+5q+/fjWgl7WuWVpQGgDc6c/WGtPtgpWV74v2N5D6GBSMfvPEeLz4+XmbMmCHffvutnDx50tL+z6iD8uXLy/Dhw2X48OGWefnhXrzxcwm40u7TV+WuL9dbtTHiEICzMRUqCoMRBgCg46FvNquOAMDLZGVb95SuU54Fj4HKlSvL2LFj5cSJE7JkyRLNQsnnzp2TCRMmSK1ataRr167yyy+/SHZ2turYAOBU6Vn8XgMAeCYKBgB8CoOqADjTR4sPWW0XKxKoKAngnjp06CC9e/eW+vXri8jNUQYmk8lSPFi9erUMGDBAatasKd9//73itABQMOUiQjRto37doyAJAG91LTVTdQT4EAoGALxWbB3tQmNrjyQoSAJfk5NjlpUHL0jM2CWycM85uZKSoToSXGTBnnNW2yw6Bty0bds2efrppyUyMlKGDRsmO3bssBQKAgICpGvXrhIaGmopHMTFxcmQIUNk4MCBFPcBeBy9gsG8HWcUJIGvMZvNciMjW7p/ulre+m2v7D+bpDoSXOS7zSettn96nPWK4DoBqgMAgKt8eF+MNH93uVXbhaQ0RWng7TYcTZAdp67KZ8uPSMZt09Q8/f12ERFZ+FwHqVUuTAJYmMprPdOlhuoIgFKXL1+W7777TmbMmCF79tzsWXv7l/81a9aURx99VIYNGyZlypSRlJQU+eGHH+TLL7+U3bt3i9lslp9//lnatGkjzz33nKp/BgAUSPGigXKVHsAwwOWUDPnh73i5mJQm32689SXykYvJMnvTSXmgeSUZ1buulAgNUpgSzpa7Q0WraqUUJYEv4FsLAF6rdFiwpu3jJYd0jgQKLjvHLG/9tlcGTd8sHy85ZFUsuF2fz9dKjTcXMZ+tF0nLtP5vGVlc27sQ8AXLli2TAQMGSMWKFeWFF16QPXv2WEYOBAcHy4ABA2TFihVy6NAheeWVV6RMmTIiIhIaGiqPPvqo7Ny5Uz777DPL+WbOnKnqnwIABTbtoWaqI8DLZeeYZc/pa9J0/DL5eMkhq2LB7X7eelqajF8mvzHKxav8up3/njAOIwwAeLXIYiFy7tqtUQUXr6crTANvciIhRbpMXJXv99UevVja1ygto/rUkfoVijk/GAzz05ZTVtt1ykcoSgIYLz4+XmbOnCkzZ86UU6du/n/h9p5vderUkUcffVSGDh0qpUrl3QPu2WeflXnz5snq1avl8OHDLssNAK7SPLqkps1sNovJZFKQBt4kIytHBny1UbbHX83X+/71005ZduCC1CgTJi90r+WacDDMiYQU1RHgQxhhAMCrvdqrtqaNuZFRWMv2XyhQseAf644mSN/P10mWjdEI8Axnrt6w2m5WpYSiJIBxfv75Z+nZs6dUq1ZNxo0bJ6dOnbKMJggJCZHBgwfL6tWrZf/+/fLiiy86VCz4R0xMjIiIpKUxfSAAz+Pvpy0MjJrHwscovFqjF+W7WPCPBbvPyWcrjkhOjllycngO9hav9NR+zwE4EwUDAF7t7kYVNW3HLiUrSAJvsevUVXnsv1udcq4aby6S6NcXOOVcMB79BeGLBgwYIMuXL5ecnBxLoaB+/foyadIkOXPmjMyePVs6dOhQoHMHBTHXMgDv8mOu0YhAfpjNZnlw2kannKvaGwul2hsLWdPPS1QtHao6ArwcUxIB8Gp+Oj19Xvhpl/zxbHsFaeDp1h1JkIe+2ez08+bkmHU/q3BfOTlmWbr/gmWb0QXwJWazWYoUKSIPPPCAPPbYY9K2bVunnHfAgAHSoEEDp5wLAFSIrVNWVhy8aNXGtEQoiKzsHKnx5iKnn7fV+ysk7oO+Tj8vXOtkovV0RD3qlVOUBL6CEQYAvF61XNX3PWeuKUoCT3b04nWXFAtEbvb4uZHBYsieZO6201bziI7qXUdhGsA4MTEx8sUXX8i5c+dk5syZTisWiIg0a9ZMhg4dKkOHDnXaOQHASJ8+0FjTxrMHCqLdhytddu4/dp112bnhGp0+XmW1HeDP17lwLT5hALzeipc6qY4AL9Dt0zUuPX/dMYvlamqGS68B57l9dIGISM2y4YqSAMbauXOnjBw5UiIiWOQbAHIrVjRQ05aSTqcQ5M+2k5flQlK6y87/7A875Kct8S47P1wrKICvcuF6fMoAeD2GAKOwek1ybbHgH/0mrzfkOii85QesCwZ6XxAAAACYzSw0C8cduXBd7p3inHUL7Hnt1z2SmZ3j8uug8K6kWHcqW/4CHSLhehQMnCA7O1t2794t33zzjTz11FPSvHlzCQoKEpPJJCaTSTp37qw6IoBcNh1PVB0BHsJsNsvB89cNuVZcYqr8b8dpQ64FAAAA53u1V22r7UHTXTOlJbzTo//dati1ar65iIKWB5i25rjVdg7/zWAACgaF9Ntvv0lERIQ0atRIHn30UZk6daps27ZNMjMzVUcDcJtudctabQ/4apOiJPA08w2e4/OFn3bJtRv8DQEAAPBEj7Srqmm7lsq9HRxzMjHV0OttOEZHOneXmpFltc3IEBghQHUAT3f16lVJTTX2FzqA/Jv6UDOp8eYi1THgYQ6eT5Lnf9zp8PFrX+0iKw5ckByzSM1yYdKkcgkJDfKXK6mZ0nT8MofP0+idpXJwfC8JCfQvQGq4WlIaD/0AAECf3v1bVg5f8MG+pLRMWbz3vMPHv9S9lnSrV05mrY+TuxtXkArFi0iF4kUkwM8kHy4+qOmVbsvg6ZtlYMvKMuGehgWNDhfLXdQpFRasKAl8CQUDJylXrpy0aNHC8rNkyRL57LPPVMcC8P8C/BlQhfzZGndZ7pvq2Pyho3rXkRHtq0qAv58M0+lVVjI0SA6O7yV13lrs8PVbvLtc9rzT0+HjYZyYsUuttn99qq2iJAAAwB2VjwiR80lplu1528/IYx2rKUwEd9fxo7/kqoMjUf5+M1bKhoeIiMiH98Vo9o/qU1cqligiY37f59D5fvg7Xt7oU0fCQ1iTy93siL8iRy8mW7WVDA1SlAa+hG/QCqlXr15y8uRJOX/+vPzxxx8yZswY6d27txQvXlx1NABAIby/8ECex0SVLCJzHm0lT3SqnmdRKiTQX+I+6CsrXnJskarr6Vl5HwS3EFksRHUEAADgRhY8195q+z0H7ivhu9Kzsh0qFgxpU0WOvtfbUiywf2y0xH3Q1+EMny0/4vCxMM7rv+5RHQE+ioJBIZUvX14qV66sOgaAAjh8wZiFbOF50jKzZXv8VbvHvNmnrqx9tau0rVE6X+euXiZMfn6ijUPHvvvn/nydG2rQywcAANyuSBDTSsJxtUfnPQp5x1vdZdzdDfI9cn7P2B7So165PI+bvu4E0266oUO5vrPIvag64CoUDAD4jGe71rDa7vHvNXI5JUNRGrir7BxznlMHvdmnbqGGlbesWlKOv99H5j1tfyqb6etOSPTrCwp8HThfYnK61fbkQU1ZawIAAFgJCdDeG/T5bK2CJHB3X605lucxcR/0lRIF7KASHhIoXw1pLptGxcrkQU3tHhszdqlcvG0qLbifJztWVx0BPoKCAQCfMbCldjRQl4mrjA8Ct9byveV297/aq7ZT5qD18zNJ08olZNeYHnkee/E6N+7u4rMV1sO1I4szHREAALDm52fStO0/l6QgCdzZsUvJ8v7Cg3aPOfJeb6dcq3yxEOkbE5nncS3fX+GU68E19H63AK5AwQCAz6hQvIim7doNhl3CWmIeo06e7lzD7v78KlY078XFWr63QnJyzE69LgrmvxtPWm37mbhpBwAAWvc3q6RpS8vMVpAE7ir2k9V29697rYsE5nMKorzc06RinsesP5rg1GuiYM5evaE6AnwYBQMAPuXdfg1UR4AbG5/HmgH7x/V0yXWX/KtjnsccvZTskmujcALo5QMAAHR8eG+Mpu1KKtOh4qYTCSl29//5bHupVKKo06/7Xv+GUqd8uN1jBk/f7PTrIv/mbjutOgJ8GAUDAD7lodZVNG303MY/vll3wua+ifc3kqJBAS65bu3y4fJEJ/vTHPX49xoxm/msqpSSnqVpq18hQkESAADg7vSmDpm2+riCJHBHQ2bY/1K+QcViLrlukSB/+fUp++uoiYjsiL/ikuvDcZ8uO2y1XYR102AgCgZuKj09XZKSkqx+ALjGX4cuqo4AD9CvcQWXnn9U77rysE5B63bvLzzg0gywb9aGOE2biSmJAACAg/TuJeCbTl22Pd1Ml9plXHrt0OAA+eGx1naP6f+fDS7NgPwb1aeO6gjwIRQM3NSECROkWLFilp+oqCjVkQCvtfYIczRCZOrqYzb3vXNXfQlw8vyhesb3a2B3XtGv19oeAQHXS8q15snnA5soSgIAADzBN0Obq44AN3TZzppp5SNCdKezcrY21UvJshfsT4uansWaG+5kSJto1RHgQygYuKlRo0bJtWvXLD+nTp1SHQnwGp1qWffYoKcPfvg7Xj5YdFB3X8nQIBnaNtqwLO/cXd/u/u82nbS7H64zbY31NALd6pZVlAQAAHiC2LrlNG18CevbzGazNB2/zOb+jaO6StmIEEOy1Cxnfy2D2qMX83lV5EJSmuoI8HEUDNxUcHCwREREWP0AcI4nO1VXHQFuZtS8PTb3bRzV1cAkIuEhgdKrfnmb+0f/ttfANLAnwI/bKAAAkD+Dv2ZBWV+WnpVjc19snbKGT3e5/nX7zzoTlxwyKAlu1+2T1aojwMfxpAvA57SpXkp1BLiRZJ2FbP9Rs2yYBAcYv7jUfwY3tbs/PjHVoCSwJ9Cf9QsAAIB9E+9vZLW99SSLyfqyl37ZZXPfyz1rG5jkporFi9jdz5SoalzP9YzavZ52tBLgShQMAPikEe2rWm3/tCVeURKo1uDtJTb3LXiug4FJbvHzM0mAn+0vozt+/JekZTI82Eg3MrT/e7PgMQAAyMt9zSpp2nJyzAqSQLW1Ry7Jgt3ndPcNbBkldSPVzCyx7rUudvd/tvyIQUlgy+Mdq6mOAB9DwQCAT3outqbV9mu/2p6SBt7L1roFIiLznm4rQQHq/kxuG93d7v5PljI82Ehzt1mvJTT3yTaKkgAAAE939toN1RFgMLPZLA9/87fN/WPvsr+OmStVKlHU7nPPv5cfNjAN9DSvUkJ1BPgYCgYAfFKxIoGqI8ANTF19zOa+ppXV3pQVKxoof78Za3M/w4ON9dbv+6y2m0eXVJQEAAB4mphKxay2/e2MJIV3mrk+zua+KYObKpkG9XYHxvWSDjVL29zP6GbjpGZYT0c0/5l2jGyG4SgYAAB8kr2h4G/fWc/AJLaVDQ+RzrXL2Ny/7+w1A9MAAACgIJpEFbfa/mnLKf0D4bXG/bnf5r5eDcobmESfv5/J7jpqT8zeJmYzU2kZocW7y622s5nCDApQMACA/3f0YrLqCDDQg19ttLlveLuqNvcZ7ZuhLWzu6/v5OgOTAAAAoCDualzBansSc8L7FHtftK95pYvb9B4PD7E9Cn/14Uuy6tAlA9P4rpRca6dlUTCAAhQMAOD/bTqeqDoCDLQl7opu+5/Ptjc4iX15DVnPPWQVzpd7wWOmNAMAAPlRoXgR1RGg0MnEVJv7KpcqamCSvNl7Fnrzf6z7p0K58BDVEeCDAlQH8AZ9+vSRs2fPWrWdP3/e8nrr1q3SuHFjzfsWLlwoFSpU0LQDMMZnAxrL8z/utGynZ+WoCwNDfb3muM19dSMjDEzimLgP+kr06wt099Ubs0TiPuhrcCLf8tOWeKvthc93UJQEAAB4oshiFAx8VVpmtnSeuEp337ePtDQ2jAMaVCwmraqWlM0nLmv2nb2WJueu3eDzbKCHW1dxu6ISfAMFAyfYv3+/nDx50ub+lJQU2bVrl6Y9IyPDlbEA5OGuRhWsCgbj/9wvI9q7z1Q0cJ33Fh7Qbf9sQGO3XYSueZUSsvWk/qiIuIQUiS4danAi37Fgzzmr7Yr0EgQAAIADJth47hAR6VTL9lplKv34eGupOmqh7r42E1bSWcmFcq9X0KN+OUVJ4OuYkgiAz9KbK/LYJdYx8HYXr6fZ3NelTlkDk+TPpw80trnPVq8lOIet6asAAAAK6g2md/EJ327U71z6bNcaBidxXF5rKuSerhPO8+du69lL6rnh6Hf4BgoGThAXFydmsznfP9HR0aqjA8jlvQW2e4DAO8zddlq3/e83YyXCzkJfqlUuVVSKBvmrjuFzrqdlqo4AAAC8wKZRsVbbczbH2zgS3u7lHrXkxe61VMewa9rDzWzu+2ad7eldUTi3z4AgIlIqLFhNEPg8CgYAfFqtcmFW2ysPXlSUBEZZmGt6mX+U9YDFpFa/0sXmvsTkdAOT+I6sbOthwb3ql1eUBAAAeLLyxbT3minpWQqSwCi2/vve26xSnr34VetRr5zc1Uh/zc15O84YnAaA0SgYAPBp4+9uoGljiKX3Wrb/guw9k6Q6RoGVCQ+W/wxuqruv2bvLDU7jG+Ivp1ptv9df+zsDAACgIJ77YYfqCHChmHeW6rb7u3mxQOTmtEQT72+ku+/4pRRZvPe8wYkAGImCAQCf1qpaKU1bagY9fbzVY//dqtv+5aAmBicpOHq4G2vYzL+tthkWDAAACir3PecKRjd7rY3HEjUL2P6jbIT7j2wWEQkK8JPqZUJ19z353TaD03i/rOwcq+1XetZWlASgYAAAGvq3dfB0OTZu2EVE+jaMNDBJ4fj5meSzAY119608eMHYMF7uckqGXEllDQMAAOAclUoUVR0BBhn49Sbd9p+faGNwksKZ81hrm/vMZp6cnanGm4ustquW1i/WAEagYAAAudz1xTrVEeACc/7WX1hu5vAWbj+HaG53N66o2/7IrK3cuDvRp8sOqY4AAAC8SO7100TEZi90eKeWVUuqjpAv5SJC5POB+qOxv17L4seuVLxIoOoI8GEUDAD4vHf7Wc9JfvZaGjfuXmj0b3t12zvWLGNwEuewNcrg3ikbjA3ixRbvtR6x0bm2Z35WADhfcnKyTJkyRbp06SKVKlWS4OBgqVSpknTt2lWmTp0qycnJTr/msGHDxGQy5etn3To6QQDupGhQgKZt+QFGiHqbvWeu6bZPe7iZwUmcw9bix+8vPMj6f06i1+mrTXXt9MmAUSgYAPB5A1tW1rTN235aQRK4yqlcC9f+4/j7fcTfz7NGF/yjRz39tQy2x181NogXS0hOt9qeNbyloiQA3MnGjRslJiZGnn76aVm1apWcOXNGMjIy5MyZM/LXX3/JU089JY0aNZLNmzerjgrAAzwxm7ngvc0dOiPWpz7UTHp68FpkL3Wvpds+fsF+g5N4p8spGVbbPeuX87hR8PAu2vI2APgYvS+MP1h0UO5vHqUgDVzhtx1ndNv9PLRYICJSJMhf/P1MuqNh4hNTpXIp5sgFAGfbvXu39OzZU65fvy4iIoGBgdK1a1epVKmSnDp1SlauXClZWVly/Phx6dGjh6xfv14aNGiQx1nzLzY2VurUqZPncRUq6PcKBaBOj3rlZOl+RhV4q+tp+utf6U1H5Umeja0pnyw7rGmfszle3u/fUEEi73LuWprVdqjOaCTASHwCAUBEwkMC5HpalmU7MVeFH55N7+bWGzSJKi5bT17RtHf8+C+J+6CvgkQA4L0yMzPlnnvusRQLGjVqJL///rtUqVLFckxcXJz069dPdu3aJUlJSXLvvffKvn37JCDAuY9dDz30kAwbNsyp5wRgjPf6N9QUDMxmM72JvcS/lx3Rba9QvIjBSYyTlZ0jAf5MYFIYY+fvs9qOKknnL6jF/6MBQEQe71BNdQS4yMWkNN32I+/1NjiJ8301pLnqCF5r6b7zqiMAcDNff/21HDt2TERESpQoIYsWLbIqFoiIREdHy6JFi6REiRIiInL48GGZMWOG4VkBuK8y4cGatm6frlaQBK4wY/0JTdt9zSpJSKC/gjTGuHpDf1QFHGM2mzWdwJ7sVF1RGuAmCgYAICKPtK+qaTt4PklBEjjbhEUHddsDvaAXTMnQIOlWt5zuvn1n9Rdbg2MezzWfcO1y4YqSAHAXkydPtrx++eWXJTIyUve4yMhIeemll3TfBwAiItXKhFptH7uUoigJnCkrO0e3fexd9Q1O4hqbRsXqtjd/d7nuor1wzOYTlzVtRYK8t8AEz+D535YAgBOEBgfIiFxFg+TbpiiCZzKbzfI/G+sXeIuvhzTTbe/7+TpJy8w2OI33ah5dQnUEAAodPXpU9u+/tbBjXtMB3b5/9+7dlpEJACAisvyFTqojwAXG/rFPtz0s2DtmAy9fLERKh2lHyIiIjP5tr8FpvMczc3aojgBoUDAAgP8XnWuR2D1n6KHt6bbpzO8vIvLLk20MTuI6JpNJ2tUopbvv3166doOr6S0kPe5u5y9aCsBzrFy50vK6Vq1aeS4mXLFiRalZs6Zl+6+//nJZNgCex8+P9Qq80Xeb4jVtxYoEKkjiOlMfaqrb/v1m7b8djklITlcdAdCgYAAA/69IkHXPj3f+2G/jSHiK1+ft0W1vEV3S4CSu9d2IVrrt09YcNziJd1hx4IKmzZ8He8CnHThwwPK6aVP9L0tyu/2429/vDCdPnpTp06fLm2++KS+99JK899578uOPP8rZs2edeh0AgGNsjezd9XYPg5O4VvPokvJ67zq6+66lspaBM/xnsGP3GYArece4KABwgj4Ny8vLv+yyajObzWIy8UWhpzp6MVnT1rBiMQVJXMveZ5TPcP7lXr9gYMvKipIAcBeHDh2yvM690LEtlSvf+t1x8KD+ejoFNXbsWJv7evfuLePHj5dmzfSnrAPgni6nZEjJ0CDVMVBAH9hYN80blSiqP2rizd/2yJeD+LI7Py4mpWnautYpqyAJYI0RBgDw/4oGaWuoP205pSAJXOmDexuqjuASr/SsrduuVzRB/tj63xaA70hMTLS8LldOf7H53MqXL295ffmydkFDV1m0aJG0adNGpkyZYtg1AeTfz09YT5HZdPwyRUngDLM2xKmOYJj+TSrptv+5+5zBSTzfyDnbNW0hgSx4DPUoGADAbepFRlhtf7f5pKIkKKw/d+tPy1C/gveNMBARGdmlhm5793+vMTiJ92E6IgDJybeKr0WKFHHoPbcfd/v7C8pkMkmrVq3k448/lo0bN0piYqJkZmbKlStXZMOGDfLKK69IWFiYiIhkZmbKyJEj5ccff3To3Onp6ZKUlGT1A8C1Wlb1rikyfVlqRpZu+8LnOhicxBhBAX7Sq3553X2bjyfqtkPfljj9NfcA1SgYAMBtvhjUxGp77xkemD3VM3N2aNpy9+TyNj8+3lq3PSMrx+Ak3sXbFqsDkH9pabemDAgKcmzKkODgYMvrGzduFDrDJ598Ips2bZKXX35ZWrduLSVLlpSAgAApXry4tGnTRj766CPZsWOH1Khxs4BsNptl5MiRcu3atTzPPWHCBClWrJjlJyoqqtB5AeSf2WxWHQEF8MvW07rt9SpE6LZ7g08eaKTb/uBXmwxO4l2WvdBRdQRARFjDAACsVC8TpjoCnODIheu67TXLevd/31Y2eqrd8cVaWfpCJ4PTeKav1hyz2q5aOlRREgCOmDp1qkyaNMmp55wwYYL079/fqi0kJMTyOiMjw6HzpKenW147OirBnpIl8+6NXKNGDfnjjz8kJiZGMjMz5fLly/L111/Lyy+/bPd9o0aNkhdffNGynZSURNEAMMCYO+rJuD/3W7b/2H1O7mpUQWEiFMTb8/epjmC40OAAiS5VVOISUzX70rOyJTiAaXUKoma5cNURABGhYAAAeeKGx/Pc+eU63fYSXr6QnK3FjQ9fSJb4xFSpXKqowYk8z/sLrResm/oQi4YC7iwhIcFqQWJn0OuR/89UPyKOjxa4/bjb3+9qderUkQEDBsjs2bNF5OaaBnkVDIKDg61GRAAwRufaZWTcn7e2n/thBwUDL/HFwCZ5H+ThZo9oJR0++kvTXnv0Yon7oK+CRJ7l+CXWmoP7YkoiAMjDqHl7VEdAPqVlaqfgaVOtlIIkxutWV38xzm/WHTc4iee5kZGtaatVzrtHpQBwTKlSt/6GXLhwwaH3nD9/3vLakdEBzhQbG2t5feDAAUOvDcBxxYt6d2cWX7B033nd9jt9oPATVZLOSIXR9ZPVqiMANlEwAIBcZg5vYbU9b/sZRUngTHMea6U6giG+HKTfm2nDsUTmxc3DMZ1ePrZGbQBwD6NHjxaz2ezUn2HDhmmuU7t2bcvrkydPOpQtPj7e8rpOnTqF/rfmR2RkpOV1YiILUALuqqTO6NeUdP0FdOGeHp+9TdO2c0x3BUnci62FoGHbwJZMBQj3QcEAAHKJCGGBU0/2waKDmrbSYUE+88VvSKD+9FlHLibLyoMXDU7jWSYude60JgC8R926dS2vd+zY4dB7tm/frvt+I6SkpFheh4ayFgvgSeZsjs/7ILg1Xxo58p/BTXXb7/hCf4pY2DawZWXVEQALCgYAkEu9yAjVEVAIU1cf07R9NsD75xC93QPNK+m2z9vBaBl7Vh26ZLX961NtFCUB4G66dOlieX3o0CE5d+6c3ePPnj0rR44c0X2/EW4vatw+2gCA++lQs7TVdmaOdmpNuCe96SzLRfjWejA96ulPh3r8UopuO2yLqVRcdQTAgoIBAORSJIgFjj3VwfNJuu3tapTWbfdWH94bo9u+YPc5yczmIdRRdSkeAvh/NWvWlHr16lm2v/32W7vH376/YcOGUr16dZdlyy0zM1O+//57y3anTp0MuzaA/HvnrvpW2ybxjVGx3qDumMWatmkPN1eQRJ0Afz95Lram7r6/GN1s0+rDl/I+CFCIggEAOOCz5UfyPgjKfbL0sOoIbsFkMkmxIvpTay3f79hineCBHYC1p59+2vJ64sSJNhc/Pn/+vEycONGyPXLkyEJfOzlZu8aKLa+++qocP35rofvBgwcX+voAXCf3ClMfLj4oaZnanutwL7b+GxX1wc5nz3Wtods+fNYWg5N4jm83xFltB/rz3AH3QsEAABzw7+V8Ee0Jlul8Gf7dCN9Y7Di31a901m1/6vvtuu2+Lj1L+9DHaCMAt3v88cctIwUSExOld+/eVgsbi9xcELl3795y+fJlERGpVauWjBgxwuY5V61aJSaTyfITFxene9zzzz8v999/vyxZskSysvQXkjx58qQMHDhQJk2aZGm75557pF27dvn4VwIwWkmd+e73ndUfNQv38e9l+s+HNcuGGZxEvQB/218tsoi3vs3HE622pz7UTFESQF+A6gAA4I7e7ddARv+216rNbDb7zMK5nsjWVDvta/rWdET/sLfYWlpmts3FkX3VtNXH8z4IgE8LDAyUX3/9Vdq3by/JycmyY8cOqVGjhsTGxkqlSpXk1KlTsnLlSsnMzBQRkfDwcPn1118lIKDwj1zZ2dkyd+5cmTt3roSFhUlMTIxER0dLeHi4pKamysGDB2X79u2SnX2r+NmkSROZNWtWoa8NwLVKhGrv2S4kpSlIgvyYtkZ777j9re4++7z43YhW8tA3mzXtHyw6KOP7NVCQyL2l5Fr/onPtsoqSAPoYYQAAOu5tql00lnkG3duBc9qeWL46uuAfS1/oqNte5y3tfKu+7tNcvcTeuqOejSMB+LJGjRrJ0qVLpWrVqiJyc72AxYsXy/Tp02XJkiWWYkG1atVk6dKl0qCB878kSU5Olg0bNsicOXNk2rRpMnv2bNmyZYulWODv7y9PPfWUrFu3TsLDw51+fQDOd2ejClbbTzMi1COV1Cn++ApbnbRmbzopGVmsoXa762mZmjZ/P98sNMF9UTAAAB16U5HsPHXV+CBw2P92nNG01Srve0OCb1erHF8UOUJvdMoj7aKNDwLAI7Rp00Z2794tkydPlk6dOklkZKQEBQVJZGSkdOrUSSZPniy7du2S1q1bO+2akyZNkoULF8ro0aOlR48eUq9ePSlXrpwEBgZKaGioREVFSa9eveTdd9+VEydOyH/+8x8pWrSo064PwLWGtKmiOgLygWl29P3yZBvd9l+3nzY4iXt7cNomq+3Jg5oqSgLYxpREAOCgq6nangBwDzcysmXm+jhNe5Cd+TR9xZpXukjHj//StF9JydAdAu+LVhy4qGnz1eHkABwTFhYmTz/9tNVCyAXRuXNnMZtzL3mqVbx4cendu7f07t27UNcD4J7KR4SojoB8qP/2EtUR3FKL6JK67R8sOigDW1Y2OI372p9rZHz3euUUJQFs45sUALBh/N31rbZnbYhTEwR5+mDRAd12e/P4+4rKpYpK8aKBmvYm45cpSOOemCcYAACoFFVSOyLo2g06K3mSta92UR3BLZyY0EfTdu1GpkPFcV8VFMBXs3A/fCoBwIZBrbRDg6+kZChIgrx8u/Gkpq1BxQgFSdzTe/0a6rZn53DjLiLy9vx9VtuzR7RUlAQAAPiqR9pVtdpu9M5SRUlgz8Xr+h1N9Io+vsjWKN3Xft1tcBL3dO7aDdURAIdQMAAAG/QWHhr/534FSWCPrd4qvzzR1uAk7qtvTKRu+09bThmcxDN0qFlGdQQAAOBjWMfAM/T9fJ2m7cN79Tvn+KpH21fVtP28lXUMREQemr7ZavuNPnUUJQHso2AAAPkwT2dhXaiVpdNL/ushzXUXroa1r9ceVx1BuRGztqiOAAAAIH6sn+QRLl1P17Q92IL5+W9na07+tMxsg5O4l6MXr8uxSylWbSPaV1OUBrCPggEA2PF6byr+7m7XqauaNp3BIT7v95HtNG0nElIkKztHQRr3seKgdsFjAAAAo5UO16695ev3afBMLavqL37cc9Iag5O4lw8XH9K06c1qALgDCgYAYMdjHaj4u7v7pm7UtMVUKm58EDfXKKq4bjuLeVtrXqWE6ggAAMAHFQ0KkEGtrHuqf785XlEa6DmRkKJp69OwvIIk7s3WOgYnE1Mlx4fXUMvIogAIz0HBAADs8PczaXpI2JozH8Y7f01/0bEy4cEGJ/EMQf7aP/vvLjgg6Vm+OTw4JT1L0zZjeAsFSQAAAETe7289F/7b8/cpSgI9XSau0rRNHtTU+CAeYOeY7rrtE5dqe9n7itWHL1ltv9i9lqIkQN4oGABAHp7qXN1qe0vcFUVJkFvniX9p2jrWYsFaWz6+P0a3fex831zMe9wf2n93REiggiQAAABwZ7Z6h9vqTe/rihfVTrElIvKfVccMTuIe9DpoPdu1hoIkgGMoGABAHgJyzSv4wDTtFDhQIy1Te+N+R0ykgiSeoWNN/WLKD3/73nD3nByz/LT1lFVb+YgQRWkAAAD0xSemqo4AEZm22je/6IZzfLhIO7KCYhPcGQUDAMhDzbLhqiMgH/o3qag6gtsqEarf08cXTVh0QNM27eFmCpIAAADY9uGSg6ojQES+Wntc08b6Bfa92aeubrsvToc6Y/0J1RGAfKFgAAB5KF+MXsfuSG8tiZplwyRQZ55+3DL+7vqqI7iFr9dqb9ptLQwNAABglFK5Onj48iKx7uR6mnbtq38/2Nj4IB7k0Q5VdduPXkw2OIn7eaEb6xfAvfGtCgAUQGa2/hyWMM7g6Zs1bXc3rqAgiWe5q7H+CIxfck3PAwAAAOMNaxtttb3r1FUlOXDL3jPXdNuDA/wNTuJZbE250/fzdT5fCBvWLlp1BMAuCgYAUAA/+uCc7+5mw7FETduQXA9Y0CpWRH9R31fm7pazV28YnMZ9tKlWSnUEAAAAaVujtNX22WtpipLgH1+t0U5H1Lch66Y5Ysaw5rrtXT9ZZWwQheISUjRttp7JAHdBwQAAHPBarzpW22/9vk93ShyoFRHCjZcjVr3cWbf9/qm+u6B3h1ql8z4IAADAxZpWLq5p+2kLnZVU0utU8+F9MQqSeJ4utcvqtsclpkpGlm+M2n/ztz2qIwD5RsEAABzwVOfqmrYjzL2oTEq6dg7Rzwc2UZDEM0WXDtVtP3P1hk8MD1575JKm7bEO1RQkAQAAsGYymWREe+u531/7lS8cVdp68oqmLTSI6YgcYTKZ5NVetXX3vTp3l8FpjJeZnSPrj1qPjB/UqrKiNIDjKBgAQAH5So8Id/T6PO1D012NWL8gPxY+10G3fdisLQYnMd7D3/ytaWOxbAAA4C5qlQtTHQF2/GdwU5vz80PrqU7aznciIr/tPGtwEuO1fn+Fpu3duxsoSALkD0/HAACPkpqRJX/s8v6bS1erVyFCt33NYW3ve2/CVGIAAMDddaqlP40LjDdp+WFNG6WC/DGZTDKwZZTuPlsLSnuLxJQMTZufH58guD8KBgDgoHY1rBdFPePDC8SqNHXVMdURvMZL3Wvptl+6nm5wEuMc1ZlK7M9n2ytIAgAAoC88JEB1BPy/ScuPaNpi65ZTkMSzjbfRq/6OL9YZnASAIygYAICDJj1oPUf+E7O3+cR87+7mtE6hZvG/9KfXgX3VyugPd998IlG33Rs89M1mTVuDisUUJAEAANAXGqwtGHh7T2xPEhTAV2n5FWBn+k9vHQF8NVU7umDm8BYKkgD5x285AHBQmfBgTdvifecVJPFt648maNpqlg1XkMTz9WpQXrf9mTk7JNtLi2EXkqxHT7SvUVpREgAAANt2julutU1PbONdT8vUtPGFr/NNX3tCdQSXGPS1tqNSl9pMNwbPQMEAAPLhgeaVrLZPX0lVlMQ37T1zTfOFb2ydsuLPPJAFYu9/t9SMLAOTGGN7/BVN2xt96ipIAgAAYF/xokGqI/i8hmOXatr4wrfg/vd0W9329xYeMDiJMfafS1IdASgwCgYAkA/hIYFW28sPXFSUxDfp9ayqUVZ/Wh045sC4Xrrt3tiL7Z7/bNC02Vr8GQAAwN1469Qt7uhGRrbqCF6nSeUS0qZaKd19yene1VlJbwqx5S92VJAEKBgKBgCQD6XDrKcl+vvEZUVJ8I+BLSurjuDRigT567afTPSu0TOJydqFnFtXK6kgCQAAQMEcT0hRHcFnTF97XHUEr9S7of6UqH/sOmtwEtfS7+jGNLrwHBQMACAfhrWNVh3BZ9laYDq6dKjBSbzP5EFNdduTdOZt9VTfb47XtL3Wq46CJAAAAI65u3EFq21b98Nwvk+WHda0HX63t4Ik3qV/k4q67d+s8551DBgJBG9AwQAA8sFWb2y43sHz1zVtL/eopSCJ9+kbEykf3RejaW82fpmCNK7xqc5DX+Oo4sYHAQAAcFC7GqWttjOycxQlgYhIUABfoRVWeEigxH3QV9N+9GKynLl6Q0Ei5/t56ynVEYBC47cdABTSpevaqU7gfP9ZdVTTNqhVFQVJvJROR5jMbLNXjTLIzWRisWwAAOC+apWznsLkmTk7FCXxLReT0jRtH9zTUEES33L/FO16Y57ovQXaRZzXv95VQRKg4CgYAEA+lQwNstpu8d5yRUl8R06OWf7cfc6qrUx4sOa/BQqueNFA3faYsUs9fljtewv2a9qC6SEGAADcXP0KEVbbJxJSJCOLUQauNvq3vZq2Aayb5nJnr6XJkn3nVccoFLPZLElp2gWcKxYvoiANUHA8LQNAPm1+I1Z1BJ/z284zmrbHO1RTkMR7datbTupGRujuy/bw+XK/XqudE/VV1i8AAABuLtBf+5XNCRY+drml+y+ojuD1Zo9oqdv+xOxtBidxrsxsz35uAv5BwQAA8inQ309e6VlbdQyf8uVf2umIOtcuoyCJ9/LzM8nC59rr7qvx5iKD07he7kUEAQAA3NHW0d2stqevPa4oiW/IZJ0IQ3SoaftZzpPXMkjPylYdAXAKCgYAUABPdqquOoLPMJvNcvyStidV2YgQBWm8m705/T11WqKjF7WLZYuIlA4LNjgJAABA/uW+Zzl7zXO/TPUEz+qsEzGwZZSCJN7vw3v114V4X2cNAE/RcOxSTduSf3VUkAQoHAoGAFAAfrm+V33jf3vUBPEBW09e0W0vVkR/zn0UTsOKxXTbv9scb3AS5+j26RpN2/IXuWkHAACeaf3RRLmRQS9mV1msM4f+2LvqK0ji/WyNMliw55xuu7u7npap2167fLhuO+DOKBgAQAHk7ok9Z3O8x/bAdnf3T92oaVv7ahcFSXzDpw800m1/67e9XvMZr1GWm3YAAOC5Bk3fpDqCV7K1bldwgL/BSXxDBTsLAV9L1f/y3Z3pfXzmP9PO+CCAE1AwAAAnuZ6epTqCz4gqWVR1BK9Vo2yYzX39Jq83MIlrjL2znuoIAAAA+dK6Wkmr7R3xV9UE8XILdXq2732np4IkviMkUP9ryUbjlkqWh60ncTU1Q9MWU6m48UEAJ6BgAAAF9NXDzay2x/y2V1ESwHlMJpNsHNVVd9+u09cMTlM4eusXNKtSUudIAAAA9zXt4eaqI/iEuATtumlhwQEKkviOPWNtF2RGztluYJLC6/TxKtURAKehYAAABdSxlvWci7/tPKsoiffK1OlV8lqvOgqS+JbIYraHB3uKGxnZuusX1K8QoSANAABAwbF2lzE+WXZYdQSfE+jvJx/fF6O7b8m+CwanKbi3dDoP/vxEGwVJAOegYAAABRQSyFyWrpZ0Qzt35WMdqipI4nts3bgfOq/tte+OHp+9VbfdL/eK5QAAAB7g4dZVrLYzsjxruhZP1DKakalGuK9ZJdURCm32ppOatpZV+fzAc1EwAAAnOnv1huoIXuW9BQc0bQH+/Okywv3No3Tbe05aI6evpBqcJv/WHknQtFUvE6ogCQAAQOFFl7a+j3l93m5FSbxTaoZ2PbofH2+tIInvMZlsd+h5+JvNBiYpmD0eNm0r4Ai+dQEAJzpwLkl1BK+RkJwu83acUR0DOtp/+JfqCAUyc1hL1REAAAAKpERR62mJ5m3nPtmZRn6vnS+fkanGGXNHPd32tUcSZO2RSwanyZ/hs7aojgA4HQUDACiELwc1sdqm97vzNH93uabtLRs3knCNSQ82trnvckqGcUHyadl+/flOo0p6/toMAADAN93ZqILqCF4rKztH/jrk3l9Ke7tH2tuedvbhb/42MEn+XEvNlITkdE37/GfaKUgDOA/fbAFAIXSrW85qe+gM972Z8QYj7NxIwvnusvNg6s7Tbz32X+36BX4m+8OdAQAA3FmgTseka6na9b6Qf4k6HWGmPdxMQRLfNmt4C9UR8q3/lPW67TGVihsbBHAyCgYAUAh6Cx9fuq7tYYDCq1ic3uFG8/MzSdnwYN19n604YnAax4yyMZ/vbyPp5QMAADzbN0ObW20/+NVGRUm8y7M/7NC09ahXTudIuFLn2mVVR8iX5PQsOX4pRXUMwCUoGABAIY3qXcdq+70F+xUl8R6HL1zXtN3TtKKCJJjzmP5ib8v2X5DM7ByD0+Tth79P6bbTywcAAHi62Fyjmw+e194zI3/MZrP8feKypp2Rqe7lm3UnVEfQ2Hbyim77yz1qGZwEcD4KBgBQSBFFrBcg+23nWUVJvMcjOgtHPdy6ioIkqFE2TCKLhejuq/nmIoPT2JeakaXb3qdheYOTAAAAwBMcT6CHuDvZP66nbvv4P/frrhWgkq3piO9rFmVwEsD5KBgAQCG5Yy9rT3f6inZ+/DI2psaB6614qZPNfb/vPGNgEvvqjVmi2/7lwKYGJwHgrTIyMmTLli0yZcoUeeSRR6Rhw4YSEBAgJpNJTCaTDBs2zJAcCQkJMnHiRGnbtq1ERkZKSEiIVKlSRfr06SOzZ8+WzEzmNQcAR/gzksCtFA0KkDtiInX3NX93ucFpbLO3nlt5G52tAE9CwcCJMjIyZPbs2dKnTx+pUqWKhISESGRkpLRt21YmTpwoCQkJqiMCcIH6FSI0belZ2QqSeIc4G718GBasTtGgALm/WSXdfc//uNPYMAXg58dnB0DhffnllxIeHi4tW7aUp59+WmbOnCl79+6V7Gxj/+b/+eefUq9ePXnllVdk48aNcv78eUlPT5f4+HhZtGiRDBkyRFq3bi2HDx82NBcANb7ffFJ1BI82cs52TduvT7VRkAT/+GxAE5v7rqe5R0G87Qcrddtf7M50RPAOFAyc5ODBg9K6dWsZMmSILFq0SOLj4yU9PV3Onz8vGzdulFdeeUXq168vCxcuVB0VgJM1q1JS0zZxySEFSbzD5L+Oatp2j+2hIAluN6Cl7aG12TlmA5Po23BUvyi/0s7oCADIj4SEBMnIyFCaYenSpdK/f3+5dOmSiIgULVpU7rzzTnnkkUekY8eOluL69u3bJTY2Vs6eZZpEwNu9+b+9qiN4tH1nk6y2gwL8dJ/vYBx/P5NUKxOqu2/lwYsGp9Eym20/+zzbtYaBSQDXoWDgBKdPn5bY2FjZsWOHiNzsBdupUycZMWKE3HnnnVKkSBEREbl48aL069dPVqxYoTIuAAN8vdb9FmXyFKkZ2p6a4cEBCpLgdk0rl5CW0foPT9XfWChXUtR9iZaWmS2Dpm/W3Ve1tP7DBgAUVFRUlNxzzz0yYcIEWb58udx3332GXPfy5cvy4IMPSlbWzfVaYmNjJT4+XubPny/ffPONrF69WrZv3y6VK1cWkZvPKA899JAh2QAY56uHm6mO4NVqlg1THQEi8vF9jXTbn/9xp3y2/IjBaayNnb9Ptz08OIBR8fAaFAycYPDgwZbeO1WqVJGdO3fKqlWrZPr06TJ//nyJj4+X2NhYERHJzMyUBx54QK5evaowMQBnW/hcB9URvMaCPec0bdx4qWcymeTnJ20Pz24yfpnkKBppMGdzvM19fHYAOMvw4cPl/PnzEh8fL7/++qu8/vrrEhsbK6GhxhQmP/jgA8szRPXq1WX+/PlSqlQpq2MaN24sf/zxhwQGBoqIyF9//SVLly41JB8AY/SoX17Tdi3VPaZp8TQbjyVq2j66L0ZBEuTWrEoJ+f7RVrr7/r38sJyxs4aAq327UX8asJ+eYCoreA8KBoW0cOFCWbNmjYiIBAUFyR9//CExMdZ/YEqXLi2///67VKtWTURu9g766KOPDM8KwHXq6axjkJCcriCJZ9t56qrqCCiECYsOGH5Ns9ks4/7cr7vP1ogIACiIKlWqSLly5ZRcOzMzU77++mvL9rhx46Ro0aK6x8bExMjQoUMt25MnT3Z5PgBq3fHlWtURPNLArzdp2upXKKYgCfS0qmr7Xr6djTUEXG3zcW2R6R963wkAnoqCQSHdfgM+dOhQadiwoe5xoaGhMm7cOMv2tGnTLMOJAXinDxcdVB3B46zXmYd+46iuCpLAltd717G5T8VUXLnnnf3HPU0qyszhLQxOAwCusWrVKsvogvDwcLn33nvtHj98+HDL66VLl0pKSoor4wEwWK9cowxOXVbX2xpwFX8/+yOFVx68YFCSWx78SltkEhH57yMtDU4CuBYFg0JITk62Wo/g9htzPffdd5+Eh4eLyM1RBv+MTADgHcpFBFtt/7LttKIknis1Q1tIjSxWREES2PJEx2p29y/bb+yN+x1frNNt/+SBRhLK2hcAvMRff/1led2mTRsJDg62c7RIy5YtLSMQ0tLSZOPGjS7NB8BYE+7RdlS8rHA9KW8x/u76qiPgNiaTSf79oP5aBiIij8zaancBYmdbsu+8bvv7/RtKx1plDMsBGIGCQSFs2LBB0tNvTjkSGhoqLVrY78kYHBwsrVu3tmyvXKlmCBUA13gutqbqCB5Pb8FjuBeTySTThzS3uf+x/241LMv8XWdt7mPtAgDe5MCBW1O+NW3aNM/jAwICrEY+3/5+AJ6vRGiQpu2rNccVJPEug1pVUR0BufRvUsnu/u/srGXmbE/M3qbbPqBFlGEZAKNQMCiE22+8GzZsKAEBefdkvP0Gnxt3wLvc1aiCpi1b0SKwnqpKSev5mHs30C7qBvW61ilrd//D32x2eYa0zGx57ocduvs+G9DY5dcHACMdOnTI8rpKFce+0KpcubLl9cGDTJMIeLupq4+pjuDx8poCB2pEFguxue+t3/ZKUprrF/3+c7ftjkp+fG7ghSgYFAI37gBuFx4SqGlbc+SSgiSeafamkzL2D+vFa/8zOO9elDCen59JGkcVt7l/7ZEEOXhef20BZ3n0W9sjGe5uXNGl1wYAoyUm3lpk0dGFl8uXv1V0v3z5stMzAVBr5jDWaiqoS9fTJfr1BVZteU27CXX+fLa93f0xY5e69PrpWdnyzBz9jkqv9Kzt0msDqlAwKARu3AHkdk9T6y8qh8/coiiJZ0nLzJa3fturaWdaGff18xNt7O7/acspl13bbDbLOp0FsgHAWyUnJ1teFyni2No+tx93+/v1pKenS1JSktUPAPfWRWfEJ+sYOKbFe8s1ba/1qqMgCRxRKixYihfVds4zyoeLDtncFxzA16rwTnyyC8GVN+7ctAOe6cHmzF9YEJeup2vaPtBZzA3uIyjAT1a81Mnm/pnr4+TJ2dt0F7IujDNXb0jVUQudek4AcHdpaWmW10FB2rnL9dy+MPKNGzfsHjthwgQpVqyY5ScqivsZwBNl5eSojuCxmFbGvW19s5vd/dGvL5C9Z645/br3T90gM9afsLn/odasewHvlPek+7DJlTfuEyZMkHfeeafg4QAo0bJqSU1bTo6ZG9A8LN1/QdM2oGVlnSPhTqqXCZNH2lW1eRO9eN95WTzmvJyY0Mdpo0XafbDS7v5No2Kdch0AnmHq1KkyadIkp55zwoQJ0r9/f6ees7BCQkIkNTVVREQyMhzrQZyefqsYn1fnplGjRsmLL75o2U5KSqJoAHiAepERsv/crc6Fe89ck651bM/3Dv1RGNMebqYgCfIjwN9Pdo7pLo3HLbN5zB1frJPlL3aUGmXDnXLNfWevyZa4Kzb339+skoQE+jvlWoC7oWBQCCEht/4QO/vGnZt2wDPpfSn609ZTMpAvv+0a/+f+vA+CW3qtd227vW5ERP6z6piM7FKj0NdKTNaORLnd4FaVpbydRdEAeJ+EhASrdcWc4do15/dQLKywsDBLwSCv0QL/uP24sLAwu8cGBwdbdWwC4BlGdqkhI+dst2w/MmurxH3QV2Ei9zfmd+00qH5Mg+oRihfNu6Nut0/XOKWzktlslvumbLR7zMf3NyrUNQB3xpREhXD7jbezb9yDg4MlIiLC6geAZ+hez3pNk1Hz9ihKArhecEDevWo+XnJI9p0t/Bdwzd7Vzjd7u7fvrF/oawCAOypVqpTl9YUL2lF5es6fP295XbKkdgQkAM/Xu0F5TVtOjllBEs/x5+5zmrZqZUIVJEFBrHq5c57HNHqn8Isg/7TllNzIzLa5v24k39HBu1EwKARu3AHoqV9Be/NgNnPjbsuaw5c0bT3qObaQPNzD2le75HlM38/XFfgBNi0zWx7+ZnOexwWx6Bjgc0aPHi1ms9mpP8OGDVP9z9KoXbu25fXJkycdek98fLzldZ06LOYJeCO9aU8X7NF+IQ77qpexPwoL7iO6dGieo/eT0rLkYlJagZ89Fuw+J6/n0envK6axgpfjyboQuHEHoKdice10YxuPJypI4hkW6PTyebJzdQVJUFBRJYvKkDZ5L/hV7Y2FEv36AofPazabJSE5Xe6fulHWHkmwe+yJCX0cPi8AeJq6detaXu/YsSPP47OysmTv3lvTbtz+fgDe7dkf8v4d4avoxOUdJtzTMM9jWr6/Qqq9sVCu3ch0+LzXUjMlIyvHapovPU90rCZRJYs6fF7AE1EwKITbb7z37NkjWVlZeb5n+/Zbv3i4cQe80x0xFTRt321yrKjoi37aekrT1rRyCQVJUBgv9aid90H/74FpG2VzHkW0IxeuS/d/r5Hm7y6XPWfsT2fUu0F5py2qDADuqEuXWyO5Nm7cmOf6aVu2bJGUlBQRubnuWps2bVyaDwA8wTfrtOtu0VPcM73YvZZDxzV6Z6l8sOig3WJRWma2zFh3QhqNWyq1Ri/K85zPxtZ0OCfgqSgYFELbtm0ti4OlpKTI1q1b7R6fnp4umzZtsmx37drVpfkAqFEkyF9qlbMe1rpwz3kbR/u2/+04rToCnKRYkUDZPbaHQ8f+feKyPPjVJol+fYEcu5RsaTebzfLn7rPy4s87pfu/18jRi8l2znLLpAGNCxIZADxG586dpVixYiIikpSUJPPmzbN7/KxZsyyvu3fvLqGhzM8NeKvj7zPK0hHZOWZ5d8EBTXuP+tp1IOD+noutKaFBea+lJiIydfUxqTpqoXy+4oilzWw2y8XraTJq3m6p89ZiGffnfofOVbF4EQkLDihQZsCT8CkvhLCwMImNjZWFCxeKyM0b89atW9s8ft68eXL9+nURESlRooR07NjRkJwAjFe/QjE5fMGxLzt92Qs/7dK0/WdwUwVJ4AwRIYHy9ZDm8th/7RfQbxf7yepCXfOJTtUcWngZADxZYGCgPPbYYzJx4kQRERkzZozcfffdUqSIdhrEvXv3WhUMRo4caVRMAArorWPw94nL0rIqaybe7nxSmuoIcLLdY3tK9TcWOnz8p8sOy6fLDhfqmutey3vtNsAbMMKgkJ5++mnL65kzZ8q+fft0j0tNTZUxY8ZYtp944gkJCKBeA3irF7pph0g62lvaV9gaFtq7Ab18PFnXOmUNu1bjqOIyqjfT+wHwXKtWrRKTyWT5iYuLs3ns66+/LsWLFxcRkSNHjki/fv0kMdF6erddu3bJnXfeaZmyqEuXLtKzZ09XxQfgJu5pWtFq+4FpGxUlcV/P66ztMLiV/cVz4d78dYplrnTo3V5MgwqfwTfWhdS3b1/p0KGDrF27VjIyMuSOO+6Q+fPnS8OGtxZhSUxMlIEDB8rRo0dFRKRkyZLy2muvqYoMwACVSxWV9jVKy7qjtxZqXXHggtQoG2bnXb7lw8WHdNu5CfNs/n4m+eGx1jLw6015H1xI3z/ayuXXAIDbNW7cWNMWHx9veT1//nzdY3bu3Fnoa5cqVUp+/PFHueOOOyQrK0uWLl0qVapUkW7duknp0qXl6NGjsmbNGktBvmLFivLdd98V+roA3N+nDzSWedvPqI7h1raevKJpe6ZrDQVJ4Ew7x3SXOX/Hy0c2ni2dZXi7aEY1w6dQMHCCOXPmSMuWLeXcuXMSFxcnjRs3lk6dOkm1atXk0qVLsnz5cklNTRURkYCAAPn5558tvYMAeK+snByr7TVHLskTnaorSuN+pq4+pmn7ekhzBUngbG2ql5JhbaNl1oY4l13j16faSijzhwIw2K5d2qn0bnflyhW5ckX7pZSz9OzZU+bNmycjRoyQS5cuSUpKivz++++a45o0aSI//PCDVKhQwWVZALi37Byz4T2wPU1kMe20bvAsxYsGyZMdq7u0YFAqNEjevrO+y84PuCOmJHKCSpUqycqVKy29iXJycuSvv/6Sb775RubPn28pFpQpU0Z+++03iY2NVZgWgFGS07OsttcfTbRxJP7RvV451RHgJK/3ruOyczeOKi7NqpRw2fkBwJ3deeedsm/fPvnwww+ldevWUrZsWQkKCpKoqCjp1auXfPvtt7J582apXbu26qgAFPrh7/i8D/Jhh97tpToCnMTPzyTPuXC0yLa3urvs3IC7omDgJHXq1JHNmzfLt99+K7169ZKoqCgJCgqSsmXLSuvWreXDDz+U/fv3S9++fVVHBWCQl3rwoJ4frViYzauEBPrLqpc7u+Tcs4a3cMl5ASAvZrO5QD+2dO7c2eq46Ohoh3KUKVNGXn31Vdm4caNcuHBB0tPTJT4+XhYtWiRDhgyRwMBAJ/2LAXiqudtOq47gNradvKxpY3oZ7/Jij9oSWSzE6ed9rZfrOkEB7oyx/E4UFBQkQ4YMkSFDhqiOAsANxFQspmk7ejGZdQxEf8HjamVCFSSBK0WXDpVj7/eR6m8sdMr52tcoLTOGtZCgAPo7AAAA3C44wE/Ss25Nibrz1FV1YdzMvVNYBNoXbBwVKz/8HS+j5u1xyvl+ebKNtIimUxt8E0/cAOAipcKCNW3dPl2tIIn7uf1h5h+v966rIAlczd/PJKtf6Vzo89wREynfPdqKYgEAAICOBc910LSdupyqIAmgzsCWlS3PC6ZCLOGxcVRXigXwaYwwAAAXeq5rDfl85VHVMdzOofPXNW3FijB9greqUipU4j64OSVfWma21Hlrcb7eX610qHwxsIkrogEAAHgFvVHMV1MzJcrHv/PMydGObN49toeCJDDK4Xd7W15XHbVA7MwMqGvnmO5SvGiQk1MBnoVuegDgQuV05lFMzcjSOdK33D15vdU2C9j6jpBAf3m/f0OHjjWZRGYOayFLX+gopsJ0EQIAAPBB328+qTqCcv/bcUbTFhFCRyVfsW204wsWfzGwiax7rQvFAkAoGACAS3WrW07T1i/Xl+W+5jedm/aZLGLrUwa1qiy/PNnG5v7w4AAZ2qaKrH65i3SpU1YC/LldAQAAyK8ft5xSHUGp1IwseemXXapjQKGSoUFyYkIfCQ+xPcHKXY0qyGcDGsudjSpIpRJFDUwHuC+mJAIAFyoXoR1hcOryDQVJ3Me/ftqpaaOXj+9pEV1Sdo/tIQ9/87eUjwiWSiWKSsuqJeV6Wpbc06Si+PkxogAAACA/nuxUXaauPmbVlpKeJaHBvvnVT5NxyzRtD7WurCAJVDKZTLJnbE/5Zt0J+X7zSWlXvbTUrxAhJpNI2+qlJaokRQIgN9/8qwEACt3IzJYbGdlSJMhfdRTDnUxM0bR9dF+MgiRwBxEhgfL7yHaqYwAAAHiFO2IiNQWDZ3/YITOG+eZo3vSsHE3bKz3rKEgCdzCifVUZ0b6q6hiAR2CMPwC42B6dRbUOX9Au+usLOn28StP2QPMo44MAAAAAXqZBxWLSoWZpq7aVBy8qSqPW6SupmrZa5cKkWBFGNgNAXigYAICLhetMt5N70V8AAAAAKKy7G1fUtJ26rP3y3Nu1//AvTdvQttHGBwEAD0TBAABgiIvX01RHAAAAALxamM56BR0+0n557osqM1c9ADiEggEAGOCOmEjVEZTr89la1REAAAAAr9atblnVEZTLyTHrtrerXlq3HQBgjYIBABjgrTvqqY6gXEJyhqbt+0dbKUgCAAAAeKcAf77mWX7ggm67n5/J4CQA4Jn4SwIABigXESKlQoOs2qJfX6AojXtoWrm4tKtBLx8AAADAmb4Z2lzTduTCdQVJ1Nh4PFHTdvjd3gqSAIBnomAAAAb5Tqc3va/M63/tRqam7clO1RUkAQAAALxbl9raaYm6/3uNgiRqzFwfp2kLCuDrLwBwFL8xAcAgdSMjNG0rDlxUkMR4rd5frmnrUb+8giQAAACAd/PlqXcuJGk7ZM0a3kJBEgDwXBQMAEChUfP2qI5giLTMHNURAAAAAJ+WnpWtOoLLTVt9XNNWoXgRBUkAwHNRMAAAxfSm6wEAAACAgmqvs1ZYs/HaUb/eZun+85o2Hx5wAQAFQsEAABRL8vKCwYmEFE3bpAcbGx8EAAAA8BFTHmqqaUtOz1KQxFinr9zQtFUrHaYgCQB4LgoGAGCg73UWPvZ2f+46a7Vdq1yY9GtSUVEaAAAAwPuFBQeojmC47Byzpu3Ie719ek0HACgICgYAYKB2OkODH/pms4IkxtgSd1k+WXbYqu2nx9soSgMAAAD4BpPJJHOf9J37brPZLNXfWKhpD/Tnay8AyC9+cwKAwf77SEur7ZOJqZKa4Z3Dg++fulHTViI0SEESAAAAwLc0jy6paZu96aSCJK53XGca1IdbV1GQBAA8HwUDADBY7fLhmrY3/7dXQRIAAAAAvuSt37zzuSM5TdsBK6ZSMQVJAMDzUTAAAIOViwjRtO0+fdX4IC627kiC6ggAAACAT3u/f0PVEVwuJ8csd09er2mvWU7bUQsAkDcKBgDgBo5dSpEcnUW6PJne2gzThzRXkAQAAADwTXq97C9eT1OQxHVOXUnVbW8cVdzYIADgJSgYAIACLatq5xN95NstCpIYq1u9cqojAAAAAD6jfoUITVvL91YoSOI6M9fHqY4AAF6FggEAKPBc15qatlWHLilI4hrbTl5WHQEAAADweSaTSbfdm0Y3z9oQp2lb+kJH44MAgJegYAAACrSvWVp1BJd68rvtmrZvH2mpIAkAAADg217uUUvTdvjidQVJnC/bRuGjFusXAECBUTAAAEWGtY3WtN3IyDY+iJPFJ6bKpevpmvYyYcEK0gAAAAC+7Rmd0c2P/3ebgiTOV/2NhaojAIDXoWAAAIp0qVNW05aSkaUgiXNNX3dct72ezvypAAAAAIwXf1l/oWBv8NPjrVVHAACPRsEAABTpVKuMpq35u8sVJHGu/248qToCAAAAgDyYzd6zjsHt6lcspjoCAHg0CgYAoFCAn3YRst2nrxofxMWWv9hJdQQAAADAZ/02sp2mreoo75zOJyw4QHUEAPBoFAwAQKED43tp2u76cr2CJM6x7+w13fYaZcMMTgIAAADgH42jiuu2Z2XnGBvEiaJfX6Bp+2JgEwVJAMC7UDAAAIUC/b3r13Dfz9dp2vSmXgIAAABgrIM6nZXiEj1zLYMjF67rtt/ZqILBSQDA+3jXN1UA4CX2ntHvqe/Odp26qts+a3gLY4MAAAAA0AgJ9Ne0Pf/jDgVJCq/7v9do2la93Nn4IADghSgYAIBifWMiNW13fKHtqe/u1h9L0G03mbTrNAAAAABQb9/ZJElKy1QdwymiS4eqjgAAXoGCAQAo9vYd9VRHcIr/bT+jabtDpxgCAAAAwH1cuJamOkK+xCWkqI4AAF6NggEAKFY2IkTuaVJR0341NUNBmoI5kZAiRy4ma9rfv6ehgjQAAAAA9Owa00PTpje9jzvrPHGV6ggA4NUoGACAG/jkgUaatsbjlilIUjBdbNy0R4QEGhsEAAAAgE3Fiurfn59M9Ixe+4v3ntdt/2xAY2ODAIAXo2AAAG7A1jz/11Ldfz7RDUf11y6YPqS5wUkAAAAA5KV9jdKatnunbFSQJP+e/G6bbvtdjSoYnAQAvBcFAwBwExPv144yOOEBPX0GTd+s2x5bt6zBSQAAAADkZfaIlpq2hOR0BUmc45F2VW12wAIA5B8FAwBwY/0mr1cdwa5rN2yPgOCmHQAAAHA/tu7TL15378WPv9t0Urd9dN+6BicBAO9GwQAA3ESxIvrzic7eGGdskHz497LDuu19GpY3OAkAAACAwmj53grVEewa/dte3XY/PzoqAYAzUTAAADfRvV453fa3ft8nZrPZ4DSOOXLxum7723fWNzgJAAAAAEf9/EQb3faPlxw0OIljbD0PsXYBADgfBQMAcCNbR3fTbT91+YbBSfJ28HySrD+aqLuvXESIwWkAAAAAOKpl1ZK67ZP/OmZwkrzl5Jil9QT90Q+fDWhsbBgA8AEUDADAjZQOC9Ztz3bDEQa9Jq3VbZ81vIXBSQAAMEZGRoZs2bJFpkyZIo888og0bNhQAgICxGQyiclkkmHDhrns2sOGDbNcx9GfdevWuSwPABjl562n5EKS/qLMrJsGAM4XoDoAACBvXSaukrgP+qqO4ZDOtcuqjgAAgNN9+eWX8tJLL0lGRobqKADgFI91qCpfI9g8fgAAK5ZJREFUrz2haT9+KVmqlQlTkEjf6/P26LYPblXZ4CQA4BsoGACAm1n1cmfpPHGVpj0xOV1K2RiBYLS9Z66pjgAAgKESEhLcplgQGxsrderUyfO4ChWY2xuAbS/3rK1bMOj6yWqP6Kz0r261VEcAAK9EwQAA3Ex06VDd9olLD8uEexoanEbf1NX6c5tuHNXV4CQAABgrKipKWrRoYfmZOnWqzJ0719AMDz30kEunPwLgG4ID/FVHKJQy4e7RmQoAvA1rGACAh/jh73jVEURE5EJSmvy5+5zuvshiRQxOAwCAMYYPHy7nz5+X+Ph4+fXXX+X111+X2NhYCQ3VL/QDgCcYZGNan5T0LIOTaOXkmOWrNfodleY82srgNADgOygYAIAb+vBe/ZEEa49cMjiJNbPZLK3eX6G7b+pDzQxOAwCAcapUqSLlypVTHQMAnGrcXfV12ztPXCVms9ngNNY+X3lE3l94UHdf2xqlDU4DAL6DggEAuKEHW1SWIH/tr+iHv/lbEpLTFSS66ZOlh23u69WgvIFJAAAAABRWgL+fLHq+g6b90vV0if1ktYJEN+XkmGXS8iO6+8bdrV/kAAA4BwUDAHBTe9/pqds+dMbfBie55cu/juq2v9idBccAAAAAT1Q3MkK3/XhCisFJbll58KLNfQ+3rmJgEgDwPSx6DABuKihAv6a772ySwUluGvP7Xpv7RnapYWASAAB828mTJ2X69Oly4sQJSUtLk5IlS0r16tWlY8eOUqFCBdXxAKBQktOz5NH/btXd16dheTGZTAYnAgDfQsEAAOCQ/248qdteomig+Ptx0w4AgFHGjh1rc1/v3r1l/Pjx0qwZawsBcNyH9zaU137do2nfe+aaNKhYzNAsDd5eYnPfFwObGpgEAHwTUxIBgBt7omM13fY9p68ZmsPeYssbR8UamAQAANizaNEiadOmjUyZMkV1FAAe5IHmUbrtd3yxztAcOTm2F1qeMrgpHZUAwAAUDADAjY3qU1e3/c4v18mnSw+J2Wz7htqZHv7G9roJIYH+hmQAAMCXmUwmadWqlXz88ceyceNGSUxMlMzMTLly5Yps2LBBXnnlFQkLCxMRkczMTBk5cqT8+OOPDp07PT1dkpKSrH4A+BaTySR/Ptted1/NNxfKqcuphuSYuPSQzX29G0YakgEAfB0FAwBwcx/dG6Pb/vnKozJ322mXX7/1+yts7vt8YBOXXx8AAIh88sknsmnTJnn55ZeldevWUrJkSQkICJDixYtLmzZt5KOPPpIdO3ZIjRo31xUym80ycuRIuXYt71GJEyZMkGLFill+oqL0exoD8G62ph7KzDZLh4/+cvn1d526Kv9Zdczl1wEA2McaBgDg5u5oFCmv/rpbd98rc3fL/TaGDzuD2WyW80lpNvff1YiFFQEA6kydOlUmTZrk1HNOmDBB+vfv79RzOkPJkiXzPKZGjRryxx9/SExMjGRmZsrly5fl66+/lpdfftnu+0aNGiUvvviiZTspKYmiAeCjejcoL4v2ntfdZzabXbrg8N2T19vct3FUV5ddFwBgjYIBALi5okEB8tF9MfLqXP2iQVZ2jgT4u2bA2Fu/77W5r231Ui65JgAAjkpISJBDh2xPX1EQjvTId2d16tSRAQMGyOzZs0Xk5poGeRUMgoODJTg42Ih4ANzclIeaSfTrC3T3fbj4kLzeu45LrpuSnmV3f2SxIi65LgBAiymJAMADdK9bzua+kXO2u+SaGVk58t2meJv7vxrS3CXXBQAAhRMbG2t5feDAAYVJAHiTqauPuWwNtbd+s91R6cN7G7rkmgAAfRQMAMADlAgNsrlvyb4LTr/erPUnpNboRTb3x33QV8KCGaQGAFBr9OjRYjabnfozbNgw1f+sQouMvLUwaGJiosIkADzR8hc72dy37miCU68Vl5AiXT9ZJfN2nNHdv/C5DvJgi8pOvSYAwD4KBgDgISYPampz38PfbJbZm05Kdk7he/x8uPigjP1jf6HPAwAA1EhJSbG8Dg0NVZgEgCeqUTbM5r6PlxySx/67VS7YWefMUelZ2dJ54io5finF5jH1KkQU+joAgPyhYAAAHqJPw/I29609kiBv/bZXBn29qdDXmbLqmN394++uX+hrAAAA19mxY4fl9e2jDQDAUfOebqvbvvv0NVm2/4K0en+FpGVmF+oaX60+Xqj3AwBcg4IBAHgIk8kk7/VvYPeYzScuy/6zSQW+xt2T1+d5zP3Nowp8fgAA4FqZmZny/fffW7Y7dbI9tQgA2NK0cok8jxk282/JzM4p0Pl3xF+RT5YdtnvMKBctsAwAsI+CAQB4kAcc+LK+z+dr5cWfd+brvGmZ2VL3rcWy69RVu8cde7+PhAT65+vcAACgcJKTkx0+9tVXX5Xjx2/12h08eLArIgHwAWPuqGd3/6bjl6Xmm4vyPdLgl62npP9/NuR53BOdqufrvAAA56BgAAAeJNDfTw6/2zvP4+ZtPyPTVh/Ls8eP2WyWudtOS523FssNB270/f1MDmcFAAD2rVq1Skwmk+UnLi5O97jnn39e7r//flmyZIlkZWXpHnPy5EkZOHCgTJo0ydJ2zz33SLt27VyQHIAveKR9VRnSpkqex9V5a7FDIw0Onb8uI7/fLq/M3Z3nse/cxTSoAKBKgOoAAID8CQrwk3qREbL/nP2phyYsOigTFh2UOY+2krY1Smv238jIlmbvLpPUDMd6BN3frFKB8gIA4C0aN26saYuPj7e8nj9/vu4xO3fuLNR1s7OzZe7cuTJ37lwJCwuTmJgYiY6OlvDwcElNTZWDBw/K9u3bJTv71t/0Jk2ayKxZswp1XQB4rVcd+e/Gk3keV/PNRdKxVhn5dngLMZm0nYz+t+O0vPDTLoevO7Bl5XzlBAA4DwUDAPBAs4a3kJbvr3Do2EHTN8tzsTUlJ8csD7epIoOnb5ajFx2f2kBE5NH2VWVUn7oFiQoAgNfYtcv+l11XrlyRK1euuDRDcnKybNiwQTZs0J/Ow9/fXx5//HGZOHGiFC1a1KVZAHi/0OAAqVM+XA6ev57nsWsOX5IuE1dJg4rFZGjbaElMTpcnv9ue72uue62LBAUwIQYAqGIym81m1SGQt6SkJClWrJhcu3ZNIiIiVMcB4AYuJqU5XDQorF1jekixooGGXAsAfAn3eJ5Fr9esI2w9cq1atUq6dOli2T5x4oRER0drjrt69aps3LhRNmzYIH///becPn1aEhMT5fLlyxIUFCQlS5aU+vXrS/v27WXIkCESFZX3mkf28LkEcDuz2SxVRy005Fo96pWTr4Y0N+RaAOBL8nN/xwgDAPBQZSNCDLnO9CHNKRYAACC2v/gvqM6dOzt0zuLFi0vv3r2ld++81zECAGczmUzyWIeq8vXaEy69TtEgf/n4vkYuvQYAIG+M8QIADzbt4WYuv0a3euVcfg0AAAAA7uvlnrVdfo3tb3WnoxIAuAEKBgDgwXrWLy8/Pt7aZeffNrqby84NAAAAwDMEB/hL3Ad9XXb+V3vVlpBAf5edHwDgOAoGAODhWkSXdMl5j73fR0qFBbvk3AAAAAA8z4PNC7dGip4xd9STpzvXcPp5AQAFQ8EAADycv59JVr3c2Wnn++8jLWXr6G7i71ewhR0BAAAAeKcP7m3otHMF+Jlkyb86yvB20U47JwCg8CgYAIAXiC4dKvve6SkDW1Yu1HnG3V1fOtYqI6UZWQAAAAAgF5PJJCcm9JEFz7Uv1HlKhwXL+te7Su3y4WIy0VEJANwJBYNCysjIkC1btsiUKVPkkUcekYYNG0pAQICYTCYxmUwybNgw1REB+IjQ4AAZd3d9eaRd1QK9f3TfujKkTbRzQwEAAADwKiaTSepXKCazhrco8Dm2ju4m5SJCnJgKAOAsAaoDeLIvv/xSXnrpJcnIyFAdBQBERCTQ30/G3FlPdp2+KttOXsnXex/tUM1FqQAAAAB4m861y8rOMd2l8bhl+Xrf3CfbuCgRAMAZGGFQCAkJCRQLALilX59qK7OGt5D3+jdw6PjfRrZzcSIAAAAA3qZ40SBZ/3pXmTyoqUPH96hXTppHl3RxKgBAYTDCwAmioqKkRYsWlp+pU6fK3LlzVccC4OM61y4rIiKnLt+QjccTpVGlYvLfjSct+we1qizv93feomUAAAAAfE/F4kWkYvEiUrV0Bxk+62/p36SSLNxzTuIvp4qISPUyoTJ9aAupWjpUcVIAgCMoGBTC8OHD5amnnpJy5cpZtc+ePVtRIgDQer13HcvrcXc7NuIAAAAAAPKjXoUI2fxGNxGxfgYBAHgWCgaFUKVKFdURAAAAAAAAAABwCtYwAAAAAAAAAAAAFAwAAAAAAAAAAAAFAwAAAAAAAAAAIBQMAAAAAAAAAACAUDAAAAAAAAAAAAAiEqA6APSlp6dLenq6ZTspKUlhGgAAAAAAAACAt2OEgZuaMGGCFCtWzPITFRWlOhIAAAAAAAAAwIt53QiDqVOnyqRJk5x6zgkTJkj//v2des68jBo1Sl588UXLdlJSEkUDAAAAAAAAAIDLeF3BICEhQQ4dOuTUc167ds2p53NEcHCwBAcHG35dAAAAAAAAAIBvYkoiAAAAAAAAAADgfQWD0aNHi9lsdurPsGHDVP+zAAAAAAAAAABwKa8rGAAAAAAAAAAAgPyjYAAAAAAAAAAAACgYAAAAAAAAAAAACgYAAAAAAAAAAEAoGAAAAAAAAAAAABEJUB3A0zVu3FjTFh8fb3k9f/583WN27tzpulAAAAAAAAAAAOQTBYNC2rVrl939V65ckStXrhiUBgAAAAAAAACAgmFKIgAAAAAAAAAAwAiDwjKbzaojAAAAAAAAAABQaIwwAAAAAAAAAAAAFAwAAAAAAAAAAAAFAwAAAAAAAAAAIBQMAAAAAAAAAACAsOixx/hnceWkpCTFSQAAAOAs/9zb/XOvB7gDnj0AAAC8S36eOygYeIjr16+LiEhUVJTiJAAAAHC269evS7FixVTHAESEZw8AAABv5chzh8lMdyaPkJOTI2fPnpXw8HAxmUyGXDMpKUmioqLk1KlTEhERYcg14T34/KCg+OygMPj8oDBUfH7MZrNcv35dKlSoIH5+zBYK96Di2QPej7/RcEd8LuGO+FzCFfLz3MEIAw/h5+cnlSpVUnLtiIgIfkGhwPj8oKD47KAw+PygMIz+/DCyAO5G5bMHvB9/o+GO+FzCHfG5hLM5+txBNyYAAAAAAAAAAEDBAAAAAAAAAAAAUDCAHcHBwfL2229LcHCw6ijwQHx+UFB8dlAYfH5QGHx+AMB1+B0Ld8TnEu6IzyVUY9FjAAAAAAAAAADACAMAAAAAAAAAAEDBAAAAAAAAAAAACAUDAAAAAAAAAAAgFAxQCAcOHJDPP/9cHnjgAalXr54UK1ZMAgMDpXTp0tK8eXN5/vnnZceOHapjwk1lZGTIli1bZMqUKfLII49Iw4YNJSAgQEwmk5hMJhk2bJjqiDBQRkaGzJ49W/r06SNVqlSRkJAQiYyMlLZt28rEiRMlISFBdUS4oezsbNm9e7d888038tRTT0nz5s0lKCjI8nukc+fOqiPCjcXFxcnXX38tDz30kDRq1EhKlCghgYGBUrJkSYmJiZEnnnhCVq9erTomAPgMng9gFJ494E54poE7YtFj5NuyZcvkhRdekH379jl0/P333y9Tp06VkiVLujgZPMWXX34pL730kmRkZNg8ZujQoTJr1izjQkGZgwcPyqBBg+wWGMuWLSszZ86UPn36GJgM7uy3336TwYMHS2pqqs1jOnXqJKtWrTIuFDzCjh075Mknn5S///7boeM7d+4s3377rVSuXNnFyQDAd/F8AKPw7AF3wjMN3FWA6gDwPNu2bbMqFphMJomJiZFatWpJiRIl5NKlS7Ju3Tq5dOmSiIj88ssvsn//flm9erWUKlVKVWy4kYSEBLsPA/Adp0+fltjYWDl79qyI3Px90rFjR6lRo4ZcvHhRli9fLjdu3JCLFy9Kv379ZNGiRRIbG6s4NdzB1atX7d5YA7YcOnRIUyyoVauWNGjQQEqXLi1Xr16VDRs2yOnTp0VEZNWqVdKmTRtZu3atVKtWTUVkAPB6PB/ACDx7wN3wTAN3RcEABda4cWN57LHH5MEHH9QUAjIyMuTTTz+V0aNHS3Z2tuzbt0+efvpp+emnnxSlhTuKioqSFi1aWH6mTp0qc+fOVR0LBho8eLDlhr1KlSoyf/58iYmJsexPSEiQAQMGyIoVKyQzM1MeeOABOXbsmBQvXlxRYribcuXKWf0eWbJkiXz22WeqY8ED1KhRQx599FF56KGHpGLFilb7cnJyZObMmfLcc89JamqqnD17VgYPHiwbNmwQk8mkKDEAeD+eD+BKPHvAXfFMA3dDwQD5VqtWLfnf//4n/fr1s3lMUFCQvP766xIcHCwvvviiiIj8/PPP8s4770idOnUMSgp3NXz4cHnqqaekXLlyVu2zZ89WlAgqLFy4UNasWSMiN39n/PHHH9KwYUOrY0qXLi2///67xMTEyPHjx+Xy5cvy0Ucfyfvvv68iMtxIr1695OTJk5ppYjZv3qwoETxFZGSkzJw5Ux5++GHx9/fXPcbPz09GjBghJUuWlHvuuUdERDZt2iRLly6Vnj17GhkXAHwCzwdwNZ494I54poG7YtFj5Ns999xjt1hwu+eee04qVKhg2V64cKGLUsGTVKlSRfMwAN8zefJky+uhQ4dqbtj/ERoaKuPGjbNsT5s2TbKyslyeD+6tfPnyzCmPAunUqZMMGzbMZrHgdv3795eWLVtathcsWODKaADgs3g+gKvx7AF3xDMN3BUFA7iUv7+/tGrVyrIdFxenLgwAt5GcnCwrVqywbA8fPtzu8ffdd5+Eh4eLiMjly5ctvYMAwNXatWtnec19DAAAnodnDwDIHwoGcLnb5/rNzs5WmASAu9iwYYOkp6eLyM1ePC1atLB7fHBwsLRu3dqyvXLlSpfmA4B/cB8DAIBn49kDAPKHggFcbs+ePZbXUVFRCpMAcBcHDhywvG7YsKEEBOS9pE7Tpk113w8ArsR9DAAAno1nDwDIHwoGcKkNGzbIkSNHLNvdunVTmAaAuzh06JDldZUqVRx6z+1zOx48eNDpmQAgt1OnTln1KuQ+BgAAz8OzBwDkDwUDuExOTo688MILlu1WrVpJ8+bNFSYC4C4SExMtrx1d4K58+fKW15cvX3Z6JgDI7YUXXrBMQ1S5cmW58847FScCAAD5xbMHAOQPBQO4zPjx4+Xvv/8WERE/Pz+ZOHGi4kQA3EVycrLldZEiRRx6z+3H3f5+AHCFb7/9Vn799VfL9oQJEyQ4OFhhIgAAUBA8ewBA/lAwgEv88ccf8s4771i2X3nlFWnfvr3CRADcSVpamuV1UFCQQ++5/Yu6GzduOD0TAPxj69at8uSTT1q2H3zwQRk0aJDCRAAAoKB49gCA/Ml7pRd4jKlTp8qkSZOces4JEyZI//798/WeLVu2yMCBA8VsNouISGxsrIwfP96pueB87vL5gW8ICQmxvM7IyHDoPenp6ZbXjvYMAoD8OnHihNx5552WLxcaNmwo06ZNU5wKAIzH8wG8Bc8eAJA/FAy8SEJCgtViPs5w7dq1fB2/f/9+6d27t6SkpIiISIsWLeS3336TwMBAp+aC87nD5we+IywszPLa0R47tx93+/sBwFnOnTsn3bt3l/Pnz4uISLVq1WTJkiVSrFgxxckAwHg8H8Bb8OwBAPnDlERwmhMnTkj37t0tCwrVq1dPFi1axB9XABqlSpWyvL5w4YJD7/nnCzwRkZIlSzo9EwDflpiYKN27d5djx46JiEhkZKQsX75cIiMjFScDAACFwbMHAOQPBQMvMnr0aDGbzU79GTZsmEPXPnPmjMTGxsrZs2dFRKR69eqybNkyqz/McG8qPz/wPbVr17a8PnnypEPviY+Pt7yuU6eO0zMB8F1JSUnSq1cv2bdvn4jc/GJh2bJlUrVqVcXJAEAdng/gLXj2AID8oWCAQrt48aLExsbKiRMnRESkUqVKsnz5cqlQoYLiZADcVd26dS2v9+zZI1lZWXm+Z/v27brvB4DCSElJkT59+sjWrVtFRCQiIkKWLFki9evXV5wMAAA4A88eAJA/FAxQKImJidKtWzfL3JZly5aV5cuXS3R0tNpgANxa27ZtJTg4WERufln3zxd1tqSnp8umTZss2127dnVpPgC+IS0tTe666y5Zv369iIgULVpUFi5cKM2aNVOcDAAAOAvPHgCQPxQMUGD/DN/fs2ePiIiUKFFCli1bZjXcDwD0hIWFSWxsrGV71qxZdo+fN2+eXL9+XURu/q7p2LGjK+MB8AGZmZly7733ysqVK0VEJDg4WH7//Xdp166d4mQAAMCZePYAgPyhYIACSU1Nlb59+1oq8+Hh4bJ48WKJiYlRnAyAp3j66actr2fOnGmZOzy31NRUGTNmjGX7iSeekICAAJfnA+C9srOzZdCgQbJw4UIREQkICJCff/5ZunXrpjgZAABwBZ49AMBxFAyQb+np6dKvXz9Zt26diIgUKVJE/vzzT2nZsqXiZAA8Sd++faVDhw4iIpKRkSF33HGHZcTSPxITE6Vfv35y9OhREREpWbKkvPbaa4ZnBeA9zGazPProozJ37lwREfHz85PZs2fLXXfdpTgZAABwFZ49AMBxJrPZbFYdAp7l1VdflY8//tiy3bRpU2nTpo1D761Zs6Y8//zzrooGD9K4cWNNW3x8vFy5ckVEbg79rFy5suaYnTt3ujgZjHT69Glp2bKlnDt3TkRufnHXqVMnqVatmly6dEmWL18uqampInKzB/DixYuthhPDt/Xp00fOnj1r1Xb+/Hm5cOGCiIiEhoZKjRo1NO9buHChVKhQwZCMcD//+c9/ZOTIkZbtmjVrSo8ePRx6b6lSpeSdd95xVTQA8Gk8H8DVePaAO+KZBu6IggHybdiwYfLtt98W6L2dOnWSVatWOTcQPJLJZCrQ+/iV5X0OHjwoAwcOtPuwV6ZMGZk5c6b07dvXuGBwe9HR0XLy5Ml8v+/EiRMSHR3t/EDwCGPHji3wl/5VqlSRuLg45wYCAIgIzwcwBs8ecDc808AdMREbAECpOnXqyObNm+XHH3+UH374Qfbt2ycXLlyQ4sWLS7Vq1aR///7yyCOPSOnSpVVHBQAAAODBePYAgLwxwgAAAAAAAAAAALDoMQAAAAAAAAAAoGAAAAAAAAAAAACEggEAAAAAAAAAABAKBgAAAAAAAAAAQCgYAAAAAAAAAAAAoWAAAAAAAAAAAACEggEAAAAAAAAAABAKBgAAAAAAAAAAQCgYAAAAAAAAAAAAoWAAAAAAAAAAAACEggEAAAAAAAAAABAKBgAAAAAAAAAAQCgYAAAAAAAAAE4XFxcnJpNJTCaTREdHq45j06xZsyw5hw0bpjoOAMUoGAAAAAAAAAAAAAoGAAAAAAAAAACAggEAAAAAAAAAABAKBgAAAAAAAAAAQCgYAAAAAAAAAAAAoWAAAAAAAAAAAACEggEAQJHjx49LRESEmEwmMZlM8umnn+b5nieffNJyfHR0tFy7ds2ApAAAAIDnc+f775UrV8qIESOkYcOGUrx4cQkMDJTSpUtL3bp1pXPnzvLmm2/KmjVrJDMzM89zJSUlyRdffCF33nmnREdHS1hYmAQHB0uFChUkNjZW3nnnHdm3b5/N99+4cUN+++03ee6556R9+/ZSrlw5CQoKkrCwMImOjpZ77rlHZsyYIRkZGc78n8AiMTFRPvnkE+nevbtERUVJSEiIFC9eXOrVqycjR46UrVu35ut8Bw4ckGeeeUZq1qwpRYsWldKlS0vz5s1lwoQJkpCQ4JJ/AwDPZjKbzWbVIQAAvmn27NkyZMgQEREJCgqSzZs3S+PGjXWP/f3336Vfv34iIuLn5yerVq2SDh06GJQUAAAA8Hzudv+dnJwsgwcPlvnz5zt0/Ndffy2PPvqozf1Tp06VN954Q65cuZLnuRYtWiS9evWyatu8ebN069ZNkpOT83x/dHS0zJs3T5o0aWLzmLi4OKlataqIiFSpUkXi4uLsnnPy5Mny5ptv2i3MmEwmGT58uEyZMkWCgoLsnu/zzz+XV155xWZxIzIyUn755Rc5cuSIDB8+XEREhg4dKrNmzbJ7XgDeLUB1AACA73r44Ydl0aJF8sMPP0hGRoYMGjRItm3bJkWKFLE67uzZszJixAjL9htvvEGxAAAAAMgnd7v/fvjh/2vv3mNrvv84jr+6ouhlrVIx5WDFOpXYKEZoakjmurkurGvNXCJbyzYyszRj/UdsMddiGy27yGY3o9TsuGSqLlPJoSyzKHohp7Q7LXr//v6QfdOjLdX67Rzd85E0+Xy+38/383mf/vU53/f5fD5RTsmCkJAQPfPMM2rTpo3Ky8tlt9tls9nu+6JdkmJjY7VmzRqz7unpqfDwcHXv3l0tW7aU3W7X6dOnzb5KSkpq9FFQUGAmC4KCgtSrVy8FBwfL29tbt27d0oULF3T8+HFVVFQoKytLEREROnXqlEJCQhr3j5C0YMECffLJJ2Y9MDBQAwcO1BNPPKGSkhJlZGTozJkzMgxDmzdvVm5urnbv3q3HHqt985B169YpLi7OrHt5eSkyMlLBwcGy2+2yWq3Ky8vTmDFjNH/+/EbHD6AJMQAAcKHCwkLDYrEYkgxJxty5c53uV1VVGcOHDzfvDxgwwCgvL3dRtAAAAMCjzV3m3xkZGeYYPj4+RkpKSp1t//rrLyMhIcHYuXNnrfcTExPNviQZU6ZMMa5cuVJrW5vNZsTGxhqpqak17qWnpxvvvfeeYbPZ6ozl2rVrRlRUlDnW888/X2fbixcvmu0sFkud7T7//HOn/0ViYqJRWlpao53VajU6duxotl2+fHmt/Z0/f97w8vIy2w0fPtzIy8tzauNwOMzP0aJFC7NtdHR0nXEC+G9gSyIAgMsdOXJEERERqqyslHRn+fO4ceMkSStWrNCiRYskST4+Pjp9+rSefPJJl8UKAAAAPOrcYf69du1avfnmm5KkJUuWKCEhoUH9FBQUyGKxqKioSNKdcxcSExMfWpx1GTVqlPbs2SNJyszMVGhoaI029dmSqKioSJ07d1ZhYaE8PT1ltVo1dOjQOsc9d+6cnn32WZWUlCgwMFCXL19W69atndpMmzZNX3/9tSSpd+/eOnbsWI1VJJJUVVWlsWPHKiUlxbzGlkQAOPQYAOBygwcP1pIlS8z6zJkzlZeXp1OnTun99983r69Zs4ZkAQAAANBI7jD/djgcZrldu3YN7mfTpk1mssBisTht6/P/FBMTY5b379/f4H42b96swsJCs897JQskKTQ0VNHR0ZLuHJC8d+9ep/sFBQX6/vvvzfqKFStqTRZId86mWLVqlTw8PBocP4CmhzMMAABuIT4+Xvv371daWpry8/MVFRWl7Oxs84CuKVOmOE3KAQAAADScq+ffnTt3NsvJycl6/fXX5e3t/cD9VH9hPmvWLHl5eT2U+G7duqX09HTZbDbZ7XYVFRWZKzIkKScnxyyfPn26weNU/3X/yy+/XK9nhg0bpo0bN0qSfvvtN02YMMG8l5aWptLSUklS+/btNWLEiHv2FRISokGDBunIkSMPGjqAJoqEAQDALXh6euqLL75Qnz595HA49Ouvv5r3OnXqZE6IAQAAADSeq+ffo0aNko+Pj4qLi5WRkaGePXtqxowZGj16tPr27avmzZvXq59jx46Z5cjIyEbHdePGDcXHx2vr1q3myoX7yc/Pb/B4R48eNctbt27Vjz/+eN9nsrOzzfKVK1ec7lVPXoSHh9d5KHJ1AwcOJGEAwETCAADgNrp27ar169frlVdeMa899thj2rZtm/z9/V0XGAAAANAEuXL+3aZNG23ZskXTp09XWVmZcnJylJCQoISEBLVq1Ur9+/dXRESExo0bp759+9bah8Ph0O3bt816t27dGhXTpUuXNHToUF2+fPmBnqtvYuFuxcXFTs9u27btgfsoKChwqtvtdrNcfRXHvXTq1OmBxwXQdHGGAQDArQQFBTnVO3bsqP79+7soGgAAAKBpc+X8e9KkSTp58qQmT56sFi1amNdv376tQ4cOadmyZerXr5/69eunw4cP13j+7hf1Pj4+jYpn+vTpZrLAz89Pb7/9tlJTU3Xx4kUVFxersrJShmHIMAwdOHDAfK6qqqpB4/3999+NileSKioqnOrFxcVm+e7DkOvSkK2gADRdJAwAAG7j+vXr5gFe/7hy5YreeustF0UEAAAANF3uMP/u3bu3vvnmG9ntdu3atUuLFi3Sc88957Ql0e+//67IyEh9++23Ts/6+vo61au/LH9QaWlp5rY8vr6+OnbsmD766CONHDlSXbp0kbe3t9P2Pg1dVVDd3S/qCwsLzYREff8OHjzo1Ef1pMmtW7fqFcfNmzcb/VkANB0kDAAAbmPmzJnKy8uTJHXv3t2ckG/YsEE///yzK0MDAAAAmhx3mn/7+flp9OjRWr58uXkQc1JSkrp06SLpzq/4582b57QFkZ+fn1q1amXWL1682ODxq5/hEBMTo6eeeuqe7S9dutTgsf7h7+/vdEjzn3/+2eg+27VrZ5bru7XS3ecgAPhvI2EAAHALGzdu1E8//STpztLZXbt2afHixeb9mTNn6urVq64KDwAAAGhS3H3+7efnp+joaFmtVvOlen5+vtMhwZI0YMAAs2y1Whs8Xm5urlnu1avXfdvXtkVSQ1Tf/ik1NbXR/fXp08csnzhxol7bJaWnpzd6XABNBwkDAIDL/fHHH07LnleuXKkePXrogw8+MCfQdrtdMTExMgzDVWECAAAATcKjNP/u2rWr0wv8a9euOd1/4YUXzPKnn36q0tLSBo1Tfbuh+23lk5ubq507dzZonLuNGTPGLG/YsEElJSWN6m/QoEHmeRDXrl3TL7/8cs/2Fy5cUFpaWqPGBNC0kDAAALhUeXm5pk2bZk7Kx48fr9mzZ0uSmjVrpi+//NLchzM1NVWrVq1yWawAAADAo85d5t/5+fn1aldRUWFumyQ5b7kjSbNmzTLjvXTpkubPn9+geLp162aW/1l5UZvKykrNnj27wYmJu82ZM0f+/v6SpOzsbM2bN6/eSZr8/HxVVlY6XQsICNCECRPM+sKFC522carOMAzFxcW5PCkEwL2QMAAAuNSSJUt06tQpSVKHDh302WefOd0PCQlx+pLy7rvvymaz/asxAgAAAE2Fu8y/Fy5cqCFDhig5OVkFBQW1trHb7XrttdfMhIGfn58GDx7s1CYgIEDLly836xs2bNDUqVOVnZ1da59nz55VXFyc9u3b53R99OjR8vDwkCQdOnRI77zzTo0X7VevXtXEiRO1e/fuGgcWN9Tjjz+ulStXmvUtW7Zo7NixOn/+fK3tDcPQ0aNH9cYbb8hisdSaDIiPjze3cbLZbBo/fnyN7aWKiooUHR2tlJQUc0UCAEiSh0EaEQDgIlarVSNGjFBVVZU8PDy0d+9ejRw5sta2kydP1o4dOyRJYWFhOnHihFq2bPlvhgsAAAA80txp/h0TE6Pk5GRJkqenp3r27Kmnn35aAQEBun37trKzs5WWlqaysjLzmU2bNmnWrFm19jdv3jwlJiaadU9PT4WHh6tHjx5q2bKl7Ha7MjIylJWVJUn64Ycf9OKLLzr1ER0dra1bt5r1Dh06KDw8XEFBQcrKytLhw4dVVlYmX19frVixQnPnzpUkRURE6ODBgzViysrKUteuXSVJFovFHLs28fHx+vDDD826h4eHwsLCFBYWJj8/P928eVM5OTnKyMhQYWGh2a6oqMhcYVHd6tWrFRcXZ9a9vLw0bNgwBQcHy263y2q1yuFwyN/fX3FxcVq6dKn5P0hKSqozTgBNXzNXBwAA+G+6ceOGXn31VfMQrtjY2Dq/rEh3vhykp6crOztbZ86c0aJFi7R69ep/K1wAAADgkeZu829fX1+zXFlZqczMTGVmZtbZ9uOPP64zWSBJ69evV8+ePRUfHy+Hw6HKykqlp6fXeqCvh4eHWrduXeN6YmKirl69aq4+yMvLq3FWQXBwsLZv367y8vJ6fc76WrZsmcLCwrRgwQLl5ubKMAzZbLZ7ru7o37+/mjdvXuu92NhYVVRUaPHixSorK1Npaan27Nnj1KZ9+/basWOHLly48FA/C4BHGysMAAAuMWnSJH333XeS7vxi6eTJk+ay2bocOHBAw4cPN7/kpKSkOB1yBgAAAKB27jj/PnfunPbv36/09HSdPXtWly9fVlFRkZo1a6bAwED16tVLI0eOVFRUlIKCgurV5/Xr15WUlKTU1FRlZmaaZyW0bdtWoaGhioiI0NSpU9W9e/dan6+qqtJXX32l5ORkZWRkyOFwqG3bturWrZsmTpyomJgYBQQE6ODBg4qMjJT0cFYY/KO0tFTbt29XamqqTpw4IbvdruLiYnl7e6tjx44KDQ3VkCFDNGrUKPXo0eO+/WVmZmrt2rXat2+fcnJy1Lp1a1ksFr300kuaM2eOgoKClJSUpBkzZkhihQEAEgYAAAAAAAAAAEAcegwAAAAAAAAAAETCAAAAAAAAAAAAiIQBAAAAAAAAAAAQCQMAAAAAAAAAACCpmasDAAAAAAAAgPtLSUlRSkpKo/oIDAzU0qVLH1JEAICHjYQBAAAAAAAA7uv48eNat25do/qwWCwkDADAjbElEQAAAAAAAAAAkIdhGIargwAAAAAAAAAAAK7FCgMAAAAAAAAAAEDCAAAAAAAAAAAAkDAAAAAAAAAAAAAiYQAAAAAAAAAAAETCAAAAAAAAAAAAiIQBAAAAAAAAAAAQCQMAAAAAAAAAACASBgAAAAAAAAAAQCQMAAAAAAAAAACApP8BevtAtA3RuM8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABgwAAALsCAYAAAA/G5wPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVd/G8XtDGhASSui99w6hSQdpgmIHpKjYu48FLBT1EXuvPCpNUbGCgoiUIEjvvRN6DZCQhPR5/+BlZVI3ye7O7ub7ua69rjmzZ2Zukw3O7G/mHJthGIYAAAAAAAAAAECh5md1AAAAAAAAAAAAYD0KBgAAAAAAAAAAgIIBAAAAAAAAAACgYAAAAAAAAAAAAETBAAAAAAAAAAAAiIIBAAAAAAAAAAAQBQMAAAAAAAAAACAKBgAAAAAAAAAAQBQMAAAAAAAAAACAKBgAgFeJjIyUzWaTzWZTt27d3HrsGjVq2I8dFRXl1mMDAAAA3sBbzpmvZLTZbFZH8RijRo2y/0ymTp3qtuNaeY0HAFmhYADAp0VFRZlOhp3xmjBhgtX/WXCjCRMmZPtZ8Pf3V5kyZVSrVi21bt1ao0aN0kcffaSNGzdaHRsAAMDjREZG6sEHH1SbNm1UtmxZBQYGqmjRoipXrpzatGmjoUOH6t1339W6detkGIbVcZGDnM6R8/vy5AILXOPqAlvGV7FixVSxYkXVr19f3bt311NPPaVvv/1Wp0+ftjo24PP8rQ4AAIC3SktL07lz53Tu3DkdPHhQGzZs0LRp0yRJLVq00P3336/Ro0erSJEibs82YcIETZw4UZI0fvx4Cl0AAMAyO3fu1F133aVVq1Zlei8lJUWJiYk6c+aM1q9fr2+//VaS1LhxY23bts3dUQF4iEuXLunSpUs6efKk9uzZo8jISElSYGCgBg8erCeeeELt2rWzJFuNGjV06NAhSdLBgwdVo0YNS3IArkLBAIBPCw0N1UMPPZRjnzVr1mjt2rWSpEqVKmnw4ME59o+IiHBaPniXrD4fFy9e1IULFxQVFaVt27YpPT1dkrRp0ybdf//9mjp1qmbMmKE6depYERkAAMBSGzduVI8ePXThwgX7uvLly6tNmzaqUKGCbDaboqOjtW3bNu3bt8/+ZMHV/eF5IiIicr3Omj59ui5evChJ6tmzpxo0aJBj/9DQUKflg/fJ+BlJS0vThQsXdP78eW3ZskUnTpyQJCUnJ+v777/XDz/8oKefflovvfSSAgMDrYoN+CQKBgB8WunSpfXRRx/l2GfChAn2gkHdunVz7W+lbt26WfZ4No8I5/75uHjxon7//Xe98847WrdunSRp1apVioiI0KpVq1SvXj13RQUAALBcSkqKhg4dav/yv1KlSvr44481aNAg+fllHiH5zJkzmj17tmbMmKEDBw64OS3yon///urfv3+OfX7//Xd7weCOO+7QqFGj3JAs/6ZOnerWuQuusPIaz5Pk9hk5ePCgvvzyS3322WeKjo5Wenq6Xn/9de3YsUO//vprlv+mAMgf/poAAHCSEiVKaMiQIVqzZo1effVV+1BE58+f13XXXaeYmBiLEwIAALjPr7/+ql27dkmSihYtqiVLluiGG27I9ou9smXLavTo0Vq6dKl9+BEAkKSaNWvqlVde0fbt202TQ//2228aO3asdcEAH0TBAAAAJ7PZbBo7dqwmTZpkX7d37169//77FqYCAABwrwULFtiXr7/++jw9bVm7dm1XRALg5cqXL6/58+erVatW9nVvv/02TyUBTkTBAAAcMGHCBNlsNtlsNvvksZcuXdKXX36pa6+9VtWqVVNgYKBsNps2bdpk2jYmJkbffvut7rvvPrVr107h4eEKDAxUaGioateurSFDhmjWrFn2se9zEhkZac9x9V0VV4uKirL3uXrypXXr1mn06NGqV6+eihUrplKlSikiIkKvvvqq4uPjcz12jRo17PvNbniibt262ftcuSvs3Llzev3119W2bVuFh4eraNGiqlWrlu6+++48T2S3Zs0a3X333apVq5aKFi2qsmXLKiIiQq+//rqio6MlXX6U+EoGqx97fuqpp9SpUyd7+/3331dcXFy2/Q8dOqRPP/1UQ4YMUZMmTRQWFqaAgACVKVNGTZs21QMPPJDlZIFXu/I7uDLhsSRNnDjR/jO5+pXVz+fSpUv69ddf9eijj+qaa65R+fLlFRgYqJCQENWoUUODBw/Wl19+qeTk5Lz/QAAAQKFy7Ngx+3L16tVdcoy0tDTNmjVLI0aMUP369VWqVCn7+VO7du302GOPadGiRdkO+ZKenq5ly5Zp3Lhx9vP6YsWKKSgoSBUrVlSPHj303//+V2fPnnVJ/pSUFM2YMUO33nqratWqpRIlSqh48eKqWbOmhgwZol9++SVPw9XExMRo0qRJatu2rUqVKqWQkBDVr19f99xzj9avX++S/4aCyuo6Y//+/Xr++efVsmVLlS1bVn5+fmrRokWmbXfu3Kl3331XN954o+rXr68SJUooICBAZcuWVZs2bfTEE09ox44dDuUYNWqUPUd2QxNldV2Ympqq6dOnq1evXqpcubL9s3PDDTfo999/z/W4Vl7jXZGWlqYvv/xSvXr1Uvny5RUcHKwaNWro+uuvN30Gs7res0JQUJBmzpxpf1opLS1Nr7/+erb9nfF3fvXv4MqEx9LlJx+yutbK6ufjjOs9wC0MACjkxo8fb0gyJBldu3bNtc/48eONHTt2GI0bN7avu/q1ceNG+3Y//fSTERQUlGW/jK/mzZsbBw4cyDHrkiVLcs168OBBe5/q1asb6enpxrhx4ww/P79sj12zZk1j//79OR67evXq9v4HDx7Msk/Xrl3tfZYsWWIsX77cqFy5crbHLVKkiDF58uQcj2sYhpGenm489dRTOf43VK5c2Vi5cqUxZcoU+7qRI0fmuu/cOPL5yMlPP/1kyvnzzz9n2e+pp54ybDabQ5+V22+/3YiPj89yP1f/DnJ7Zfz5rFq1yggJCXFo2xo1ahgbNmzI888DAAAUHgMGDLCfO9x6661O3//ff/9t1KtXz6Fzl2effTbT9snJyTmeq179Kl68uDFjxoxcMzlyznzFkiVLjNq1a+d67Pbt2xtHjx7N9djLli0zKlWqlO1+/Pz8jIkTJxqGYZjWu8rVP4spU6Y41O/gwYPG559/bgQHB2d5vXS1W265xaHfnc1mMx5//HEjNTU1x7wjR47MNW/G68KjR48aHTt2zPH4d955p5GWlpbtca28xjMMwzhy5IjRqlWrHP8brr/+eiM2NjbT9V5BOfoZyc7AgQPt25cqVSrLn7Oz/s6v/h048sr483HW9R7gDkx6DAB5FB0drb59++rw4cMKDg7WNddco+rVqysuLi7T3QCnT59WUlKSJKlKlSpq1KiRKlSooGLFiikuLk47d+7Uhg0bZBiGNm/erC5dumjTpk0qU6aM0/JOnDhRL730kiSpRYsWatq0qQICArRp0yZt2LBB0uUJpG644QZt2LBB/v7O+V/Dtm3bNHbsWMXFxalcuXLq3LmzypQpo2PHjmnx4sW6dOmS0tLSdP/996tp06Zq3759tvv6z3/+o3fffdfeDgkJUffu3VWhQgWdOnVKS5Ys0bFjxzRgwAA9/vjjTsnvLAMHDlRwcLASExMlScuWLdPgwYMz9Tty5IgMw5DNZlP9+vVVv359lSlTRgEBAYqOjtbGjRu1f/9+SdJ3332n2NhY/f7777LZbKb9DB48WE2aNNGaNWvsk3m3bdtWERERmY6Z8Wd+/vx5+xMQ5cqVU+PGjVWlShUVL15cCQkJ2rdvn9asWaPU1FRFRUWpa9eu2rBhg+rUqVPwHxQAAPA5Vw8r9Ntvv2nHjh1q1KiRU/b93XffacSIEUpJSbGvq1evnlq2bKmwsDDFxsZq+/bt2r59u9LT0+3nYldLS0uzPwUREhKixo0bq1atWgoNDVVKSoqOHj2qVatWKTY2VvHx8Ro+fLgCAgJ02223FTj/Dz/8oGHDhtnzFy1aVO3bt1eNGjXk5+enPXv2aOXKlUpNTdWqVavUoUMHrV27VuXLl89yf+vXr1e/fv1MT7O2adNGTZs2VXJyslatWqX9+/dr/PjxKlWqVIHzu8oPP/ygZ555RtLlSbI7deqksLAwHT9+XOfOnTP1PXz4sCTJ399fjRo1Ut26dVWyZEkVKVJEp0+f1tq1a3Xs2DEZhqH33ntPSUlJ+uSTT5yWNS4uTn379tW2bdtUrFgxde7cWVWrVtXFixe1ZMkSnT59WpI0ZcoU1a9fX88++6zTju2sa7zo6Gj16NFDe/futa+rXbu22rVrp6CgIO3cuVOrV6/W7Nmzdddddzktv7Pccsst+u233yRdvpbZtm2bmjVrZurjrL/z0NBQPfTQQ5Kk6dOn2yf0HjFihEqUKJEpW+XKlU1tZ13vAW5hbb0CAKyX1ycM/P39DUnGzTffbJw+fdrULy0tzUhOTra358yZY0yaNMnYu3dvtsc/cOCA0adPH/v+77777mz75vXuk8DAQMNmsxm1a9c2Vq9enanvrFmzjICAAHv/adOmZXvsvD5hEBQUZBQpUsR4++23jZSUFFO/w4cPG02aNLH37d69e7bHXbhwoelui2HDhhkxMTGmPhcvXjRGjRplP+6Vvp7whIFhGEaHDh3s++jQoUOWfd544w1jypQpxpkzZ7Ldz99//23UqVPHvq+c7nLLePeTI1atWmU899xzxtatW7Ptc+rUKWP48OH2fffs2dOhfQMAgMJn8eLFpvO4MmXKGG+88YZDd8vnZMOGDaY70Fu2bGmsWrUqy74nTpww3nzzTeP111/P9F5SUpJx5513GkuWLDGdw18tMTHReOONN+zXACVLljQuXryYbTZHzpm3bdtmFC1a1H73+1NPPWWcP38+U7/9+/cb11xzjX1//fr1y3J/SUlJRsOGDe39qlataqxYsSJTv2nTphlBQUFGYGCg6ffiKvl5wsDf398IDAw0Jk+ebKSnp5v6JSYmmtpjxowxZs2alena4Ir09HRjzpw5RtmyZe37X7ZsWbY58vqEwZXrjpEjRxrR0dGmfvHx8caQIUPsfUNCQoy4uLgs92nlNd4dd9xh7xccHGx8/fXXmfps2LDBfg1y9bWWJzxhsHv3btNn+fPPP8/Ux6q/84ycfb0HuBIFAwCFXl4LBpKMa6+9NsfHSvMqOTnZaNasmf1E7dy5c1n2y+vJ5JULs2PHjmV77Keeesret2/fvtn2y2vBILsTtiu2bt1qfyTTZrMZx48fz7Jfu3btTBdJ2f3c09PTjeuvv950fE8pGFwpZkgyatWqVaA8Bw8etF8gR0REZNsvPwWDvOjXr599/zt27HD6/gEAgG+4esiQKy+bzWbUr1/fGD58uPH+++8bq1evznSDSU46depk31ebNm1y/GLPWV577TX7MT/55JNs+zlyztyjRw97n3feeSfH48bFxRmNGjWy98+qMDJ58mTTl747d+7Mdn9ff/11pt+Hq+SnYCApyy+tC2LVqlX2fec0NFZeCwaSjCFDhmS7v0uXLhlVq1a19/3uu++y7GfVNd6OHTtM+/z222+z3V9UVJQRGhpq6u8JBYP09HTTsEwvvfRSgfI48+88vxy93gNciUmPASAf3nvvPfsES84QEBCgYcOGSZISExO1fPlyp+37ueeeU6VKlbJ9/+pHS68MYeMMTZs21b333pvt+02aNFHbtm0lSYZhaN26dZn6bN++XatXr7a3c/q522w2p/9enCUsLMy+fP78+QLtq0aNGurevbuky7+v2NjYAu0vv66eMHnhwoWWZAAAAJ5v5syZmYZjNAxDu3fv1owZM/TYY4+pXbt2KlmypG6//XYtWbIkx/2tXr1a//zzj6TL53/Tpk1TSEiIy/Jfceedd9qXC3Lus3nzZi1evFiS1LJly1yH0yxevLhefPFFe/ubb77J1OeLL76wLz/yyCNq0KBBtvsbNmyYOnbsmMfU7hMREWG/LnKWdu3aqWHDhpKkRYsWOW2/gYGBeuedd7J9Pzg4WEOGDLG316xZ47RjO+Ma76uvvrIvd+zYUbfffnu2+6tevbr+85//5COpa9lsNtNwQAW91nLW33lBeMr1Hgo35jAAgDxq1qyZ/YQzLy5cuKBVq1Zp+/btio6OVlxcnNLT0+3v79q1y768adMmDRw40Cl5b7nllhzfb9CggYoWLapLly4pOjpaFy9ezHIMRmcfV7p8kXTlxDkqKirT+5GRkfbliIgI1atXL8f91ahRQ506ddKyZcvylNXVrr6IvTLWZU4OHz6sNWvWaM+ePbpw4YIuXbokwzDs7x88eFCS7HNfdO7c2emZExIStGrVKm3dulVnzpzRxYsXlZaWZn//yjig0uXPKwAAQFZCQkL0888/a968eXrvvfe0aNEi0znwFfHx8fr+++/1/fffa9CgQZo6dWqWY+3Pnz/fvtyzZ0+nzYmQnp6u9evXa9OmTTp69KhiY2NN8yNcrSDnPvPmzbMvDxkyxKHxyXv06GFfznhj0cWLF0033owYMSLX/Y0cOVIrVqxwJK7b5fSldU727NmjdevWaf/+/YqJiVFSUpLp/DkmJkbS5TH7jxw5oqpVqxY46zXXXKMKFSrk2Kdly5b25ayud/LLGdd4V19r3XHHHbke84477tD48ePzldeVQkJC7L/f3K613PV3nhtPuN4DckLBAADyqHXr1nnqf/ToUY0ZM0Y//vijfQLk3Jw9ezY/0TIJCwvL9WTYZrOpVKlSunTpkiQpNjbWKQWDpk2b5trn6smds7pz4uqTtHbt2jl03Hbt2nlcweDqE9fQ0NBs+61cuVJjxozRsmXLTCeMOXHWZ+WKc+fOady4caaJvNydAQAA+J7+/furf//+OnPmjCIjI7VixQqtX79eGzduNE3UK0lz5sxR586dtXLlykznpatWrbIvX7kLtyBSU1P1wQcf6N1339XRo0cd2qYg5z4rV660Ly9ZskSHDh3KdZurzwuPHDliem/Lli32AkyJEiXUuHHjXPfXoUMHR+O6XV6vtebOnasXX3xRGzdudHibs2fPOqVg4IzrnfxwxjWeYRjasmWLve3ItVatWrUUHh7ucef+jlxrufvvPDuecL0HOIKCAQDkUdmyZR3uu3HjRvXs2TPPj0Y6+kVtbq4eCicnAQEB9uXs7rBwxbFzO+6ZM2fsy46e1FepUsWhfu505Y4XSSpdunSWfb766iuNHj3a4RPHK5z1WZGkQ4cOqUuXLjp8+LBlGQAAgG8rW7asbrnlFvsd0qmpqVq1apWmTJmi6dOnKzU1VdLloSmff/55ffDBB6btT506ZV+uVatWgbIkJSVp0KBBWrBgQZ62K8i5z/Hjx+3Lf/zxR563z3hdkfF82ZEnFqpVq5bn47pLXq61JkyYoIkTJ+b5GO681rLqOiu3Y8fExCg5Odnezsu1lid9gZ2enm76fWZ1rWXF33lWPOF6D3CU5w30DAAermjRog71S0pK0k033WQ/qS9btqxeeOEFLVmyREeOHFF8fLzS09NlXJ6AXlOmTLFvm9Vj2vnhyAWDqzjj2FffbVasWDGHtnHHGLZ5dfVwU1k9trxjxw7dd9999pPHxo0b6/3339eaNWt06tQp+yOqV14jR460b+usz4okDR061F4sKFGihJ544gnNnz9fBw4cUFxcnNLS0uwZrh5f2JkZAABA4eLv769rrrlGX375pZYuXWo6l/vf//5nv0P6iqu/PCvoed/EiRPtXyLabDbddtttmjVrlnbu3Gn/QvXqc7Ar8vqF39WuvpEkP64eIlLK3/ly8eLFC5TBlRy91vrrr79MxYIOHTpo8uTJ2rhxo86ePavExETT765r1672vt5+reXs6yzJe6+19uzZY/p7zOpay4q/84w85XoPcBRPGACAi/z000/2sQcrV66stWvXqmLFitn2586BzK4+IU1ISHBom/j4eFfFyZfk5GTT0Ert27fP1Oe9996z303Xp08fzZkzR4GBgdnu0xWflRUrVtjHsg0JCdGqVatyHBOYzysAAHC2jh076rnnntNzzz0nSUpMTNTatWvVpUsXe5+rh1XJ+KVnXiQlJenDDz+0t6dOnZrj+P/OOve5+sv6n3/+OdOE0HnlC+fL+fHmm2/al++66y598cUXOX6RzrmrWcYv/hMSEhwqJHnaZ2f16tWmdsZrLav+zjPyhOs9IC94wgAAXGTRokX25ccffzzHYoEkh8YvLWzCw8Pty46ONeloP3eZM2eOae6Kqy94r7j6s/LKK6/kePIoueazcnWGkSNH5jqBIJ9XAADgCn379jW1T5w4YWqXL1/evnzl5pz8WLNmjb3g0Lhx41wnC3bWuc/V+U+ePFng/V09hM/Ro0cduis64zwI3iYtLU1Lly6VJPn5+WnSpEm53nWf1yE3fV1YWJhpyCJvvdb64Ycf7Mvh4eGZrmGs+jvPyBOu94C8oGAAAC5y9fikjkyI9ffff7syjldq0aKFfTnj3SPZWbNmjYvS5J1hGHr33Xft7bJly6pnz56Z+uXlsxITE2OaoCw7eX1Umc8rAADwBMHBwaZ2UFCQqX31HcSLFy/O93GsOve5enLZf/75p8D7a9asmfz8Ln+1Exsbqx07duS6zdUTL3ujs2fP2sffL1eunMqVK5dj/x07dnjUuPuewGazqVmzZva2I9daUVFRpjkzrLZr1y7TPCC33nprpmsgV/2du/Jay9HrPcCVKBgAgItcOXGXcn88eP369Vq7dq2rI3mdbt262ZfXrFmjffv25dj/8OHDWrZsmYtTOe6tt96yD/MjSU888USW44Pm5bPyxRdfODRh2tUX2470z0uG48ePa/bs2bnuEwAAIK82b95samecoLdfv3725UWLFmnnzp35Ok5ezn3S09M1efLkfB0no+uuu86+/PPPP5smcc6PEiVKqE2bNvb2jBkzct1m+vTpBTqm1a7+3WWc4yIrn376qSvjeK2rr7W++eabXPt//fXXLkyTN0lJSRo2bJh9fP+AgAA9++yzmfq56u/clddajl7vAa5EwQAAXKRWrVr25Tlz5mTbLyEhQffee687InmdJk2aqG3btpIu363/+OOP5/iY9RNPPOERk0IZhqHXXntNY8eOta9r2LChHnnkkSz7O/pZ2bt3r2lyt5yUKVPGvnzs2LFc+zuaIS0tTffee6/9ri4AAIDsvPPOO1q4cKHD/RMSEvTqq6/a2+XLlzc9cSpJERER6tSpk6TL51wjRozI11wGV5/7LF26NMfJiN98881MhYz8ioiIsH9Re+nSJQ0fPtzh86rk5GSdP38+0/rRo0fblz/44APt2bMn23189913Wr58ed5Ce5gyZcooLCxM0uW7sa8MT5SVf/75h4JBNu666y778vLly03D+2R05MgRvfXWW+6IlavTp0+rb9++2rBhg33dmDFjMhUXJdf9nbvqWisv13uAK1EwAAAXGThwoH152rRpevvtt5WWlmbqs2/fPl177bXasGGDQ5NMFUb//e9/7ctz587VyJEjFRsba+oTFxen0aNH6+eff8702Lo7xcXF6bvvvlO7du00duxY++87PDxcv//+e6bJxa64+rPy5JNP6s8//8zUZ9GiRerWrZsuXrzo0GelSZMm9uUFCxbkeHIsSQMGDLA/WhsZGamnnnoq0x1bJ0+e1E033aS5c+fyeQUAALlas2aNevfurbZt2+qTTz7J8W761atXq2vXrtq6dat93bPPPmu6M/eKDz74wH7Ot27dOnXp0iXbIVVOnjypt956yzRJriS1bNlSlStXlnT5S+dbbrnFNGyIdPku5nHjxmnMmDFOPff58MMP7eeFf/31V475JWnPnj16+eWXVaNGjSyHMRoxYoTq168v6XIRonfv3lnu75tvvtGdd96Z6/jpns7Pz0/9+/e3t0eNGpXlsKSzZs1S//79lZaWxrlrFho1aqShQ4fa2yNHjtS3336bqd/mzZvVq1cvxcTEWHqtFRUVpXHjxqlRo0aKjIy0r7/55puz/ZLdVX/nV19r5VRoucIV13uAK/lbHQAAfNW1116rLl266O+//5ZhGHrqqaf08ccfq1WrVgoLC9PevXu1YsUKpaWlqXLlynrsscf0zDPPWB3b4/Tu3VuPPvqoPvjgA0mXH7P+9ddf1b17d5UvX16nT5/WkiVLFBsbq9KlS+vxxx/XuHHjJCnLC8yC2Lt3rx5++GHTuri4OF24cEFRUVHatm1bpqJQp06dNGPGDNWsWTPb/T7++OP64osvdObMGZ07d059+/ZVq1at1KhRI9lsNm3YsEHbt2+XJPXp00flypXL9XHziIgIVa1aVUeOHNGJEyfUoEEDXXvttQoPD7cXBtq2bavbbrtNktSgQQMNHz7c/oj622+/rZkzZ6pt27YqV66coqKi9Pfffys5OVklSpTQm2++qfvvvz9vP0AAAFAorVu3TuvWrdNDDz2k2rVrq3HjxgoPD5e/v7/OnDmjTZs2ZZrAePDgwdk+ndmqVSt9+eWXGjVqlFJTU7Vx40a1b99e9evXV8uWLRUWFqaYmBjt2LFD27ZtU3p6uh577DHTPvz8/PTyyy/b77L+66+/VK9ePXXs2FHVq1dXdHS0IiMj7Xf0T548WcOGDXPKz6NJkyb69ttvddtttykhIUGrV69W+/btVbt2bbVq1UqlS5dWYmKiTp8+rS1btuR6B3NQUJBmzJih7t27Kz4+XocPH1b79u0VERGhJk2aKDk5WatWrbIP7/nBBx/o0Ucfdcp/i1VeeOEF/frrr7p06ZKioqLUvn17dejQQfXq1VNycrJWrlxp/0zdc8892rNnT45PIhRW77//vlatWqUDBw7o0qVLGjp0qMaNG6f27dsrMDBQu3bt0sqVK2UYhm6++WadOXPGNOG0M3399ddat26dvZ2WlqaYmBidP39eW7ZsyfRFf5EiRTRmzBhNmDAh2zkFXPV3ftNNN+nzzz+XJH3yySdav369WrVqZRp+9oEHHlDt2rUlueZ6D3ApAwAKufHjxxuSDElG165dc+0zfvx4h/d98uRJo1WrVvZts3o1atTI2L59uzFlyhT7upEjR2a5vyVLluSa9eDBg/Y+1atXdyhn9erV7dscPHgw3326du1q77NkyZJcj+vozzU9Pd144oknDJvNlu3PsVKlSsbKlSuNyZMn29c99thjuWbIS8a8vFq1amX873//M9LS0hw6zooVK4zw8PAc93nDDTcYFy5cMEaOHGlfN2XKlGz3+dtvvxmBgYHZ7i/j5yw+Pt649tprc8xQpUoVY/ny5Q59FgEAQOE2efJko2bNmnk6hypatKjx0ksvGSkpKbnuf9GiRQ7v//nnn89yH88991yO2wUHBxufffaZYRiGaX12HDlnvmLTpk1G69atHf7Z1KhRw9i4cWO2+1u6dKlRoUKFbLf38/Ozn3M78t9SUFf/LHI6Z83Lz+xqv/76q1GsWLEcf2b33nuvkZiY6NB1iiPn2Hm9LnTknNnKazzDMIxDhw4ZLVq0yPHneP311xuxsbFGx44d7ety+iw66uqMjr6CgoKM22+/3Vi7dq3Dx3H237lhGMaQIUNy3GfGz5krrvcAV+EJAwBwofLly2vFihX64osv9N1332nbtm1KSEhQuXLlVL9+fd12220aNmyYihUrluVjtLjMZrPpnXfe0W233abPPvtMkZGROnHihEJCQlSzZk3ddNNNuueee1SmTBnTnUMlS5Z0aa4iRYooNDRUoaGhKlOmjJo2barWrVurS5cuat68eZ721aFDB23fvl3vvfeefvvtNx04cECSVLFiRbVu3Vp33HGH6VFWR1x33XVat26dPv74Yy1fvlyHDx9WXFxctvNAFCtWTH/88YdmzpypadOmaePGjYqNjVV4eLhq1aqlm266SaNGjVKpUqVMjwEDAABk5Z577tE999yjbdu2aenSpVq1apV27dqlQ4cOKSYmRoZhqESJEqpQoYKaNWum7t2765ZbblGpUqUc2n+PHj20e/dufffdd/r999+1bt06nT59WklJSQoLC1OdOnXUoUMHDR48WJ07d85yH//973/Vr18/ffTRR1q+fLnOnDmjEiVKqEqVKurbt6/uvvtu1a1b15k/FrvmzZtr3bp1WrBggX799Vf9888/On78uC5cuKCgoCCVLVtW9evXV7t27dSnTx916NAh2zupJalLly7auXOnPv74Y/3888/av3+/UlJSVKlSJXXp0kX33XefIiIiXPLfYoXrr79e27Zt0zvvvKMFCxbo8OHD8vf3V6VKldSpUyeNGjVKXbp0sTqmx6tWrZrWrl2rKVOm6Ntvv9W2bdsUExOjChUqqHnz5ho1apQGDx4sm82mc+fO2bdz9bVWUFCQwsLCFBYWpsqVK6tVq1Zq06aNevfurfDw8DztyxV/5998842uu+46ffvtt9q0aZPOnj2rxMTEbPu74noPcBWbkd23BgAAeKFhw4Zp5syZki5P6nZlyB0AAAAAQP4kJCQoLCxMqampKl68uGJjY50+LBEAz8BfNgDAZ8TFxWnu3Ln2dtu2bS1MAwAAAAC+4eeff1Zqaqqky/OIUCwAfBd/3QAAn/Hcc88pJiZGktSuXTvVqlXL4kQAAAAA4N3Onz+vF154wd4eOnSohWkAuBoFAwCAx/voo4/08ssv6+jRo1m+f/r0ad1777368MMP7eueffZZd8UDABQSUVFR+t///qc77rhDzZs3V6lSpRQQEKDSpUurWbNmuu+++0xz6ThLZGSkbDZbnl69evVyeg4AgO+57bbb9OOPP2Y7/v4///yjTp066dChQ5KkypUra9iwYe6MCMDNmPQYAODxzp49q4kTJ2r8+PFq1KiRGjdurFKlSikxMVH79u3T2rVrlZycbO8/cuRIDR482MLEAABfsnHjRt1///1as2ZNlu+fP39e58+f19atWzV58mR169ZN06ZNU7Vq1dycFACAvFm9erVmzZqlkJAQtWzZUjVr1lTRokV1/vx5bdiwQfv27bP3DQgI0JQpU1SiRAkLEwNwNQoGAACvYRiGtm/fru3bt2f5vr+/vx577DG98cYbbk4GAPBlu3fvzlQsqFevnpo0aaLw8HBduHBBK1assD8JFxkZqQ4dOmjZsmVOHx6vUqVKDhXFGzRo4NTjAgB8W1xcnJYtW6Zly5Zl+X7FihU1ffp0nmADCgEKBgAAj/f000+rUaNGWrhwobZs2aLTp0/r7NmzSkxMVOnSpVWrVi1169ZNd911l+rUqWN1XACAj6pTp45Gjx6tO+64Q5UrVza9l56erqlTp+qRRx5RQkKCjh8/rmHDhmnFihWy2WxOy1C3bl199NFHTtsfAKBwW7JkiX755RctW7ZM+/fv19mzZxUdHa2AgACFh4erZcuW6tu3r0aMGKGiRYtaHReAG9gMwzCsDgHHpKen6/jx4ypRooRTLzoAAABgDcMwdPHiRVWqVEl+fkwv5qmWLl2qgwcPavjw4SpSpEiOfX/55RfdeOON9vb8+fPVp0+fAh0/MjJS3bt3lyR17dpVkZGRBdpfbrjuAAAA8C15ue7gCQMvcvz4cVWtWtXqGAAAAHCyI0eOqEqVKlbHQDa6du2qrl27OtR38ODBioiIsA9hNHfu3AIXDNyN6w4AAADf5Mh1BwUDL3JlUpkjR44oNDTU4jQAAAAoqNjYWFWtWpXJA31Mp06d7AWDqKgoa8PkA9cdAAAAviUv1x0UDLzIlceBQ0NDOXEHAADwIQz74luu/n2mpaVZmCR/uO4AAADwTY5cd1AwAAAAAAAn2rp1q33Z2UP7XLp0Sb/99ps2b96sc+fOqXjx4ipfvrzatWunli1byt+fSzwAAADkH2eTAAAAAOAkhw8f1uLFi+3tXr16OXX/a9as0aBBg7J8r1KlSnriiSf02GOPKSAgwKnHBQAAQOGQ85TIAAAAAACHPfnkk/ZhiKpVq6aBAwe67djHjx/X008/rS5duujUqVNuOy4AAAB8BwUDAAAAAHCCadOm6aeffrK3J02apKCgIKfsu2zZsnrwwQf1yy+/6MCBA0pISFBiYqIOHDigadOmqW3btva+q1at0sCBA3Xp0iWH9p2UlKTY2FjTCwAAAIWTzTAMw+oQcExsbKzCwsIUExPD5GMAAAA+gPM737Fu3Tp17txZiYmJkqQhQ4Zo5syZTtl3XFycAgMDFRgYmG0fwzA0fvx4vfzyy/Z1L7/8sl544YVc9z9hwgRNnDgx03o+lwAAAL4hL9cdFAy8CBeUAAAAvoXzO99w8OBBdezYUSdPnpQkNWvWTMuWLbPkdzps2DB7oaJUqVI6ffp0rhMhJyUlKSkpyd6OjY1V1apV+VwCAAD4iLxcdzAkEQAAAADk04kTJ9S7d297saBWrVqaP3++ZV+0v/TSS/bl8+fPa9WqVbluExQUpNDQUNMLAAAAhRMFAwAAAADIh+joaPXu3Vv79++XJFWsWFELFy5UxYoVLctUu3Zt1ahRw97euXOnZVkAAADgfSgYAAAAAEAexcbGqk+fPtq+fbskKTw8XAsXLlTNmjUtTiZTweLs2bMWJgEAAIC3oWAAAAAAAHkQHx+v/v37a/369ZKksLAwzZ8/X40aNbI42WXx8fH25eLFi1uYBAAAAN6GggEAAAAAOCgxMVGDBg3SP//8I0kqVqyY5s6dq9atW1uc7LKEhATt3r3b3q5UqZKFaQAAAOBtKBgAAAAAgANSUlJ00003afHixZIuTxY8e/ZsderUyeJk/5o5c6aSkpIkSTabTV26dLE4EQAAALwJBQMAAAAAyEVaWpqGDh2qefPmSZL8/f01a9Ys9erVy6XHTUhIUHp6ukN99+7dqzFjxtjb1157rcqVK+eqaAAAAPBBFAwAAAAAIAeGYejuu+/Wjz/+KEny8/PTjBkzNGjQoALt12az2V8TJkzIss+aNWvUuHFjffrppzp9+nSWfdLS0vT111+rQ4cOio6OliQFBgbq9ddfL1A+AAAAFD7+VgcAAAAAAE/26aefatq0afZ27dq1tXz5ci1fvtyh7T/66KMCHX/Xrl168MEH9fDDD6tOnTpq3LixSpcuLT8/P508eVIrV67U2bNn7f2LFCmi6dOnq3nz5gU6LgAAAAofCgYAAAAAkIOMd/bv3btXe/fudXj7ghYMrkhPT9eePXu0Z8+ebPvUr19fX331lTp27OiUYwIAAKBwoWAAAAAAAB6qc+fOWrdunVauXKkVK1Zo9+7dio6OVnR0tJKSkhQWFqaqVauqXbt2GjRokPr27SubzWZ1bAAAAHgpm2EYhtUh4JjY2FiFhYUpJiZGoaGhVscBAABAAXF+B0/E5xIAAMC35OX8jkmPAQAAAAAAAAAABQMAAAAAAAAAAEDBAAAAAAAAAAAAiIIBAAAAAAAAAAAQBQMAAAAAAAAAACAKBgAAAAAAAAAAQBQMkINNRy6o73t/a9neM1ZHAQAAAODDnv1xi+6dvk6GYVgdBQAAoFCjYIBs3fDxP9p18qKGf7nG6igAAAAAfFRauqHv1x3Rgh2n9M++aKvjAAAAFGoUDAAAAAAAlklJS7cvvzJ3h4VJAAAAQMEADkm96iQeAAAAAJzl6oLBrpMXLUwCAAAACgZwSEJKmtURAAAAAPiglDTmLQAAAPAUFAzgkBMXEq2OAAAAAMAHbT5yweoIAAAA+H8UDOCQx77baHUEAAAAAD7o2IVLVkcAAADA/6NgAIcwligAAAAAVwgoYrM6AgAAAP4fBQMAAAAAgGUCipgvSyN3n7YoCQAAACgYIFt1yoWY2obBZGQAAAAAnKtng/Km9qgpay1KAgAAAAoGyNYXI9qY2l/9E2VNEAAAAAA+K6xYgNURAAAA8P8oGCBbNcKLm9rzt52wKAkAAAAAAAAAwNUoGMBha6POWx0BAAAAAAAAAOAiFAzgsBZVS1odAQAAAIAPevn6xlZHAAAAgCgYIA9OxiRaHQEAAACADxreoYapnZZuWBMEAACgkKNgAIedjKVgAAAAAMD1Jv99wOoIAAAAhRIFA+SoSqmipvaBM3EWJQEAAABQWLw+f5fVEQAAAAolCgbI0fP9G5raj3y70aIkAAAAAAAAAABXomCAHPVtUsHU3n481qIkAAAAAHzZlFFtTW3DYB4DAAAAd6NggBzZbDarIwAAAAAoBCJqlja1V+6PtigJAABA4UXBAAAAAABguYAi5svTycuY+BgAAMDdKBgAAAAAACwXUMT8dPOl5DSLkgAAABReFAyQq9dubGpqJ6Vy4g4AAADAuTIOh7r64DmLkgAAABReFAyQq9sjqpnas9YesSgJAAAAAF8WUaN07p0AAADgMhQMkGdBAUWsjgAAAADAF9ly7wIAAADXoWCAPFuw/ZTVEQAAAAD4oBtaVDa1DcOwKAkAAEDhRMEADnm0Z1378sKdFAwAAAAAON9tbaua2nM2H7coCQAAQOFEwQAOaV4lzNQ+HJ1gURIAAAAAvqqIn3lMose+22RNEAAAgEKKggEc0q1+OVP7z+0nLUoCAAAAwJe9MKCh1REAAAAKLQoGcEjGO33+O2+nRUkAAAAA+LLrmlWyOgIAAEChRcEADutWv6zVEQAAAAD4uAphwab2nlMXLUoCAABQ+FAwgMOqlipmdQQAAAAAhczJmESrIwAAABQaFAzgsIzDEiWnpluUBAAAAEBh8UnkPqsjAAAAFBoUDOCwJpXDTO2LiSkWJQEAAABQWKw6cM7qCAAAAIUGBQM4rG+TCqa2n82WTU8AAAAAAAAAgLehYACHFQ8sYmpvOx5jURIAAAAAvszfj5uTAAAArEDBAA6zZXiiYPORC9YEAQAAAODTptzZ1uoIAAAAhRIFA+TbWwv2WB0BAAAAcJuoqCj973//0x133KHmzZurVKlSCggIUOnSpdWsWTPdd999Wrp0qUszGIahX375RTfffLNq166tokWLqmzZsmrTpo0mTpyow4cPu/T47hJQxHypuufURYuSAAAAFC7+VgeAd6lRppiiohOsjgEAAAC4zcaNG3X//fdrzZo1Wb5//vx5nT9/Xlu3btXkyZPVrVs3TZs2TdWqVXNqjuPHj2v48OFavHixaX1iYqLOnj2r9evX66233tKHH36oUaNGOfXY7lYprKipPXraOv39THeL0gAAABQeFAyQJ9/f10HtXl1kdQwAAADAbXbv3p2pWFCvXj01adJE4eHhunDhglasWKGjR49KkiIjI9WhQwctW7ZMtWrVckqG2NhY9enTR9u2bbOvi4iIUOPGjRUTE6PFixfrwoULiouL05133ik/Pz+NGDHCKce2QrUyxUztuuVCLEoCAABQuFAwQJ6UDw22OgIAAABgiTp16mj06NG64447VLlyZdN76enpmjp1qh555BElJCTo+PHjGjZsmFasWJFpLrD8ePjhh+3FgtKlS+uHH35Qjx497O/Hx8frvvvu0zfffCNJuueee9SxY0fVqVOnwMe2SqOKodpxIlaSFFY0wOI0AAAAhQNzGKBALiamWB0BAAAAcKmKFStqypQp2rVrl5599tlMxQJJ8vPz01133aWvv/7avm7VqlVasGBBgY+/bds2eyFAkmbOnGkqFkhS8eLFNX36dHXs2FGSlJycrHHjxhX42Fa6ukjw88ZjFiYBAAAoPCgYoEA6vrY4904AAACAF+vatatGjRqlIkWK5Np38ODBioiIsLfnzp1b4ON/+umnSk9PlyT17t1bffr0ybKfn5+f3njjDXt71qxZOnv2bIGPb5WE5FRTOzUt3aIkAAAAhQcFAxTIxcTU3DsBAAAAhUinTp3sy1FRUQXal2EYmjNnjr1955135nrsK8MQpaWlmbb1Nk/1qW9qxyVx7QEAAOBqFAwAAAAAwImunrMgLS2tQPvau3evfTJlSerWrVuu23Tv3t2+vHix9z4R3LluWVP74yX7LEoCAABQeFAwQJ6VKR5odQQAAADAY23dutW+XLVq1QLta+fOnfblChUqqGLFirlu06pVqyy393b/W3bQ6ggAAAA+j4IB8uyDIS2tjgAAAAB4pMOHD5vu6u/Vq1eB9rd79277cvXq1R3aplq1avblXbt2Fej4AAAAKFwoGCDP2tQoZWqfjk20KAkAAADgWZ588kn7METVqlXTwIEDC7S/6Oho+3L58uUd2qZChQr25YSEBCUlJRUoAwAAAAoPCgbIsyD/IqZ2/w+WW5QEAAAA8BzTpk3TTz/9ZG9PmjRJQUFBBdpnXFycfblo0aIObZOx39X7yEpSUpJiY2NNL0/RrEqYqR0dR/EDAADAlSgYoMDOctIOAACAQm7dunW6//777e0hQ4Zo6NChBd5vYuK/T/MGBjo2l1jGIsWlS5dy7D9p0iSFhYXZXwWdd8GZmlQ2FwwOno23KAkAAEDhQMEA+dKyWkmrIwAAAAAe4eDBgxo4cKD9y/1mzZrps88+c8q+g4OD7cvJyckObZNxCKLcnkwYO3asYmJi7K8jR47kPaiLjO3XwNS++bOVFiUBAAAoHCgYuNiTTz4pm81mf9WoUcPqSE4x9c4IqyMAAAAAljtx4oR69+6tkydPSpJq1aql+fPnKzQ01Cn7DwkJsS/n9qRAdv2u3kdWgoKCFBoaanp5ihLBAVZHAAAAKFQoGLjQmjVr9P7771sdwy3S0w2rIwAAAABuFR0drd69e2v//v2SpIoVK2rhwoWqWLGi045RpkwZ+/KpU6cc2uZK8UKSihUrVuB5FAAAAFB4UDBwkZSUFI0ePVrp6elWR3EJP5u5HfHqImuCAAAAABaIjY1Vnz59tH37dklSeHi4Fi5cqJo1azr1OPXr17cvHzp0yKFtDh8+bF9u0KBBDj29U2qab15jAQAAeAIKBi7y+uuva+vWrZLklMnOPE3GR4OZ+BgAAACFRXx8vPr376/169dLksLCwjR//nw1atTI6cdq2LChffnkyZOmpweys2HDhiy391bd6pc1tc8lODaXAwAAAPKOgoEL7Nq1S6+88ookadiwYerdu7fFiQAAAAA4Q2JiogYNGqR//vlH0uUhf+bOnavWrVu75Hh169ZVlSpV7O3IyMhct1m6dKl9uUePHq6I5Vb3dq5laqcxHCoAAIDLUDBwMsMwNHr0aCUlJalUqVJ65513rI7kNobBiTsAAAB8V0pKim666SYtXrxY0uXJgmfPnq1OnTq57Jg2m02DBg2yt6dOnZpj/5UrV2rPnj2SpCJFimjgwIEuy+YuTaqEmdrvL9xrURIAAADfR8HAyT799FP73UZvvvmmypUrZ3Ei9+FOHwAAAPiqtLQ0DR06VPPmzZMk+fv7a9asWerVq5fLj33//ffLz+/ypduff/6pv/76K8t+6enpeuaZZ+ztW265RWXLls2yrzcJzTAc6ndrj1iUBAAAwPdRMHCiI0eOaMyYMZKkzp0766677rI4kWs1rBhqap+6yDwGAAAA8D2GYejuu+/Wjz/+KEny8/PTjBkzTHf+54fNZrO/JkyYkG2/pk2batiwYfb2kCFDMg1NFB8fr1GjRmn58uWSpMDAQL388ssFygcAAIDCx9/qAL7kwQcf1MWLFxUYGKjPP/9cNpvN6kgu9cuDHdXgxfn2dqfXFivqtQEWJgIAAACc79NPP9W0adPs7dq1a2v58uX2L+dz89FHHxU4w0cffaQNGzZo+/btio6OVvfu3dWuXTs1atRIsbGxWrx4sc6fP2/vP3nyZNWpU6fAxwUAAEDhQsHASb777jv9/vvvkqRnn31WDRs2tDiR6wUHFLE6AgAAAOByp0+fNrX37t2rvXsdH0ffGQWD0NBQLViwQMOHD7fPobB69WqtXr3a1C8kJEQffPCBRo4cWeBjepKIGqW1Juqc1TEAAAB8HgUDJ4iOjtajjz4qSapXr56ef/55ixMBAAAA8DWVKlXSwoUL9csvv+ibb77Rhg0bdOLECYWEhKhatWoaOHCg7r77blWrVs3qqE7Xr2kFCgYAAABuQMHACZ544gmdOXNGkvTZZ58pKCjIKftNSkpSUtK/8wLExsY6Zb+ulJ5uyM/Pt4diAgAAQOEyYcKEHOcYyC/DMPK8jc1m04033qgbb7zR6Xk8WcWwYFP7j60n1K9pRYvSAAAA+C4mPS6gBQsWaMaMGZKkkSNHqnv37k7b96RJkxQWFmZ/Va1a1Wn7dpb/9K5nap+NZ+JjAAAAAM51baMKpvYD32ywKAkAAIBvo2BQAPHx8brvvvskSWXKlNFbb73l1P2PHTtWMTEx9teRI0ecun9neKRnXVP7h3VHLUoCAAAAwFfxFDMAAIB7MCRRATz//POKioqSJL399tsKDw936v6DgoKcNryRu+w6edHqCAAAAAAAAACAfOAJg3zasGGDPvzwQ0lS9+7dNXLkSIsTeYbfNh+3OgIAAACAQuBScprVEQAAAHwOTxjk05YtW5Seni5JOnz4sNq3b59t3ysTIkvSiRMnTH1ffPFFDRgwwHVBAQAAAMAH3Ny6in5c/+8QqAt2nNT1LSpbmAgAAMD3UDBwgv3792v//v0O9U1OTtbq1avt7auLCQAAAACArL1yQxNTwSDmUoqFaQAAAHwTQxKhwBpXCrU6AgAAAAAfF+Rvvnx9c/5ui5IAAAD4LgoG+TRq1CgZhuHQa8qUKfbtqlevbnpv1KhR1v1HOMnrNzWzOgIAAAAAH2ez2Uzti0mpFiUBAADwXRQMUGA8YQAAAADAHSJqlLY6AgAAgE+jYIACy3inT3q6YVESAAAAAL7s4R51rI4AAADg0ygYwOkW7DhpdQQAAAAAPohbkwAAAFyLggGc7v6vN1gdAQAAAIAPMgxzyeBsXJJFSQAAAHwTBQO4RMYTeQAAAAAoqKaVw0ztIZNXWZQEAADAN1EwcINRo0bJMAwZhqGoqCir47jEc/0bmNrztjIsEQAAAADnKhMSZGrvPR1nURIAAADfRMEATjGqY01Te/2h8xYlAQAAAAAAAADkBwUDOEWgv/mjZDAdGQAAAAAXeGFAQ6sjAAAA+CwKBnCJ9HQKBgAAAAAAAADgTSgYwCW2HIuxOgIAAAAAH1S1dDFTO42blQAAAJyGggFcYuPhC1ZHAAAAAOCDrm1U3tR+cfY2i5IAAAD4HgoGcJqMJ+6HoxMsSgIAAADAV9lsNlN75urDFiUBAADwPf5WB4DvuL9bbS3YccrejtxzWiM61LAuEAAAsFR6uqHTF5P05/aTSk03VKVUUV1ISNbaqPNatveMRl9TS8M7VFdwQBGrowIAAADwYkmpaVq447QMGdpyNEY3t66iKf9EKTouSYeiE/TBkJaqX6GE1TG9AgUDOE298uY/un/2naVgAABAIbXjeKz6f7Asxz7/nbdT7y/aqw0v9lZAEVumu4YBAAAAICcXE1P0xPebtXDnKdP6yX8fMLX7vPe3Jg9vrd6NynPdkQsKBnCakCDzx+nP7aey6QkAAHzVb5uP65FvNzrcPy4pVfVe+EOS9L8RbVS7bHHVKhviqngAfMSrg5vquV+22tvn4pNVunighYkAAIA7GYahmmPn5Wmbe2eslyRVCA3WlDvbqmZ4cZ52zgJzGAAAAMAp5uSxWJDRPdPXqcfbS7X9eIwTUwHwRVVLFzW145NSLUoCAADcLTElTY3G/Znv7U/GJqrf+8vU8qW/nJjKd1AwAAAAQIFtOxajRwtQLLjagA+W6+89Z5yyLwC+qXaGJ5Fe/n2HRUkAAIC7NXhxvi6lpBV4P5dS0vTgN+sVx40HJhQM4FQLn+xqdQQAAOBmM1cf1nUfLnfqPkd8tUY1xszVc79s1fn4ZKfuG4D3q1TS/ITByv3RFiUBAADukpiSphpj5jp1n/O2nlST8X/qye836af1R526b2/FHAZwqtCifKQAACgs5m87ofu/3uDSY8xcfVgzVx/Wxhd7qxTjkwPIRlJqutURAACAiySmpGngh8u193Scy47x88Zj+nnjMa05eE6v3dS0UE+MzBMGcKpyJYJN7YuJKRYlAQAArpSUmubyYsHVWr78l46cS3Db8QB4vh/v72BfTk6jYAAAgK96ctYmlxYLrvb9uiNqOmGBW47lqSgYwOk61w23L/9n1mYLkwAAAFe4mJii+i/Md/txO7+xRIlOGKsUgG9oU6O0qZ3MUwYAAPicyN2nNW/rSbceMy4ptVB/p0nBAE4XWOTfj9WCHacsTAIAAFzhhV+3WXbsBi/O1997zsgwDMsyAPBMSakUFAEA8DWjpqy15Lg/bTiqDxft1anYREuObyUGnIfTFeYxvgAA8HXOnmQsP0Z8tUaStGJMj0wTnwIovFLSKCQCAOArth6N0cCPllua4e2/9ujtv/aoR4Ny+mpUW0uzuBNPGMDpbm5dxeoIAADAAw1qXsmp++v42mKn7g+Ad2NIIgAAfEdBiwVd6pV1UhJp8a7TWnPwnNP25+l4wgBOd/UcBpKUnm7Iz4+nDgAA8HZfLDuQ521+f+QafbZ0v0Z0qKGImqX13m0tNGPVIdUtFyJJGvrF6gJlajrhT40f2JgbFgBoyoqDGtuvodUxAABAAeVnmMGnrq2ndOPy/AOP96qrYoH+OnIuQbPWHdED3Wqr0bg/C5Tp1s9X6rpmFfX8gIaqGObbTznbDAaA9RqxsbEKCwtTTEyMQkNDrY6TrYTkVNMfYfOqJTX7oU4WJgIAAAWVkpauus//4VDfJpVDdX3zyrquecVcT6aTUtO0Puq8vlh+UIt3nc53vm/vaa8Otcvke3ureMv5HQoXb/pcZhwmbc8r/RToz4P0AAB4s7wMg/rhkJZKSzd0Q8vKOfYzDENn45I1bUWUPoncp/QCfCMe9dqA/G9skbyc3/GEAZwu2L+Iqb35yAVrggAAAKcwDMPhYoEkzXnoGoefLgzyL6KOdcLVsc7lJxRPxSaq3auL8pxxyP9WaeOLvVWqeGCetwXgO6Ljk3z+rj8AAHzZP/vOOtw3LzcN2Ww2lS0RpKf61NdTfeorLd3Q/5Yd0Gt/7MpzxmFfrNJXo9oqKMN3oL6CWy/gdAw/BACAb1m407E7/5c9010HJ/Uv0LlA+dBgPde/Qb62bfnyX6r7/DwdPZ+Q7+MD8C6/P3KNqc3z8wAAeLdhDgxZemPLyto+sU+BnjAu4mfTPZ1r5Wvbf/ZFq/4L8/XN6kP5Pr4no2AAlxjTz3yhn16Q53wAAIBlth+P0T3T1+Xab8ETXVS1dDHZbAW/ceDeLrW19vlealmtpJ66tl6etk1JM3TN60sKnAGAd2hSOczUnr7SNy/cAQDwdYZh6OXfd+Ta7/oWlfTObS1UPKjgA+cU8bMp6rUBemFAQ3Wqk/fiw/O/bNORc753sxIFA7hE8UDzIznJaekWJQEAAAUx4IPlufbZ9XJf1StfwqnHLVsiSL882EkP96ibr+2PXbjk1DwAvMNnS/dbHQEAAOTDpiMX9OXygzn2GdWxht6/vaXTjz26cy19M7p9vp50vu3zlU7PYzUKBnCJtAxPFMxad8SiJAAAIL92n7yYa589r/RTcIBrx+5897bmed7mga/Xq8aYuTofn+yCRAAAAACcxTAMDf5kRa79Jgxq7NIcIzvWyPM2x2MS1eaVv/TWn7udH8giFAzgEs2qljS1x83ebk0QAACQb33e+zvH9+/rUkuB/q4/nRzcsoq2TLhWz/St7/A2W47GSLo8r8HYn7fIYGBzwGcVC/TNCQcBACgsHLnReNkz3V2eI8i/iA5O6q+VY3vkabuzccn6aMk+3T55pdZFnXNROvehYACXaFWtlLrWK2t1DAAAkE+5Denz/u0tNLZ/QzelkUKDA3Rfl9pqU71Unrf9ds0RNRr3pwtSAfAES592/RcIAADAdZ79aWuO7+96ua+qli7mliw2m00Vw4rqrye65HnbVQfO6ebPVmrbsRgXJHMfCgZwGQoGAAB4r+Ffrs72vTXP9dT1LSq7Mc1lRfxs+vGBjtr/av88b3spJU01xsxVvRf+UEJyqgvSAbBK2RJBVkcAAAD5dCo2Mcf3D07q7/IhULNSt3wJ7X+1vzaPuzbP21734XLVGDNXP3jpEO0UDOAyNpvVCQAAQH4kpabpwJn4bN8vFxrsxjSZFfGzacWYvD0mfEVyarq6vBGpjYfPKy6JwgEAAABgpXavLsr2vTLFA2Wz8AvGIn42hRULyPf2T/+4RVuPxmjniVgnpnI9CgZwmSaVw0ztjBMhAwAAz/TYt5usjpCrSiWL6vPhrTWyQ/U8b3s2LkmDP1mhJuP/VOTu0y5IB8BKi3aesjoCAABwQG438Px3cBM3JcnZrpf76rpmFfO17cCPlqvf+8vU6bXFSk5Nd3Iy16BgAJfJOMbw0j1ckAMA4A3mbz+Z5fpKYcHaOiHvj+S6Sp/GFTTx+oJdRIyaslY1xsxVjTFzNemPnU5KBl+WlpamLVu26Msvv9QDDzygNm3aKDDw8t1vNptN3bp1c8lxp06daj+Go6/Ro0e7JIunu3vaOqsjAAAAB/y84Wi27/30QAf1aVzBjWmyFxxQRB8NbaU/Huuc730cu3BJ9V74QzXGzFXLlxZ49DwH/lYHgO/K+MjQxUQe+wcAwNNld+J6U6sqevvW5m5O45io1wboyVmb9POGYwXaz+dLDyg93dDzAxo5KRl8za+//qphw4YpISHB6igAAABeb9zs7Vmu3/VyX0vmLchNw4qh2jaxj5qM/7NA+zmfkKLrPlyuqNcGOCmZc1EwgNscPJv9WMgAAMAzXPfh8izX1y0f4uYkefPOrS0KXDCQpP8tO0jBANm6cOGCRxQLGjRooJ49e+bar2PHjm5IAwAAkHd7T13M9j1PLBZcERLkr5evb6wXsyl25MXukxdVv0IJJ6RyLgoGcJv3Fu7V473qWR0DAABkI6fHYkd2qOG+IPl0cFJ/vbdwr95ftNfqKPBx5cuXV9u2be2vP//8U++//77bjt+uXTt99NFHbjueNxjYvJJ+23zc3k5LN1TEz7pJEgEAQM6ye7rgwyEt3Zwk74Z3qKEu9cqq65uRBdrPufhk5wRyMgoGAAAAkJT90wWSVDTQc+/yucJms+mJ3vVUIthfr8xlPgI4X9++fXXo0CFVq1bNtH716tUWJcIVY/o1MBUMdp+8qEaVQi1MBAAAsrPpyAWtPBCd5XsDm1dyc5r8qV6muHa93FcNXpyf732kpRtOTOQ8THoMAAAAJaWmZfveoz3rujFJwY3uXEuTh7e2OgZ8UIUKFTIVC+AZypcIMrV/23I8m54AAMBqN3z8j9URnCI4oIgOvNo/39unpKc7MY3zUDCASy14ooupne6hlTMAAAq7V3O4I/+JXt5VMJCkaxtXUNRrA1SrbHGrowBwA/8i5kvbZXvPWJQEAADkJKfvBj/3wpt+/PxsinptgH56oEOet01JpWCAQqh6mWKm9oIdJy1KAgAAsnMhIVnTVh7K8r0lT3WTzea944D/9URXda1X1uoYANxs27FYqyMAAIAs1HpuXrbv9WlcwY1JnKt19dLaNK53nrZJ9dAbq5nDAC4VmOFOn8//PqC+TSpalAYAAGTlP7M2Z/te9dLFsn3PGxTxs2naXRE6G5ekkzGJGv7lap1PSLE6FlAgFy5c0A8//KDt27crJiZGoaGhqlSpkjp06KCmTZt6dZGvICqGBetETKK9zcTHAAB4jzduamZ1hAIrWSxQB17trxOxifp86X5Nz+amrCsoGKBQynixsvHwBWuCAACAbC3adTrL9b8/co38fOTLtvCQIIWHBGnjuGu1/0ycnvh+k7YcjbE6FpAvs2fP1uzZs7N8r27dunr22Wd11113FbrCwVej2qrf+8vs7R3HY9W0SpiFiQAAwNXWHDyX7Xu3tq3qxiSu4+dnU+WSRfXS9U00cVBjvfnnbn0SuT/LvkU89FyNIYngct/d297qCAAAIBtHziVk+16Tyr75RVvtsiGa8/A1erZvA9P6t29prv0FmLQM8AR79+7V6NGjNWjQIMXHx1sdx60aVgw1tT11IkEAAAqrWz9fmeX6/w5u4uYk7mGz2fRM3wb6++nuKlM80PTe5nHXqn9TzxyCiScM4HIZ5zGITUxRaHCARWkAAMDVOr+xJMv1hWHc/we61db9XWtp3taTik9O1U2tq1gdCchRtWrVdMstt6hnz55q2rSpypYtq7S0NB09elSLFi3SBx98oF27dkmSfv/9dw0dOlS//PKL/Pxyvk8sKSlJSUlJ9nZsrG+M/3/jJysU9doAq2MAAABJh6Ozv1FpUPNKbkziftXKFNP6F3vr9MVEzVx9WDe3rqKwYp773ShPGMDlKoYVNbV3n7xoURIAAOCor0a1tTqCW9hsNg1oVlG3tvGNR6Dhu2644QYdPHhQb731lvr166cqVaooKChIxYoVU7169fTAAw9o8+bNuvPOO+3bzJkzRzNnzsx135MmTVJYWJj9VbWq9/49VClVNPdOAADA7T6J3Jfl+v+NaKMSheTG4nIlgvV4r3qqUsqz54mjYAC3+yybcbsAAIB7zd1yIsv1rw5uykShgIcpWbJkrk8KBAYG6osvvlDnzp3t615//fVc9z127FjFxMTYX0eOHClwXqs83ae+1REAAEAWvlub9flF70bl3ZwEuaFgALfLbmJFAADgXg/N3JDl+tt9ZMIxoDDy8/PT+PHj7e1t27bp6NGjOW4TFBSk0NBQ08tbrTqQ/WSKAADAs7SqVtLqCMgCBQMAAACY+PF0AeDVunTpooCAfx/t37lzp4VprGUYhtURAABANsYNbGx1BGSBggEAAADs/nqii9URABRQQECAwsPD7e2zZ89amMa9ypYIMrWTUtMtSgIAAHLSompJtaha0uoYyAIFA7gFk48BAOBZ3l+4N8v1dcuXcHMSAK4QHx9vXy5evLiFSdzrkR51TO3X/thlURIAACBJh6Lj1erlvzKt//WhThakgSMoGMAtPh/e2tQ+G5dkURIAACBJ7y7ck2ndsHbVLEgCwNkOHDig2NhYe7tSpUoWpnGvgCLmS9ypK6KsCQIAACRJ981Yr3PxyVbHQB5QMIBblA8NNrVfnVt4x1EFAMBqf+04leX6F69r5OYkAFzhq6++si+HhYWpRYsW1oUBAACF2q6TFzOte+l65i7wZBQM4BbhIeaxRH/eeMyiJAAA4JkfN2e5PjigiJuTAHBEXFycw31XrFiht99+296+/fbb5e/v74pYHuu5/g2sjgAAAHLQo0E5qyMgBxQMAAAACpH0dEPnE1Iyrf/pgQ4WpAEKt6ioKNlsNvtr6tSpWfb78ccfFRERoenTpysmJibLPomJifrggw/Uq1cvJSYmSpJKliyp8ePHuyq+x+rRoLypnZLGxMcAAFghcvfpTOuqlS6mKqWKWZAGjipct5oAAAAUcmuizmW5vnX10m5OAnin/v376/jx46Z1J0+etC+vW7cuyyGA5s2bV6C5BNauXauRI0fK399fDRo0UIMGDVSqVCmlpaXp2LFjWrlypWnegqJFi2r27NmqWLFivo/preqUCzG1f9l4TLe2qWpRGgAACq9RU9ZmWvf3M90tSIK8oGAAAABQiMzZfDz3TgCytWPHDh06dCjb9+Pj47V5c+Zhv5KTnTPZX2pqqrZt26Zt27Zl2yciIkJTp05Vw4YNnXJMb3chgYkWAQBwN8MwrI6AfKJgALcZ1LyS6UuKi4kpKhEcYGEiAAAKn5mrD2da16Z6KQuSAHDUkCFDVK9ePa1YsUKrVq3S/v37dfbsWUVHRys9PV1hYWGqWbOm2rdvr5tvvlnXXHON1ZE9yqvzduneLrWtjgEAQKGy6cgFqyMgnygYwG1ua1vVVDAY8/NWfTy0lYWJAACAJH1zTzurIwBeIyoqymn7qlGjhkN33wUFBaljx47q2LGj044NAADgSrdNXpVp3cs3NLEgCfKKSY/hNp3qhJvaJ2MSLUoCAEDhlNUXkzte6qMg/yIWpAEAAADgq5JT003tQH8/DW9f3aI0yAsKBrDM+kPnrY4AAEChUnPsvEzrigXywCkA33Nz6ypWRwAAoNCav+1E5nWPdbYgCfKDggEAAEAhcORcgtURAMBtbslQMEhMSbMoCQAAhc/9X2+wOgIKgIIBAABAIbDvTFymdf5+NguSAIDrRdQsbWq/+edui5IAAABJKl080OoIcBAFA7hVw4qhpnbMpRSLkgAAULjcOWVtpnV/PdnVgiQA4Ho2m7kg+uXygxYlAQCgcMlq3jRJKlmMgoG3oGAAt3qwW21Te9neMxYlAQAANcOLWx0BAAAAgA/5ddOxTOuqlS5mQRLkFwUDuNV1zSqa2ucTeMIAAAAAgPP9/sg1VkcAAKDQeWN+5mEAf7i/gwVJkF8UDOBWGR8NfvHXbRYlAQCg8Lj1s5WZ1tUrH2JBEgBwn6oZ7mZMT896iAQAAOAcFxKSdSImMdP68qHBFqRBflEwAAAA8GGGYWhN1LlM639/pLMFaQDAfTJO7E65AAAA12rx0l9WR4ATUDAAAADwYXO3nshyfaA/p4EAfFvxIH9TO40nDAAAcLtPh7WyOgLyiCtFuN3Yfg1M7XPxyRYlAQDA9z08c2OmdYNbVrYgCQBYq/6Lf1gdAQAAn5VdYb5f04pZrofnomAAt6tcqqipPfWfgxYlAQCgcHrp+sZWRwAAtzN4wAAAAJf5bOn+TOs+4ekCr0TBAG7Xr4m5spiYmm5REgAACp+v726nEsEBVscAALf4cmQbqyMAAFAovPnn7kzr+vN0gVeiYAC3K5Jh8rHJfx+wKAkAAL7tcHRCpnUhwf5Z9AQA39SpTripvf9MnEVJAAAAvAMFAwAAAB/V5c0lmdY1rxJmQRIA8AyfZzFcAgAAKJgj5zLfqNS9flkLksAZKBjAIxy/cMnqCAAA+LzmVcJks9ly7wgAPiLjP3mz1h21JggAAD5sye7TmdZ9Nry1BUngDBQMYIngAPNH77fNxy1KAgBA4fHtve2tjgAAbhXgxyUvAACutuHQ+UzrgvyLWJAEzsDZEywx/a52pnZ8cppFSQAA8E1ZjdNdLJD5CwAULn5+PFUFAICr/bqJG4F9CQUDWCKiZmlTm8nHAABwrp5vL7U6AgAAAAAft/vkxUzrRnSobkESOAsFgwI6e/asZs+ereeff16DBg1S48aNVapUKQUEBKhYsWKqXLmy+vTpo0mTJunYsWNWx/VYc7ecsDoCAAA+7ZvR7XLvBAA+6NY2VUztkzGJFiUBAMD3TFsZlWnduOsauT8InIbn0gto1KhRmjt3bpbvpaam6tKlSzp+/LgWLFigiRMnauzYsXrxxRflx1iaAADAjZpUCrM6AgBYYky/hqbJjuOTUy1MAwCAb5m5+nCmdf5F+N7Tm1EwcKLw8HA1bNhQ1atXV0hIiBISErRv3z6tWbNGqampSkpK0oQJE3TgwAFNmzbN6rgAAMBH/bn9ZKZ1RQOZdAxA4VQkwzwGm49cUO2yIRalAQDAtwX5UyzwdhQMCqhbt24aOHCgevbsqTp16mTZ59SpU3riiSf07bffSpKmT5+ugQMH6uabb3ZnVI/zyg1N9MKv26yOAQCAz7lvxnpTe1DzSgrkxB1AIRVWNMDU3nki1qIkAAD4lrNxSZnWbZ/Yx4IkcCauHAvoqaee0n333ZdtsUCSypcvr2+++UY9evSwr/v888/dEc+jdalb1tSOzuIfGQAAUHA9G5azOgIAeIz/LTtodQQAAHzCuqjzmdYxHJH34zfoJjabTXfeeae9vXHjRgvTeIZqZYqZ2q1fWWhREgAAfMe5+ORM62w2WxY9AaDweOuW5qZ2bGKKRUkAAPAd93+9PvdO8DoUDNyobNl/76i/ePGihUkAAICveiCLk/amlZnwGEDh1qBCCVM7ISnNoiQAAPiGpFT+X+qrKBi40Y4dO+zLNWrUsC4IAADwWasPnsu0rmZ4cQuSAIDn4sErAAAKJjXNyLTu/dtbuD8InI6CgZscP35cb731lr1d2Cc8BgAAzpeWnvmkvUOtMhYkAQDPUiEs2NT+bfNxi5IAAOAb/t5zJtO6gc0qWZAEzkbBwIUSEhK0Y8cOvf3222rZsqWOH798UtqwYUONGTPG4nSe4ZvR7Uxtw8j8RQcAAHBMVl+AfT6itQVJAMCzhIcEmdqvzN1pURIAAHzDA99syLTOz49H+HyBv9UBfMny5cvVuXPnHPv0799f33zzjUqUKJFjv8KieJD5I3jwbLxqlQ2xKA0AAN7t8e83ZVoXGhzg/iAAAAAAfFZqWnqmdSvH9rAgCVyBJwzcpFSpUvr22281d+5clSxZ0qFtkpKSFBsba3r5mpplzGMq93h7qUVJAAAAAPiy4oFFTG2ebgYAIH8W7TqdaV1gEb5m9hX8Jp2oUqVKeuihh/TQQw/pwQcf1PDhwxURESF/f3+dP39eQ4YMUY8ePbRnzx6H9jdp0iSFhYXZX1WrVnXxf4H7hRXjrkcAAJyBL74AIGdv3dLc1D5y7pJFSQAA8G5Ls5i/oGiGwjy8F0MSOVGtWrX00UcfZVp//PhxPf/885o6daqWLFmi9u3bKzIyUs2aNctxf2PHjtWTTz5pb8fGxvpk0QAAABTcxiMXMq17/aam7g8CAB6qfgXzsLBPztqkHx/oaFEaAAC818zVhzOtKxbI18y+gicM3KBSpUqaMmWKHn30UUnS+fPndfvttystLS3H7YKCghQaGmp6AQAAZCX2UkqmdTe0rGxBEgDwTBnnStt6LMaiJAAAAJ6LgoEbTZo0yf6l/86dO/XHH39YnMgzNK5kLoScj0+2KAkAAN4rPYshiYL8eSwYALKTlJp5wkYAAJB3i/7T1eoIcCIKBm5UrFgxdez47yOv//zzj4VpPMd7t7Uwtf/cftKaIAAAeLGNhy+Y2je24ukCAAAAAM6VkJyaaV3tDE/xwbtRMHCzUqVK2Zejo6MtTOI5Mv6jMubnrRYlAQDAe324eJ+p/UyfBhYlAQAAAOCrHv12k9UR4GIUDNzsxIkT9uXSpUtbmMRz+PnZrI4AAIBXW7LrdKZ1FcKCLUgCAJ5tSERVUzs9PfNwbgAAIHsLd54ytb+7t71FSeAqFAzcKDo6WitXrrS3GzZsaGEaAADgK+6cutbqCADgFcYPbGxqz916IpueAADAEeVKBFkdAU5GwaAAzp0753Df9PR0Pfzww0pKSpIkBQUF6brrrnNVNK9TuWRRqyMAAAAA8HHBAebJ4OdsPm5REgAAfEPN8OJWR4CTUTAogOnTp6tt27aaPn26YmNjs+23ZcsW9e/fX99995193dNPP60yZcq4I6ZXGNvfPM7y6dhEi5IAAOBdElPSMq3b8GJvC5IAgPf5a8ep3DsBAABJ0hfLDpja9cqHyGZjqHFf4291AG+3bt06jRw5Uv7+/mrQoIHq16+vUqVKyWazKTo6Wlu2bNG+feZJCG+66SaNHz/eosSe6bpmlfTwzI329sPfbtSs+zpYmAgAAO/wW4a7Y8uHBql08UCL0gCA55syqq1pKLeE5FQVC+TSGACA3Lwyd6ep/cuDnSxKAlfirKgAgoL+HaMrNTVV27Zt07Zt27LtX6JECU2YMEGPPfaYihQpkm0/SGsOOj7cEwAAhdmUf6JM7VOxSdYEAQAv0b1BOVP7QkIKBQMAAHKRkpaeaV3Gof7gGzgrKoAHHnhAPXv21MKFC7V69Wpt375dhw8f1oULFyRJoaGhqlixolq0aKFevXrppptuUkhIiLWhAQCAT9lxIvthEQE4X1pamrZv3661a9dq3bp1Wrt2rbZs2aKUlBRJUteuXRUZGenSDMnJyfr+++/17bffavv27Tp16pRKlSqlmjVr6sYbb9SoUaMUHh7u0gy+JDYxRZXEnGoAAOTkxIXMw4cX8WM4Il9EwaCA6tWrp3r16unBBx+0OgoAAIBeu7Gp1REAn/Xrr79q2LBhSkhIsCzDrl27NGTIEG3atMm0/uTJkzp58qRWrlypN998U1OmTFH//v2tCellUtMMqyMAAODxNh45b3UEuAmTHsNjxSelWh0BAACPFpfF/ytvbVPVgiRA4XDhwgVLiwVHjx5Vz5497cUCm82mrl276q677tLAgQNVtOjlu+RPnz6tG264QYsXL7YsqzcZ8dUaqyMAAODxHvtuk6k952HmL/BVFAzgMR7pUcfUvnoiMgAAkNmkeeZJxw5O6i8/HgsGXK58+fK67rrrNHHiRM2bN0+PPfaYW447dOhQHT9+eaLz6tWra+PGjYqMjNSXX36pOXPm6PDhw+rZs6ckKSUlRbfccot9uFRk71x8stURAADwOs2qlLQ6AlyEggE8xoPdzAUDJj4GACBn36w+bGrbbBQLAFfq27evDh06pJMnT+q3337TuHHj1K9fP5UsWdLlx543b56WLVsmSQoMDNRvv/2m5s2bm/qEh4dr9uzZqlWrliTp3LlzeuONN1yezRekZjGRIwAAuMwwzMP3ta5eyqIkcAcKBvAYRQOZWR0AAACeq0KFCqpWrZolx/7444/tyyNHjlTTplnPV1K8eHG99NJL9vbnn3+u1FSG+sxo8vDWpvZqblYCACBb7y7ca2p/NLSlRUngDhQM4FF6NChndQQAALxCxrthO9UpY1ESAK4WFxenRYsW2dt33nlnjv1vuukmhYSESLr8lMHff//t0nze6NrGFUzt5FSeMAAAIDsfLDIXDCqGFbUoCdyBggE8SnAAH0kAABwRcynF1K5aqphFSQC42ooVK5SUlCTp8hMEbdu2zbF/cHCwOnToYG8z+XHuDBm5dwIAACgE+HYWHmVYu+qmdsYx0gAAwGXHLlwytf9zbX2LkgBwtZ07/53gvGnTpvL39891m1atWmW5PbI2+e8DVkcAAADwCBQM4FEaVChhar/z1x6LkgAA4NkGffSPqV22RJBFSQC42u7du+3L1atXz6Hnv66ea2HXrl1Oz+RrVh1gDgMAALKy7ViMqc2Ex76PggE8SpkQ85cdHy7eZ1ESAAAAwDNER0fbl8uXL+/QNhUq/DtG/7lzfBmelVbVSpraPN0MAEBmf24/aWqXLBpgURK4CwUDAAAAAPBgcXFx9uWiRR2bZPDqfldvn5WkpCTFxsaaXoVByWKBpvbKA9HZ9AQAoPDKeDNv6eKB2fSEr6BgAAAAAAAeLDEx0b4cGOjYRXpQ0L9P7l66dCmHntKkSZMUFhZmf1WtWjV/Qb3MPZ1rmdo7T1y0KAkAAN7jhQGNrI4AF6NgAI9TMSzY1ObRYAAAzI6cSzC1/xnTw6IkANwhOPjf8+Pk5GSHtklKSrIv5/ZUwtixYxUTE2N/HTlyJH9BvUyH2mVM7Zd/32FREgAAvEdYMYYk8nUUDOBxBjWvZGpHRSdk0xMAgMKp8xtLTO3KJR0bogSAdwoJCbEv5/a0QFb9rt4+K0FBQQoNDTW9AAAAdp4wD1P499PdLUoCd6JgAI/zRO96pvaHi/dalAQAAACwXpky/94Jf+rUKYe2OXny3wkKS5cu7fRMvqJCaHDunQAAKKRW7DfP71OtTDGLksCdKBjA4wQHFDG1f95wzKIkAAB4nvR081B9vRqWsygJAHepX7++ffnQoUMObXP48GH7coMGDZyeyVcsfqqr1REAAPBYDNdXOFEwgEca24+LGgAAsrJ831lT+4FutS1KAsBdGjZsaF/eunWrUlNTc91mw4YNWW4Ps2KB/qb233vOWJQEAADAM1AwgEfqXLesqZ2cmm5REgAAPMuIr9aY2jabzaIkANylY8eOCgoKkiTFx8dr3bp1OfZPSkrSqlWr7O0ePZgY3VEZ/40FAKCw2nL0gtURYBEKBvBI/kXMX34kpqZZlAQAAM+RkJz5ruLmVUq6PwgAtwoJCVHPnj3t7alTp+bY/+eff9bFixclXZ6/oEuXLq6MBwAAfNCgj/6xOgIsQsEAHqmIn7lgMHsj8xgAAGAYmddl/H8mAN/04IMP2penTp2q7du3Z9kvISFB48aNs7fvvfde+fv7Z9kXAADAUV3rlc29E3wCBQN4pGqlzbOuvzg76wsiAAAKk8jdjK0N+JKoqCjZbDb7K6cnBwYMGKDOnTtLujzk0HXXXactW7aY+kRHR+uGG27Qvn37JF1+uuDZZ591WX5fFR2XZHUEAAA8zhcj21gdAW7CrSbwSAFFqGUBAJDRF8sPmNotq5W0JghQiPXv31/Hjx83rTt58qR9ed26dWrRokWm7ebNm6dKlSoV6NgzZ85URESETpw4oaioKLVo0UJdu3ZV7dq1debMGS1cuFAJCQmSJH9/f82aNUslS5Ys0DELg2XPdFfnN5bY2/O2ndTw9tUtTAQAgLXS0zM/2sx3dYUHBQMAAAAvsfHwBVP75eubWBMEKMR27NihQ4cOZft+fHy8Nm/enGl9cnJygY9dpUoVLV68WEOGDNGmTZtkGIYiIyMVGRlp6le2bFlNmTLFNO8BshccUMTUfum37RQMAACF2u5TF62OAAtRGoLHerRnXVP79MVEi5IAAOCZ6pYPsToCADdr0KCBVq9erWnTpqlv376qWrWqAgMDVa5cObVv315vvPGGduzYoQEDBlgd1WuEFQ0wtVPSspgwBgCAQiQ9q8nTUGjwhAE81hO96uqDRXvt7R3HY1WufrCFiQAA8CxB/kVy7wTAqaKiopy2rxo1asjIxwV5YGCgRowYoREjRjgtS2EW6O+na+qEa/m+s1ZHAQDAI2zI8GTzfwfzZHNhwhMG8Fg2m83UfvrHLdn0BADA983edMzqCADgs54f0NDqCAAAeIS0dEMv/rrNtG5oRDWL0sAKFAzgNc5cTLI6AgAAlnnsu02m9ifDWlkTBAB8UP3yJUzto+cTLEoCAIC1Vh2IzrQu40298G0UDAAAALxQ/6YVrY4AAD7Dz8/8RchdU9dalAQAAGvtPBFrag9sXsmiJLAKBQMAAAAPdziaO10BwJ32nIqzOgIAAJZ4Ze5OU7tXw3IWJYFVKBjAq5yLT7Y6AgAAbjd1RZTVEQAAAAAUQoFF+Pq4sOE3Do/228PXmNp/7zljURIAAKzz1T8HTe1x1zWyKAkAAACAwqRr/bJWR4CbUTCAR2taJczUvpSSZlESAAA8x13X1LQ6AgD4nD6Ny1sdAQAAS8UlpZraQf5+Khbob1EaWIWCAbzK2J+3yjAMq2MAAOA2MZdSrI4AAIVCxbCipvZP649alAQAAGs8+u1GU5vhiAonfuvwOntPMwEZAKDwOBuXZHUEACgUHu9V19T+zw+bLUoCAIA1Fu86bWq/dENji5LAShQM4PG+HNnG1J7yT5Q1QQAAsMDsjcdM7TXP97QoCQD4tpLFAq2OAACAxwgJ8tcNLSpbHQMWYBAqeLx2tcqY2mujzlmUBAAA91t/+LypXa5EsEVJUBj06NHD5cew2WxatGiRy48DAACA/Otav6xsNpvVMWABCgbweOkZ5izYx5BEAIBCxN+PB0LhPpGRkS69MDQMgwtPeJWj5xNUpVQxq2MAAOB2A5tVsjoCLMIVKDxe0YAiVkcAAMAyS/ecsToCChnDMBx6OdI/Yx/A03WvX9bUvuOL1RYlAQDAvTZmeLK5T+PyFiWB1XjCAB4vgBnZAQCF1LZjMVZHQCGzZMmSXPusX79ezz33nJKTk1W8eHENGjRIHTp0ULVq1VS8eHHFx8fryJEjWrlypebMmaO4uDgFBQXpv//9r1q3bu2G/wog/965tYVavvyXvX0pJc3CNAAAuM/gT1aY2jwVWnhRMIBXGNyysn65atLHvacuqm75EhYmAgDA9a77cLnVEVDIdO3aNcf3f//9dz3//PNKSUnR6NGj9cYbb6hkyZJZ9n3ooYcUGxurZ555RpMnT9bzzz+vH3/8UQMGDHBBcsA5ShU3T3x8KjbJoiQAAADW4NZteIU3bm5mavd+92+LkgAAYJ3OdcOtjoBC7NixYxoxYoSSk5P1+OOPa/LkydkWC64IDQ3VZ599pieffFJJSUkaMWKEjh496p7AAAAAAPKMggG8AsMSAQAgPd6rntURUIhNnjxZFy5cUOnSpfXaa6/ladtXX31VZcqU0YULF/T555+7KCHgHO1rlTa1YxJSLEoCAIB7RMfxRB3+xbewAAAAHuhiYuYvqFpXL2VBEuCyOXPmyGazqVu3bgoICMjTtoGBgerevbsMw9Bvv/3mooSAc3SpZ574ePsJ5pMBAPi21q8sNLUXPtnFoiTwBBQM4LWSUpmADADgu9YcPGd1BMDk8OHDkqTSpUvn0jNrpUpdLngdOXLEaZkAV0hIMl9nPPn9ZouSAABgjTrlmDe0MKNgAK/19arDVkcAAMBlft5wzNR+/aamFiUBLktKuvyo+qFDh/K1/ZXtruwH8FQtq5U0tU/GJloTBAAAN0hLN6yOAA9DwQBeY/zARqb2/jNxFiUBAMD15m49YWqHBOVtCBjA2apWrSrDMBQZGakTJ07kvsFVjh8/rsjISNlsNlWpUsVFCQHn6NmwvNURAABwm63HGHoPZhQM4DV6ZThxn7maJwwAAIUH8xfAan369JEkpaSk6I477lBiomN3XSclJWn48OFKTk6WJPXt29dlGQFX+WffWasjAADgEilp6VZHgIehYACvEejPxxUAUHiVDw2yOgIKuYcffljBwcGSpMjISLVr105//vlnjtssWLBA7dq1U2RkpCQpKChIDz/8sKujAgVWspj5qa4/tuXtqRoAALxFSioFA5j5Wx0AcFT50GBVLllUxy5csjoKAABuNbB5JdlsNqtjoJCrU6eO3nrrLT388MOy2Wzatm2b+vfvr3LlyikiIkLVqlVTsWLFlJCQoMOHD2vt2rU6deqUJMkwLo+N++abb6pOnTpW/mcADpl1Xwdd++7f9vaJC8xjAADwTZ9E7je1V47tYVESeAoKBvAq39/XXte8vsTeXn/oPEM0AAB8TnqGicfevbW5RUkAswcffFBFihTRE088YR+S6NSpU/r9998z9b1SJJAuP1nwzjvv6IEHHnBbVqAg6pUvYWov2nXaoiQAALjW8gzD7lUMK2pREngKxniBV6lc0vyP1vO/bLUoCQAArrPr5EVT24+nC+BB7rvvPm3ZskVDhgxRUNDlobIMw8j0ki4XCoYOHarNmzdTLAAAAAC8AE8YwKtkHI4h4xcqAAD4gv4fLDO1qRfA09SpU0fffPONYmJitGLFCm3cuFFnzpxRXFycQkJCVLZsWbVs2VIdO3ZUWFiY1XEBAACQhZ83HLU6AjwQBQMAAAAPx/wF8FRhYWHq16+f+vXrZ3UUwOlaViupjYcv2Ntzt5zQgGYVrQsEAICTPTlrs6n91i0MhQqGJIIPSEpNszoCAABOc+ZiktURAACSJg5qbGo/NHODRUkAAHCPGmWKWR0BHoCCAbxeYnK61REAAHCaz5butzoCAEBSsyolrY4AAIBbVSzJhMdgSCJ4oYe619bHS/79MmX78Rh1rBNuYSIAAJwnMcX85NwTvepZlATIWWJioubPn6/ly5fryJEjOn/+vNLS0rRo0SJTP8MwdOnSJUlSQECAAgICrIgLAACAXFSmYABRMIAX6lQn3FQwGPrFakW9NsDCRAAAOM/yfWdN7SERVS1KAmTvrbfe0htvvKHo6Gj7OsMwspxv49y5c6pWrZoSExPVrl07rVixwp1RAadKTzfk58e8MgAA72cYhtUR4KEYkghep22N0lZHAADAZQ5FJ5ja5UKDLUoCZJaSkqIBAwbo2WefVXR0tAzDsL+yU6ZMGY0cOVKGYWj16tXat2+fGxMDzpWcxnCoAADf8N3aI6b2/Mc7W5QEnoaCAbxOQJHMH9v4pFQLkgAA4FofDGlpdQTA5IEHHtAff/whwzAUFBSk++67T99//72uv/76HLe744477Mvz5s1zdUzAae7qVNPUHjd7m0VJAABwrrE/bzW1G1QItSgJPA0FA/iETyK5Uw0A4P0y3qXdtHKYRUmAzNavX68pU6bIZrOpSpUq2rBhgz799FPdcsstqlKlSo7bduzYUWFhlz/Py5Ytc0dcwCmGd6huas9ad9SiJAAAAO5BwQBeKcjf/NHdcjTGoiQAADjPDxm+iKoZXtyiJEBmU6ZMsRe1ZsyYoQYNGuRp+xYtWsgwDO3cudMV8QCX4N9hAABQ2FAwgFfaPP5aU3vZ3rPZ9AQAwHuM+XmL1RGAbC1ZskSS1KRJE3Xt2jXP2195CuHYsWNOzQW42+oD0bl3AgAA8FIUDOCVggOKZFqXygRkAAAvZhiG0rOfNxaw3PHjx2Wz2dSyZf7m1ggJCZEkxcfHOzMW4HKv3djU1H72J4q7AADvtmjnKVN7cMvKFiWBJ6JgAJ+x70yc1REAAMi3r1cftjoCkKPExERJUnBwcL62j4u7fK52pXAAeAs/P5upHRWdYFESAACc4+5p60zt29tWtSgJPBEFA/iMNG7LBAB4sa9XHjK165TjS1V4lrJly0qSTp48ma/td+3aZdoP4C2aVylpdQQAAFyqbY3SVkeAB6FgAK/14nWNTO0BHyy3KAkAAAW3+9RFU/u921pYEwTIRoMGDWQYhlauXKm0tLQ8bXvkyBFt2rRJNptNbdu2dVFCwDXqVyiRad2haIbWAgB4p7NxSZnWZXyaDoUbBQN4LR6XAgD4siaVw6yOAJj07dtXknT27FlNnz49T9u++OKL9iJDnz59nJ4NcLWKYeahuCb+tsOiJAAAFMymwxesjgAPR8EAXqt4kL/VEQAAAAqNUaNGKSzsciHrySef1Lp163LZ4rKXXnpJ06dPl81mU6VKlXT77be7MibgEg92q21qL9512qIkAAAUzKdL95vacx+9xqIk8FQUDOBT/tl31uoIAAAAPql06dJ65ZVXZBiGYmNj1blzZz311FNav369kpL+fbQ9NjZWu3fv1ldffaW2bdtq4sSJ9vfeffddBQQEWBHfqZKTkzVjxgz1799f1atXV3BwsCpWrKiOHTvqrbfe0tmzzj0nnTp1qmw2W55eo0ePdmqGwq5f04pWRwAAwCl2nog1tRtVDLUoCTwVt2jDq93Tuab+t+ygvT3si9WKem2AhYkAAMi7tHTD1A4O4J4OeKaHHnpIe/fu1QcffKDk5GS9++67evfdd+3vG4ahUqVKmbYxjMuf7xdffFE333yzW/O6wq5duzRkyBBt2rTJtP7kyZM6efKkVq5cqTfffFNTpkxR//79rQkJpwsPCcq0Ljk1XYH+/HsNAPAuCcnmuahsNuYvgBkFA3i1h3vUNRUMAADwRj+sO2Jqvzq4qUVJgNy99957atasmZ566ilduHBBkux3tUv/FgiuKFmypN59912NHDnS3VGd7ujRo+rZs6eOHz8u6fJ/d5cuXVS7dm2dOXNGCxcu1KVLl3T69GndcMMNmj9/vnr06OHUDA0aNFDPnj1z7dexY0enHheZfb/2sIZ3qGF1DAAAAKeiYACvFlY08yPthmFQHQUAeJUV+6NN7cEtK1uUBHDMXXfdpVtvvVVfffWV5s2bp5UrV+rixYv294OCghQREaHrrrtO9913n0JDfeNR96FDh9qLBdWrV9fs2bPVvHlz+/tnz57V7bffrkWLFiklJUW33HKL9u/fr5IlSzotQ7t27fTRRx85bX9wXOe64Vq299/hpj7/+wAFAwCAV3v3tua5d0Khw/OT8HpNK4eZ2jPXHLYoCQAA+RMVHW9qU/iGNwgJCdGjjz6q+fPnKyYmRhcvXtTRo0d1/vx5Xbp0SUuXLtXTTz/tM8WCefPmadmyZZKkwMBA/fbbb6ZigSSFh4dr9uzZqlWrliTp3LlzeuONN9yeFa7x4nWNTO2j5y9ZlAQAgPzJOBRqxu/UAImCAXzA9/e1N7Wf/2WbRUkAAMi7EzGXtOVojNUxgAIrXry4KlWqpLAw37zw/Pjjj+3LI0eOVNOmWQ8dVrx4cb300kv29ueff67U1FSX54Pr1StfwuoIAAAUyM2frTC1/bhRCVmgYACv5+/HxxgA4L1W7DMPR/Rk73oWJQGQnbi4OC1atMjevvPOO3Psf9NNNykkJETS5acM/v77b5fmAwAAcMTGwxdM7Uoli1oTBB6Nb1rh9QKKUA0FAHivpNR0U/vRnnUtSgIgOytWrFBSUpKky08QtG3bNsf+wcHB6tChg729ePFil+aD+/hluPTYePi8NUEAAHCC4IAiVkeAB2LSYyeIiorSX3/9paVLl2rr1q06fPiw4uLiVKJECVWpUkUdOnTQ0KFD1bVrV6uj+iTGeQYAeLPElDSrIwDIxc6dO+3LTZs2lb9/7pdRrVq10l9//ZVp+4K6cOGCfvjhB23fvl0xMTEKDQ1VpUqV1KFDBzVt2pRzYxd78bpGmvjbDnv7se826e9nuluYCACA/LmzUw2rI8BDUTAogI0bN+r+++/XmjVrsnz//PnzOn/+vLZu3arJkyerW7dumjZtmqpVq+bmpL7vltZV9MP6o/Z2Slq6AorwAA0AwPO99PuO3DsBbnJlsl5Xstls2r9/v8uP40y7d++2L1evXt2hba4+59+1a5fTssyePVuzZ8/O8r26devq2Wef1V133UXhwEVGdaxhKhgcPpdgYRoAABy3Yt9ZU/v2tnw/iaxRMCiA3bt3ZyoW1KtXT02aNFF4eLguXLigFStW6OjRy19kR0ZGqkOHDlq2bJlbLsYKk9CiAab2zNWHNbJjDWvCAAAAeKmoqCiXftFsGIZXfpEdHf3vXCPly5d3aJsKFSrYl8+dO+f0TFnZu3evRo8erV9//VXfffedihcv7pbjFibe+PkFAECShn6x2tRONwyLksDTcQu2E9SpU0evvfaajh49qt27d+unn37S559/ru+//16HDh3Sl19+qWLFikmSjh8/rmHDhsngj9Kp0tLNP8/xc7YrPZ2fsTulpxtKSmVYDQAAvJ1hGC57eau4uDj7ctGijk0OeHW/q7fPr2rVquk///mP5s2bpyNHjigxMVHx8fHavXu3PvnkEzVo0MDe9/fff9fQoUOVnp6ewx7/lZSUpNjYWNMLjpu+MsrqCIUOw/kBQMGVKxFkdQR4KJ4wKICKFStqypQpGj58uIoUyXqSED8/P911110qVaqUbrzxRknSqlWrtGDBAvXp08edcX3ayI41NHVFlGndxcRUhRULyHoDOMXFxBS9t3Cv2lQvpc/+PqBdJ2I177HO+mHdUd3YqrLKhwYrrCi/AwDIzoYMk2W+MKChRUmAyw4ePGh1BI+UmJhoXw4MDHRom6Cgfy/CL126VKDj33DDDRoxYoT8/DLf71WvXj3Vq1dPd999t+6//35NmTJFkjRnzhzNnDlTd9xxR677nzRpkiZOnFigjIXZuNnbNaJDDatj+Lz5205qbdQ5tahaUo98u1FP9q6nmuHFdfpikga3rKxSxQJ4AgQA8qBMCAUDZI2CQQF07drV4YmMBw8erIiICPsQRnPnzqVg4EQ1wzM/bv3njpO6tU1VC9L4tpS0dA3/crVWHfj30fovl//75ULPt5dKkj5benls4s51w/XZHa1VPIh/bgAgo9snrzK1y3KXDyzm6Pj8hU1wcLB9OTk52aFtkpKS7MuOPpWQnZIlS+baJzAwUF988YX27dunZcuWSZJef/11hwoGY8eO1ZNPPmlvx8bGqmpVzqOzs/q5nmr36iKrYxQKqw9E67YM/6+84p2/9tiXX/7/+YB+ebCjWlYr5ZZsAAD4KoYkcqNOnTrZl6OioqwLUkg88+MWqyP4pLrP/2EqFuRm2d6zajz+TxcmAgDvlZxqHi6kf9OKFiUBkJOQkBD7sqNPC1zd7+rtXcnPz0/jx4+3t7dt22afTy0nQUFBCg0NNb2QPW5id4/fNh/PtliQncGfrNDBs/EuSgQA3ivjENJv3tzMoiTwBhQM3OjqxyPT0hhz0dlevr6x1RF8VnJquo5duKQDZ/I//m6NMXP17lV3AQEAMgsowqkZ4InKlCljXz516pRD25w8edK+XLp0aadnyk6XLl0UEPDvkJA7d+5027ELi9LFMg9L9dcOxz4XyN3p2ESdik3UI99uzNf23d+KVI0xcxWXlOrkZADgvYZ/ucbUHtSikkVJ4A24KnWjrVu32pd5xNf5hjNuqEucik1U61f+UqfXFqvH/w83lF/vL9qrWz5b4aRkAODdth+PMbWLBWY9HxIA69WvX9++fOjQIYe2OXz4sH356gmJXS0gIEDh4eH29tmzZ9127MLCv4ifZt3XwbRu0h8UZgoqLd3QV8sPKuLVRU4Z8qnJ+D8Vk5DihGQA4P3WHDSPFBHIjUrIAZ8ONzl8+LAWL15sb/fq1cvCNIXHnlMXrY7g1ZJS09Tu1UW6mOi8u3PWRp3XG/N3OW1/AOCtth+LNbVn3tPeoiQActOw4b8Tkm/dulWpqbmfG23YsCHL7d0hPv7fIVmKF8881xcKbt9p85O3B84wDE5BDf7kH730/3MROEvzlxbofLxj844AQGHCJPHICbOQusmTTz5pH4aoWrVqGjhwoMWJCoebPlmhrROZXDo/9p2OU693CvZEQXY+idyvZlXC1LcJY3UDwBUtqpa0OgKQJ7t379bChQu1adMmnT17VhcvXlR6enqu29lsNi1a5F0Txnbs2FFBQUFKSkpSfHy81q1bp/btsy/yJSUladWqf8de79GjhztiSpIOHDig2Nh/C5KVKjHkgCskpmQeYjYxJU3BATwtlh8T5mzXlqMxuXfMh5Yv/6WtE65VieCA3DsDQCHQslpJqyPAw1EwcINp06bpp59+srcnTZqkoKCgXLdLSkpSUlKSvX31iT8cc5FxK/Nl76mL6v3u3y49xv1fb9DEQY01smMNlx4HADzVV/8ctDoCkC8HDhzQ/fffn68v/Q3D8Mo72kJCQtSzZ0/NmzdPkjR16tQcCwY///yzLl68/KRr6dKl1aVLF7fklKSvvvrKvhwWFqYWLVq47diFSZ8mFTLdDb/1WIza1nDffBW+YtIfOzV1RZRLj9F0wgKKBgAKrdhE8/Bs1zXjZgLkjCGJXGzdunW6//777e0hQ4Zo6NChDm07adIkhYWF2V/Me5C7aXdFZFqXkEzRIK9cXSy4Yvyc7ToVm+iWYwGAp9l1kmHz4H02bdqkVq1aadGiRTIMI9fXFRnb3ujBBx+0L0+dOlXbt2/Psl9CQoLGjRtnb997773y98//fVpxcXG5d/p/K1as0Ntvv21v33777QU6NrJXuWTRTOtu+WylBUm827ELl/T50gNuOVbTCQvcchwA8DTP/rjF1A705+tg5IxPiAsdPHhQAwcOVGLi5S9EmzVrps8++8zh7ceOHauYmBj768iRI66K6jO61iubad2bf+62IIl3SkxJU40xc916zDfm8/sBUPhExyXl3gnwMCkpKbrxxhsVGxsrwzDUr18/ff/997rhhhskXR5qaMmSJZozZ44+/PBD3XLLLQoICJBhGAoJCdHnn3+uJUuWmOb18iYDBgxQ586dJV1+Evi6667Tli3mC/Do6GjdcMMN2rdvn6TLTxc8++yzWe4vKipKNpvN/po6dWqW/X788UdFRERo+vTpionJesiWxMREffDBB+rVq5f92qNkyZIaP358fv5T4aDtDH1aID+sO6JOr7n334OUtNyHTQMAX/PHtpOmdtPKYRYlgbfgdhMXOXHihHr37q2TJy//UdaqVUvz589XaGiow/sICgpyaOgi5GzGykMaP7Cx1TG8QsNx891+zJ82HNVbtzTzyuEJACC/Rk1Za2pndacq4GlmzJhh/5J7+PDh9i+4//773ycTu3btal9+6KGHdPz4cd17772aN2+enn76ac2fPz/HoXw83cyZMxUREaETJ04oKipKLVq0UNeuXVW7dm2dOXNGCxcuVEJCgiTJ399fs2bNUsmSJQt83LVr12rkyJHy9/dXgwYN1KBBA5UqVUppaWk6duyYVq5caRq+tGjRopo9e7YqVmS+KFcqHsTldH5dSEjW0xnueHWHtxbs1th+7p2EHAA8DXOnITec4bhAdHS0evfurf3790uSKlasqIULF3LC7ibXNiqvBTtO2dup6d79+Lu7RJ2NV0FGCigR7K+Lifkb/qnm2HnaPP5ahRVlTFEAhcPWY+a7hMf0a2BREsBxv//+u6TLX4S/9dZbDm1TqVIlzZkzRzfeeKPmzJmj22+/XZs3b1ZYmHfe2ValShUtXrxYQ4YM0aZNm2QYhiIjIxUZGWnqV7ZsWU2ZMkU9e/Z06vFTU1O1bds2bdu2Lds+ERERmjp1qho25EtRK5y5mKSyJbjpKyfJqem67fNVuXfMQaC/n5JT8/60wOdLD6hWeHHd1rZagY4PAN4ine/EkA8UDJwsNjZWffr0sY9pGh4eroULF6pmzZoWJys8Ph7WSnWf/8O07lx8skoXD7Qokec7eDZe3d+KzPN2X4xooyJ+NrWvVUZFA4tIkpJS03QpOU3bj8dq2BerHd7Xc79s1cdDW+U5AwD4gu4NylkdAcjVxo0bZbPZFBERofDwcIe38/Pz0+eff6758+fryJEjmjZtmh599FEXJnWtBg0aaPXq1fruu+/07bffavv27Tp16pRKliypWrVq6cYbb9Sdd96Zp59RToYMGaJ69eppxYoVWrVqlfbv36+zZ88qOjpa6enpCgsLU82aNdW+fXvdfPPNuuaaa5xyXOTPq/N26t3bWlgdw6PVe+GP3DtlMLRdNbWuVkptapRS9TLF7etPX0xUiaCAPD0p/exPW3Vrm6o84QygUPhuLcObI+8oGDhRfHy8+vfvr/Xr10uSwsLCNH/+fDVq1MjiZIVLQJHMU3P8teMkd5HkIK/Fgs/uaKWu9crZiwRXC/IvoiD/IupUJ1xzHu6kQR/949A+5245oZZVD2h051p5ygIAvqB4Fv+eAp7m7NmzkqQ6deqY1hcp8u/n99KlSypaNPMQW+XLl1eXLl20cOFC/fjjj15dMJCkwMBAjRgxQiNGjMj3PmrUqOHQRNBBQUHq2LGjOnbsmO9jwXVm3B2h4V+usbd/2XiMgkEOVuw7m6f+fRqX1xO966lBhayH9i1XIliSFPXaAP1n1mb9tOGoQ/utOXaeDk7qT9EAgM+b9MdOU/vpPvUtSgJv4pRJj5966int3l24Jy5NTEzUoEGD9M8/l78cLVasmObOnavWrVtbnAyStOVo1hPEQVqy67RD/e7rUkv3d62tZc90V98mFbMsFmTUrEpJRb02QG/e3Ewda5fJtf8rc3fm2gcAfBFfWMAbJCcnS7p8nnu1EiVK2JdPn87+vKJGjRqSpAMHDjg/HGCRIH8Kvnkx1MEnkIdEVNP7t7fQZ3e0zrZYkNHbtzbX1gnXqnv9sg71v3oYWwDwVRmHjr61TVWLksCbOKVg8M4776hRo0a65pprNG3aNF26dMkZu/UaKSkpuummm7R48WJJl+8Cmj17tjp16mRxMlzxzerDVkfwSClp6bpz6trcO0oa27+hxvRroKqli+XeOYNb2lTVzHva64MhLXPte/R8Qp73DwDeJDElzdR29IsNwGqlSpWSdPmp2quVLfvvZ3jPnj3Zbn+lmHDlSQXAF5QunnkOrvWHzlmQxPMdPBufeydJK8b00KQbm+r6FpXzXFAvERygKXdGaNfLfXPte9+M9Q495QMAviS0KIPNIHdOKRhcsXLlSt11112qWLGiHnjgAa1bt86Zu/dIaWlpGjp0qObNmyfp8iRws2bNUq9evSxOVrhF1Cidad2l5LQsehZeMQkpmeZ6yM7cR50zFu6g5pVy7XPN60sUl5S/yZMBwBu8/PsOU/uZvkx4DO9Qt25dGYaho0fNQ340bdrUvrxgwYIst01MTNTatZdvUggNdexuYcAb1ClXItO6mz5daUESz/bqvJ0ODYN6baPyqlQy87BmeRUcUEQLn+ySa7/7v15f4GMBgDfhyTg4wikFg+HDh6to0aIyDEOGYSg2NlaTJ09Wu3bt1KJFC3388ce6cOGCMw7lUQzD0N13360ff/xR0uUJ3WbMmKFBgwZZnAzP9M08JtuPDo5nWVg0fynrC/qMFj7ZVY0rhTntuJvHX5trn8l/M1QBAN+V8am3kCDu8oF3aNWqlSRp+/btpvXt27e3D0v0v//9L8uhSl988UWdOHFCNptNLVvm/sQhAN+x9WiMQ+f393Suqckj2jjtuHXKlVCZ4oE59vlz+yluLAPgsxKSuRkT+eOUK9Rp06bpo48+0syZM/XVV19p7dq19kf7tm7dqkcffVRPP/20brrpJt19993q1q2bMw5ruU8//VTTpk2zt2vXrq3ly5dr+fLlDm3/0UcfuSpaodcmiycMflx3RMPbV7cgjfea/3hn1SkX4tR9hhUN0M6X+qrhuPnZ9vlg0V7d3raqU+4uAgBPl5+h3gAr9OjRQx9++KFOnz6tHTt2qFGjRpKkokWLavjw4frkk0908eJFRUREaOTIkWratKkSEhI0Z84cRUZG2vczcuRIi/4LANcIDwnS2bgk0zrDMJif5v+9uSD3+Q7LlQjS8wMaOf3Y61/srad/2Kwf1md/81jDcfMV9doApx8bAKy2bK95GMgpo9palATexma4YNC+bdu26YsvvtA333yj6Ojofw/2/ydMtWrV0t13361Ro0apQoUKzj6820yYMEETJ07M9/Z5/dHHxsYqLCxMMTExPMrtgBpj5mZat3n8tQormnmc0cLkdGyibvl8pQ5F5zxXwBs3NdOtbV03GU5Wv5+rXVMnXF+Pbuey4wOAVa7+9+/7e9urXa3cJ4WH7/Km87vExESVLVtW8fHxev755/Xyyy/b3zt//rxatGihI0eOZPslqWEY6tOnj/74w7EhEWEdb/pceoLElDQ1eNF8M8z1LSrp/dt5mubDRXv19l/Zz21yxcFJ/V1WYIlLSlWT8X/m2IeCAQBf9P7CvXp34b//BvNvXeGWl/M7p85hcEWTJk303nvv6fjx4/ruu+907bXXys/Pzz5k0YEDB/T888+rWrVquuGGG/T7778rPT3dFVFQiL15c7NM6zYcPm9BEs/y7sK9uRYLPhjS0qXFAkna/2r/HN/fdzrOpccHACskpZqHPeBJKniT4OBgLVq0SH/88YcGDhxoeq9UqVJatmyZOnToYD/nv/olSSNGjNDPP/9sRXTApYIDMo8HPXvTcQuSeB6riwXS5aH/3sji2vBqqWl8HwHA91xdLADywiUFgysCAgJ06623av78+Tp48KDGjx+v6tWr2y8cUlNT9dtvv+n6669XtWrV9MILL+jAAe8Zu3zChAlZXhA5+oJr3dLGtV94e6tv1/wfe/cdHUXZ9nH82nRISEKvIaGHXqRLB+kqYgWlCip2sTdARLE/FiyoFBv2AkroXar0DlJCgFATkkBC+r5/8LqwmdnNJtmde8v3c07O2blndubHY57N7Fx3SSj0GEcWJy4pfz+T3er26bRMec+BLxgA4EneW2z9uVa2kLmVAXfTtm1b6dOnj7Rt21azr2bNmrJ27VpZu3atTJ48WR544AF58MEH5Z133pG9e/fK7NmzpVQpimTwTr0bVVYdwe0UnKZJzxuDmxoyddMdraNkZMcYm/vbvr5MkhzICwCegueOKAmXFgyuFRUVJRMnTpSjR4/KokWL5M4775Tg4GDLw/PExESZOnWq1K9fX3r16iW//vqr5OWx+BCc630ffwC98sDZQo9Z+1wPA5Jc9UDXOjb3fbjsXwOTAIDrTS+w6CMLHsMbdejQQV566SX55JNPZNq0aTJ+/Hhp0KCB6liAS916XQ1N26Us311s0mw2S+spS+0e82zfWLnTxaOar/Vcv1ib+5LTs+W7jYV3rAIAT7Hy4DmrbT+W1UERGFYwuFbnzp2lX79+0rBhQxG5sraByWQSs9ks+fn5smLFCrnjjjukfv36MmfOHBUR4SWe7mP95XTHiVRFSdTLycuXkbP+sXvMr+M6SHWDp8d4uk8DKR2kHcb9H1/+ogUAAADPoDfC4IvVnjN63tl+3mx7kWERkcEtq8u4bnUMXRg6JNBfvrOzRhqjmwF4k3MXrUdNfXrPdYqSwBMZWjDYvHmzjBs3TqpWrSqjRo2SHTt2WAoFgYGB0qNHDwkLC7OMOjh69KgMGzZMhgwZwlAaFMuwDtGatv2n0xQkUSszJ09aTl5i95jJNzeW66LLGZToKn8/k+yd3Fc+vbuV7v7CFigDAAAAVNN78P2Bj46W/Sc+WZ75dafdY967s4UxYQq4vm4F2Te5r3SuV0F3/7J9ZwxOBAAuUuAxavMakUpiwDO5vGBw4cIF+fDDD6V58+bSrl07+fzzzyU1NdVSFKhbt6689dZbcuLECVm6dKmcPn1avvzyS2nRooWIXBnK+NNPP8m0adNcHRVeqIzOVA8PfbdVQRK1Hvpua6E99Ye2rWlQGn39mlaVqHL6oxtOp2YanAYAXK9HbCXVEYAiW7x4scybN0+WLrU/1UhBS5cuLdb7AE/ycPe6qiMol5qRI7d/tt7uMVMGNTEojb5SQf7yzb36Iw3u/WqzwWkAwDXeXLjfartKRIiiJPBELisYLFmyRO666y6pVq2aPPHEE7J7925LkSA4OFiGDBkiK1askAMHDshTTz0lFSpcqfCXLl1aRo8eLVu3bpUPPvjAcr6ZM2e6Kiq8mF5Pn8Pn0hUkUefQ2UuybL/9tQuOTu0vAf5KZiizsvjxrrrtN7y3yuAkAOB8BdeRqV+5jKIkQPHs3btX+vbtK7fccovMnz+/SO/966+/5JZbbpG+ffvK4cOHXZQQUGu4zujm1+bvVZBEndunr7O7/+WBjeSe9tr/ndzJLh+exhaA90hKz1YdAR7MqU8IExIS5JVXXpFatWpJ37595eeff5asrCxLoSA2NlbeffddOXnypHz33XfStav+w8H/PPLII3L99deL2WyWgweZTxDOc/ai7/RY71XIw/avRrc1dO5Qe0rZWMvgYlYu05IB8HgF15F5qLvtRd8Bd/TLL79YXo8dO7ZI7x07dqzlO8GPP/7o7GiAW6gUru29+cWaowqSqHEhPVsOnrlk95h7O9UyKE3h9NadEBEZNnOjwUkAwLUqlglWHQEexikFgx9//FH69OkjtWvXlsmTJ0tCQoLlC0FISIjcc889snr1atm7d6888cQTUq6c4/OkN2vWTEREMjN95wEvnOv5frGatjunb1CQxHi7T9rvHTNnTDvpWr+iQWlKZnkhoyQAwNOUCQlUHQEoktWrV4uISExMjDRq1KhI723cuLHExMSIiMiqVYwcBLxRy1ftr5kW/8YAg5I45kEbU0ilZORIXj6dlQB4roJTUn8/tr2iJPBUTikYDBkyRJYuXSr5+fmWQkHjxo3l/fffl8TERPn666+lU6dOxTp3UFCQMyLCh93fVduD0xfmxE/LzJGBH/1t95hW0WUNSuO4vx7R/6y496vNjDIAAEChffv2iclksqw1VlQtW7YUs9ks+/btc24wwI00qR6uOoISL/6+y+7+p/s0MCiJ41pERdrc98WaI8YFAQAnGzbDeqRU+VCeraJonDYlkdlsllKlSsmIESNk7dq1smvXLnn00UclMjKyROcdOnSozJo1izUM4FSXc/IkKzdPdQyXajZpsd3910WXlZBA/SmAVGpSPcLmvoW7TxuYBACc51TqZavtd25vrigJUHxJSUkiIlKxYvFGJ/73vvPnzzstE+BuXuyvHX2zLeGCgiTG+ffMRfluY4LdYx7s5p7T8P3yQAfd9jcW7NdtBwBPsC0hxWq7LAUDFJFTCgbNmjWTjz76SBITE2XWrFnSoYP+H93iaNOmjYwYMUJGjBjhtHPC90wYqL1x/2jZIQVJjFFw+Jme78a0MyBJ8Sx6vItu+69bTxicBACco+ACirUqhCpKAhRfYOCVabSKO1UoU4zCF3SoU17Tdssn9hcC9nQ3/G+13f1v39bMbdZMK6h1jO3pkhndDADwVU4pGGzfvl0eeughiYiw3TMYUGnU9TGatmkrvLdg0GTiIrv7l47v6pajC/7ToEoZ3fal+87KnkT76zIAgDuaOG+P1ba9aRAAd1WhQgUREfn333+L9f6DBw9anQfwVp8Pu07T9v0m+z3wPdW6w/ZHDFUOD5bbW0cZlKZ4Fj+h31mp1vNxBicBAMA9OG1KIsCd2erR4o2LWS3de8bu/qoRIVK3UphBaYpv6uCmuu0DPrS/LgMAuKNTBdbO8fdzz56WgD1NmzYVs9ks//zzj5w8ebJI7z158qT8888/YjKZirxgMuBp9IrCz/9mf45/T3QpK1eGfrHR7jGrn+luUJriq19Zv7OSiHd+XwTg3QqOjgoPCVCUBJ6MggF8xjideTPrvOBdvUby880y5uvNdo9Z9mRXg9KUzHVuuCAzAAC+rHfv3iIikpeXJ08//XSR3vvkk09KXt6V9aP69Onj9GyAO6kUHqLbnpnjXWuo9X5vld39Hw1pKcEB7juq2REjZm5SHQEAimTj0WSr7Qk3NlaUBJ6MggF8xtO9G6iO4HLrDifZ3R//xgApHeQZ1eX6lctIk+rhuvtSL+cYnAYAAIwYMULKlr1S0P/xxx/l4Ycflpwc+3+Tc3Jy5KGHHpKffvpJRETCw8Nl5MiRro4KuKWCo808mdlslkQ7/55n+jaQG5tXMzBRySwdrz8t0d+HWKQdgGeZttx6+u2wYM8u3EINCgbwGX42pn/wlmGmqRk5cs8M20OC+zetYmAa5/jrkc667c1fWWxwEgAovty8fKvtXg0rK0oClEyZMmXktddeswx1//TTT6VBgwYydepU2bBhg5w9e1YyMjLk7NmzsnHjRpk6dao0aNBAPvvsMxG5MkXk5MmTLUUHwJtNvlnbo/PVv/YqSOIaHd9Ybnf/mE61DUriHHUrlZH1z/fQ3Xcq9bLBaQCg+HacSLHa5rsHisMzuhoDLlTnhTiJf2OA6hgl1nyy/YfoEz10GFrr6LKy+dgF1TEAoNg6vbnCavv1wU0UJQFK7oEHHpC9e/fKtGnTxGQySXx8vLz00kt23/NfgWHcuHHyyCOPGBETUO7WVjVkwlzrBe+X7z+rKI1zXczMKXS0RFCA5/VNLFs6SLc9btdpubdTLYPTAEDRZebkycXMXKu2AH/P+zyGevzWwKcMauE5w2KdrbKNuVTd3cxRbXTbs3K9aw5YAN7rdJr1Q5VKZTzz8xj4z4cffiiffPKJhIWFiciVgoC9n7CwMPn4449l2rRpipMDxgkN1u+bF38+3eAkzvfekoN298+ycf/u7kIC/SVYp9Dx/aYEBWkAoOj2nkqz2m5UVX+aZ6AwFAzgU57pG6s6gkt8sz7e7v4dE3obE8QFwkMCddtfm7/P4CQAAOA/DzzwgBw7dkzeeOMN6datm5QqVcpqf6lSpaRbt27y5ptvSkJCgowbN05RUsC9TPpzT+EHubFzF7Nk1tp4m/sbVC4j3RtUMi6Qk614qpum7dDZS8YHAYBiKFiUbhUdqSYIPB4FA/iUapGldNs9eV7KJXvPyMtzbX/xeKZvA4korf/Q3ZN9vf6Y6ggAUGQjOkSrjgA4TWRkpDzzzDOyfPlySU9Pl9TUVDlx4oSkpqZKenq6LF++XJ5++mmJjIxUHRVQ4oX+2s5KKw+cU5DEedq8ttTu/rkPX29QEteoGqE/CvB4cobBSQCg6Mb/tMNq+8kbGihKAk9HwQA+Z+n4Lpq2Z37ZqSCJc4z9erPNfXe1iZIHu9U1MI1rLHpc+98MADzB0QK9fG5vHaUoCeB6ZcqUkWrVqkmZMmVURwHcwtjOnrXwb0ltffkGCQn0Vx2jREwmk5hM2vZNR5ONDwMAJVQ2VH9tFqAwFAzgc6pGaEcZrPn3vIIkJbf9eIrd/VMHNzUmiIs1qKL/4OH533YZnAQAimbdYeu/L7n5ZkVJAABGM5lMUqOs9rvH4XOeN8VNdm6+3Geno9Ld7WpKOS95MPXLAx01bU/+vEMOnL6oIA0AAMajYACfY2sBsuzcfIOTlExKRrYM+nitzf0/P9BBTHrdYzxUNZ3hwSxABsDd5RcoEJjNFAzgG7KysmTlypXy448/yooVKyQrK0t1JECJb+5tp2kb/Mk6BUlK5uE5W2Xx3jM290+6qbGBaVzL1iKhT/+yQ7cdAABvQ8EAPunvZ7tr2uq/tEBBkuIxm83SYvISu8e0iSlnUBpjrH5G+99MRGTejkSDkwCA4/IKFAzqVgpTlAQouZycHJk5c6bMnDlT5s+fb/O4X3/9VWrWrCk9e/aUoUOHSq9evaRKlSoyc+ZMA9MC7qFWhVB5pq/1HNKpl3M86h52wa5TdosF9SuHSaC/9zxaKBXkL70bVda07zyRqiANAADG856/6kAR1ChbWja+0FPTvuZfz1iEbFshUxHdoHOD6+kCbHwJefT7bQYnAQDH7U5Ms9ouE+J9i9DDdyxevFjGjBkjY8eOlZ079dd/+vvvv+Wuu+6S8+fPi9lstvykpqbK2LFjKRrAJ+mtKfbo99s8ZtTZuO+22t3/+4OevdCxng+HtNRtv5iZY3ASACieBY91Vh0BHoyCAXxWuM5Dm2EzNilIUnRT/tprc9+AZlXli+GtDUxjnNmj2qiOAABF8suWE5bXj/bw/EXo4duWLl1qeT1kyBDdY5544gnJy8sTEZHg4GBp1aqVVK1aVUSujJAcP368nD/vmWtHAc720+bjqiMUKq2QB+R7J/exOeWrJ7O1ePObC/cbnAQAHHM8OcNqu6GN6dUAR1AwgM8KCdT/9T94xr0Xs9p0NFm2JqTY3D/l5ibGhTFYp7oVdNvTs3INTgIAhbuQnq06AuBUW7ZsERGRmJgYiYmJ0ezfsWOHbNmyRUwmk9SsWVP27NkjmzdvluPHj8vIkSNFROTixYvyzTffGJgacA9BOqNln/11l4IkRdNs0mKb+yqWCZbSQd5XLPhP9wYVNW3fbmANNQDuqfNbK1RHgBehYACfZWtB4N7/W21wkqK5Y/p6u/vLhgYZlMR4tqYlevInFiAD4H4e/3G71fbNLaurCQI4ydGjR8VkMknTpk119//555+W16+88orUrl1bRET8/PzknXfekaCgK/coixfbfgAJeKvusdqHzyIi83eeMjiJ43Lz8u3u/21cR4OSqPGBjWmJAMDdeMoUd/AcFAwAHdm59m+OVTCbzRLznO0FBkVE7u1Uy6A06qx9roembeGe0/yBBOB2Vh20XhenTkUWPIZnS05OFhGRihX1H3yuWrVKREQCAwNl8ODBVvvKlSsn119/vZjNZtmzZ49rgwJu6Pl+DXXbH5pjf30AVXaeSJG6Ly6we0yNsqUMSqOG3hS2IiKz1x41OAkA2BefZD0dUXkv7kgKY1AwgE/71UavmGkrDhmcpHAfLis808sDGxmQRK3qkfpfTJbvP2twEgAAfEt29pVptgIDtQ/R8vPzZePGjWIymaR169YSFqYtkFWvfmWUTVJSkmuDAm4opkKo6ghFctO0tXb3736lj80R295k/6t9NW2T/rS9nhwAqLAnMdVq++52NRUlgbegYACfdl10Wd32D5f961Y91nPy8uV/Sw/aPebjoa0MSqPe92Pba9oSUzMVJAEAfduPp6iOADjdf0WA/0YaXGvbtm1y6dIlERHp1KmT7vtLlbpS9M/NZe0h+Kbn+sXqtm9NuGBwEvsKjpDTE+aFCx3rsbX4MQC4k4fnbLPa7t+sqqIk8BYUDODzPrirhW77mwsPGBvEjnqFDAduVTNSBvjQH4QOdcpr2l79i54+ANxHYsplq+337miuKAngPFFRUWI2m2Xbtm2affPnX5020VbB4MKFKw9Fy5Qp45qAgJu7v0tt3fbBn6wzOIltexPTZMTMTXaP0et1780e6VFX05aX7z6dywCgoNgq4aojwMNRMIDPu7mF/iKUn606bHASfftPpxV6zPRhrQ1I4t6yc/MlI5seiwDcQ8E5qT1tKgpAT9u2bUVE5NChQ1YLF1++fFlmzJghIlemK+rSpYvu+/ft2yciIjVrMkwevsneFD47T6QYF8SO/h+uKfQYX+t1X7eSdoq12Jftd+gCAKMcT84o/CCgiCgYAHaovnHPyzdL3/ft37TPGtlGKpYJNiiR+2hZM1LTdv83W4wPAgA6Cs5q16qm/hR4gCe5++67La9vv/12mTBhgnz00UfSpUsXOX78uJhMJhk4cKCEh2t7taWmpsr+/fvFZDJJ48aNjYwNuJUq4SG67YWtGWCEY0nphR7ja6MLRERubFZN05aTZ5bcvHwFaQDA2vrDrA0F56NgAIjImE61dNtV37h3f2dl4cfEVnJ9EDf0430dNG1r/j2vIAkAAL6he/fucuONN4rZbJZLly7Ja6+9Jo8//rhs3XplRE1gYKBMmDBB973z5s2TvLw8ERFp3167FhHgKxaP1x+BIyKSnqVutGxGdq50fXul3WO2vXyDz40uEBHx8zNJZGntYu+5TEsEwA28u8R6Ou3P7rlOURJ4EwoGgIi8NLCRzX2O9LRxhXMXsyShkKFlCx7rbFAa9xMUwMcXAABG+/777+Xmm28Ws9ls9RMaGipfffWVNGvWTPd9X375peV1r169jIoLuJ3wkECJf2OA7r7GExcZnOaK/HxzoR2lWkRFStnQIIMSuZ9vRrfTtOUXHE4IAAqcScuy2q5XWTuNGlBUAaoDAO6u69srZdOLPaVSGf3hw66w8UiS3Pn5BrvHjOwYIw2r+vZCNoH+JsnJs75RT8vMkfAQbQ8gAFDlrVv1H6ACnqh06dLy+++/y86dO2XNmjWSlpYmUVFR0r9/fylXrpzue5KSkqROnTpSu3ZtKVOmjDRo0MDg1IDn6PnuSln2ZDdDr1n7hbhCj/njoesNSOK+mtaI0LS1eGWJHHytn4I0AHDVfV1qy+erj1i261SkYICSo2AA/L/FT3SR3v9brbuv7WvLbPYEcjaz2VxosUBE5PFe9QxI497mjG0vt3+23qqt2aTFhv23AgA95gI9DutXKaMoCeA6zZo1szmaoKDy5cvLzJkzXZzIWNnZ2fLjjz/K999/L3v27JEzZ85I2bJlpVatWjJ48GAZOXKkVKhQweuuDdc7fC5dsnPzDRtN+/ai/YUeU8oHpyFyRHZevqH/rQBAT24eo53gfPxlA/5f/crqH+iYzWb5aPmhQo97uk8DiSztu0OC/9MmRr8nIwCo1GiC9ZQSlcN9b2F6oDgmTZoktWvXljp16qiOYtf+/fulXbt2Mnz4cFmwYIEkJCRIVlaWnD59WtavXy9PP/20NG7cWOLiCu+17UnXhnN9encrm/t+3nLckAwpGdny8YrDhR63feINBqRxf8ue7Kppm/H3UQVJAOCKC+nZMnMtn0NwPgoGwDXsTRvR1IA5RWetjZf3lhws9LiHutd1eRZPVrB3LwAY6XJOntV21YhSipIAniUpKUni4+MlPj5edRSbTpw4IT179pTt27eLiIjJZJKuXbvK6NGj5cYbb5RSpa78//3s2bMyaNAgWb58uVdcG87Xt0kVm/te/H23nL+UZXO/s7SYvKTQY368r70EBzDCQEQkyF/7+OTNhYWP0AAAVxkxa5PVdpVw46bShnejYABc4442UTb3XczKldSMHJdde96ORJn8195Cj1v4uO8udKzn6T7aeZCnXzN/HwAAgLMMHTpUEhMTRUQkOjpatm3bJitXrpQZM2bIvHnzJCEhQXr27CkiIjk5OXL77bdLSkqKx18bzmcymeSvRzrZ3N/t7ZUuu3Z+vlm6vLWi0OM61ikvbWsxovc/UeVKq44AAFZ2nki12n55YCNFSeBtKBgABdj7gE25nO2Sax46e1Ee/X5boceFBvlLbBXfXui4oF4NK2va3lhATx8AAOBccXFxsmbNGhERCQoKkj///FOaN29udUyFChVk7ty5Urt2bRERSU5Olrfeesujrw3XaVjV9n39paxcl1236aRFkpCcUehx04a2EpPJ5LIcAADnqlUhVHUEeAkKBkAB93aqZXNf17dXumR48H1fb3HouK0TmD+0oAY2FhNNyXBNcQcAimLpeO18xwA808cff2x5PWLECGnatKnucaGhoTJ58mTL9vTp0yU3t2QPf1VeG67j72eSx3vVs7n/w2X/Ov2aqRk5kp6dV+hxEwY2knKhrJlW0EdDWmraXptf+ChxADBCo2p0MIVzUDAAdHw3pp3Nfa2nLJV3Fh2Q3Lx8p1wrbtcpOXI+vdDjfmD+UJu+GN5a07bucJKCJAB8XcGict1KYYqSAHCmS5cuybJlyyzbo0aNsnv8rbfeKmFhV/7/n5ycLKtXr/bIa8P1Hutpu2Dw3pKDEvPcfDmWVPh3BUekXs6R5pMXO3TsaDudqHzZjc2radq+WMOCowDUCAsOsLwe0KyqwiTwNhQMAB3X161gd/+0FYek5eQlcjYts9jXOJuWKakZOfLgd1sLPbZHbCVpX7t8sa/l7fR6P608cFZBEgC+rvWUpaojAHCBdevWSVbWlYJgaGiotGnTxu7xISEh0qFDB8t2SRYgVnltuJ7JZJLQIPudgrq+vVJWHTwn+fnmYl0jP98sh89dkqlx+xw6ftmTjI4rqsycwkdtAIAz/bApwWr6us6FPMcCioKCAVBMF7Nype3ryyT1ctEXQl6y94y0fX2Zwz18Zo60/8XQ1zWrEaFp+2nzCQVJAPgyZ/UABeB+9u27+qC1adOmEhAQYOfoK1q1aqX7fk+6Noyx4YWehR4zYuYmmbpgn5jNRSsaZObkSe0X4qTnu6vkh3+OF3r8nDHtpE5FRsfZ0zZGuxD0mwtZQw2AsZ77bZfV9u2toxQlgTeiYADYcPj1/g4tGNP8lcUS89x8yci2Pz+s2WyWo+fT5amfd8jYrzc7lGHyzY3l6NT+Dh3rywL9/eSVmxpr2ovbCwsAimPZPuuRTe/d0dzGkQA8zYEDByyvo6OjHXpPzZo1La/37y/+w0SV14YxyoQEyq/jOhZ63Bdrjkqt5+Nk3eHzhR6bnpUrc7eflNiXFzqcY/uEG6QjPVQLNWuUtjPXrLXxxgcBgGv4+7FIPZyHggFgg7+fSVY81c3h4xtNWCTpWbm6vX5y8/Klw9Tl0v2dlfLLFsd7vg/vECMmEx/6jhjRMUbTlu2kdSYAwBHL91sXDAa3qqEoCQBnS0q6ujZS5cqVHXpPlSpVLK+Tk5M98towznXRZWXnpN4OHTv0i41y6OwlSc/SdljKzcuXvYlp0njiInnsh+0OXz8sOEAiS7PIsSNCgwNk6mD9hccBAPAGhY9nBXxcqUB/uezgnJSNJy4SEZEpg5rI56uPSEJyhiujoRCrDp6TPo2rFH4gADjB34cK7/EJwDNdunTJ8rpUqVIOvefa4659vzteOysry7JOgohIWlpaERLCWcJDAh0+ttd7qyyv37ujuYz/aUeJrs0UqEVza6sa8nyB6UDy8s308AVgiDxmU4CLMcIAKMSqp7sV+T0v/bG7RMWC4R2iZcdEx3oY4armBdYyuP+bLYqSAAAAb5KZmWl5HRTkWC/s4OBgy+vLly+79bWnTp0qERERlp+oKOZBVqVzvaJPCVTSYsHXo9tK21raeflhW1CA9lHKXzsTFSQB4Iu+Xh9vtV27YuHTaQNFQcEAKESl8BB57ZYmhl7zlZsaS0Qpx3sY4Yq+Tapq2g6euaggCQAA8CYhISGW19nZ2Q6959oe+46ODFB17eeff15SU1MtP8ePF744Llzjm3vbGXq9125pIl3qVzT0mt7quV93FX4QADjB8WTrzgDv3s7aaXAuCgaAA+5qU1MaVws35Fpv39aMdQuKaUznWpq2m6etVZAEAAB4k7CwMMtrR0cLXHvcte93x2sHBwdLeHi41Q/UWfZkV8OuNbRtzcIPgq4f72tvtX05J09OphR/NBEAOKrgGjY1y5VWlATeioIB4AB/P5PMe7iTy6+za1Jvub01Q8CLK9Bf+5Hm6PoTAFASuSyyDni18uXLW16fOXPGofecPn3a8rpcueJP96Ly2lCjTsUwQ3r9x78xgI5KJdCkeoSmbdeJFOODAPA5v28/abUdGswStXAuCgaAg/z9TPLywEYuO/9z/WKlTBEWOoO+9+9soToCAB804++jVtsfDWmpKAkAV2jQoIHl9bFjxxx6T0JCguV1bGysR14b6sx24SLE4SEBsv75Hi47v6/Qe0D3wLdbFSQB4Guyc607K4UE+itKAm9FwQAogns71ZLP7mnl9B4/i5/oIg90rePUc/qqQS2ra9ry8s0KkgDwJeuPJFlt92tSRVESAK7QsGFDy+tdu3ZJbm6unaOv2Lr16oPDa9/vSdeGOn5+Jtn8Ui8Z18353xF2TuojVSOKv64GAMB99IytpDoCvBAFA6CI+japKl+Pbuu08y1/sqvUr1zGaeeDVsHqOwA428oD56y2A3SmSAM83VNPPSUHDhxw2fn79+8vEydOlAkTJrjsGsXVsWNHCQ4OFhGR9PR02bx5s93js7KyZMOGDZbtHj2K35tb5bWhVoWwYHm2b6w83L2uU873UPc6cnBKP6ecC1fc2Lya6ggAfMy+U2lW24Nb1VCUBN6Mb7NAMS0d36VE7z86tb/EvzFAalcs/iJ40Df6euvFj5PSsxQlAeALjp5PVx0BMMR7770njRo1kk6dOslXX33l8AK8jurXr59MnDhRJk6c6NTzOkNYWJj07NnTsj179my7x//2229y8eJFEbmyhkCXLsW/b1R5bbiHJ3vXlxsaVS72+/96pJMcndpfnu4TK0EBPAJwpldvbqxpM5sZ3QzAdfp9sMZqu3pZRozB+bhbAIqpbqUycnRqfynOOmGbX+rFAmMu9Fivelbbnd5cIamXcxSlAeDtCn6+LHuyq6IkgDHWr18vo0ePlqpVq8q4ceMK7fHuLR588EHL69mzZ8uePXt0j8vIyLAaJXHfffdJQEDJFiNUeW2oZzKZ5IvhrWXf5L5Ffm/HOuWlSfUIvnu4SGTpIE3bK3/uVZAEgK9qERWpOgK8EAUDoARMJpNseqGXw8evf76H7H+1r1QIC3ZhKkSU0i4ePX3VYQVJAPiCzfHJVtt1GDkGLzVs2DApVaqUmM1mMZvNkpaWJp9//rm0a9dOWrRoIR9//LGkpKSojukyAwYMkM6dO4vIlWl/Bg4cKDt37rQ6JikpSQYNGiSHDh0SkSs9/J999lnd88XHx4vJZLL82Bs54OxrwzOVCvKXKYOaOHTs/V1ry97JfWTO2PYuToXmBR7WzV4XryQHAO9XcATTgKZVFSWBtzOZGS/nMdLS0iQiIkJSU1MlPDxcdRwUkHo5R7YcS5Yle89K9wYVpWpEKTmTliljvt4spQL95ecHOkiT6hGqY/qMmOfma9ri3xigIAkAb1fw84bPGhSFp93fXbx4UebMmSMzZ86Uf/75x9L+X+/l4OBgufXWW+Xee++Vbt26KUrpOidOnJC2bdvKqVOnROTKv7tr165Sp04dOXfunCxdulQyMjJERCQgIEAWLlxoNZ3QteLj46VWravTKM6aNUtGjhxpyLUL42m/l74mP98se0+lyaajybLvVJq80L+hHDhzUWatPSqL9pyRkR1jZMLARuLnx6gCI+w8kSI3TVtr1ca9AABX+GXLCXnq5x2W7Ud71JXxvRsoTARPUpT7OwoGHoQbd8BxexPTpP+H1nP7ceMOwNnMZrPUej7Oqo3PGhSFJ9/f7d69W7788kv57rvvJCkpydL+X/Ggdu3acu+998rIkSOlSpUqqmI63f79+2XIkCGyfft2m8dUrFhRZs2aJQMG2P48KGrBwJnXLown/14CKhTsPDC8Q7RMvtmx0SAA4KiCnzW/P9hRWtYsqygNPE1R7u+YkgiAV2pUTfvhR30UgLMlJGeojgAo06RJE3n//fclMTFRfvjhB+ndu7f4+flZpiw6cuSIvPjii1KzZk0ZNGiQ/PXXX5Kfn686donFxsbKxo0b5auvvpK+fftKVFSUBAUFSaVKlaR9+/by1ltvyd69e0v0wN4drw3AtoWPd7ba/nr9MUVJAPiS0GDWKYJrMMLAg9DTByiagtX3t29rJre3jlKUBoA3OnT2kvR6b5Vl+9O7W0k/5hJFEXjb/d3x48dl5syZMnv2bDl27OoDs/9GHVStWlVGjhwpo0ePltq1a6uKiUJ42+8l4GqZOXkS+/JCqzZGHAJwNqZCRUkwwgAAdDz9y87CDwKAIijY76J+lTKKkgDuISoqSiZOnChHjx6VRYsWyZ133inBwcGWUQeJiYkydepUqV+/vvTq1Ut+/fVXycvLUx0bAEokyF/7aCXpUpaCJAAAlBwFAwA+JS+fQVUAnOe1uH1W22EMCwYsOnfuLP369ZOGDRuKyJVRBiaTScxms+Tn58uKFSvkjjvukPr168ucOXMUpwWA4tNbYLr3/1YrSALAW6Vn5aqOAB9CwQCA13qiV31N229bTyhIAl+Tn2+WlQfOStNJi+SvnYmSnJ6tOhJcZOWBc1bblcNDFCUB3MfmzZtl3LhxUrVqVRk1apTs2LHDUigIDAyUHj16SFhYmGXUwdGjR2XYsGEyZMgQ1hsC4DWSuP+DQXLy8mXwJ2vl8R+2yY7jKfwt9VJ/7ki02p4+7DpFSeAL6AYHwGuN6VxL/rf0oFXb8QuXFaWBt1t/OEm2JlyQj1cckozsq9NrPDxnm4iI/PVIJ4mtUkYCdIaswzs807eB6giAMhcuXJBvvvlGZsyYIbt37xYR6ym76tWrJ2PHjpWRI0dKhQoVJCMjQ3744QeZNm2abN++Xcxms/z000/SsWNHeeSRR1T9MwCg2B7qXkc+XnFYdQz4gLTMHJmzMUGSLmXJF2uOWtq3JqTIH9sTpW1MOfn0nlZSPixYYUo4W8HJEvo0rqImCHwCTy0AeK1QnalBPlz2r4Ik8GZ5+WZ59a+9MuSLDfL2ogNWxYJrDfzob6n74gLJzGGubm9xucB/6yqMLoAPWrJkidx1111SrVo1eeKJJ2T37t2WkQPBwcEyZMgQWbFihRw4cECeeuopqVChgoiIlC5dWkaPHi1bt26VDz74wHK+mTNnqvqnAECJPHmDtuNA6uUcBUngrfLyzXLo7CVpNmmxvLFgv1Wx4Fqb4pPluilL5eMVhwxOCFeavyux8IMAJ2GEAQCvdlPzajJvB39Y4XzHktKl69sri/y+2JcXSqe6FeS5frHSpHqE84PBMN9tPGa1Xb8yCx7DNyQkJMisWbNk9uzZkpCQICLWowliY2Nl7NixMmLECClXrlyh53vkkUfkp59+krVr18rBgwcLPR4A3JHeOgZHzl2SljXLKkgDb5KXb5anft4hv287WaT3vb3ogBw4fVEqhAXLhBsbuSgdjLL2UJLqCPAhjDAA4NVub11D05abl68gCbzJqoPnilUs+M/fh87LwI/+5nfRwx1LyrDapgAEb/fjjz9Knz59pHbt2jJ58mRJSEiwjCYICQmRe+65R1avXi179+6VJ554wqFiwX+aNWsmIiKZmZmuig8Ahrvlk3WqI8AL1HkhrsjFgv/M25EoM9celfOXsiSv4Jw28FhD29VUHQFejhEGALxap7oVNG1L9p6Rfk2rKkgDb7D7ZKqMmLnJKeeq++ICERGJf2OAU84HY+WxoBx8zJAhQyyLF/+ncePGMnbsWBk+fLhERkYW+9xBQUFOSAgAaj3cva5MYxoYONFD3211ynlaT1kqIiJxj3aWRtXCnXJOqNOY/4ZwMQoGALyayaQdGjzuu608oEWxbDiSJHd9vsHp583KzZPgAH+nnxeuk5dvlr+ume6sT+PKCtMAxjGbzVKqVCm544475L777pMOHTo45bxDhw6VFi1aOOVcAKCK3oPYzJw8CQnkPg9Fk59vltgJCyU717kjkvt/uIbvwh7oxAXrkc23XaedSQFwJqYkAuD1hneIVh0BXiD+fLpLigUiIg1eWigZ2bkuOTdc4/tNCZKWefW/2eO96itMAxijWbNm8tFHH0liYqLMmjXLacUCEZE2bdrIiBEjZMSIEU47JwAYrXcjbQeCz1cfUZAEnu7+b7c4vVjwny/4nfQ4nd5cYbVNZzO4GgUDAF5v8s1NVEeAF+j2zkqXnr/RhEWSnJ7t0mvAeRbuPm21HVWutKIkgHG2b98uDz30kEREsF4HAOgJ8PeT5lGRVm07T6SqCQOPdejsRVmy94zLzv9a3D75mKmzANhBwQAAgELc+qkxC9YN/HCNIddByf196LzVdlgwszwCAACRTnXLq44AD3Y6NVN6vbfa5dd5e9EBRjh7iEtZ1v+d/njoekVJ4EsoGDhBXl6e7Ny5U2bMmCHjxo2T1q1bS1BQkJhMJjGZTNKtWzfVEQEU4MoeG/AuZrNZthy7YMi1ElMz5ZctJwy5FgAAAJzvtuuirLaX7jtjtVg8YM+U+XsNu1ajCYtcNu0RnGfOxmNW23n5/DeD61EwKKE//vhDwsPDpXnz5jJmzBj57LPPZMuWLZKTk6M6GoBrjOwYY7U99uvNaoLA4ywoMPWMqz318w5JvczfEAAAAE8UU147TeGaf8/rHAlo/bXzlKHX++GfBApabu5ytnWBIDuX/15wPcbPl1BKSopkZGQUfiAApSYMbCSz18WrjgEPc+D0RXnwu60OH7/q6W6y6uA5yc7NlwZVykiLqEgJCw6QlIwcafnqEofP0/yVxbJvcl8pFcRiVu6Igg4AALDFZDJp2rh3QGEysnNl1YFzDh8/pG2UjO1cWz5ffUQGNqsmlcODJbp8qAT6m+SbDcdkwtw9Dp1nwtw9snD3aZkztn1xo8PFNh9LttqOKldKURL4EgoGTlK5cmVp06aN5WfRokXywQcfqI4F4P/5+Wlv3AF7dhxPkZs/XuvQsU/1ri/3d60jgf5+MrxDqGZ/2dAgOTClrzR4aaHD12/+ymI5+Fo/h4+HcZq/sthq+69HOilKAgAA3NHEGxvJK39enVrmke+3yY3NqylMBHc3+JN1sv/0RYeOXfNMd4kqd2Ukyxu3NtPsH94hRsqFBsnDc7Y5dL51h5PkTFqmVA4PcTwwDBF/Pl0zQqlGWe0oJsDZKBiUUN++feXYsWNSs2ZNq/aNGzcqSgQAcIZ3Fh8o9JhqESHy5m3NpHO9ioUeGxzgL/FvDJD48+nS7Z2VhR6fncfclJ6iagRfrgAAwFUjO8ZYFQwAe/LzzQ4VC267roZMGdREQgILH4U8sFk1GdismrR6dYkkp2cXevzTv+yUr0e3dSgvjPPukoOqI8BHsYZBCVWpUkVTLADgGXaeSFEdAW4qKzev0Llmn+7TQNY939OhYsG1YiqEyi8PdHDo2Alzdxfp3FAjolSg6ggAAMCN6E1LlJ/PvOPQd+O0vws9ZtMLPeWd25s7VCy41rrnesjQdoU/s1p98JwkXcoq0rnhen/uSLTafqh7HUVJ4GsoGADwGdOGtrTavmnaWjlxgTVIYC0/31zo1EFP3lBfHupet9jXaB1TTo5O7S+/P9jR7nFfrz8mMc/NL/Z14Hxn0zKttmeObC0B/txOAQAA+2q/EKc6AtzQr1tOyJ7ENLvHHH69v1Qq5nRBIYH+8votTWXzS71k5sjWdo+9bspSOXzuUrGuA2OMv6GB6gjwEXzDBeAzujeopGnr9OYKBUngzvp+sNru/id61ZdHetYr8XVMJpO0rFlWdkzsXeixZwo8pIY6by+ynqqqSjiLjgEAAKDoLqRny5M/77B7zP5X+4q/E9bjqxAWLD1iKxd6XM93V5X4WnAdZ/wuAI6gYADAZ4QGs2wLCnfwjP1eNY/1Knmx4FqOTGfT7vVlDGN3Ez9vOWG1rTPjAAAAgPz1SCdNW2LKZQVJ4K5Gf/WP3f0LHutc5CmICjOuW+FT2szdftKp10TxXHBg7QnAVSgYAPApn97dSnUEuLH3CllUas8rfVxy3cVPdCn0mL2n7A9VhhqB/lQMAACAVpPqEZq2vw/ZXyMLvuNMWqZsS0ixuf+XBzpIw6rhTr/u473qyYBmVe0e89gP251+XRTdigNnVUeAD6NgAMCn9GuqvTnKyctXkATu6MNl/9rc98pNjV02SqV+5TLyeCEjFwZ+9LeYzYwyUCk1I0fTVqdimIIkAADAE9zZOspq+5lfdipKAnfzVCFTEbWOKeeS6wYH+Mv7d7Yo9Ljl+8+45Ppw3Pif7P+OAK5EwcCNZWVlSVpamtUPAOf7pcAUI4CeO9tEFX5QCTzeq76M7Bhj95gJc/e4NAPs+2z1YU2biTmJAACADaWCnDudDLzHmn9tjzaJKV/apdcO9PeTeQ9fb/eY0bM3uzQDiu7+LrVVR4APoWDgxqZOnSoRERGWn6go1z6sAnxV3K5TqiPADXyzPt7mvpcHNnL6/KF6Jt3UWIa2q2lz/zcbjrk8A2xLvWw9wmD6sOsUJQEAAJ7gwe6FzxcP35ORnWt3/1ej27o8Q7MakbL2uR52j0lIynB5DjjuuX6xqiPAh1AwcGPPP/+8pKamWn6OHz+uOhLgFYa1j7batte7A77h920n5GUbvfeDAvzk3k61DMvy8oBGdvfbK2zAteZsTLDa7t6gkqIkAADAE1QqE6JpO57MQ1hf12jCIpv7Dk7pJ9HlQw3JUT2ylAT5234s2OXtFXIpy35xA66RkqFd8JiRzTASBQM3FhwcLOHh4VY/AErurrba0TrMDe/bnvjR9vyQOyf2NjDJlaHrNzWvZnO/rcIGjMeCxwAAoKg6v7VCdQS4qbKlAyUowNjHdIWNMhg2Y6NBSXCt4TM3qY4AH0fBAIDPaVwtQtOWm0/BwFddzs6zua9mudKGTEVU0Ad3tbC7//C5S8YEgV308gEAAIX54b72qiPAjXy07F+b+z4c0tLAJFdULBMs5UKDbO7flpBC5zoFdp5ItdquXzlMURL4KgoGAHzShIHW0758vvqIoiRQreGEhTb3LR3f1cAkV5lMJgkPCbC5v+e7qwqd+xTOdTEzp/CDAAAACmhfu7ymLZ1pXnzSrhOp8u6Sg7r7OtWtIJ3rVTQ40RVLnuhid//4n2yPxoYxnuzdQHUE+BgKBgB8UsGFZd9edEBREqhkr4fPLw90MHxI8LUKGx781kJ+Z4307Qbr9Qt+f7CjoiQAAMDT9GpY2Wp70Z7TipJApRun/W1z3/Rh1xmYxFr5sGC7Pdh/33bSwDTQ07tR5cIPApyIggEAn6Rimhm4H1s9fEREWseUMzCJVpmQQPnnxV42989eF29cGMibC/dbbbesWVZREgAA4GlubmG9PhWzofqeTUeTbe57aUBDCQ22PbrYCAsf6yJjO9eyuf9sWqaBaXxbdm6+1fYnd7diKlQYjoIBAMAn2ZuL8+k+7jHks2KZYE2PtGvtPplqcx8AAADcQ52K1r23p8zfqygJVLlj+nqb+0Z0jDEuiA1+fiZ5tm+szf3d3lkp+VS6DHHfN5uttgP8KBbAeBQMAOD/bU24oDoCDDT26y029z3YrY6BSeyzNzx54Ee2hzUDAADAPTSqFm61nZLB2ki4Iu7RzhLo7x6P5gL8/aRG2VK6+zKy8+THzccNTuSbVh44Z7WdR6EGCrjHpxIAKFA+NMhqe8neM4qSQIWl+/T/e/9wX3u3GvLp72eyu5YCi+a5XsH/jSuWCVaUBAAAAJ4mJy/f5r6CxSTVvrm3nc19z/+2y8Ak+E9UudKqI8AHqZ0kzUv0799fEhMTrdpOn766iNHmzZulRYsWmvfFxcVJtWrVNO0AjPHZsOvk9s+uDg1NvUxPH18xZ2OCzX2to91vbvqDU/pJzHPzdfc1nrhI4t8YYHAi3/LNhmNW2/Mevl5REgAAAHiSvHyz1Htxge6+D+5qYWwYB9SqECqP9KgrHy0/pLv/wOmL0qBKGYNT+a6OdcpLk+oRqmPAB1EwcIK9e/fKsWPHbO5PT0+XHTt2aNqzs7NdGQtAIdoUWNR2zsYEef2WporSwEgv/K7fO2bKoCYS4CZDggu6vm55WXsoSXffkXOXpHaBuXHhPL9tPWG1XTVCf6g2AAAAcK2v18fb3Hdzi+rGBSmCJ3s3sFkw6PP+ajoruVDBdfYGNKuqKAl8nXs+FQEARXadYBFZb5eSYbtYO9CNb8jeGNzM5r4e764yMInvOXjmkuoIAADAw1WLCLHaHvjRGkVJYKRX/tRf4Lp/0yoGJ3GeC+l0fnWVf+Kt11VsV6ucjSMB16Jg4ATx8fFiNpuL/BMTE6M6OoACnvpZOxoI3mXh7tO67euf7yGRpYN097mDqHKlJTyEgYFGS7qUpToCAADwAiue7ma1vftkmpogUK5r/Yry8dBWqmPY9fuDHW3ue2PBfgOT+JY7pq+32q5dgVHkUIOCAQCfNqRtlNX2gTMXFSWBUWwtbu0J08wse7KbzX3nebDtEjl51sOCb2npnkPHAQCAewsO8Ne0nUy5rCAJjJKZk6fbPur6GDGZTAanKZqWNcvK473q6e77cfNxg9P4Lj8/9/49gfeiYADAp43tXFvTdiYtU0ESGGHVwXOybP9Z1TGKrWKZYPl82HW6+1pPWWpwGt+QkJxhtT1hYCNFSQAAgLe5/o3lqiPAhXq8s1K3Xa945I4e7aFfMBARmb7qsIFJABiNggEAn6a3UOzZNHpqe6sRMzfptr8x2HMWu76hUWXVEXxKwWHBZUPdd9oqAADg3nZM7K06Agyy/3SaJKbqd0RrX9sz5qX38zNJ9wYVdfdNZVoip8vPtx7ZfFebKBtHAq5HwQAACsjNz1cdAS5gNptt7rujtefcjJlMJvloSEvdfUttTLeE4mGaJwAA4EwRpQJVR4BBHv9hu277F8Nbu/10RNd6744WNvfl5PG92ZnaT11mtd2wariiJAAFAwDQuOWTdaojwAV+3nJCt/2Du1p43NyQNzavpts+5uvNdgsjKJopf+1VHQEAAHg5Oih4p/2n9dfG87TRwmVDg+Sbe9vq7hv/0w6D03i3sxetPwsqhAUrSgJQMAAAmT2qjaYtK1d/gSp4rmd+2anb3r9pVYOTOMfHQ1vptt847W+Dk3ivuTsSrbYHeOjvCgDny87Olm+++Ub69+8v0dHREhISIlWrVpWOHTvKO++8I+fPn3f6NWfPni0mk6lIP2PGjHF6DgDO9cHSf1VHgJMlJGXotr9+i+dMg3qtzvX0pyX6c0eiXEjPNjiN7+jXpIrqCPBhFAwA+LxuDSpp2t5aeEBBErjKuYv6PbeOvN5fAv09809hz4ba31sRkd0n0wxO4r0KDtb4+G79Ig0A37J//35p166dDB8+XBYsWCAJCQmSlZUlp0+flvXr18vTTz8tjRs3lri4ONVRAXiAbzYcUx0BTtbl7RWatvu71Jah7WoqSOMck29urNs+Ypb+GnEomrwC6xc0rhbucaPg4V0CVAcAAHc04++j8vLARqpjwEkW7j6l2+7JN2Ehgf4SFhwgl7JyNfuOnLuku6A3AKBkTpw4IT179pTExCsjkEwmk3Tp0kXq1Kkj586dk6VLl8rly5fl7NmzMmjQIFm4cKH06NHD6TliY2OlZ8+ehR7XsWNHp18bQMk807cBnZO8mK15/VvWjDQ2iJMN7xAjE+bu0bTvPJGqII33OXvReoHscqFBipIAV1AwAAAR6VinvKw7nKQ6BlzkZZ2bW2/QIipS/j6knfaix7urJP6NAQoSAYB3Gzp0qKVYEB0dLXPnzpXmzZtb9p8/f17uuusuWbZsmeTk5Mjtt98uhw8flsjISKfmaNeunUybNs2p5wRgjNHX19IUDDJz8iQk0F9RIjjTD/8c122/LrqcwUmMcyE9W8rygLtECn4m1KHzFxTzzHkYAMDJBreqoWnLzGEdA2+QZGMhuQNT+hqcxPmmDW2pOoLXitulPyoFgO+Ki4uTNWvWiIhIUFCQ/Pnnn1bFAhGRChUqyNy5c6V27doiIpKcnCxvvfWW4VkBuC+9wkDsywsVJIErvPzHbt32imW8dwHbPYlMiVpSv287abX9ZO/6ipIAV1AwAAARual5NU3b3O0ndY6Ep/lo+SHd9uAAz+/FFVk6SPo0rqy7b/dJhgeXxIPfbbXabhvjvb3CADjm448/trweMWKENG2qv3hlaGioTJ482bI9ffp0yc3VTh8HwHfd26mW6ghwAXPBBbD+3/InuxqcxDV2Tuqt237PjI02/+0o3OFzlzRtZUICFSQBrqJgAAAiEhTgJ2/d2syqLfVyjqI0cBaz2Syz18WrjuFS04e11m0f+NHfcjmbUTLO4unzzgIomUuXLsmyZcss26NGjbJ7/K233iphYVemE0hOTpbVq1e7NB8Az8Jaad6pYC/x/0SVK21wEtcIDwmUNjFldffdOX2DwWm8x6R53jl9LjwbBQMA+H9VI0Ostrccu6AoCZzl37Pa3hoiInPGtDM4iWt1rldBt/2tRfsNTuIdcnUWq3u2b6yCJADcxbp16yQr68oUd6GhodKmTRu7x4eEhEiHDh0s28uXL3dpPgCAeuN/2qHbHujvPY/epgzSH123KT7Z4CTeY82/2jXpANW851MLAEooqMCN3KI9ZxQlgbO8+tde3faOdfUfsHuqr0e31W2ftTbe2CBeIm73aU2bn59JQRIA7mLfvn2W102bNpWAgIBC39OqVSvd9ztDSkqK/PzzzzJp0iR54oknZOLEiTJ9+nTZuXMn00IAHupU6mXVEVACeh1ORET2v+r566Zdq0GVMvLZPa109529mGlwGu/ECCS4g8LvdAHAR7TWmaM8L98s/jwo9Fh6vTUqhHnfgmMmk+3fUbPZbHc/tB79fpvV9hjmGQZ83oEDByyvo6OjHXpPzZo1La/373fuiK+5c+fK3LlzdffVq1dPnn32WRk9ejSf/4AHOZuWJVUjSqmOgWKy1VFHb5FrTxduY379h7/bJj890EF3H/Qlp2dr2u5oXUNBEsAaIwwA4P/pFQamrz6sIAlcafow/R4xnu65fvpT5hw4c9HgJN5nfO/6qiMAUCwpKcnyunJl/cXmC6pSpYrldXKycVM1/PvvvzJmzBi56aabJD093bDrAiiapeOtF8K9+eO1ipLAGV6Lc+5IMnfWvnZ53XamJSq6l//YrWljwWO4AwoGAHCNsZ2texJ/ueaooiQoqYU608qIiFwXrR1J4g0e6FpHt73v+2sMTuJ9GGUE4NKlq2vilCrlWA/ga4+79v0lUbNmTXnyySclLi5Ojh8/LpmZmZKeni4HDhyQTz75RGJjrxaP//rrLxk6dKjk5+tPk3GtrKwsSUtLs/oB4Fp1K4WpjgAnycvXnwpu5sjWBicxhp+fSfO9+T8Ldp0yOI1nm8//XnBTFAwA4BrjutW12tYbIgjP8MC3WzRt04ddpyCJcX62MQQ4KzfP4CSeS2/u7+AA7xtKDqBoMjOvzsscFBTk0HuCg69OgXf5csnnJh80aJAcPXpU3nnnHenXr5/UqFFDgoODpXTp0lK/fn0ZN26c7NixQ0aNGmV5z7x582TOnDmFnnvq1KkSERFh+YmKiipxXgBFl5nDPZsn2ng0Sbe9R6xjI9I80VN9Gui2j/tuq8FJvMu8h69XHQEQEdYwAAAr5UIdewgA95aQlKHb3rxGpLFBDNZGZx0OkSujDFY81c3YMB7qo+WHrLab1YhQlASAI6ZNmybTpk1z6jmnTJkit912m1VbSEiI5XV2tmOdCbKysiyvHR2VYE9kZGShxwQFBcmXX34phw4dkjVrrowwe/PNN+Wee+6x+77nn39exo8fb9lOS0ujaAAYYPmTXaXHu6ss2/9belCe79dQYSIUx9AvNqqOYLjgAH9pX7ucbDiinYboYmYO0+oUUzMv/74Kz0HBAAAKkZaZY3NhJ7inEbM26bZXiQjRbfd2R8+ny7GkdIkuH6o6itt7b8lBq+3/3dlCTRAADjl//rzVgsTOkJKSomkLC7s6dYijowWuPe7a97uan5+fTJw4UXr16iUiIrt375YTJ05IjRq2F1EMDg62GhEBwBi1K1p/NkxfdYSCgZcY1KKa6ggu9+FdLaXt68s07U0nLZb4NwYoSORZElNKPvoQcBWmJAKAAgqOMhj8yTpFSVBcR89rF3lsXC1cQRLj9W9aRbf9izVHDE7ieS5m5mja6lRkfmEAIuXLX13g8cyZMw695/Tpq2vplCtn7Po5Xbp0kcDAq50d9u3zncU4AcBIexP113x5fXBTg5MYr1K4b3bGcpaObyxXHQGwiYIBABRQcB74Q2eds1Ah1PrrkU6qIxjivTta6Lb//e953fn5cdWB0xdVRwBQRJMmTRKz2ezUnzFjxmiu06DB1bmajx075lC2hIQEy+trFyM2QmBgoFSoUMGyff78eUOvD6D4TtLr2KPc9fl6TduaZ7pL6SDfntAjTacjDuxrHV1WdQTAgoIBABQQ6uM3d57uS52e9MEBfmIymRSkMV5IoP4CvfFJGbJ031mD03iW1+PogQtAX8OGV6cI2bVrl+Tm5hb6nq1bry78eO37jZKefnW0XWgoU9IBnmLKX3tVR0ARpGVq/x5ElSutIIkaS57ootve+c0VBifxfA/3qKs6AmBBwQAACqgQxsLHnmzKfO1D38+GXacgiTpD29XUbf91ywmDk3iWrQkpVtt/Puwbo1IAFK5jx46WOf7T09Nl8+bNdo/PysqSDRs2WLZ79Ojh0nwFHTlyRNLSrk6TUa2a98+lDXiqSTc2stq+nJOnKAmKKicvX3UE5epVLqPbnnqZEQZF1a1BJdURAAsKBgBQQIA/H42e6sg5/emjuvvYzddrg5roti/cc5ovNkVQvwrrFwC4IiwsTHr27GnZnj17tt3jf/vtN7l48co0Z+XKlZMuXfR7YLrKzJkzLa8jIiKkRYsWhl4fgONGdIxRHQHF1Pa1pZq2N3xg7YKCPr27lW77vB2JBifxHFuOJauOANjFUzEAcMCrDA32CJ+sPKw6glswmUxSOTxYd9+iPad126Hl7yPTWAFwzIMPPmh5PXv2bNmzZ4/ucRkZGTJhwgTL9n333ScBASWb7vDSJcfXU1q3bp28++67lu277rqrxNcH4DoFp81ceeCcnL2YqSgNHJWXb5YLGdpe9JGlfW+0et8mVXTbH/1+m8FJPMdP/zDyG+6NggEA6KhRtpTV9oy/jypKgqL4RWfKndmj2ihIot7iJ7rqtj88hxt3PZk6w/8ZbQTgWgMGDJDOnTuLyJUphwYOHCg7d+60OiYpKUkGDRokhw4dEpErowueffZZm+eMj48Xk8lk+bE1cuGXX36Rtm3bytdffy2pqam6x2RmZsqHH34ovXr1kszMKw8bIyMjZeLEiUX9pwJQTO+eFu7lly3HddtvaFTZ4CTq2Vsr7vylLAOTeI6tCRestl+5qbGiJIA+upoAgI4pg5rIyFn/WLXl55vFz48ex+4qL9+s2+6rc0FGlAq0uS8zJ8/m4si+6uMVh1RHAOAB5syZI23btpVTp05JfHy8tGjRQrp27Sp16tSRc+fOydKlSyUjI0NERAICAuSnn36SyMhIp1z7n3/+kREjRkhAQIDExsZKbGyslC1bVvLy8uTkyZOyfv16q3ULSpUqJXPnzpWqVas65foAjBN/Pr3wg6DUs7/u0rTFPdpZ/H30++KCxzpLvw/WaNofmbNNvr+vvYJE7u3fs9YjB+9qG6UoCaCPrnMAoOP6uhU0bX9sP6kgCRx1LEn7xer9O1sYH8SNLHlCf87s2JcXGpzE/X203LpgMPlmevkA0KpRo4YsX77csiaA2WyWlStXyowZM2TevHmWYkHFihXljz/+sFr3wFlyc3Nl9+7d8ssvv8gXX3whM2fOlEWLFlkVC9q2bStbtmwxfO0EAMVTcN77nzYzwsATNaoWrjqCMg2r6v/b1x9JkktZuQancW96I5uDA+jMBfdCwQAAdATqTEWy4UiSgiRwVNyuU5q25lGRxgdxI/Uql1EdwSNk5Wpv2oe1j1aQBIAniI2NlY0bN8pXX30lffv2laioKAkKCpJKlSpJ+/bt5a233pK9e/fKgAEDnHbNIUOGyNq1a+Xtt9+WW2+9VVq0aCE1atSQUqVKSXBwsFSqVEnatWsnjz32mKxZs0Y2btwoDRs2dNr1AbjWrdfVUB0BRZCbl686glta8VQ33fbPV7HO3LUe+8F6itin+zRQlASwjSmJAMCGUoH+cvma6v+ZNOZfdFdZuXnyzuKDmvaQQOria57pLp3fWqFpT07PlnKhvrcom55Fe85o2uzNxQoAQUFBMnz4cBk+fHiJzhMTEyNms/6UetcKDg6Wjh07SseOHUt0PQDuKcBHp7HxVA98u0V1BLdUq0KobvuHyw/J+N48FP9Pwe8ed7erqSgJYBtPUgDAho+GtLTaXnXwnKIkKMz0VUd026tGlNJt9yVR5UpLpTLBmvZWry5RkMY9JehMZwUAAGAUvY4KCUkZCpLAEUv3ndW0fT7sOgVJ3E/8G/qj6/JtrDcHkTIhtteeA1ShYAAANvRsqF0s92TKZQVJUJj3lmhHF0SXL60giXt6dVAT3XZbC0X7moKjU35gYTYAAGCwr0a3tdru8rZ2hCjUS72co9veUWcNPFx162frVEdwC0mXtLMW+OpC2XBvFAwAwAa9nj5jv9qsIAmKI+7RzqojuI0+javotn+38ZjBSTxD+9rlVUcAAAA+pks97QNnR6Ysg7Fe+H2Xpu2h7nUkLJgZv//z3h3NNW3bElKMD+KGHi2wfsHIjjFqggCFoGAAAHaUKXDjt/dUmqIkKIr37mguody0F+qzlSxANmzGRtURAAAAdDsr5eRRMHA383ee0rQ93SdWQRL31Tq6nG57elauwUncy4kLGbL2UJJV25O96ytKA9hHwQAA7Jh4U2PVEVCIg2cuatoY1qn11yOdNG2JqZmSm5evII37WPPvedURAAAAdF3y8Qes8Ew1bUwN23jiIoOTuJdPdTprMTIF7oqCAQDYcWur6qojoBC9/7da09a2ln6vFl/WpHqEbvuMv48anMS9ddaZDgAAAMAIEwY2stoe/9N2NUGgKzk9W9NWp2KogiTur0bZUrrtWbl5BidxH/k6U4zpjSwC3AEFAwCww2QyyT3ta1q10dPHfegtGiUiUjVC/wbV15UJ0fZgmbpgv8/euOv9f/nTe65TkAQAAEBkdKdaVtsrD5xTlAR6Wr26RNO2+ImuCpK4v4WPd9FtHzXrH4OTuI+NR5Kttm+7roaiJEDhKBgAQCFGdrS+cf9j20lFSVDQ4E/Xadqa2uhJD5E3b22m2z7hjz0GJ3EPE+dq/90MCwYAAEBBthagZipUfbbuqdcdTtJt9wVHzqdbbU8Z1ERREqBwFAwAoBAFRwm+9MduNUGgcSwpQ9PGNFK2XV9Xf7qdHzcfNziJevn5Zvl16wmrtkZVwxWlAQAA0LflWHLhB8Hl/tJZ7BjFk+ODa6h9ueaIpi04gEeycF/8dgJAISqWCVYdAUUwpF3Nwg/yURGlAlVHcBsT5mkLf+/e0VxBEgAAANvGfbtVdQSIyOZ4beGmeiTToNrz+TD9qT6TLmnXgvB2U+bv07SxfgHcGQUDAChEeAgPWd2R3rDgCmHBEhzgryCN55g6uKnqCG7h2w0JmraGjDAAAACKTbrReuHjvHz9qXBgrAsZOZq2uMc6K0jiOXo3rqLbvvpf1ua4q02U6giAXRQMAKAYLmf75iKx7mTs11s0bSwcVbiBzarqtv/kg9MSAQAAuJsesZWttpPSfa83trs5mXJZ5u1I1LQzerdw1SJCNG3P/LJTsnJ9+/v0k70bqI4A2EXBAACK4eMVh1RH8HlL953RtN3fpbaCJJ6ljI0RM8/8slNOplw2OI376N6gouoIAAAAUjVS+4AVas3dflJ1BI81Y2Qb3fYGLy00OIk6p1MzNW1Mewx3R8EAABzwwV0trLanrTjE8GA3VDY0SHUEj7DyqW667bd/us7YIG7E1oLQAAAARgr01z6mmTRvj4Ik+I/OTKjyywMdjA/igexN+ZmRnWtgEnXeWXxAdQSgyCgYAIADbm5RXdP2107tsFQYIzNHO4T1ndtZsNZRMRVCddsTUzMl3wcKYSsOnNW0jegYY3wQAAAAHfMf7WS1PXtdvJogEBGRtYfOa9qa1Yg0PoiHmja0pW777Z+tNziJ8XLz8uWXLSes2jrXo6MS3B8FAwAopuzcfNURfNbkv/Zq2li/oGgWPq6/SNvwmZsMTmKs/HyzjJr1j6ZdrzcfAACACtUiSqmOgGusO5xktd2rYWUJCuDe0VEDmuqvobYnMc3gJMa76/MNmrYZI/SnaQLcCZ9wAFBMJpNJdQSflJmTJ3M2JqiO4fFiq+gPD/770Hkx64279hJ5XvxvAwAA3iGyNIvpuotfC/QOFxGhn0nRmEwmebRnPd19m44mG5zGWJuPXdC0UWyCJ+C3FAAcdGfrKKvtI+cuKUri275iSLbTPNO3gW77uUtZBicxzoHTFzVtCx7TH20BAACgAh2T3MeTP+/QtL12S1MFSTzb4zYKBndM9/5piQBPRMEAABz00sCGVtufrDwsOXlMS2S0U6mZmjYWHSue2jbWMthwxHt7+tyqs7CzvcXYAAAA3MHf/2rn0YcaFcKCVUfwOH5+totg3rqG2sXMHE3b27c1U5AEKDoKBgDgoDIhgdI6uqxVG1PjGG/zMe3D7OZRkcYH8QK9G1XRbX/0+22S66XFsKwCa4/YmlMVAABApf2v9rXavmfGRkVJfFdmTp6m7bVbmihI4t3eXLRfdQSXeGjONk3b7QVmLQDcFQUDACiCm1tUs9remqCdkxCuc/jcJdl90npxrHqVwliwtpjs9fRJz9Z+QfJ0/8Rri02P99IfHg0AAKBSSKC/6gg+L/blhZq2u9tFK0jiHVY93U23ffqqI8YGMcjqg+dURwCKjScsAFAEBUdLzt2eqCaIj+r57ipNW4MqZRQk8R4Fe6/9p/8HawxO4nq3f6adI7VeZX5/AACAZ8jO9c4RoPAN0eVDZUQH/YLLeS9bQ+3QWe26ad+Pba8gCVA8FAwAoAjCggNUR0AB47rVUR3Bo9nqvXYy5bLBSVzr3EXtl5CesZUUJAEAACieH/5hOlSjLNt3RnUEr3R93Qq67bPWHjU4iWv1em+1pq1DnfIKkgDFQ8EAAIrgpgJTEsE4ZrP+YliNq0UYnMT7fHJ3K9321Mvahbo81UydLyFP3FBfQRIAAADHFJwv32SyPZ0knOverzZr2nZM6K0giXfp1qCSlA7Sdlj6eMVhBWkA2ELBAACKgLny1TlxQdvjffT1tRQk8T79m1aVd25vrmlv9eoSBWlc49OV2i8hTapTbAIAAO5rYFPrzkoVw4IUJYGISETpQNURPF5QgJ/snaw/Jerhc5cMTuMaKw+cVR0BKDGefAFACR1PzlAdwSfo9RBnOiLn0RvBkZdv9qpRBgAAAJ6kVIGe2A98u1VREt+SkZ2raXu8Vz0FSXyL3np1nmjW2nhN258PdzI+CFACFAwAoIiur2s992Dnt1YoSuI7zGaz7o1XxTLBxofxUpGl9XusNX9lsc3poDzFS3/s0rTxuwMAANxdUID2kY3eukxwrtnr4jVtj/WkYGCE7zYeUx2hxFYdPKdpa1I9XEESoPgoGABAEX17bzvVEXzOoj2nNW33d6mtIIn36hlbyeaNbG6+ZxcMvt2gXSDwqd6sXwAAANxfbJUyVttzNrLwsau9tfCApo31I5zrlwc66La/+Ptug5MYg98feBoKBgBQRCaTSd6/s4XqGD5l5t/xmrY+TaoYH8SL+fmZbA6VrffiAoPTuF7fxlVVRwAAACjUL+M6Wm3/b+lBRUl8g6ePrPUUrWPK2dx34PRFA5M4V76Hd7QC/kPBAACKYVDL6qoj+JRN8cmatqiypRUk8W72er546pen/afTdNtZtA4AAHiCsOAA1RF8ykfLD2namteIUJDE+/1sY5TBw3M8d62O2i/Eadp+f7CjzpGAe6NgAABOcN/Xm1VH8Fr7Tuk/8GUOetdoHhWp2/7tBs+cT7Tv+2s0bSue6mZ8EAAAACdJTLmsOoLXem+JdgTH9/e1V5DE+9WvXEa3/d+zlwxO4lota5ZVHQEoMgoGAOAEi/eekcvZeapjeKV+H2gf+C57squCJL7hndua6ba/PHePx44yKKhWhVDVEQAAAIqt4xvLVUfwKaWDGOXhChGlbI/4PX/J8xb31vuu9OXw1gqSACVHwQAAnOTIee/qCeHO6lQMUx3Ba9WtZPt/25s/XmtgEtd4Y3BT1REAAACK5P6utVVH8Am7T6Zq2jY831NBEt9ha7qn1lOWSkZ2rsFpSiYlI0fT1qtRZQVJgJKjYAAAxfTrOOs5Fx/4douiJIDzmEwmWf98D919O09ov0S5M731C1rUjDQ+CAAAQAk80au+6gg+Qa9Xe+VwpkF1pd8evF7axOhP2dPz3VUGpymZlq8uUR0BcBoKBgBQTK0KzEV4PJm5RI1wXxd6WLla1YhSqiOU2OXsPN31CxrYmCsVAADAXYUE+kv50CDVMbzeu4u16xeYTCYFSXyHv59JXhzQSHffqdRMg9MU37uLD2javhrdVkESwDkoGABAMXHz6HqZOdp1IZ7q3UBBEt/zto21DA6cvmhwkuIZMWuTbjv/vwUAAJ7onTuaW22nZ3nWdC2eYJfOlERwvRZRkaojlNhHyw9p2rrWr6ggCeAcFAwAwIn+PeMZD1M9xZsL92vaggL402WE21tH6bb3eX+1nLiQYXCaott0NFnT5g1fRgAAgG8qOMLg1k/XKUriO3ZO6q06gs8oZ2METcepywxOUnQJSe7/3QgoKp66AIATbdR5SIniSb2cI7PWxquOAR2d3lyhOkKxfHpPK9URAAAAiqV0kL/V9n4PGfXpKfSmlAkLClCQxDe9PLChbntiaqb8vPm4wWmK5sU/dqmOADgdBQMAKIGf7rde+DjAj+lOnKXTm8s1bY/2rKcgie/64K4WNvclp2cbF6SIFu05rdvuDWszAAAA31SnYpjqCF5Nb0oZP77bGeaWljVs7nv6l50GJima9KxcWfPveU37t/e2U5AGcB4KBgBQAm1rlbPafu43ehc4y8VM7bys42+oryCJ77qxWTWb+05ecN9Fvu//ZoumLSyYHmIAAMBz6a3DdOTcJQVJvI/euml3t6upIIlv++WBDoUf5GYe+Fb7vUNEpFO9CgYnAZyLggEAOJknzO8OOMLPzySVw4N1932w7F+D0zhm/E/bddt/uK+9sUEAAACcbOHjna22e7y7SlES7/J63D5N24QbGylI4ttax5Szuc9sNhuYxDFZuXm6owsAb0DBAABKaPqw66y2n/xph6Ik3uOwTm+pIW31F+GFa80Zq/+gfem+M5KTl29wmsL9tvWkbnuT6hEGJwEAAHCu2CrhqiN4pa/XH9O0BQf46xwJVd5cqF1jQrXjyfodBUd0iDY4CeB8FAwAoISCA6w/Sln4uOQenrNN03ZflzoKkqBOxTCpFhGiu6/eiwsMTmNfRrZ2GisRkUEtbE+tBAAAAN+Vnet+HWB82b+v9dNt/2zVYd1OZSo99J32O6uIyMjraxmcBHA+CgYAUEK5ee43PNLTxZ9P17RVtfHQGq639MmuNvfN3a7fo1+FRhMW6bb/784WxgYB4LXy8vJk586dMmPGDBk3bpy0bt1agoKCxGQyiclkkm7duhmSIzs7W7755hvp37+/REdHS0hIiFStWlU6duwo77zzjpw/zxQJgK9ISGI61JLId8OpbnxZoL+fzXXrerrRFFwX0rPlwJmLuvtqVQg1OA3gfBQMnIgbd8A3xejcEFzO1i6cBcecTLksl3UWHgsJZFiwKqWDAuSO1jV09z32w3ZjwxSD3iKBAFBUf/zxh4SHh0vz5s1lzJgx8tlnn8mWLVskJyfH0Bz79++Xdu3ayfDhw2XBggWSkJAgWVlZcvr0aVm/fr08/fTT0rhxY4mLizM0FwA1RszapDqCR5swd7em7X93NleQBP95pEddm/sOnXWPUQY3/E+/eDGUxbLhJSgYOAk37oDvqlspTNP20h/aG084ZubfRzVtm17oqSAJrnVnG9s3v3n56ntmrThwVrd99dPdDU4CwFulpKRIRobanrwnTpyQnj17yvbt20XkSkG0a9euMnr0aLnxxhulVKlSIiJy9uxZGTRokCxfvlxhWgCu8FB362k6j55Pd4t7MU/10+YTmrZbWup3lIExTCaTXBddVnff95sSDE6j7/ylbN321wY1MTgJ4BoUDJyAG3cABf26VXvjCcdk6owuKBsapCAJrtWqZqS0jSmnu6/OC3FyIV3/ptkIl7PzZNSsf3T3RZUrZXAaAN6ucuXKMnDgQHnllVckLi5OHnvsMcOuPXToUElMTBQRkejoaNm2bZusXLlSZsyYIfPmzZOEhATp2fNKkT0nJ0duv/12SUlJMSwfANcb06m2pi03n3n44V1euamxbvuMv4/KC7/vMjiNtXcX216AmZHN8BYUDJyAG3cAq57upjqC1/huo7bXSKA/f65UM5lM8tMDHWzub/nqEslX1Lvt6/XxNvdx0w7AWfr27SvHjh2T06dPy59//ikTJkyQfv36SWRkpCHXj4uLkzVr1oiISFBQkPz555/SvLn1tBkVKlSQuXPnSu3aVx4oJicny1tvvWVIPgDG0OtIs/VYivFBvMARnUV0pw+7TkESFNSkeoQsHd9Fd9+cjQlKpyb6aPkh3fYvhrc2OAngOjyBKSFu3AGIiESX165jcFRn4V7Yd+C0/sJR8AxTF+wz/Jpms1mmLtivu69T3QoGpwHgzapUqSI1a6qbm/jjjz+2vB4xYoQ0bdpU97jQ0FCZPHmyZXv69OmSm5vr8nwAjNMztpLV9pAvNihK4tl66Cyi27ke94/uom6lMjb39XpPzQLI24+n2NzXq2Elm/sAT0PBoIS4cQdgy31fb1YdweNsP35B08Yc9O7luX6xNvd9sUa7/oSr7TqZqtt+R+sa8vlweogB8A6XLl2SZcuWWbZHjRpl9/hbb71VwsKurLGUnJwsq1evdmk+AMZqViNSdQSvVTooQHUEOOjbDccMv+agj9fqtn8xvDUjm+FVKBiUADfuAK5VsEfBvwqHSXqqy9na9Qtqli+tIAlsub+Ldt7cay3de8agJFfcNE3/pv2t25rzhQ+A11i3bp1kZWWJyJWOSG3atLF7fEhIiHTocHUaOdZQA7zL/V2192OM1C25MZ1qqY6AAuxN8/PSH7sNXfB709Fk3faHuteRGxpVNiwHYAQKBiXAjTuAa42+nhvMksrQWfAY7sVkMsmXdm7cxxg4suY3FhcH4CP27bs65VvTpk0lIKDwgmirVq103w/A84UE+mvaRs/+R0ES7/JUnwaqI6CAwh7Ef7xCfz0BV7hj+nrd9lE8B4AXomBQAty4A7hWR5350rNyeQBeFFUjQqy228aUU5QE9vSItT8/57AZG12e4XJ2noz/aYfuvo+GtHT59QHASAcOHLC8jo6Odug91663sH+//lovALzHyZTLqiN4vOAAHpG5oy71K9rc996Sg3I2LdPlGZbvtz2Kulxp7ULkgKfj07AEuHEHUJg5GxNUR/AYP20+Lk/8aP0A+Mf72ytKA3v8/EzSIirS5v41/553+bD4kbM22dx3Y/NqLr02ABgtKSnJ8rpyZcemPahSpYrldXKy/jQKADzXkie6aNrMZuOmZ/Fkl7PzJOa5+VZtsVXKMAe9m/r07lZ297d9fZnd/SWVl2+W0bP1R1EPblld/Pz4vYH3oWBQAty4Ayjoxf4NrbZf+XOvoiSeJTcvX575ZaemnZt29/XT/R3s7v/xn+Muu7bZbJaNNuYQBQBvdOnS1XWRSpUq5dB7rj3u2vfrycrKkrS0NKsfAO6tXuUymjZbc6zDWsMJCzVt9ubKh1qhwQHSqGq4suvP/PuozX2U6OCtKBiUADfuAArq26RK4QdBI11nseOXBzZSkASOCgrwk2VPdrW5f+baozLu2y2SkZ3r1OseT86QWs/HOfWcAODuMjOvTrcQFOTY1AfBwcGW15cv25+qZOrUqRIREWH5iYqKKl5QAEolp2erjuCxCk6NCvfy5yOd7O6PeW6+bDl2wenXffC7LfJanO3pxF+5ubHTrwm4g8In3YdNRty4v/LKK8ULB0CJqHKlNW05efkS6E991p4V+89q2u7txOJR7q5OxTAZdX2MzFobr7t/we7TsmD3aTk6tb/TRot0fmuF3f2bXujplOsA8AzTpk2TadOmOfWcU6ZMkdtuu82p5yypkJCrD7Kysx17IJiVlWV5XVjnpueff17Gjx9v2U5LS6NoAHiA8TfUl/eWHLRsbz52Qfo1raowkfu7rNNRaXiHaAng+5pb8/czyZ5X+kjjiYtsHnPrp+vk9wc7SsuaZZ1yzePJGRK367TN/Z3qVpDwkECnXAtwNxQMSoAbdwCO+GTFYXmsVz3VMdza4z9uVx0BxfRcv1ibBYP/fLLysDzUvW6Jr3X+Upbd/SM6REulcHqHAb7k/PnzVuuKOUNKSopTz+cMYWFhlteFdTrSO+7a9+sJDg626tgEwDP0bVLFqmAw4++jjNItxKerDmvaIlm01iOEBhf+CPOWT9bJkdf7O2Vdgfu/2WJ3/7dj2pX4GoC7ooRaAkbcuIeHh1v9AHB/Lw2wXsfgf0sP2jgS8HzBAf6FHvP2ogOyJzG1xNdqPWWp3f0vDuALMgDvVL58ecvrM2fOOPSe06ev9oosV66c0zMBUK++zjoG6VnOnQ7S22xL0E5b0zaGz0hPsdGB0cS1Xyj59KVxu07J3lNMCw7fRcGgBLhxB6Anunyopi0/n+WQbPknXrs4W8uakcYHQbGteaZ7occM+PDvYv//IDMnT+7+ckOhxwUFcFsD+JpJkyaJ2Wx26s+YMWNU/7M0GjRoYHl97Ngxh96TkJBgeR0bG+v0TADc08t/7FYdwa2t+fe8pq1TvQoKkqA4KoeHyP1dahd63IHTF4v93WP5/jPy4Hdb7R7zVyFrKgCejm/WJcCNOwA9IYHaj9a/dp1SkMQzLN2rLbg+3buBzpFwV1HlSsvwDtGFHlf7hTiJeW6+w+c1m81y/lKWDPp4raw9lGT32KNT+zt8XgDwNA0bXh29uGvXLsnNLbwH8datVx92XPt+AN7tt20nVUcAXOr5/oX/Tevz/mqp/UKcnE7NLPTY/6Rl5khmTp6Mnr3Z7nE3t6gmTapHOHxewBNRMCgBbtwB6Glfu7ym7f0lTEtky/TVRzRtHevSy8fTPFmEIs8d09fLpqPakSXX+vfMRen53ippPWWp7D990e6xt7Ss7rRFlQHAHXXs2NGyxkB6erps3mz/YUZWVpZs2HB1ZFaPHj1cmg+AOj1iK6mO4DFWHTynaXuiV30FSVBSrw5q4tBx7acuk0nz9tgdbZCdmy8/bEqQZpMWS+zLCws95wTWCYEPoGBQAty4A9AT6O8nt7aqYdV25Hy6ojTuLY6RF14jolSg7JzU26FjNx1Nljumr5eY5+bLkXOXLO1ms1n+3JEo43/aLjf8b7UcOefY/2/evLVZsTIDgKcICwuTnj2vzts8e/Zsu8f/9ttvcvHilWJruXLlpEuXLq6MB0ChmSPbaNqYDlXfiJmbNG2P9qyrIAlKalj7aImtol3DQ8/sdfFS+4U4mbpgn6XNbDZLSka2PP/bLqn/0gJ57rddDl+7fFhwkfMCnqbwJcZh03837nFxVxZUmT17trRv397m8dy4A76jYhntTUR+vln8/OgFfS29uSEn3UiPDU8VHhIo04ddJ/d/s8Xh9/R4d1WJrvlw97qsXQDAJzz44INW3zseeeQRady4sea4jIwMmTBhgmX7vvvuk4AAvvYBvuTNRfvl+X7MaHCtPBtFFEapeq64RzsXaYHj6auOyPRV2tHtRXHkdaZBhW/gG3YJPfjgg5bXs2fPlj179ugex4074FtGd4rRtC3d59ji6L5uRMcY1RFQAr0aVjbsWm1rlZOn+rDeBQDPFR8fLyaTyfJjb+TAgAEDpHPnziJyZeTywIEDZefOnVbHJCUlyaBBg+TQoUMicqWT0rPPPuuy/ADcw6M961ltl/ShqDeavvqwpo1agWfz8zNJZOlAw663b3JfOgDCZ1AwKCFu3AHoqVQmREYWePA9b0eimjBu6nOdm3YRevl4On8/k3w/1vZoO2eaPUo7BB8AXKl///7SokULq5/PPvvMsn/z5s2a/S1atJDEROfcA8yZM0eqVq0qIleKDS1atJDu3bvLmDFj5Oabb5aaNWvKkiVLREQkICBAfvrpJ4mMjHTKtQG4r/E3MA9/Yd5aeEDTNntUWwVJ4Ex/P9tDXjZgTYEBzapKqSB/l18HcBd0cXeCOXPmSNu2beXUqVOWG/euXbtKnTp15Ny5c7J06VLJyMgQEW7cAV+Sb7Ye9rpw92lFSdzT63H7NW0fDWmpIAmcrUOd8jKiQ7R8tf6Yy67x+4MdpXQQtzEAjLV37145dsz2Z1t6errs2LFD056dne2U69eoUUOWL18uQ4YMke3bt4vZbJaVK1fKypUrrY6rWLGizJo1y2rdAwC+JTMnT0ICecBpT9f6FVVHQAmFBQfIvZ1qyat/7XXpdT4e2sql5wfcDSMMnOC/G/cWLVqIiFhu3GfMmCHz5s2zFAsqVqwof/zxBzfugI/IzMmz2s5l8bFC3di8muoIcJLnXDhvbuvostKyZlmXnR8A3FlsbKxs3LhRvvrqK+nbt69ERUVJUFCQVKpUSdq3by9vvfWW7N27VwYMGKA6KgCF3lyo7ZyDq7a9fIPqCHCiVwc1cdm5j05l3QL4HrrmOcl/N+4//PCDfP/997Jnzx45c+aMREZGSu3atWXw4MEyatQoqVChguqoAAwyrltd+WnzCas2s9nMlDs2xJQvrToCnKhUkL+sfKqbdHtnpdPPPWMEUxEBUCM+Pt6p54uJiRGzuegdCoKCgmT48OEyfPhwp+YB4D1mrY2XiTdqF0b3RadSL2vayoYGKUgCVxnWPlp+3nxcdp5Idep5x3auxfd3+CQKBk7EjTuAa9Usp30AvvtkmjStEaEgjfurWylMdQQ4WUyFUDn8en+p80KcU87XuV4FmTmyjQT6M0ASAADgWq1qRsrWhBSrNjorXXHbp+tVR4AB5j3cSdYdOi9Dv9zolPN9Nbot01bBZ/GNGwBcxN9Pe3N+47S/FSRxP3q9KacObqYgCVzN388kK5/qVuLz3NyimnxzbzuKBQAAADo+vec6Tdvy/WcVJHE/J1O0IwzgnTrWrSC1KoSW+DzLnuxKsQA+jREGAOBC797eXJ78Wbv4oa87fO6Spq1imWAFSWCEmAqhEv/Glbm0M3PyJPblhUV6f71KYfL+nS1ckAwAAMA7VA4P0bQlJGcoSOL+1jzTXXUEuNCKazor9f7fKjl4Rvvd055NL/aUSmW0/38CfAnd9ADAhcqGBmraLqRnK0jiXnq9t9pqu1oEN2S+IiTQX167xbFFyfz9TDJrZBtZ8FhnhtMDAAAU0VsLD6iOoNyWYxc0bVE6U8fCO/3+4PUOHzt1cFNZ9XQ3igWAUDAAAJe6Lrqcpq3VlCUKkriPuF2nNG1/PtJJQRKocne7aPnxvvY290eUCpSRHWNk5VPdpHtsJQlgGiIAAIBC9Wlc2Wr7ck6eoiTuIS/fLLd+uk51DCgUGhwg8W8MkIZVw20eM7BZVXnr1mYypG1NiS5f8umMAG/AlEQA4EIRpbQjDHSm7/cpD363VdNWPozpiHxNu9rlZeek3jLsy41SJSJEosqWlja1ysnFzFy5tVV1RhQAAAAU0bN9Y2XRnjNWbUmXsnz2Xvshne8dbWLKKkgC1RY81ll+2JQgn646LF3rV5R6lctIsL+ftI4pK7UrhqmOB7gdCgYAoMDZtEyppDPPqLdL1FlwzNHpaeB9wkMCZe7DjC4BAABwhio603x2enOF7Hu1r4I06i3cc1rT9tGQVgqSwB3c1bam3NW2puoYgEdgjD8AuNi+ydob9FUHzylIol7HN5Zr2u5uF60gCQAAAOBdSgcFyJRB1p1xfHVaorx8/WHdekUVAIA1CgYA4GKlgvw1bU//slNBEgAAAADe7Pq6FTRtG44kKUii1piv/tG09WpYSUESAPA8FAwAQJGcvHzVEQyVmpGjOgIAAADg1fx11oG66/MNCpKoteKAdkR365hyCpIAgOehYAAABnjyhvqaNl9b/HjU7E2qIwAAAABerWb50qojuK172jMVKgA4goIBABhgeIcYTZtZfKtisDUhRdP28VAWHQMAAACcqbTOlKi+ZP/pNN32sOAAg5MAgGeiYAAABogoHSj1K4dZtTV4aaGYfW2YwTWiy5eWAc2qqo4BAAAAeJVFj3fRtP0Tn6wgiRonki9r2na/0kdBEgDwTBQMAMAgn95znaZt36mLCpIY71JWrqbtiV7aaZoAAAAAlExUOe20RLd/tl5BEjXGfL1Z08boAgBwHAUDADBInYphmrZftpxQkMR4N7y3StN2c4tqCpIAAAAA8Fb5+doR3Le2qqEgCQB4LgoGAKDQzLVHVUcwxKnUTE2byWRSkAQAAADwTRczc1RHcLkNR5I0bQ2qaDtuAQBso2AAAIqduJChOgIAAAAAL/LqzY01bU0nLVaQxFjrdQoGlcNDFCQBAM9FwQAAFDt5QbsolzdJupSlaXvr1mYKkgAAAAC+YViHGNURlPho+SFNW5/GVRQkAQDPRcEAAAy04LHOmrZQL1+Aa9m+s1bbYcEBckebKEVpAAAAAPiKnZN6S0igv+oYAOBRKBgAgIEaVg2XglP3D/zobzVhDLDrRKo88+tOq7ZFT3RRlAYAAADwHVtfvkHTZjZrFwX2Fu1fX6ZpCw8JVJAEADwbBQMAMNiSJ7pq2lIve+cCZDdO0xZDqkUwhygAAADgauVCgzRtd07foCCJMU6nZVpt1yhbSlESAPBsFAwAwGDVIrUPzO/63Htv3AsyFRxiAQAAAMAQm+KTVUdwifx87ciJXg0rK0gCAJ6PggEAGKx0kHbNgn2n0hQkca1/vPTLCAAAAOAplj+pHd3sjWq/EKdpa1kz0vggAOAFKBgAgJvI0+kV48lu/2y9pu3NW5sqSAIAAAD4pqhypTVtB05fVJDEdfRGF4iI3NS8msFJAMA7UDAAAAXuaF1D03bDe6sUJDHWHa2jVEcAAAAAfEagv/axT5/3V0tqhvesobZoz2nddqZCBYDioWAAAArc0z5a03bkfLqCJK6x60Sqbjs37QAAAIB6h855zyiDcd9t1bTNHtVGQRIA8A4UDABAgWY1IlVHcKmX/tilafvgrhbGBwEAAAB83MdDW2natiWkGB/EBcxm/emIujWoZHASAPAeFAwAQJH/3dlc03Y8OUNBEuc6nZopO3RGGFSNKKUgDQAAAODbBjSrqmmbMn+fgiTO1+a1ZaojAIDXoWAAAIo0qRahaUu97PlziX6/KUG3vW2tcgYnAQAAAODNzl/K0rQ9eUN9BUkAwHtQMAAARepVLqNpG/jR3wqSONd3G/ULBgAAAADUqFUhVNOWk5evIInr9WuqHVEBAHAcBQMAUKh5VKSmbeORJOODOJFeL5+fH+igIAkAAAAAEZHvxrTTtNV7cYHNNQA8Wd1KYaojAIBHo2AAAArNfeh6Tdudn29QkMQ5Dp+7pNveOrqswUkAAAAA/KdaZClpWl07Jequk9q1xzxFzHPzNW1jO9dSkAQAvAsFAwBQrExIgOoITtPz3VWatrqVwsRkMilIAwAAAOA/8x7WdlZauPu0giQll5apv/bbC/0bGpwEALwPBQMAUCyiVKCmbcuxCwqSlMzBMxd12xc/3sXgJAAAAAAK0uvE88nKwx45LVGzSYs1bT/d34GOSgDgBBQMAECxvo2raNpu/XSdgiQlszlev8jh58dNOwAAAOCu/rFxH+9pmkdpp1wCABQdBQMAUOyRHvVUR3CKP3ckato616ugIAkAAAAAPXr35542uvlMWqZue3CAv8FJAMA7UTAAAMUiSgfKuG51NO22boTd0dmLmbL+SJKm/cO7WipIAwAAAEDPrJFtNG1vLtyvIEnxtXt9meoIAODVKBgAgBt4tm+sps2TboTbvqaftWxokMFJAAAAANgS4K//GGhzfLLBSYrnXxvrpj3Vu77BSQDAe1EwAAA3duTcJdURCrXzRIpu+xuDmxobBAAAAEChnu+n7ax022frFSQpuhv+t1q3fVy3ugYnAQDvRcEAANzEnDHtNG37Tun3oHEnN01bq9t+e+sog5MAAAAAKMz9XbXToXqyiFKB4u9nUh0DALwGBQMAcBMmk/Ym96E5WxUkcVx6Vq7Nfdy0AwAAAJ5j3aHzqiPYNX/nKd32hY93NjgJAHg3CgYA4CbKhATotr+3+IDBSRz3+eojuu3ta5czOAkAAACAkhj65UbJzzerjmGTrc5UVSNKGZwEALwbBQMAcBNNqkdIxTLBmvYPlx+SPDe9cY9PStdtf/u25gYnAQAAAOCopeO76LbHTlhocBIAgLuhYAAAbuTvZ7vrtu+wsbCwSofOXpS52xN190WVK21wGgAAAACOqlupjG57dm6+wUkcM3zmJt32ZU92NTgJAHg/CgYA4EaCA/x127Ny3O/Gvdd7q3XbPxzS0uAkAAAYIy8vT3bu3CkzZsyQcePGSevWrSUoKEhMJpOYTCbp1q2by649e/Zsy3Uc/RkzZozL8gDwfC2iIlVHcMjuk6my+uA53X11KoYZnAYAvJ/+hNkAALcy5IsNEv/GANUxHHJT82qqIwAA4HR//PGH3H333ZKRkaE6CgA4xZ1tomT78RRN+5p/z0nnehWND2TDS3/s1m1vVTPS2CAA4CMoGACAm/n72e7S6c0VmvbElMtSLdI9FvQ6el5/7QIAALxVSkqK2xQLYmNjpWfPnoUe17FjRwPSAPBUd7aOkpf+2K1ZL23YjE1u1VlJr6ghIvIW66YBgEtQMAAAN1OjrP78/0/9vEPmjG1vcBp9P20+rtu++An9xdMAAPAWlStXljZt2lh+Fi1aJB988IGhGdq1ayfTpk0z9JoAvI+fn0n6Nq4i83edUh2lWOpWYjoiAHAFCgYA4CHWHU5SHUFERM5dzJJPVx7W3Ve/sv7iaQAAeLq+ffvKsWPHpGbNmlbtGzduVJQIAErurrZRugWD3SdTpUn1CAWJrP34T4Ju+5C2UQYnAQDfwaLHAOCGPh92nW77wt2nDU6i1ea1pbrtr9/S1OAkAAAYp0qVKppiAQB4OltrFQz86G/NVEVGW7j7lDz76y7dfXz3AADXoWAAAG6od+MqEltF21v/gW+3yOnUTAWJrvhyzRGb++5qQy8fAAAAwNNsn3CDbnudF+IMTmLtgW+36rYPblldTCaTwWkAwHdQMAAAN/XnI5102zu9udzgJFdNmb9Pt31ou5ri58dNOwAAAOBpIksHqY6gcSbNdiept29nsWMAcCXWMAAANxXor1/TzVU0NPjtRftt7nvlpsYGJgEAwLelpKTIzz//LHv27JHU1FQJDw+XatWqSYcOHaRp06b0vAVQZJXDg+VMWpamPT/fbHjHoLx8s7R7fZnuvvKhQeJPRyUAcCkKBgDggcxms+EPAz5eob/QsYjt4gYAAHC+uXPnyty5c3X31atXT5599lkZPXo0hQMADps9qq30+2CNpn3Z/rNyQ6PKhmaZ/Ocem/vWPNvdwCQA4Jt4wgMAEU5dAQAAJnpJREFUbmzijY102/8+dN7QHFuOJdvct29yXwOTAAAAe/79918ZM2aM3HTTTZKenq46DgAP0bBquG772K83G5xE5Kv1x3TbXx7YSEoH0e8VAFyNggEAuLFR19fSbR82Y5O8Nn+vmM3GTE9066frbe4rFeRvSAYAAHxdzZo15cknn5S4uDg5fvy4ZGZmSnp6uhw4cEA++eQTiY2NtRz7119/ydChQyU/P7/Q82ZlZUlaWprVDwDfs/Vl/cWPY56bL/tPG/O5sGTvGZv77u2k/90IAOBcFAwAwM3NGtlGt/2LNUdl2vJDLr/+zR+vtblv8s2sXQAAgBEGDRokR48elXfeeUf69esnNWrUkODgYCldurTUr19fxo0bJzt27JBRo0ZZ3jNv3jyZM2dOoeeeOnWqREREWH6ioqJc+U8B4KbKhdpe/Ljv+9rpipwtMeWykhENAABrjOUCADd3fd0KNve9u+SgPNKznkuvv+N4is19w9pHu/TaAADYM23aNJk2bZpTzzllyhS57bbbnHpOZ4iMjCz0mKCgIPnyyy/l0KFDsmbNlYd7b775ptxzzz123/f888/L+PHjLdtpaWkUDQAf9WjPevLhsn919+Xk5bt07bIBH9ouSix+oovLrgsAsEbBAADcXFCAn/z2YEcZ/Mk63f1ZuXkSHOCaaYHeXXzA5r7aFUJZTBEAoNT58+flwAHbf6uKIyUlxannM5qfn59MnDhRevXqJSIiu3fvlhMnTkiNGjVsvic4OFiCg4ONigjAjY2/ob7NgkGf91fL8ie7ueS6eflmuZCRY3N/vUphLrkuAECLKYkAwAPEViljc1//D1wzPDgnL18+sjPl0e8PXu+S6wIAgJLp0qWLBAYGWrb37dunMA0Ab3HkXLrk5BW+LkpxfLUu3ua+cd3q0FEJAAxEwQAAPEDpINsDwg6fS3f69eZsTJB6Ly6wuT/+jQESUTrQ5n4AAIwwadIkMZvNTv0ZM2aM6n9WiQUGBkqFClenNDx//rzCNAA8zT8v9rK5z96D/eJIupQld32+Xib/tVd3/9ej28qzfWN19wEAXIOCAQB4iO/GtLO5797Z/8iMv486pcfPpysPywu/7yrxeQAAgDrp6Vc7FISGhipMAsDTVCxje4qy1+P2ybAZG+XIuUslvo7ZbJbrpiyVDUeSbR7TpX7FEl8HAFA0FAwAwEN0rFPe5r5l+8/Kq3/ttbtQmKPeXLjf7v7R19cq8TUAAIDrHDlyRNLS0izb1apVU5gGgCeytchwvllkzb/npce7q+RsWmaJrrHrZGqJ3g8AcA0KBgDgIUwmk3x6dyu7xxw8c0n+ibfdQ6cwI2ZuKvSYJ26oV+zzAwAA15s5c6bldUREhLRo0UJdGAAeqX5l22uo/aft68skMyevWOc/npwhN01ba/eYIW2jinVuAEDJUDAAAA/Sp3GVQo+5/bP1MtyBB//XysnLl25vr5BVB8/ZPe7f1/pJmRDWLgAAwEiXLjk+9ce6devk3XfftWzfddddEhBgey0kALDlq9FtCz0m9uWFcv5SVpHOu2TvGen81opCj5s6uFmRzgsAcA4KBgDgQfz8TPLva/0KPW71wXPyxoL9Dq1p8Me2k1LvxQUSn5RR6LGB/vzZAADAWeLj48VkMll+Zs+erXvcL7/8Im3btpWvv/5aUlP1p/DIzMyUDz/8UHr16iWZmVemCYmMjJSJEye6Kj4AL9e1fkX57B77I5xFRFpPWSqZOXliNpvtHnc8OUNe+H2XjP16c6HnHNK2psM5AQDORVcTAPAwgf5+0qdxZVm054zd4z5bdVg+W3VYvhjeWm5oVFmzPzs3X7q/s1JOplx26Lq9GmrPAQCAL+nfv78kJiZatZ0+fdryevPmzbrT/8TFxZV4HYF//vlHRowYIQEBARIbGyuxsbFStmxZycvLk5MnT8r69eut1i0oVaqUzJ07V6pWrVqi6wLwbTc0KnyEs8iVkQaxVcrI/Ec7i7+fSbN/xf6zMmr2Pw5f96UBDR0+FgDgXBQMAMADvXVrc1m0Z7FDx479erM81L2O5OaZZeT1MfLInG2y+diFIl1vYLOq8v6dLYqRFAAA77F37145duyYzf3p6emyY8cOTXt2drbTMuTm5sru3btl9+7dNo9p27atzJ49Wxo25IEbgJLx9zPJqOtjZNba+EKP3X/6otR9MU4GNqsmt11XQ4L8/WTIFxuKfM2l47tKaDCPqwBAFT6BAcADRZQOlC0v9ZLrpix16PiPVxwWEZHpq48U63rP928oAUxHBACAEkOGDJH69evLunXrZMOGDXL48GE5f/68JCUlSX5+vkREREitWrWkffv2ctttt0mnTp1URwbgRSbe2NihgoGIiNks8ueORPlzR2LhB+uoWa601K0UVqz3AgCcg4IBAHio8mHBhlzns3taSfXIUoZcCwAAdxYfH+/U88XExBQ657eISHBwsHTs2FE6duzo1OsDgKOmD7tO7v9mi8uv88sDHVx+DQCAfXQXBQAP9t2Ydi6/Rt8mzH0MAAAA+LLeOmuiOdu2l2+QSuEhLr8OAMA+CgYA4MGur1tBlo7v4rLzr3++h8vODQAAAMAzmEwmiX9jgMvOf0/7mlI2NMhl5wcAOI6CAQB4uDoVXTPH5/5X+0rVCKYiAgAAAHDFO7c3d/o5R19fS6YMaur08wIAioeCAQB4OJPJJGufc95IgI+HtpKNL/SUkEB/p50TAAAAgOe77boa0jwq0mnnW/BYZ3lxQEOnnQ8AUHIUDADAC1SPLCX7JveVB7rWKdF5nu8XKwOaVZXKzB0KAAAAQMfch66XJU+UfFrU5U92lYZVw8Xfz+SEVAAAZ6FgUEJ5eXmyc+dOmTFjhowbN05at24tQUFBYjKZxGQySbdu3VRHBOAjSgX5yzN9Gsi4bsUrGjzUvY7cX8KCAwAAAADvV69yGfntwY7Ffn/8GwOktoumVgUAlEyA6gCe7I8//pC7775bMjIyVEcBABER8fMzybN9YyUx5bLM3Z5YpPc+3SfWRakAAAAAeJtWNcvKwSn9pP5LC4r0vsk3N3ZRIgCAMzDCoARSUlIoFgBwSx/c1VK+vbedTBva0qHjf7yvvYsTAQAAAPA2QQF+svmlXg5/72hSPVzubhft4lQAgJJghIETVK5cWdq0aWP5WbRokXzwwQeqYwHwcZ3qVRARkSPn0iVu1ynpUKe8zFobb9k/uGV1ee/OFmrCAQAAAPAKFcKCZWCzatK8RqQMn7lJutavKDtOpMi2hBQRubLe2kdDW0qrmmXVBgUAOISCQQn07dtXjh07JjVr1rRq37hxo6JEAKD1aM968mjPeiIiMvFGhv8CAAAAcL6ocqVlxVPdVMcAAJQQBYMSqFKliuoIAAAAAAAAAAA4BWsYAAAAAAAAAAAACgYAAAAAAAAAAICCAQAAAAAAAAAAEAoGAAAAAAAAAABAKBgAAAAAAAAAAAARCVAdALZlZWVJVlaWZTstLU1hGgAAAAAAAACAN2OEgRubOnWqREREWH6ioqJURwIAAAAAAAAAeCmvG2Ewbdo0mTZtmlPPOWXKFLntttucek5HPP/88zJ+/HjLdlpaGkUDAAAAAAAAAIBLeF3B4Pz583LgwAGnnjMlJcWp53NUcHCwBAcHK7k2AAAAAAAAAMC3MCURAAAAAAAAAADwvoLBpEmTxGw2O/VnzJgxqv9ZAAAAAAAAAAC4lNcVDAAAAAAAAAAAQNFRMAAAAAAAAAAAABQMAAAAAAAAAAAABQMAAAAAAAAAACAUDAAAAAAAAAAAgIgEqA7g6fr37y+JiYlWbadPn7a83rx5s7Ro0ULzvri4OKlWrZqr4wEAAAAAAAAA4BAKBiW0d+9eOXbsmM396enpsmPHDk17dna2K2MBAAAAAAAAAFAkTEkEAAAAAAAAAAAYYVBS8fHxqiMAAAAAAAAAAFBijDAAAAAAAAAAAAAUDAAAAAAAAAAAAAUDAAAAAAAAAAAgFAwAAAAAAAAAAICw6LFHMZvNIiKSlpamOAkAAACc4b/7uv/u8wB3wPcOAAAA71KU7x0UDDzIxYsXRUQkKipKcRIAAAA408WLFyUiIkJ1DEBE+N4BAADgrRz53mEy053JY+Tn50tiYqKUKVNGTCaTy6+XlpYmUVFRcvz4cQkPD3f59eBd+P1BSfD7g+LidwcloeL3x2w2y8WLF6VatWri58dsoXAPRn/vgG/gbzTcEb+XcEf8XsIVivK9gxEGHsTPz09q1Khh+HXDw8P5gEKx8fuDkuD3B8XF7w5KwujfH0YWwN2o+t4B38DfaLgjfi/hjvi9hLM5+r2DbkwAAAAAAAAAAICCAQAAAAAAAAAAoGAAO4KDg2XixIkSHBysOgo8EL8/KAl+f1Bc/O6gJPj9AQDX4TMW7ojfS7gjfi+hGoseAwAAAAAAAAAARhgAAAAAAAAAAAAKBgAAAAAAAAAAQCgYAAAAAAAAAAAAoWCAEoiPj5cvvvhC7rnnHmnevLmULVtWAgMDpVy5ctKsWTO5//77ZdWqVapjwk3l5eXJzp07ZcaMGTJu3Dhp3bq1BAUFiclkEpPJJN26dVMdEQbKzs6Wb775Rvr37y/R0dESEhIiVatWlY4dO8o777wj58+fVx0RbojPEZQE9zEA4F74uw6j8N0D7oTPPrgjFj1GkW3btk0eeOAB2bRpk0PHd+vWTb766iupWbOmi5PBU/zxxx9y9913S0ZGhs1junbtKitXrjQuFJTZv3+/DBkyRLZv327zmEqVKsmsWbOkf//+xgWDW+NzBMXFfQwAuB/+rsMofPeAO+GzD+4qQHUAeJ4DBw5ovmTXr19fmjRpIhUqVJCUlBRZt26dnDhxQkREVq5cKR06dJA1a9ZI7dq1VUSGm0lJSbH7BxG+48SJE9KzZ09JTEwUERGTySRdunSROnXqyLlz52Tp0qVy+fJlOXv2rAwaNEgWLlwoPXr0UJwa7oDPERQX9zEA4H74uw4j8N0D7obPPrgrCgYotrp168qYMWPknnvukerVq1vty8/Pl9mzZ8sjjzwiGRkZkpiYKHfffbesW7dOTCaTosRwN5UrV5Y2bdpYfhYtWiQffPCB6lgw0NChQy037NHR0TJ37lxp3ry5Zf/58+flrrvukmXLlklOTo7cfvvtcvjwYYmMjFSUGO6GzxEUF/cxAOB++LsOV+K7B9wVn31wNxQMUGRVq1aVWbNmybBhw8Tf31/3GD8/Pxk9erSULVtWBg8eLCIiGzZskMWLF0ufPn2MjAs31LdvXzl27JhmeoeNGzcqSgQV4uLiZM2aNSIiEhQUJH/++ac0bdrU6pgKFSrI3LlzpVmzZnLkyBFJTk6Wt956S15//XUVkeFG+BxBcXEfAwDuh7/rcDW+e8Ad8dkHd8Wixyiyrl27ysiRI21+yb7WLbfcIm3btrVsz58/35XR4CGqVKnCXNCQjz/+2PJ6xIgRmhv2/4SGhsrkyZMt29OnT5fc3FyX54N743MExcV9DAC4H/6uw9X47gF3xGcf3BUFA7jc9ddfb3kdHx+vLggAt3Hp0iVZtmyZZXvUqFF2j7/11lslLCxMRESSk5Nl9erVLs0HAP/hPgYAAM/Gdw8AKBoKBnC5a+f6zcvLU5gEgLtYt26dZGVliciVXjxt2rSxe3xISIh06NDBsr18+XKX5gOA/3AfAwCAZ+O7BwAUDQUDuNyuXbssr6OiohQmAeAu9u3bZ3ndtGlTCQgofEmdVq1a6b4fAFyJ+xgAADwb3z0AoGgoGMClEhISrKrxvXr1UpgGgLs4cOCA5XV0dLRD77l2bsf9+/c7PRMAFMR9DAAAno/vHgBQNBQM4FLjx4+3DN+vWbOm3HjjjYoTAXAHSUlJlteVK1d26D1VqlSxvE5OTnZ6JgAoiPsYAAA8H989AKBoKBjAZb766iv59ddfLdtTp06V4OBghYkAuItLly5ZXpcqVcqh91x73LXvBwBX4D4GAADvwHcPACgaCgZwic2bN8sDDzxg2R4yZIgMHTpUYSIA7iQzM9PyOigoyKH3XPug7vLly07PBAD/4T4GAADvwXcPACiawld6gceYNm2aTJs2zannnDJlitx2221Fes/Ro0flxhtvtPxRbtasmXz22WdOzQXnc5ffH/iGkJAQy+vs7GyH3pOVlWV57WjPIAAoKu5jAOAKvh/AW/DdAwCKhoKBFzl//rzVYj7OkJKSUqTjT506JTfccIOcPn1aRERq164tCxculPDwcKfmgvO5w+8PfEdYWJjltaM9dq497tr3A4CzcB8DAFfx/QDegu8eAFA0TEkEp0lKSpIbbrhBDh8+LCIiVatWlaVLl0rVqlUVJwPgbsqXL295febMGYfe898DPBGRcuXKOT0TAN/GfQwAAN6J7x4AUDQUDLzIpEmTxGw2O/VnzJgxDl07LS1N+vTpI3v27BERkQoVKsjSpUulVq1arvwnw4lU/v7A9zRo0MDy+tixYw69JyEhwfI6NjbW6ZkA+C7uYwBAi+8H8BZ89wCAoqFggBJLT0+X/v37y5YtW0REJCIiQhYuXCiNGjVSnAyAu2rYsKHl9a5duyQ3N7fQ92zdulX3/QBQEtzHAADg3fjuAQBFQ8EAJZKZmSk33XSTrF27VkRESpcuLfPnz5frrrtOcTIA7qxjx44SHBwsIlce1m3evNnu8VlZWbJhwwbLdo8ePVyaD4Bv4D4GAADvx3cPACgaCgYotpycHLn11ltl+fLlIiISHBwsc+fOleuvv15xMgDuLiwsTHr27GnZnj17tt3jf/vtN7l48aKIXJlDtEuXLq6MB8AHcB8DAIBv4LsHABQNBQMUS15engwdOlTi4uJERCQgIEB++ukn6dWrl+JkADzFgw8+aHk9e/Zsy9zhBWVkZMiECRMs2/fdd58EBAS4PB8A78V9DAAAvoXvHgDgOAoGKDKz2Sz33nuv/PLLLyIi4ufnJ998843cdNNNipMB8CQDBgyQzp07i8iVYb8DBw6UnTt3Wh2TlJQkgwYNkkOHDonIlR4+zz77rOFZAXgP7mMAAPA9fPcAAMeZzGazWXUIeJZPPvlEHnroIct2vXr1pHfv3g6/f9q0aa6IBQ/Tv39/SUxMtGo7ffq0nDlzRkREQkNDpW7dupr3xcXFSbVq1QzJCNc7ceKEtG3bVk6dOiUiIiaTSbp27Sp16tSRc+fOydKlSyUjI0NErvQAXrhwodVwYvg2PkdQHNzHAIB74u86XI3vHnBHfPbBHVEwQJFNmjRJXnnllWK/n185iIjExMTIsWPHivy+o0ePSkxMjPMDQZn9+/fLkCFDZPv27TaPqVixosyaNUsGDBhgXDC4PT5HUBzcxwCAe+LvOozAdw+4Gz774I6YiA0AoFRsbKxs3LhRfvjhB/n+++9lz549cubMGYmMjJTatWvL4MGDZdSoUVKhQgXVUQEAAAB4ML57AEDhGGEAAAAAAAAAAABY9BgAAAAAAAAAAFAwAAAAAAAAAAAAQsEAAAAAAAAAAAAIBQMAAAAAAAAAACAUDAAAAAAAAAAAgFAwAAAAAAAAAAAAQsEAAAAAAAAAAAAIBQMAAAAAAAAAACAUDAAAAAAAAAAAgFAwAAAAAAAAAAAAQsEAAAAAAAAAAAAIBQMAAAAAAAAAACAUDAAAAAAAAACni4+PF5PJJCaTSWJiYlTHsWnlypWWnN26dVMdB4BiFAwAAAAAAAAAAAAFAwAAAAAAAAAAQMEAAAAAAAAAAAAIBQMAAAAAAAAAACAUDAAAAAAAAAAAgFAwAAAAAAAAAAAAQsEAAKDIkSNHJDw8XEwmk5hMJnnzzTcLfc/DDz9sOT4qKkouXLhgQFIAAADA87nz/ffy5cvl3nvvlaZNm0pkZKQEBARI6dKlpUaNGtK5c2d5/PHH5a+//pLs7OxCz5WWliYfffSR3HjjjRITEyNhYWESHBws1apVk549e8orr7wie/bssfn+y5cvyx9//CGPPvqodOrUSSpXrixBQUESFhYmMTExcsstt8iMGTMcylIcSUlJ8u6778oNN9wgUVFREhISIpGRkdKoUSN56KGHZPPmzUU637///iuPP/64xMbGSmhoqJQrV05atGghEyZMkBMnTrjk3wDAs5nMZrNZdQgAgG/65ptvZPjw4SIiEhgYKOvXr5frrrtO99j58+fLwIEDRUTEz89Pli1bJt26dTMqKgAAAODx3O3+Oz09XYYOHSrz5s1z6PgvvvhCxowZY3P/Z599Ji+88IJDhY0FCxZI3759rdo2btwovXr1kkuXLhX6/piYGPntt9+kZcuWNo+Jj4+XWrVqiYhIdHS0xMfH2z3nxx9/LC+++KKkpqbaPMZkMsmoUaPk008/laCgILvn++STT+TJJ5+UzMxM3f2RkZHy9ddfS5kyZaR79+4iItK1a1dZuXKl3fMC8G4BqgMAAHzXsGHDZMGCBfL9999LTk6ODB06VLZu3SqhoaFWx50+fVpGjRpl2X7mmWcoFgAAAABF5G733/fcc49VsaBu3brSsmVLKVeunOTk5Mi5c+dk165dhT5oFxF59NFH5aOPPrJs+/v7S5s2baRevXoSEhIi586dk+3bt1vOpfcQ/cKFC5ZiQaVKlaRx48ZSo0YNCQ0NlYyMDDl06JBs2rRJcnNzJT4+Xrp27Spbt26VunXrlux/CBF5/PHH5YMPPrBsV6hQQTp06CBVqlSRzMxM2bZtm+zevVvMZrPMnDlTEhMTZf78+eLnpz95yPTp0+Whhx6ybAcGBkq3bt0kOjpakpOTZeXKlZKcnCy33XabvP766yXOD8CLmAEAUCglJcUcHR1tFhGziJjHjBljtT8/P9/cp08fy/7WrVubs7OzFaUFAAAAPJu73H9v377dco2wsDBzXFyczWMPHz5snjJlinnevHm6+z/99FPLuUTEfMcdd5gTEhJ0j921a5f50UcfNS9atEizb8OGDeYXXnjBvGvXLptZzpw5Yx42bJjlWj179rR57NGjRy3HRUdH2zxuxowZluPCw8PNX3zxhe7/5suXLzdXr17dcuybb76pe76DBw+aQ0JCLMd17drVfPz4catjMjMzzY8//rhZRMxBQUFWxwLwbUxJBABQ7u+//5Zu3bpJXl6eiIj89ttvcsstt4iIyP/+9z8ZP368iIiEhobK1q1bpX79+sqyAgAAAJ7OHe6/p02bJo888oiIiLz44osyZcqUYp3nwoULEh0dLRcvXhQRkQceeEA+/fRTp+W0pX///rJgwQIREdm7d680bNhQc4wjUxJdvHhRatasKSkpKRIUFCSrV6+Wdu3a2bzuvn37pFWrVpKZmSnly5eXhIQEKV26tNUxd999t8yZM0dERBo3biybNm3SHPOfsWPHypdffmnZZkoiACx6DABQrlOnTvLiiy9atseMGSMnT56UHTt2yPPPP29pf//99ykWAAAAACXkDvffaWlpltcVK1Ys9nk+//xzS7EgOjpa3n///ZJGc8jIkSMtr5cuXVrs88ycOVNSUlJEROTBBx+0WywQEWnYsKGMGDFCRK4skLxw4UKr/SkpKfLrr79att966y2bxYL/9heckgqAb2MNAwCAW5gwYYIsXbpU1q1bJ8nJyTJs2DA5c+aMZGVliYjI4MGD7S5wBgAAAMBxqu+/o6KiLK+//vprGTt2rN0H27Zc+8B87NixEhwc7JR8GRkZsmHDBtm1a5ecO3dOLl68aBmRISJy8uRJy+vt27cX+zpxcXGW10OHDnXoPT169JDp06eLyJXRIoMHD7bsW7duneW/YaVKlTQLOxdUtmxZuemmm+T7778vanQAXoqCAQDALfj7+8u3334rLVq0kLS0NFmxYoVlX/Xq1eWLL75QmA4AAADwLqrvv/v37y+hoaGSnp4uW7duldjYWLn33ntlwIAB0rJlS/H393foPBs3brS87t69e4lzJScny4QJE+Trr7+2jFwozPnz54t9vfXr11tef/755/LVV18V+p4TJ05YXh8/ftxq37Zt2yyv27Zta3NR5Gt16NCBggEACwoGAID/a+9uY2r+/ziOv87Qz0WlhDHUylW52GpzMTbSDdcyli0zqhtykRkhbqCJuYHFHcrl0MyYuYhpMqVlpWlhsxg3qKSiU5SDFafzv2G+61Q4v/L/naOej63t+/mez/fzfX/PrU/f9/m8Py7D399fKSkpWr58uXHOZDIpLS1N/fr1c2JkAAAAQOfjzPm3j4+PTp48qaioKH39+lWvX7/Wrl27tGvXLrm7u2vy5MkKDQ1VeHi4goOD2xyjvr5eX758MdoBAQEdiqm0tFTTp09XWVnZv7rO0cRCSxaLxe7a5nsJOOr9+/d27erqauPY19fXoTEc7Qega2APAwCASxk4cKBde/Dgwb+t4wkAAACgfZw5/166dKkePHigxYsXq0ePHsZ5i8WirKwsJSYmKiQkRBMmTNC9e/daXd/yRb27u3uH4lm2bJmRLPDw8FB8fLxu3bqlly9fymKxyGq1ymazyWaz2a3IaGpqatf96urqOhSvJH379s2ubbFYjGNHSzyxhwGA5kgYAABchtlsNjbw+qGiokIbN250TkAAAABAJ+YK8+/g4GBduXJF7969U3p6uhISEjRlyhS7BEJRUZHCwsJ06dIlu2s9PDzs2s1flv9b+fn5ys/Pl/Q98VBQUKCDBw9q9uzZ8vf3V58+fezK+7R3VUFzLV/U19bWGgkJR/9ycnLsxmieNPn8+bNDcXz69KnDzwKg8yBhAABwGStXrlRlZaUkacSIEUbd0pMnT+ratWtOjAwAAADofFxp/u3l5aWFCxdq//79ys/Pl9ls1unTp41yOVarVXFxcXYliDw9PdWrVy+j/erVq3bfPysryziOjo7WmDFjftm/tLS03ff6wcvLy26T5qqqqg6POWDAAOPY0dJKLfdBANC1kTAAALiEY8eOKT09XZLUq1cv3bhxQzt27DA+X7lypSoqKpwVHgAAANCpuPr829PTUzExMcrOzjZeqpvNZrtNgiXZlU/Kzs5u9/2aP+v48eN/2z83N7fd92pu0qRJxnFeXl6HxwsJCTGOCwsLHSqX1PI7BdC1kTAAADjd8+fPtWnTJqOdnJyswMBA7dy5U1OmTJEk1dTUKCoqSjabzVlhAgAAAJ3C3zT/Hj58uMaOHWu03759a/f53LlzjeMTJ06ooaGhXfdpXm7od6V8KioqjGRLRy1YsMA4Tk1N7fD3PXXqVCPB8vbtW92+ffuX/evq6nT9+vUO3RNA50LCAADgVI2NjVq2bJkxKQ8PD9fatWslSd26ddO5c+eM2qRZWVlKTk52WqwAAADA385V5t9ms9mhflar1SibJLXepDk2Ntao219aWtru/RcCAgKM41+9QLdarVq1apUaGxvbdZ+WVq9eLS8vL0nSw4cPlZSU5PC1ZrNZVqvV7pyXl5ciIiKM9tatW+3KOLW0bdu2Du39AKDzIWEAAHCqHTt26OHDh5KkQYMG6dSpU3afBwQE6PDhw0Z7+/btevz48X8ZIgAAANBpuMr8OyEhQdOnT1daWpo+fPjQZp+amhrFxsYaCQNPT09NnTrVro+3t7f27dtntI8eParIyEiVl5e3OWZxcbE2bNjQ6pf38+fPl8lkkiTl5ORoy5YtrV60V1VVKSIiQjdv3my1YXF79e3bV4cOHTLaSUlJio6O/un+AzabTXl5eYqLi5Ovr2+byYDExERjlcGTJ080f/58vXnzxq5PQ0ODtmzZomPHjsnNze2PPAuAzsFkc/baMgBAl5Wdna2ZM2eqqalJJpNJGRkZmjNnTpt9ly5dqosXL0qSgoKCVFRUZLfBGQAAAIBfc6X5d0xMjM6ePSvp+8qGwMBABQUFydvbW1++fNGbN2+Ul5dn90v+48ePKzY2ts3x4uLilJqaarS7deumiRMnatSoUerZs6eqq6v16NEjlZSUSJKuXr2qRYsW2Y0RHR2ttLQ0oz148GBNnDhRAwcOVElJiXJzc9XY2CgPDw8dOHBAa9askSSFhoYqJyenVUwlJSXy9/eXJPn5+Rn3bktiYqL27NljF39wcLACAwPl7u4ui8Wi8vJyPX78WHV1dUa/jx8/GissmktJSdG6deuMtpubm2bMmCE/Pz+9f/9ed+/eVU1Njdzc3LR3714lJCT88lkAdB3dnR0AAKBrqq2tVVRUlLEJ1/r163/6z4r0/ZdC9+/fV1lZmZ49e6bNmzcrJSXlvwoXAAAA+Ku52vz7R9kj6XuZn+LiYhUXF/+0b3Jy8k+TBdL3F+SjR49WYmKi6uvrZbVaVVBQoIKCglZ9TSaTevfu3ep8amqqqqqqjNUHlZWVrcoTDR06VBcuXNDXr18dek5H7d69W+PGjVN8fLwqKipktVpVVFSkoqKin14zadIk9ejRo83P4uLiZLValZCQoIaGBjU2NrZaVdG3b1+lpaXJ09Pzjz4LgL8bKwwAAE6xZMkSXb58WZI0btw4FRYWqmfPnr+8Jjc3V2FhYcY/OdevX1d4ePj/PVYAAADgb+eK8+9nz57pzp07KigoUHFxscrKyvTx40d1795dPj4+Gjt2rGbNmqUVK1a02rvgZ2pqanTmzBllZmbq6dOnxl4J/fv3V1BQkEJDQxUZGamRI0e2eX1TU5POnz+vs2fP6tGjR6qvr1f//v0VEBCgiIgIxcTEyNvbWzk5OQoLC5P0Z1YY/NDQ0KALFy4oMzNThYWFqq6ulsViUZ8+fTRkyBAFBQVp2rRpmjdvnkaNGvXb8V68eKHDhw/r1q1bKi8v1z///KNhw4ZpwYIFWrNmjXx9fR16FgBdBwkDAAAAAAAAAADApscAAAAAAAAAAICEAQAAAAAAAAAAEAkDAAAAAAAAAAAgEgYAAAAAAAAAAEBSd2cHAAAAAAAAANeXkZGhjIyMDo3h4+OjpKSkPxQRAOBPI2EAAAAAAACA33rw4IGOHDnSoTH8/PxIGACAC6MkEQAAAAAAAAAAkMlms9mcHQQAAAAAAAAAAHAuVhgAAAAAAAAAAAASBgAAAAAAAAAAgIQBAAAAAAAAAAAQCQMAAAAAAAAAACASBgAAAAAAAAAAQCQMAAAAAAAAAACASBgAAAAAAAAAAACRMAAAAAAAAAAAACJhAAAAAAAAAAAAJP0PFHSAAjwYTY4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -197,8 +204,7 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "e2babd91", + "execution_count": 4, "metadata": { "pycharm": { "name": "#%%\n" @@ -208,7 +214,7 @@ "source": [ "#sigmoid neural network\n", "nn1 = Sequential(name='sin_wave_sigmoid')\n", - "nn1.add(Input(1))\n", + "nn1.add(Input(np.array((1,))))\n", "nn1.add(Dense(50, activation='sigmoid'))\n", "nn1.add(Dense(50, activation='sigmoid'))\n", "nn1.add(Dense(1))\n", @@ -216,7 +222,7 @@ "\n", "#relu neural network\n", "nn2 = Sequential(name='sin_wave_relu')\n", - "nn2.add(Input(1))\n", + "nn2.add(Input(np.array((1,))))\n", "nn2.add(Dense(30, activation='relu'))\n", "nn2.add(Dense(30, activation='relu'))\n", "nn2.add(Dense(1))\n", @@ -224,7 +230,7 @@ "\n", "#mixed neural network\n", "nn3 = Sequential(name='sin_wave_mixed')\n", - "nn3.add(Input(1))\n", + "nn3.add(Input(np.array((1,))))\n", "nn3.add(Dense(50, activation='sigmoid'))\n", "nn3.add(Dense(50, activation='relu'))\n", "nn3.add(Dense(1))\n", @@ -233,8 +239,7 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "8e7a636e", + "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" @@ -246,623 +251,606 @@ "output_type": "stream", "text": [ "Epoch 1/75\n", - "313/313 [==============================] - 1s 1ms/step - loss: 0.9959\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 1.0194 \n", "Epoch 2/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.9920\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 931us/step - loss: 0.9805\n", "Epoch 3/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.9880\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 952us/step - loss: 0.9615\n", "Epoch 4/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.9561\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 930us/step - loss: 0.8894\n", "Epoch 5/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.7812\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.5624\n", "Epoch 6/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.3817\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 948us/step - loss: 0.2872\n", "Epoch 7/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2567\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.2425\n", "Epoch 8/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2366\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 913us/step - loss: 0.2330\n", "Epoch 9/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2255\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 909us/step - loss: 0.2218\n", "Epoch 10/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2154\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - loss: 0.2045\n", "Epoch 11/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 893us/step - loss: 0.1906\n", "Epoch 12/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1872\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1763\n", "Epoch 13/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1698\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 913us/step - loss: 0.1604\n", "Epoch 14/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1520\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 913us/step - loss: 0.1417\n", "Epoch 15/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1337\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 928us/step - loss: 0.1264\n", "Epoch 16/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1167\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 945us/step - loss: 0.1102\n", "Epoch 17/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1012\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 916us/step - loss: 0.0953\n", "Epoch 18/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0866\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0812\n", "Epoch 19/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0733\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0681\n", "Epoch 20/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0609\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 951us/step - loss: 0.0575\n", "Epoch 21/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0510\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0495\n", "Epoch 22/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0428\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0410\n", "Epoch 23/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0367\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0359\n", "Epoch 24/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0314\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0314 \n", "Epoch 25/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0269\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0269\n", "Epoch 26/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0228\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 964us/step - loss: 0.0218\n", "Epoch 27/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0193\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 931us/step - loss: 0.0186\n", "Epoch 28/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0158\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0147\n", "Epoch 29/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0126\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0110\n", "Epoch 30/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0095\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0084\n", "Epoch 31/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0072\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0062\n", "Epoch 32/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0057\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 952us/step - loss: 0.0047\n", "Epoch 33/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0047\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0040 \n", "Epoch 34/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0041\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 935us/step - loss: 0.0033\n", "Epoch 35/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0036\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 935us/step - loss: 0.0029\n", "Epoch 36/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0032\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 901us/step - loss: 0.0026\n", "Epoch 37/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0030\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0024\n", "Epoch 38/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 945us/step - loss: 0.0021\n", "Epoch 39/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0025\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0020\n", "Epoch 40/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 914us/step - loss: 0.0019\n", "Epoch 41/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0021\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0017\n", "Epoch 42/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0020\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.0016\n", "Epoch 43/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0018\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.0015\n", "Epoch 44/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0017\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 944us/step - loss: 0.0014\n", "Epoch 45/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0015\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 922us/step - loss: 0.0012\n", "Epoch 46/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0015\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.0012 \n", "Epoch 47/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0013\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0011\n", "Epoch 48/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0013\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 896us/step - loss: 0.0011\n", "Epoch 49/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0012\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 898us/step - loss: 0.0010\n", "Epoch 50/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0010 \n", "Epoch 51/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 9.4040e-04\n", "Epoch 52/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 906us/step - loss: 9.5708e-04\n", "Epoch 53/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.7525e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 8.4537e-04\n", "Epoch 54/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.4254e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 911us/step - loss: 8.2021e-04\n", "Epoch 55/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 8.9235e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 8.6811e-04\n", "Epoch 56/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 8.6193e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 982us/step - loss: 8.1609e-04\n", "Epoch 57/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 8.1610e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 893us/step - loss: 8.3628e-04\n", "Epoch 58/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.9281e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 867us/step - loss: 7.5957e-04\n", "Epoch 59/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.9403e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 923us/step - loss: 7.4459e-04\n", "Epoch 60/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.7805e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 889us/step - loss: 8.4700e-04\n", "Epoch 61/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.4039e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.2618e-04\n", "Epoch 62/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.3240e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.1441e-04\n", "Epoch 63/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.3313e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 948us/step - loss: 6.9701e-04\n", "Epoch 64/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.4881e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 905us/step - loss: 7.5714e-04\n", "Epoch 65/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 7.3759e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 934us/step - loss: 7.1533e-04\n", "Epoch 66/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.8646e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 914us/step - loss: 7.1795e-04\n", "Epoch 67/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.5307e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 949us/step - loss: 7.3062e-04\n", "Epoch 68/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.7135e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 7.1659e-04\n", "Epoch 69/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.7477e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 897us/step - loss: 6.6398e-04\n", "Epoch 70/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.5719e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 878us/step - loss: 7.1466e-04\n", "Epoch 71/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.8250e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 6.4845e-04 \n", "Epoch 72/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.7156e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.0734e-04\n", "Epoch 73/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.5201e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 6.9322e-04\n", "Epoch 74/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.5006e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 7.5916e-04\n", "Epoch 75/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 6.1759e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 956us/step - loss: 6.8370e-04\n", "Epoch 1/75\n", - "313/313 [==============================] - 1s 1ms/step - loss: 0.4568\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 897us/step - loss: 0.5942\n", "Epoch 2/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1969\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1814\n", "Epoch 3/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1382\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 979us/step - loss: 0.1477\n", "Epoch 4/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1082\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 882us/step - loss: 0.1218\n", "Epoch 5/75\n", - "313/313 [==============================] - 1s 2ms/step - loss: 0.0894\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 858us/step - loss: 0.0996\n", "Epoch 6/75\n", - "313/313 [==============================] - 1s 2ms/step - loss: 0.0769\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 892us/step - loss: 0.0865\n", "Epoch 7/75\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0704\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 946us/step - loss: 0.0764\n", "Epoch 8/75\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0705\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 950us/step - loss: 0.0735\n", "Epoch 9/75\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0677\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 999us/step - loss: 0.0699\n", "Epoch 10/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0686\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - loss: 0.0743\n", "Epoch 11/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0672\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 888us/step - loss: 0.0679\n", "Epoch 12/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0678\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 915us/step - loss: 0.0671\n", "Epoch 13/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0674\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 0.0694\n", "Epoch 14/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0675\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 911us/step - loss: 0.0689\n", "Epoch 15/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0668\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 860us/step - loss: 0.0677\n", "Epoch 16/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0668\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 878us/step - loss: 0.0661\n", "Epoch 17/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0669\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 879us/step - loss: 0.0659\n", "Epoch 18/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0670\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 937us/step - loss: 0.0672\n", "Epoch 19/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0667\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0667\n", "Epoch 20/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0665\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0660\n", "Epoch 21/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0666\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0697\n", "Epoch 22/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0663\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0677 \n", "Epoch 23/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0677\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 969us/step - loss: 0.0676\n", "Epoch 24/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0662\n", - "Epoch 25/75\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 0s 1ms/step - loss: 0.0665\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 911us/step - loss: 0.0672\n", + "Epoch 25/75\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 908us/step - loss: 0.0654\n", "Epoch 26/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0665\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0658\n", "Epoch 27/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0658\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 985us/step - loss: 0.0645\n", "Epoch 28/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0663\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 945us/step - loss: 0.0648\n", "Epoch 29/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0669\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 913us/step - loss: 0.0642\n", "Epoch 30/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0662\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 909us/step - loss: 0.0686\n", "Epoch 31/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0663\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 944us/step - loss: 0.0687\n", "Epoch 32/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0667\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0641\n", "Epoch 33/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0659\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.0635\n", "Epoch 34/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0659\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0608\n", "Epoch 35/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0668\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 990us/step - loss: 0.0518\n", "Epoch 36/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0660\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0431\n", "Epoch 37/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0657\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 982us/step - loss: 0.0313\n", "Epoch 38/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0634\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 902us/step - loss: 0.0236\n", "Epoch 39/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0603\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 871us/step - loss: 0.0158\n", "Epoch 40/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0544\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 882us/step - loss: 0.0126\n", "Epoch 41/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0440\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 932us/step - loss: 0.0079\n", "Epoch 42/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0299\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 939us/step - loss: 0.0055\n", "Epoch 43/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0168\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0042\n", "Epoch 44/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0080\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 943us/step - loss: 0.0033\n", "Epoch 45/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0037\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0024\n", "Epoch 46/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 929us/step - loss: 0.0021\n", "Epoch 47/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0014\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 908us/step - loss: 0.0016\n", "Epoch 48/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0012\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0017\n", "Epoch 49/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.7928e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 916us/step - loss: 0.0015\n", "Epoch 50/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0011 \n", "Epoch 51/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 910us/step - loss: 0.0011\n", "Epoch 52/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.4376e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 886us/step - loss: 0.0014\n", "Epoch 53/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.8239e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0012\n", "Epoch 54/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.9765e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 890us/step - loss: 9.7089e-04\n", "Epoch 55/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.9058e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 905us/step - loss: 0.0010 \n", "Epoch 56/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.8455e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 902us/step - loss: 9.9088e-04\n", "Epoch 57/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011\n", "Epoch 58/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 917us/step - loss: 0.0011 \n", "Epoch 59/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 895us/step - loss: 9.8774e-04\n", "Epoch 60/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.6947e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 880us/step - loss: 0.0010 \n", "Epoch 61/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.4206e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011\n", "Epoch 62/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 897us/step - loss: 9.7171e-04\n", "Epoch 63/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0013\n", "Epoch 64/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.9335e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 890us/step - loss: 0.0012\n", "Epoch 65/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 899us/step - loss: 0.0011 \n", "Epoch 66/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.7674e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 912us/step - loss: 9.6319e-04\n", "Epoch 67/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.3238e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 906us/step - loss: 9.7450e-04\n", "Epoch 68/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.7421e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011\n", "Epoch 69/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 940us/step - loss: 0.0011 \n", "Epoch 70/75\n", - "313/313 [==============================] - 1s 2ms/step - loss: 9.9548e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0011\n", "Epoch 71/75\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0011\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 949us/step - loss: 9.4181e-04\n", "Epoch 72/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.4827e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 933us/step - loss: 0.0012\n", "Epoch 73/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0010\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 9.3774e-04\n", "Epoch 74/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.6738e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 898us/step - loss: 0.0010 \n", "Epoch 75/75\n", - "313/313 [==============================] - 0s 1ms/step - loss: 9.1830e-04\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 898us/step - loss: 0.0011\n", "Epoch 1/150\n", - "313/313 [==============================] - 1s 1ms/step - loss: 0.9485\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 929us/step - loss: 0.9351\n", "Epoch 2/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.5329\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.4725 \n", "Epoch 3/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.2439\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 952us/step - loss: 0.2493\n", "Epoch 4/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1995\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 990us/step - loss: 0.2212\n", "Epoch 5/150\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.1840\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 932us/step - loss: 0.1980\n", "Epoch 6/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1809\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 911us/step - loss: 0.1884\n", "Epoch 7/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1790\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 938us/step - loss: 0.1818\n", "Epoch 8/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1783\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 971us/step - loss: 0.1816\n", "Epoch 9/150\n", - "313/313 [==============================] - 1s 2ms/step - loss: 0.1766\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 969us/step - loss: 0.1847\n", "Epoch 10/150\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.1693\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 928us/step - loss: 0.1817\n", "Epoch 11/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1644\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.1811\n", "Epoch 12/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1577\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1821\n", "Epoch 13/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1516\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 954us/step - loss: 0.1790\n", "Epoch 14/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1446\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 940us/step - loss: 0.1801\n", "Epoch 15/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1414\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1783 \n", "Epoch 16/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1343\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1804 \n", "Epoch 17/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1305\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1786\n", "Epoch 18/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1258\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 948us/step - loss: 0.1781\n", "Epoch 19/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1221\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1764\n", "Epoch 20/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1192\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 944us/step - loss: 0.1828\n", "Epoch 21/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1175\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 931us/step - loss: 0.1805\n", "Epoch 22/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1157\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1772 \n", "Epoch 23/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1134\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 952us/step - loss: 0.1793\n", "Epoch 24/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1114\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 939us/step - loss: 0.1790\n", "Epoch 25/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1099\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 963us/step - loss: 0.1811\n", "Epoch 26/150\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.1086\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 939us/step - loss: 0.1798\n", "Epoch 27/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1079\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.1749\n", "Epoch 28/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1073\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1773\n", "Epoch 29/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1047\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 964us/step - loss: 0.1751\n", "Epoch 30/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1054\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1705\n", "Epoch 31/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1046\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1676\n", "Epoch 32/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1034\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 989us/step - loss: 0.1626\n", "Epoch 33/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1030\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 967us/step - loss: 0.1613\n", "Epoch 34/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.1015\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 920us/step - loss: 0.1602\n", "Epoch 35/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0994\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 988us/step - loss: 0.1542\n", "Epoch 36/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0996\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 0.1524\n", "Epoch 37/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0989\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1448\n", "Epoch 38/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0971\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 932us/step - loss: 0.1402\n", "Epoch 39/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0963\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 982us/step - loss: 0.1398\n", "Epoch 40/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0936\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 930us/step - loss: 0.1347\n", "Epoch 41/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0912\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1303\n", "Epoch 42/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0876\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1289 \n", "Epoch 43/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0855\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 940us/step - loss: 0.1210\n", "Epoch 44/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0814\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 918us/step - loss: 0.1165\n", "Epoch 45/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0788\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 946us/step - loss: 0.1151\n", "Epoch 46/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0770\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1131\n", "Epoch 47/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0754\n", - "Epoch 48/150\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 0s 1ms/step - loss: 0.0712\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.1112\n", + "Epoch 48/150\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.1136\n", "Epoch 49/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0692\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 960us/step - loss: 0.1092\n", "Epoch 50/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0670\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 947us/step - loss: 0.1071\n", "Epoch 51/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0651\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 910us/step - loss: 0.1031\n", "Epoch 52/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0614\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 918us/step - loss: 0.1011\n", "Epoch 53/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0586\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 942us/step - loss: 0.1005\n", "Epoch 54/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0579\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 919us/step - loss: 0.0978\n", "Epoch 55/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0524\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 935us/step - loss: 0.0915\n", "Epoch 56/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0513\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0962\n", "Epoch 57/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0489\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 913us/step - loss: 0.0900\n", "Epoch 58/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0450\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0883\n", "Epoch 59/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0423\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 944us/step - loss: 0.0872\n", "Epoch 60/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0404\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0845\n", "Epoch 61/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0377\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 937us/step - loss: 0.0812\n", "Epoch 62/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0344\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 924us/step - loss: 0.0816\n", "Epoch 63/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0316\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 908us/step - loss: 0.0792\n", "Epoch 64/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0298\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 939us/step - loss: 0.0766\n", "Epoch 65/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0269\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 932us/step - loss: 0.0779\n", "Epoch 66/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0255\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0759\n", "Epoch 67/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0220\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.0706\n", "Epoch 68/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0209\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 981us/step - loss: 0.0689\n", "Epoch 69/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0199\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 974us/step - loss: 0.0653\n", "Epoch 70/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0177\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0644\n", "Epoch 71/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0159\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0612 \n", "Epoch 72/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0148\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 918us/step - loss: 0.0574\n", "Epoch 73/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0142\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 916us/step - loss: 0.0580\n", "Epoch 74/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0125\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 930us/step - loss: 0.0561\n", "Epoch 75/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0107\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0534\n", "Epoch 76/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0101\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0525\n", "Epoch 77/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0088\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 933us/step - loss: 0.0495\n", "Epoch 78/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0086\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 886us/step - loss: 0.0449\n", "Epoch 79/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0083\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 901us/step - loss: 0.0457\n", "Epoch 80/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0067\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 924us/step - loss: 0.0420\n", "Epoch 81/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0067\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0387\n", "Epoch 82/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0062\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0364\n", "Epoch 83/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0056\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 930us/step - loss: 0.0326\n", "Epoch 84/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0054\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 939us/step - loss: 0.0334\n", "Epoch 85/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0047\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 948us/step - loss: 0.0293\n", "Epoch 86/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0047\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0283\n", "Epoch 87/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0047\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0276\n", "Epoch 88/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0042\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 944us/step - loss: 0.0254\n", "Epoch 89/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0040\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 960us/step - loss: 0.0243\n", "Epoch 90/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0038\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 944us/step - loss: 0.0224\n", "Epoch 91/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0039\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0212\n", "Epoch 92/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0041\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 989us/step - loss: 0.0200\n", "Epoch 93/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0031\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 987us/step - loss: 0.0190\n", "Epoch 94/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0030\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 949us/step - loss: 0.0185\n", "Epoch 95/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0035\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 915us/step - loss: 0.0169\n", "Epoch 96/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0033\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 987us/step - loss: 0.0157\n", "Epoch 97/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0030\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 999us/step - loss: 0.0159\n", "Epoch 98/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0028\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 958us/step - loss: 0.0155\n", "Epoch 99/150\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0032\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 914us/step - loss: 0.0148\n", "Epoch 100/150\n", - "313/313 [==============================] - 0s 2ms/step - loss: 0.0029\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 929us/step - loss: 0.0132\n", "Epoch 101/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.0148\n", "Epoch 102/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0138\n", "Epoch 103/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0025\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 934us/step - loss: 0.0127\n", "Epoch 104/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0032\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0128\n", "Epoch 105/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 927us/step - loss: 0.0120\n", "Epoch 106/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0026\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 937us/step - loss: 0.0123\n", "Epoch 107/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0028\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 914us/step - loss: 0.0114\n", "Epoch 108/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0025\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 966us/step - loss: 0.0120\n", "Epoch 109/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0026\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0110\n", "Epoch 110/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0028\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 913us/step - loss: 0.0112\n", "Epoch 111/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.0110\n", "Epoch 112/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0112\n", "Epoch 113/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0025\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 921us/step - loss: 0.0109\n", "Epoch 114/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0106\n", "Epoch 115/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0026\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 942us/step - loss: 0.0111\n", "Epoch 116/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0117\n", "Epoch 117/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 926us/step - loss: 0.0118\n", "Epoch 118/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 0.0107\n", "Epoch 119/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0096\n", "Epoch 120/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0099\n", "Epoch 121/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 916us/step - loss: 0.0103\n", "Epoch 122/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0097\n", "Epoch 123/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 948us/step - loss: 0.0108\n", "Epoch 124/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 920us/step - loss: 0.0099\n", "Epoch 125/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0104\n", "Epoch 126/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 902us/step - loss: 0.0111\n", "Epoch 127/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0101\n", "Epoch 128/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.0100\n", "Epoch 129/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.0095\n", "Epoch 130/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 923us/step - loss: 0.0099\n", "Epoch 131/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 911us/step - loss: 0.0095\n", "Epoch 132/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0107\n", "Epoch 133/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 916us/step - loss: 0.0100\n", "Epoch 134/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0108\n", "Epoch 135/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 917us/step - loss: 0.0099\n", "Epoch 136/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0024\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 942us/step - loss: 0.0094\n", "Epoch 137/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0094\n", "Epoch 138/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0021\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0097\n", "Epoch 139/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0020\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 943us/step - loss: 0.0094\n", "Epoch 140/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 912us/step - loss: 0.0095\n", "Epoch 141/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 962us/step - loss: 0.0092\n", "Epoch 142/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0022\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 936us/step - loss: 0.0088\n", "Epoch 143/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0027\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 942us/step - loss: 0.0089\n", "Epoch 144/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0021\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 931us/step - loss: 0.0102\n", "Epoch 145/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", - "Epoch 146/150\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313/313 [==============================] - 0s 1ms/step - loss: 0.0025\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - loss: 0.0089\n", + "Epoch 146/150\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 931us/step - loss: 0.0092\n", "Epoch 147/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0021\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 927us/step - loss: 0.0091\n", "Epoch 148/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0023\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.0096\n", "Epoch 149/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0020\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.0090\n", "Epoch 150/150\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0021\n" + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 929us/step - loss: 0.0087\n" + ] } ], @@ -888,8 +876,7 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "15efb547", + "execution_count": 6, "metadata": { "pycharm": { "name": "#%%\n" @@ -900,9 +887,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "313/313 [==============================] - 0s 759us/step\n", - "313/313 [==============================] - 0s 816us/step\n", - "313/313 [==============================] - 0s 981us/step\n" + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 828us/step\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 827us/step\n", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n" ] } ], @@ -923,8 +910,7 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "f3868040", + "execution_count": 7, "metadata": { "pycharm": { "name": "#%%\n" @@ -933,7 +919,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAALNCAYAAACBLr/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+kElEQVR4nOzdd3xUVfr48c+dkpm0SSMJpCcQepUu0uxdEQtWULGtuoqu7vqzYfnqurqrq+7aBSyIuvZKL9J7hxAgPSE9mWRSZ+b+/ogMGdMhyZ2E5/168XLuuefeeYIJeebcc56jqKqqIoQQQgghhOg0Oq0DEEIIIYQQ4nQjSbgQQgghhBCdTJJwIYQQQgghOpkk4UIIIYQQQnQyScKFEEIIIYToZJKECyGEEEII0ckkCRdCCCGEEKKTSRIuhBBCCCFEJzNoHYBoHafTSXZ2Nv7+/iiKonU4QgghhBDiD1RVpaysjIiICHS65se6JQnvIrKzs4mOjtY6DCGEEEII0YKMjAyioqKa7SNJeBfh7+8P1P1PtVgsGkcjhBBCCCH+yGq1Eh0d7crbmiNJeBdxfAqKxWKRJFwIIYQQwoO1ZuqwLMwUQgghhBCik0kSLoQQQgghRCeTJFwIIYQQQohOJkm4EEIIIYQQnUyScCGEEEIIITqZJOFCCCGEEEJ0MknChRBCCCGE6GSShAshhBBCCNHJJAkXQgghhBCik0kSLoQQQgghRCeTJFwIIYQQQohOJkm4EEIIIYQQncygdQBCCNEcp9OJ3W7H6XRqHYoQoo10Oh0GgwGdTsb8hPgjScKFEB7H6XRSXl6O1WqlvLwcVVW1DkkIcZIURcHPzw+LxYKfn58k5EL8TpJwIYRHcTqdZGZmYrPZMJvNhIaGYjab0el0KIqidXhCiFZSVRWn00lVVRVWq5WsrCx8fX2JioqSRFwIJAkXQniQ4wl4RUUFMTEx+Pr6ah2SEOIU+fr6EhISgs1mIyMjg8zMTEnEhUAWZgohPEh5eTk2m43o6GhJwIXoZnx9fYmOjsZms1FeXq51OEJoTpJwIYTHsFqtmM1mScCF6KZ8fX0xm81YrVatQxFCc5KECyE8wvHFmBaLRetQhBAdyGKxUF5eLhWPxGlPknAhhEew2+2oqorZbNY6FCFEBzKbzaiqit1u1zoUITQlSbgQwiMcHxWTxVpCdG/Hf8ZlJFyc7uS3nRDCo0gZQiG6N/kZF6KOJOGiUaqqklFUQX5ZtdahCCGEEEJ0O1InXDTq+13ZHM23ATCpbw9GxgZrHJEQQgghRPchI+GigbyyKlcCDrDmUIGG0QghhBBCdD+ShIsGMosrG7QdK63SIBIhhBBCiO5JknDRKkcLZHczIYQQQoj2Ikm4aMDpVCm355NRtZ095d9xwPYr29OKtQ5LCNFNxMXFoSgKiqKQmpqqdThCCKEJWZgpGvhg1yLWlrzlOu6hC2WA74UaRiSEEEII0b3ISLhoYEBFkdtxsSMfh1qrUTRCCHFq5s+f7xp5nzVrltbhCCEEIEm4aESYsafbsUMBa222RtEIIYQQQnQ/Mh1FNOCwDGZQqp2QAoWhxxxYdA6yLytEVVXZ6UwIIYQQoh1IEi4aiN63l6ffB1ABHQaLwrZL9KQU2EgI9dM4OiGEEEKIrk+mo4gG+p05wu24tkxPrrk/P+zK0SgiIYQQQojuRZJw0UDokAGo9aadKKoTv2PpOFVVw6iEEJ7O4XDw/vvvc/bZZxMWFoa3tzcJCQlcd911LF26tE33ysvLY968ecycOZMRI0YQHByM0WgkMDCQ/v37c+utt7J48eJm7zFr1iwUReHWW291tS1YsMC1SLP+nylTpjS4vra2lsWLF/Poo48ydepUIiIiMJvNeHt7ExUVxcUXX8y///1vystlHwUhRNvJdBTRgM7Hh4qQcAxVlZRHxFIWEYvd7KN1WEIID5aVlcUVV1zBtm3b3NpTUlJISUnhiy++YPbs2fznP/9p8V6vv/46Dz30EA6Ho8G50tJSSktLSUpKYv78+Zx99tl88cUXhISEtNvXApCRkcGIESMoLCxs9HxWVhZZWVn88ssvPP/88yxcuJDzzjuvXWMQQnRvkoSLRq1/9FUc3pJ4CyFaVlRUxDnnnENSUpKrLTExkTFjxmA0Gtm5cyc7d+7k/fffx8+v5XUl2dnZrgQ8ISGBAQMGEBoaitlspqSkhD179rBv3z4AVqxYwbnnnsvGjRsxmUxu9zn33HPx8/Pj4MGDLF++HID+/ftzzjnnNHjPxMREt2ObzeZKwIOCghg0aBCxsbH4+flRU1NDSkoKGzdupKqqioKCAi6++GJWr17NmWee2Ya/OSHE6UyScNEoxdcXnDL9RAjRsoceesiVgJvNZt5//31uvPFGtz7Lli3j+uuv57XXXsNoNDZ7v759+/LGG28wbdo0IiMjG+2ze/dubr/9drZu3crOnTt5+eWXeeKJJ9z63HTTTdx0003Mnz/flYSPHTuWN998s8Wvydvbm/vvv5+bbrqJUaNGodM1nL1ptVp57rnneOWVV7Db7cyaNYuDBw822lcIIf5IknDRqEuG9uLzbQcpsqdRUptBsT2DUK9EnM5EdDopUyi0paoqlbUNpyqIOt5GfaeVE01KSmLBggWu48YScKgblf7uu++YOHEitbXNb/512223tfi+Q4cOZdmyZfTv359jx47x3//+l8ceewy9Xt/2L6IRsbGxvP766832sVgsvPzyy5SXl/P222+TnJzM4sWLueiii9olBiFE9yZJuGhUzwAzu8q/Yp/tR1ebvjqNLanXMDahfedeCtFWlbUO3ll9VOswPNZdkxPw8eqcf94/+OAD1+tx48Y1moAfd+aZZ3LjjTfy8ccft8t7BwQEMG3aNN566y1ycnLYv38/Q4YMaZd7t8Wtt97K22+/DdSN+EsSLoRoDUnCRaP0OoXBFfnsq9dWVnOY9UcKJQkXQrisXLnS9frmm29usf8tt9zSpiQ8Ly+PjRs3cuDAAYqLi7HZbKj1KjVt3brV9Xrnzp0dkoTX1tayadMmdu3axbFjxygrK8Nut7vOl5WVucUghBCtIUm4aJTJoCdIHwX2Ta62bJ0dh9r8Y2QhxOlDVVV2797tOh47dmyL14wZMwZFUdwS6cbs37+fv/71r/zyyy+NVklpTEFBQav6tVZlZSUvvPACb7/9dqvv3d4xCCG6L0nCRZNMSj9GH3Yw7JiDPnkqBn87SdfLLxghRJ3S0lJqampcxzExMS1eY7FYCAgIoKSkpMk+ixcv5oorrqC6urpN8dQfkT5VxcXFnH322W0e2W7PGIQQ3Zsk4aJJ8YdzmPBl3db1ALpQM9mOWhxOFb0szhQa8jbquWtygtZheCxvY/ssTmzJHzep8fFpXVlTX1/fJpPw/Px8rrvuOlcCHh8fz913381ZZ51FfHw8gYGBmM1m18LTuXPn8swzzwDgdDpP8itp6N5773Ul4CaTiVmzZnHJJZcwYMAAevbsibe3t2sRaGpqKvHx8e0egxCie5MkXDSpKto9yakp1VFiisJWY8dibr7EmBAdSVGUTlt4KJr2x5rfFRUV+Pr6tnidzWZr8tx7771HaWkpACNGjGDNmjXN1hbviJHnrKwsFi1aBIBer2fJkiVMmjSpU2MQQnR/UsxUNMnct6/bsaGmGp/CXKqkNJwQgrrqJF5eXq7j9PT0Fq+xWq2uJLsxx+t5AzzxxBMtbu6TlpbWikjbZsWKFa456xdffHGzCXhHxSCE6P4kCRdNmji2HxU9elIc34+MCRew/+o7qTX7sOFI49s4CyFOL4qiMHToUNfxxo0bW7xm8+bNzS7KzM7Odr0eNGhQs/dyOBysW7euVXG2RVtiAFizZk2b7i+EECDTUUQzvAx61jz1NvzhF9jR/KYfJQshTi9Tp051lQn85JNPuPfee5vtX39jn8bU322yoqKi2b7ffvstx44dazFGs9nset3SRkFtjaGiooKPPvqoxXsKIcQfyUi4aF4n7bonhOia6u9uuXHjRj799NMm+65fv56FCxc2e7+EhBNrUb777rsm++Xn5zNnzpxWxRgScmJvg6ysrBb714/hp59+cqsJ/kcPP/wwubm5rYpDCCHqkyRcNCs62IeCmiMctC1hY+mH/FrwDOlVW7QOSwjhIfr37++2Sc/s2bMbTcSXL1/OFVdcgdPpxGhsemH3pZde6nr997//nU8++aRBn+3btzN58mQyMjJatRC0/gY+mzZtanHu+tlnn+2q9HLkyBFmzZrVoJqL1Wrlzjvv5O23325VDEII8UeK2tKOCcIjWK1WAgICKC0txWKxdNr7llbUct33t5FVvdPVNlk/hueveotAH6+mLxSijaqqqkhJSSE+Pt5t+oDwfIWFhYwbN47Dhw+72hITExk3bhx6vZ5du3axY8cOAB588EG++eYb12LGlJQU4uLiXNdVV1czdOhQDh065GobMGAAw4YNw2w2s3fvXtf0l2HDhnHBBRfwj3/8A4Cnn36auXPnNhrjWWed5Zo/HhgYyIUXXkivXr1cU0969+7NPffc4+r/9NNP8+yzz7qOg4ODGTt2LJGRkeTk5LBq1SpsNht6vZ4PP/yQmTNnAhAbG0tqaurJ/DWeNuRnXXRnbcnXZE64aFaAj5Ehtnyy6n2nVFYd4KvtWdx+Vrx2gQkhPEZISAgrVqzgiiuucCXbycnJJCcnu/W79dZbeemll/jmm2+avJfJZOKHH37goosu4ujRowAcOHCAAwcOuPWbMGECn3/+Oe+9916rYnz99deZOnUqVquVkpISVwnC4yZPnuyWhD/11FOkpqa65nsXFRXxyy+/uF0TGBjIvHnzGD58eKtiEEKI+mQ6imhRkCHK7ThHKcNaKdvXCyFOiI6OZvPmzbz77rtMnjyZkJAQTCYTcXFxTJ8+nZ9//pkPP/zQraRhU/r27cuOHTt44YUXGDVqFP7+/phMJmJjY7n00ktZuHAhq1atIjIystXxnXHGGezevZuHH36YESNGEBAQ4NpspzF6vZ4FCxbwww8/cNlllxEWFobRaCQsLIxRo0bx3HPPsW/fPq688spWxyCEEPXJdJQuQqvpKAA/f/QCezYsoG+eSq8CUCJq2TjrRx64oOXSXUK0ljyiFuL0ID/rojuT6SiiXQ3J1hG/8sRDE6cpCKOzUsOIhBBCCCG6NpmOIlpkHjTY7bimRE+1wYLDKQ9RhBBCCCFOhiThokXGPu7b15utxRhtVg4es2oUkRBCCCFE1ybTUUSLfBLiKIlJxBYeSVlELOURcTi8zOzOLGVQRIDW4QkhhBBCdDmShIsWeZm82PjIKw3aC8qqNYhGCCGEEKLrk+ko4qTZZU64EEIIIcRJkZFw0Sqq6iS5chWltZmU2DMpsWdxfsjjQN8WrxVCCCGEEO4kCRetEuhjYtuxj6lUTyzG9CpeTLV9IiZD0xteCCGEEEKIhmQ6imiV/j39Sah13yXTXrGbIluNRhEJIYQQQnRdkoSLVhkRE0SIrseJBlWlyJ6LUS/fQkIIIYQQbSXTUUSreHvpGZ4WwuQDh4nMh4AiBWVAFfYZTq1DE0IIIYTocmQYU7Ran3QfhuzSE5ytR1+lo7YynlUHc7QOSwghhBCiy5EkXLRaYfQgt+OaEoWcMrtG0QghhBBCdF2ShItWK4uIdTv2zctC+cNiTSGEEEII0TKZEy5aLXBgf44NP5OyiFjX9vWqXk+13SFlCoUQQggh2kCScNFqPSN6sPH2vzZoL7LV0CvAW4OIhBBCCCG6JpmOIlptRExggzan6kCV3euFEEIIIdpERsJFq5mNemyOQg7aFv++dX0mNU4bCSmfMW1ElNbhCSGEEEJ0GZKEizaxq9XsKv/Kra3s0I8w4m6NIhJCCCGE6HpkOopoE399OMY/TD9x2rahypwUIYQQQohWkyRctMmgiCB6qj6uY58qlYqyw1TVys6ZQgghhBCtJdNRRJucMyCM3HcCiEsqJqhQwWjT4TU+n7yyKmJDfLUOTwghhBCiS5CR8A42Z84cFEVx/YmLi9M6pFNi1OvokxdMWLoeo63u2yevdiC7Mks1jkwIIYQQouuQJLwDbd68mddff13rMNpdfsxQt2O1yM6RvHKNohFCCJg/f75rsGPWrFlahyOEEC2SJLyD1NbWMnv2bJzO7jdXujwizu3YNy8LKRYuhBBCCNF6Mie8g7z00kvs2bMHgBtuuIGFCxdqHFH7KY3pzdHzpru2r7eFRYKiaB2WEEIIIUSXISPhHeDgwYM8//zzANx4442cd955GkfUvmosQRy6/BZyRk2mPCIO1WAEoKSiRuPIhBBCCCG6BknC25mqqsyePZvq6mqCgoL417/+pXVI7S6+h3sVFKfqoNppI7O4UqOIhBBCCCG6FpmO0s7eeust1q1bB8DLL79MWFiYxhG1v+hgb9ZlbSCpYhkltZlY7dlEmocTnz2XwZEBWocnhBBCCOHxZCS8HWVmZvK3v/0NgIkTJ3LbbbdpHFHHOCMmCJujgJTKdRTb03BQi7N8M2r6Zq1DE0IIIYToEiQJb0f33HMPZWVleHl58c4776B008WKiqIQaIh2a8vWQ6AtSaOIhBBaqr8XwnG7du3igQceYPDgwQQHB6MoCldeeWWj1xcWFvLPf/6T8847j+joaMxmM4GBgQwcOJB7772XrVu3tkucbS1jmJqa2m32eBBCeB6ZjtJOFi1axI8//gjAX//6VwYMGKBxRB0rwBDpem2sVYkqBKd5l4YRCSE8xdy5c3n++edxOBwt9v3Pf/7D448/Tmmp+4Zf1dXVlJaWcuDAAd566y1uvfVW3nrrLby8vDoqbCGE6FSShLeDwsJCHnjgAQASExN5/PHHT/me1dXVVFdXu46tVusp37M9eel8eOZXPxKOFuJl1aGoCqaz06iqdWA26rUOTwihkZdffplnnnkGgN69ezNmzBh8fHxITU3FaDS69Z0zZw6vvfaa6zgkJIRx48YRERFBVVUVO3bsYO/evaiqyocffkh2djY//fQTOp08xBVCdH2ShLeDOXPmkJeXB8A777yDyWQ65Xu++OKLrl9knmhUXBCm8mBMpSWuthR1NMfSijmzTw/tAhNCaOr//b//R0BAAPPnz28w/aT+wMKHH37oSsD9/Px4+eWXue222xqMdK9cuZKbb76ZrKwsfv31V1555RUeffTRjv4yhBCiw8lwwilasmQJH3/8MQAzZ85k6tSp7XLfxx57jNLSUtefjIyMdrlvezmrTw/yY4e7tRnyrWxKKdImIHH6shW4/3HY29C3tpm+he597c3Uwa8o+kPf6vbpW1ns3re2qpm+JU2f60QOh4Pvv/++0fnfxwcoysrKePjhhwHQ6/X89NNP3H333Y1ONZk6dSpLly7FbDYD8I9//IOKioqO+wKEEKKTyEj4KbDZbNx1111A3WPUV155pd3ubTKZ2mVEvaMoikJZRKzrWFUU9NVSJ1xo4OXe7sd/2ghhTazJeG0I1NZL4O5YAZEjG+/7n9FQUXjieOaPED+x8b7vTIbS9BPHN3wBfS9ovO+8iyD/4Inja+bDoGmN9/14GmTvOHF8xX9hxI2N9110I9z6U+PnOtE111zDpEmTmu3z4YcfUlJSAsCsWbNa7D9gwABmzpzJO++8Q2FhIb/++itXXXVVe4UshBCakCT8FDz++OOkpqYC8M9//pMePU6vaRjFfQax54b7KO8VS3mvGBwms9YhCSE0NmPGjBb7/Pzzz23qD3D22WfzzjvvALB27VpJwoUQXZ4k4Sdp+/btvPHGG0Dd49KZM2dqHFHnqwoKJWv8eVqHIYTwICNHNvFkoZ4NGza4Xn/00Ud8++23LV6TmZnpeu1p0/OEEOJkSBJ+knbv3o3T6QQgPT2dcePGNdk3Pz/f9TonJ8et75NPPskll1zScYF2ElVVsTkLMSDlw4Q4nYWGhjZ7vry8nLKyMtfx8TU1bVFcXNzma4QQwtNIEt4Ojhw5wpEjR1rVt6amhk2bNrmO6yfoXc3gyAA+OfgB6VWbKbFnYVerGOt/I+VVQ/EzSzIuOskjf/jZMwc23ffBPX/oG9B033u3AOqJY5Ol6b53rQbVWa+vf9N9b/2l9X1v/gac9Wpte/k13XfGp02f60Te3t7Nnv9jPfCTYbc3s/hWCCG6CEnCxUmbmNiDt/fmUlB7Ignqmf0utXmXQ8xADSMTpxXfNqzFaFPfkNb39QnumL7eQW3oG9j6vhry9fV1Oy4pKSEgoJkPQxo6/rRTCCE6gpQoPEmzZs1CVdVW/Zk3b57rutjYWLdzrdk62VOZDDoCjO7b16cYDRgKDmgUkRDC0wUGBrpVfkpOTu60966/WVBrRtPbY9ReCCGaIkm4OGmKohD4+/b1OqdKZIFK5GE9atpObQMTQni0MWPGuF4vXry4097X3//E1J/CwsJmetbZs2dPi32EEOJkSRIuTkkPYx/e+sjAZy/befU9B7f+AEWbt2gdlhDCg1166aWu12+//TZVVc1sQtSO4uPjXa937dqFqqrN9IYvvviio0MSQpzGJAkXp8RbH4CPEoTiVFxtu+1nahiREMLT3XXXXQQGBgJ1pQf/9Kc/tZgQH1dQUIDD4Wi5YyMGDBjgGg3PyclhyZIlTfb96aef+Okn7Tc/EkJ0X5KEi1NWED3Y7djnWA7Wqma2AxdCnNYCAgJ49dVXXcfz5s3jsssu4+DBg432V1WVDRs2cN999xEbG0tl5cntzmswGLjmmmtcx3fccQf79+9v8F4ff/wx1157rUfvWiyE6PqkOoo4JaPigsivt319VUAwdm9fdmWUMDGx+XrBQojT16xZszh69CjPPfccUDfy/PPPPzN48GAGDx6MxWLBZrORlZXFjh07XNvcn6onn3ySzz//HJvNRkZGBsOHD2fy5MkkJCRgtVpZv3496enp6PV63nnnHWbPnt0u7yuEEH8kSXgnmDVrVpeugtKc8QkhvDdsHNbIeMojYqj1raul7J1tlSRcCNGsZ599lsGDBzNnzhyys7NRVZU9e/Y0uyByzJgxblVO2iouLo7//e9/TJ8+nYqKCmpra1m2bJlbH4vFwrx58zjjjDNO+n2EEKIlkoSLU2LQ66gKCqUqyD3h1ilNXCCEEPVce+21XHHFFSxatIjFixezZcsW8vPzKS8vx9fXl8jISAYMGMDEiRO5+OKL6du37ym/54UXXsjBgwd55ZVXWLx4MRkZGej1emJiYrjsssu45557iImJITU19dS/QCGEaIKitnY1jNCU1WolICCA0tJSLJZmdu7TwKtLDwF1cykrnSWU2rOI9O7HA+cM0jgy0ZVUVVWRkpJCfHw8ZrNZ63CEEB1EftZFd9aWfE1GwsUpU1UnPxc+RXFtOjWqDYDr/R8EJAkXQgghhGiMVEcRp0xRdFQ5ilwJOMCgo0/isBVrGJUQQgghhOeSJFycsqFRAQQY3LevP2o0kJO8XaOIhBBCCNGRHE6VvLIq8suqKbLVkGutYmdGCRuOFJJeWKF1eF2CTEcRp2xYdCAB+6NQqrbQoxR65zqJyfLiWI+NRA0/R+vwhBBCCNFOqmodvLXqSKv6XnVGJLEhvh0cUdclSbg4ZRazkUSvs3js1a8xVDt/bzVSmXBA07iEEEII0T5ySitZtDmjTdd8vT0LgAl9ejAmPrgjwurSZDqKOGVeBh2B5ngcfoFu7YeV8doEJIQQQoh2U1pR2+YEvL51hwt4dekh1hzKb8eouj5JwkW7KY7u53bsn52mUSRCCCGEaA/phRV8uC6lXe61La2YralF7XKv7kCScNFuynrFAVDj40dRn0FU9OilbUBCCCGEOGmZxRV8tT2zTdeMzpzHJQf/RlzRukbP/5ZcNypebKvhdN+qRuaEi3Zx6dBeLLFeSOaZ51EdEAxK3ZaZDqeKXrbPFEIIIbqMyhoHW9OK2Jra+lLDisOOf1YKITu3EZK/l4mOTSRGjWDlBS9g1zfclGn++lQALhsWQZ8wv/YKvUuRkXDRLmJCfKixBFIdGOJKwAHsTmczVwkhhBDCk1TWOHh79ZFGE/Be1l1cs+dOgipScap2t3OKw8G4V/8GSzPI2xlA/h4LwQf2cO2e2Siqo8n3+2FXNvuzre3+dXQFkoSLduGlP/GtVO0sI7f6IKmVGyitrNUwKiGEEEK0xdurG5YfDKjM4NKDf+XSvXfwm5rMrwWP81Xen936OL1MFMcPcGtbGWLi/bCBVKkN64YbbVbCd6wDp4PF+46Ra61q3y+kC5DpKKJdKIpCYe1RFhc+T5WzFAADRq7ZbCHsnGkaRyeEEEKIlqxNLmi0fVDeD2yu3cx/oyKw6nWgVIGjimpnGSadv6tfYb9hhCTvcR3vCjLyC9vQH7uD0QEzGeh7ketczG+/kPjTQsp7RnHwqttZCNx3dh+M+tNnfPj0+UpFhxsUHuVKwAHs1BK98R5w2Ju5SgghhBBaO5xXxpYmKpdsjbyF0FIzDy1SGX/gxGLKwtpUt34FA4Zj69GTwj4JbElUSA3/fX0YtQQaolz9dDXVxKz+CQC/Y5mM+u8zDPn4Nd5ccZhXlx6ixn56TGWVJFy0G4sxGJPi49aWZlCh6KhGEQkhhBCiJRlFFfywK6fJ835HjxLxvT8DM+D2JU4strpEvKjWvXShNSaR355+h6/vupmXr9ZzIKYuCffXh9PLa5CrX+TmlZjKS92uLeg/3PX6PysPU1Xb9Dzy7kKScNFuwi1mAvRRBJSrDD/q5Jb1tfiu80XN2dPyxUIIIYTQxP+2NV2GMHTvFkb952n0ldUAWCrh/uWBnBP0V/r7XNDoNWFefZkYeD9x5vHoMNDX5xwU5UTK6bB4Yww6MdqdM/xMckZNdrvHW6uOUGSrOZUvy+PJnHDRbgZFBDDFMIOr33jq9xYFMFGZlorPUC0jE0IIIURjqu3NjzgXJwygLCKOgMwTT7UTjxkocPSnVmdq9BqTzo9Enykk+kyhymF1S8BRnYwxfE3ceccoTfUm/UgA/55ymCH2FEKMCW73WbA+lbMSezA6rntueS8j4aLdGPUKfsHDsPu6T0lZmxWhUURCCCGEaM5/V56ohpKQv5RjRZ+5baJj9/Fj673PUNYzGoC8waNZ/9dXqfWzuPpcOSKSa0admPNdn1lvwaQ7UQf8jOzPiC9ej6IDXZ8q5tyq46h3Ed/n/40dZV/g/EM5w7XJBZRWdM9KazISLtqN7vf64KWRfQg5tNvVXpWUrFVIQgghhGjC4bxy1+vo4o3sKvwnP1t8GZy3j5FhT6NXjADU+lnYet+zRGxZRcrZV4JOx41jYwizuG/CM+e8vkDd6PqPu3JIL2pYmjDHfwilpl4EVOfwUnAQeca6VFTFwY6yz/HWBdLf93wA9FUVDP3oVb7IupHe44YxuW9Yt9oAUJJw0W50v/9glEXEEpCaRHnPGMojYrHG9NE4MiGEEELUp6oqP+zKBqCH7RA1mU/zZUjdiPVexwHKjz3ImeF/x/x7CcLqgGBSzr2KP5+T2GIibDLomT6ybmTc4VQpKK9m4aZ0AHIsQ/l0+KdMOPw8B732u13X02sQfX3OAUCprWXE+3+nR9Iugg/vY4vjGfZl9eXeqX1c+UZXJ0m4aFcmo47kS2/i4LTbQHditpOqqihK9/ihEUIIIbq6+osxh6S8yO1Bvm7ns5y5WO05mL3qkvAwi4nrRkW3eSRar1MIt5i5ZlQUX26te89qgz8r+v2dK8t2s5j97C7/GpPOnylBD6JT9OB0MOyjf9EjaRcAxkobo/7zDJsfeJ7VyQFM7Rd2Kl+6x5A54aJdjU8IwWEyuyXgANYqqRUuhBBCeIKyqloyiytdx1sSX+Te8iD+8rWdQal1VUsmBD1ImFfd9JKJiT24cWwshlPYSCcqyId7pvQ+0aAoFFiGMdJyPZf0eJ6pQQ/ho69bgKmvqcbLWux2vc5Ri7HCxs70Eg7nlbvNW++qZCRctKvjPxK1zkpK7FmU2DMx6fxILQhjWHSglqEJIYQQAnj/N/f63uWmnvRNmkRC0teMOuRk5bl9qb30TAAuHtKLfj39G7tNm5mNete88VeXHnK1h3n1c+vnMPtQc9UQfD/egS3XjNNkZO09j1DVu67W+PFpNFePjCIqyLvLPmmXkXDRrswGPXvKv+PjYzfxQ8Ff+a3kDY6WfEbaus+1Dk0I4aHmzp2LoigoisLcuXO1DqdLW7VqlevvcsqUKe123+P37KrJjjjhWGlVg7bAoweIX/4NADoVzll6kIFfvsuAXv7tloD/0dUjG6+mAhBansTErP8QNbEYv6hKll9RxiLTyxTWum/+979tmaw4mNch8XUGScJFu0oM98NX38OtzVZzmLOP/EOjiIQQQghx3Nc7Gm7ME7vqB5R60zucegOZ487hvIE9OyyO6GAf7pyU0Oi54TlfYFBr0RlU1l5Uy3u9/SjS2fmp4Emyqna59d2dWcpryw5xJL+80Xt5MknCRbsy6nUMCHGvhpJrMKDYC6GiSKOohBBCCFHrcFJd62zQvnvmQxy+aAZOnR6A5Etu4JZbL+rwcoC+JgMPnpuIxdvo1r6sz2NsiL6TTWZvXgoJcrXb1SqWFf+dSkeJW39Vhe93ZrP6UH6HxtveZE64aHdDwvvgdRB6ZzsZmuugX66TnOIg+tyyD+Inah2eEEIIcVpatj8XALtagw59XSUSQNUbOHzx9eQNGUPMmp+44sVHUU5hEWZbKIrC7WfFk15YwVfb60bpVcXAxpg7CLT0p5/1bfYbTkyhOTPgTrz1gQB4WUvwz0qhcMAIALanFbM9rZj+Pf25cHBPj58+pajdYXnpacBqtRIQEEBpaSkWi6XlCzS0J7OUxUt/4pKXnnNrT1z4EoYzLtcoKuHpqqqqSElJIT4+HrPZ3PIFQohOUz+ZOdW0QX7WtXN8MWRa7ovst+9npGUWoX5nu/3/jQ72aXa+dkcqttUwf32qW5tDrWVN8RukVK1jpP8NDPOfDkBAShIjPnwJo83KhodfoTwyrsH94nr4EB3kQ/9eFvxMnTPu3JZ8TaajiHaXGO6HodcInAb3b/js4qAmrhBCCCFER6qqrdsOvtJezLrareQoFfxY9l82Zs7EUbbe1e+8geFahUiQrxfnDnB/f71iZErQg5wd9AhD/a4CIHrNz4z99//DXFKIvraWs956BO+yhgs0Uwsq+C25gPfWHCXP2nBBqtYkCRftzmzUo+r1lPWMcWsv3XdAo4iEEEKI09tbq44AkFb0LlX1sr8kXTl+1XXTVKafEUXAH+Znd7YhUQGuMobHKYqOOO9xrhF7/5w0dI56+4+U1nDh+3cQXua+A2d9n/6+Y6cnkSRcdBhrdAJlvWLJHjmJQ5fdTFn/IVqHJIToIBkZGTzzzDNMmjSJ8PBwTCYT/v7+xMfHM2bMGG699VY+++wzCgoKGlzb1hKFaWlp/OUvf2HgwIH4+fkRFBTE0KFDefzxx0lPr/tF25pSfU31+fbbb7niiiuIjY3FZDIRGhrKlVdeydq1axvco7q6mgULFjB16lQiIyMxm83ExcVx1113kZaW1qq/u+P27dvHI488wogRI+jRowcmk4mIiAimTJnCSy+9RGFhYYv3aGuJwsrKSv71r38xfvx4QkJC8PX1pW/fvtx2221s3ry5TfELz+V01k0hUlUnWdU7iM5TXdVQzq9UqAy5gj9N7U1MiI+WYbp58NzEJs8duGo2zvATO3waQ2tYdFYVsfk/NnvP408DPIUszBQdZt/190G9eWZHgTO1C0cI0UHeeecd5syZQ2VlpVt7TU0N5eXlpKamsmXLFubPn8+ECRMaTWZb6+OPP+aee+7BZrO5tZeUlLBnzx7efPNNPvroIwICAtp8b5vNxsyZM/nqq6/c2gsKCvjuu+/4/vvveffdd5k9ezYAycnJXHbZZSQlJbn1T0tL491332XhwoX88ssvnHXWWc2+r91u56GHHuK///0vDod7kpCTk0NOTg6rV6/m73//O6+99hozZ85s89fWmL179zJt2jQOHz7s1p6cnExycjLz58/niSee4Nlnn22X9xPaWZ1cVzVEUXRcZ3yUEQue5ViwykdTdIxMuJw8vR6TQa9xlO4UReH+s/vwxorDDc6pRiMZ119Nwjvz8Em0MedsXw56e7HEWMB5zjLMusZrmxfaaogM9O7o0FtNknDRcTx8VbIQ4tR9++233H333a5ji8XC+PHjiYqKwmAwUFpayqFDh9i7dy81NTWn9F5ffvkls2bNwumsK7FmMBiYNGkSCQkJWK1WVq9eTW5uLtdeey0vvPBCm+9/++2389VXX+Hl5cXEiROJj4+ntLSU5cuXU1RUhKqq3HXXXfTr14++ffsydepUsrKyCAwMZPLkyYSFhZGVlcXy5cuprq6mvLycq666iqSkJIKCGl8T43Q6mT59Ot9//72rLTg4mClTphAcHExGRgYrV66kpqaGkpISZs2aRXFxMQ8++OBJ/R0ed/ToUc4991xyc3NdbUOHDmXEiBE4HA42b97MoUOHeO655wgJCTml9xLaUlWVneklruPQNVvQ21Ui8+CxL5wU9j3M8P/2aPoGGjLoddwzpbdrKk19B3pfRdrjA1he8jQHjXUfXvNrj/BzwZNcGPI0PvqGP3OeVotEknDRYexqNaX2bErtWZTUZhJlPgPo2+J1Qoiuo/70kfvuu4+XXnoJH5+Gj7TLy8v55Zdf2LZt20m9T25uLnfddZcrAR87diyfffYZ8fHxrj52u50XXniBp59+mscff7xN99+wYQM1NTVMmjSJjz/+mJiYE2taSktLmTZtGitXrsTpdPL0009jsVjIysri/vvv58UXX8TX98Sj8YMHD3LOOeeQnZ1Nfn4+r7/+Ok8//XSj7/vKK6+4JeCPPvoozz77LCaTydV27NgxZs6cyZIlSwB45JFHGD9+PGPHjm3T11jf7NmzXQl4cHAwn332Geeff75bn0WLFnHbbbfx6KOPnvT7CO3tyix1vfYuOEb0usVu5ytCetIvMrCTo2q941vdf74lnewS98WV2T7+pFT6gtPqanOoNUDjybaH5eAyJ1x0DC+DjqWFL/Jd/l9YVfwqO8u/xFH4GexcqHVoopspqipy+2N32lvdt9ZZ22Tf4qpi976OpvuWVJW49a1xND3iW1pdetJ9qx3VTfa11libPNdRysvL2bWrbve66OhoXn/99UYTcAA/Pz+uueYa/v73v5/Ue73yyisUFxcDEBMTw6+//uqWgEPdyPhTTz3FI488QnV1039XjampqWHAgAH8+uuvbgk4QEBAAAsWLMDwe8WnlStX8t1333H77bfz+uuvuyXgAP379+eVV15xHS9atKjR97RarTz33IlSrg899BAvvfSSWwIO0LNnT77//ntGjx4N1H3YeOyxx9r09dW3ZMkSVq5cCdQ98v/2228bJOAAM2bMYN68eaf8BENoa2W9bd29C/OoDjzxZMNhMHLkohkeX08b4LrRMUQGuU8lCTRGcUmP5/HV1X1NPrrg30fBg1199M5qzk9+Bv+qHBxOz8rCJQkXHeKGMTEEGCLd2pSyDdjXvq5RRKK7mvz5ZLc/qaWpTfa98KsL3fomFSU12feKb69w67szf2eTfa/78Tq3vhtzNjbZd+YvM936rsxY2WTfu5be5db3l5Rfmuz7wIoHmjzXUazWE4l/SEhIh/0idzqdLFiwwHU8d+5cAgMDm+z/9NNPN3u+KX//+9/x9m58vmh0dDRnnnliVYvJZOLFF19s8l7Tpk1zJdNJSUmUlZU16LNw4ULKy+u22g4PD+f5559v8n4mk4k333zTdbxy5coGc9Fb6/3333e9vu6665g4selN1Fo6Lzzb3qxSt+OifkNZ89Rb7L7pAcp7RpE+8WLOmzJMo+ja7tpR0dwzpbdbW4Ahkkt6PE+YsR8XhDyFv6GuxGFw0i50NdVMTH2d+OJ1OHVGnB42FC5JuOgQZqOeQKN7Ep5iNKIrTIZmRhSFEF1HaGioK2nds2cPa9as6ZD32b9/P/n5dQvLjEYjV199dbP9fX19ufLKK9v0Ht7e3lx00UXN9hk8eLDr9aRJkwgNDW2yr9lspnfvumRBVVVSU1Mb9FmxYoXr9YwZM5r8AHDcmDFjGDLkRJWp46PZbbVq1SrX65tvvrnF/rfccstJvY/Q3tLfd8isPxda1RvIHns2ax97g+RLb6RPmJ9W4Z0Us1HP7RPdn4L5GcK4pMf/EWSMxlBRzuBP/s2YN59i1Ff/YHjOl/yaOBebVw9JwsXpwcugI9AQhcWmcuUOO3/7tZr7v1DJWB4AhQ1XOgshuh6j0ci0adMAcDgcnHvuudxwww18/fXXrSqn11o7d+50vR4wYAD+/o1XPqjv+NSN1urbty9GY/P1kesvrhw4cGCL96zfv/5Tg+N27Njhej1hwoTWhOnWb/v27a26pr6srCzXBxqgVfPKx40b1+b3Edo7PvWitDaLxVk3k1H4IbXOehWMdDrOPyNWo+hOjcVsbFDCUFEUgpL3ctb/3UfUproPuMEbtrJDuZS0oDN//9o9a9qNLMwUHUKvUwj3GsAs3VzO+vVJoK70UYWix1ljl09/QnQTr776Ktu3b+fgwYPU1tby2Wef8dlnn6EoCv3792fixImcf/75XHLJJSe9RXn92uJRUa3bTjsyMrLlTvW0pqShod4uwG3tX1vb8Alg/WQ4NrZ1yVBcXJzrdWM111tS/z19fHxaVfkkOjq6ze8jtPfL3hwAsos/IltXSXb1T/hk/8Q44yjiwv4Kio4BvZrfVt2TKYri2tTH4VT5ZkcWRX4WvCrqTf1SwbEyl5yh29AZfVHVBI2ibZwk4aLDXDw4mmXVf/jFo0J1mQHPqdIpurrV1612O7Z4Nf1L5dfpv7od+3s1PaL63ZXfodZbYe9vbLrv55d+jhOn69jP2PTj3QUXLcChOlrV953z3nHr62v0bbLvv8/+d5PnOlJYWBhbtmzhn//8J++++y7Z2dlA3ePvAwcOcODAAd59912CgoJ49NFHeeSRR9Dr21aP+Pi8aaDJhZ9/9MfFki1p63z29pj/Xv/ram289fs1Ns+8Le/ZUX+XwjMk55bjVO3sr9numvdQoYOw0q0QBvE9us//V71O4eqRUVQN7cWSvdeT+P3HANhNZvaNHYqiM3Bx3/EE+XppHKk7ScJFh+kd5stisw8VwWH4FJ1YnV2w+wDRAwZoGJnoToLNwS13Oom+QebG6zo3JtAc2Oq+AabWbyLTlr7NffjoaH5+fjz99NM8+eSTbN++nTVr1vDbb7+xdu1a12htcXExjz32GBs3buSbb75pUxJbPwmsqKho1TV/3MzHE/n5+VFaWrdwrrXx1u/Xmmk5jb3ncd3p71K4q6yp+/Beav0ZQ7kDxQ9UXd3PXLz/ZeQqOi4e0kvLEDuE2ajngmce5vD+zeT5BrP+iguhp4mnz7oEHy/PS3k9LyLRbRzffatg4EhM1iLKImIpi4ijf7+hyMNNIbofnU7HqFGjGDVqFA899BBOp5MNGzbwyiuv8O233wLw3Xff8dVXX7W4uLK+Hj1ObCSSmZnZqmuysrLaFLsWQkNDXUl4eno6Y8aMafGatLQ01+v6fy9tec/jKioqKCwsbHFKSkZGRpvfR2jr00113yc9vCfyjy8+Q62u4MeRCjn9VQr7zWBIZABehu45MdTkbaL/ok8Z6OvDRKeKXqd4bAnG7vl/QHiU/dfdzY47/h+HL7mR3BETWJ3vbPkiIUSXp9PpmDBhAl9//TUXXHCBq73+5jStMXz4cNfrAwcOuE2paMqWLVva9B5aGDFihOv1+vXrW3XNunXrXK/POOOMNr9nZGSkWyK+cWPT5TTb0kd4lrKquv0SLOnZ+OdXYLHCDStVHnxPjzk3l3MHhmscYcfS+/miKAoGvc5jE3CQJFwIIUQHUxSFSy65xHVcf6v01hg0aJArcaytreXLL79str/NZnONvHuys88+2/V60aJFVFVVNdO7rhrK7t27XcdTp049qfedMmWK6/Unn3zSYv/6NdpF1xKz5ie346qgMMp7yrNoTyFJuOhQquqkuDaD1MoN7Cz7H6uKX6PK2fbFREIIz1NWVtbq3RTT09Ndr5urr90YnU7nVqt67ty5lJSUNNn/mWeeafa8p7jhhhtc87pzcnJ45plnmuxbU1PD/fff7zqeOnUq/fr1O6n3vf32212vP//8c3777bcm+37++eesXbv2pN5HaMP5e2lCxeHAuzjf7Vz6xIuZMa5rliXsjiQJFx1KReW7/L+wovgVtpd9xtHK34jNeBW2ztM6NCHEKdq2bRuxsbE8/fTT7Nu3r9E+DoeDTz/9lDfeeMPVdvHFF7f5vR5++GHXLpjp6elceOGFpKSkuPWx2+0899xzvPzyyw22fvdEFouFJ554wnX897//nSeffLLBB5vc3FymTZvmmrJiMBia3a2zJeeffz6TJ08G6qrYXHnllSxZsqRBv0WLFnHrrbfi5eVZFSVE877f9XuFIr2ejQ/9g41z/k7OGROp8fEja9w59LScXKlQ0f5kYaboUDpFT4AhgmL7iVEwY+kK1H1WlFG3ahiZEKI9HDt2jGeffZZnn32W8PBwRowYQc+ePTEYDBw7doxt27aRk5Pj6j9x4kRmzJjR5vfp1asXb7/9Ntdffz2qqrJp0yb69u3LpEmTSEhIwGq1snr1anJzczEajTz//PM88sgjQN1Iuqf6y1/+wtq1a/nhhx8AeP7553nrrbeYOnUqQUFBZGRksHLlSqqrq13XvPzyy63aZKcpiqLwwQcfMH78ePLz8ykqKuKCCy5g+PDhDB8+HIfDwebNm0lKSgLgtdde48EHHzylr1N0jmOlVaQU1KtmoyiUJAygJGEA+uoqpp+V6NFzpE83koSLDnXxkF6sWB3ploQfNRqxZ++j+b3phBCeztvbG4PBgN1etwgsNzeXX3/9tcn+V199NR9++OFJJ8XXXXcdVVVV/OlPf6KiogK73c6KFSvctn+3WCx89NFHbjWwT6aUX2fR6XR8/fXXzJkzh7feeguHw0FhYSH/+9//GvQNCAjgtddeY9asWaf8vr1792bZsmVMmzaNo0ePAnU7k9bfnVRRFB577DEeeOABScK7iK93ZKI4akgv+44Q/3Px0Z8oteowmQn39/wnRKcTScJFh4rr4UOgIYo+hb5cvrOYmDyV8AITWd524u7PB7+2zQ0VQniOsWPHkpeXx7Jly1i7di07duzgyJEjFBYW4nA4sFgs9O7dm3HjxnHTTTe1qgRfS2bOnMnkyZN5/fXX+fnnn8nIyMBoNBIdHc1ll13G3XffTUxMDJ9//rnrmuPTWDyVwWDgjTfe4O677+bDDz9k+fLlZGRkUFZWRnBwMH379uXiiy/mjjvuaNUOl601dOhQ9uzZw1tvvcUXX3zBoUOHqK6uJiIiggkTJnDXXXdx5plnttv7iY5XXevEULqYpVWLUGyf0d8ZQG/zWHr0mI1OMWDQe+5TodORoqqq2nI3oTWr1UpAQAClpaVYLF1rm9l/LTlI2L4tjHznBVebajIwYO1yFP8wDSMTnqSqqoqUlBTi4+NPentzIY57/PHHeeGFun9zXnzxRf72t79pHJE4Tn7WO0aN3cl/Vh7mWPoD/Gw4UU8/3KFwcdSXXDSkV5fepr6raEu+Jh+JRIdTFB1lEQnubdV27GV2jSISQnRnqqq6TecYPXq0htEI0Tn2ZJWiqirbFPcNrUYocSiKQt9wz52WdbqSJFx0iqqgHtR6+7q3HTqkUTRCiO7s9ddf59Dv/7706tXLVQlEiO5szaF8lNpc/vKFnVuX2YnKr5voEOF3IRcN6YleJwsyPY3MCRedQ1HIHHcu6BTKetVtX3+bzDUUQrTB+vXrmT9/Pvfeey/Dhg1rcL68vJxXXnmF5557ztU2Z84cDAb5VSdODz4lDmJTITYVLtrioLCnnl33DMVillIInkj+ZRIdroe/iYKyapKuus2tPa/SSU8pPyuEaKWamhree+893nvvPWJjYxk+fDhhYWE4HA4yMjJYv349NtuJ8myTJk3ioYce0jBiITpHYXldCcteW903XvKz+VMTGCK1wT2UJOGiw01ODOWr7ZkN2g8cs9IzQP5hEEK0XVpaGmlpaU2enzFjBh988AF6vb4ToxJCG8l55aCq9Nq2xq392BkTiArxQydTUTySJOGiw0UGeVPttJFbs5+S2ixK7ZnYqWFQxFytQxNCdCGTJk1ixYoV/Pzzz2zevJmcnBwKCgooKysjICCAqKgoJk2axM033yyLMcVpQ1VVNhwpBGD3rIfptW0NPbf9hndJITkjJzFrZJTGEYqmSBIuOpxep1Biz2BZ0d9PtKkK0cvvhMppIDtnCiFaQafTMXXqVKZOnap1KEJ4jOzSqroXioI1ujfW6N4kXT6TwNQkqvsOlB0yPZhURxGdItDg/kncoaiYytZB6m9NXCGEEEKIlvywK7tho05HScIAgn1lh0xPJkm46BQmnR/eukC3thSdEXvKXm0CEkIIIbqByhoHWaVfszbzdjIK3qG89kRSPiGxh4aRiZbIdBTRacK8+pFw6AiXbMoitBC8SwLJ7lVAzJwaMEiZFCGEEOJkZNtWckhXwqGaJZC/hAvsvYiMeZMIKX7g0WQkXHSKq86I5JzgR5nENGIO6/Eu1oOqUFkdCqpD6/CEEEKILqfIVoNDreWwmuPWnuCoqwsu88E9myTholNEB/kAUBLVz63dWWjFUS1JuBBCCNFWn25Mo/LYb4TlOUFVXe1BfudoGJVoLZmOIjrF8Rql5eFROHU6dE6n61xNSgreQ4ZoFZoQQgjR5dgdTuxOlRGbD3H1MgdlFticCEf6OSkaPYWbxsVqHaJogSTholOpRiNHLppBjV8AZRGxlPWK5c+SgAshhBBtsjm1CICwffsA8LfCOdtgsNcIdoz3I9RfKqN4OknCRac7cuF1WocghBBCdGmbjhbhk5eNf066W3vKuOs1iki0lcwJF52mVxOrtItsNZ0ciRBCCNH1mYsLqAgOcx1X+wdSEtePq2WXzC5BRsJFpxnQy8K+goPkVO+lxJ5JiT2TMK9+XGh9hGBfKVEohBBCtEa1va6gQVG/oayZ+y7+WSmE79qI02AEnY6oIG+NIxStIUm46DQDIyxkbNnOtrJPXW3BFWlEfvYrTH0ARtykYXRCCCFE15BaUHHiQFEoi0qgLCoBgAfPTZTShF2ETEcRncao1xFoiHRry1XKsFgPQc5ujaISQgghupaf9+RQaS+kwl7U4Jwk4F2HjISLThVojHY7LlZ0FJQbsRzcidfFGgUlhBBCdDE5he+wyrGNOKc3scZBhFguJ9B7kNZhiTaQJFx0Kn99OGHGfly4vZQpG9PwLdaR7wiluncqkXNUkE/wQgghRIsya5NAB6m6SlIdW5mec5BJF/6sdViiDWQ6iuhUOkXPpaEvMFA/Hr8CPYqjLumucMZpG5gQQgjRBRTbaqhxVnBUKXdrj/AaxMjYII2iEidDknDRqSb06QFAQewwt3Z7Vi6qQ7avF0IIIZrzxdYMIld+xI2r7PTPUNE5VQyqitkiW9V3NZKEi07Vr6c/AGUR7tvpOn18seflaRGSEKKLmzt3LoqioCgKc+fO1TqcTnH865VFeKefihoHiVsOcNlGePYTBx+95uTP2+0U+w1r+WLhUWRO+CkqKipi69atbNmyha1bt5KWlkZBQQH5+fkoikJQUBCDBw9mypQp3HLLLURGRrZ8027Mz1T3LVfra2HfdXdjC42gPCKWGv9ABkVEaBydEEII4bmqah2YSgqxZKW62ryqVZQBL3DtuHjtAhMnRZLwU3TLLbfw008/NXm+srKS7OxslixZwty5c3nsscd46qmn0OlOz4cQet2JUZuMsy7SMBIhhBCia8m1VtHjwHa3tlpvX0riB9ArQDbo6WokCW9H4eHh9O/fn5iYGHx9famoqCA5OZktW7Zgt9upqanhmWeeITU1lfnz52sdrkdRVVXrEIQQQgiP9vX2LPzi+nHkvKsJ3b8NS1YKBf2Ho+r1WocmToIk4adoypQpXHHFFZx77rnExzf+KOjYsWM88MADfPHFFwAsWLCAyy67jOnTp3dmqB7lSMUa8mqSKLFnUWLPZIxlJjgTQXWCXr4thRCtN3fu3NNmLrgQ5b1iSL78ZpIvvxlTSSH6mmoSQn21DkuchNNzTkQ7+stf/sIdd9zRZAIO0LNnTxYtWsSUKVNcbe+8804nROeZLhrSk8OVazhQ8Ss5NXuodBYTmfVf1Bcj4dAvWocnhBBCeByns+ET4+rAECrCIhifEKJBROJUSRLeSRRF4bbbbnMdb9++vZne3VvfMP8G29fnU4JSWwF5BzSKSgghhPBcm1OLqHAUkVY0j+Kao+7TOKVITpckSXgnCgsLc70uKyvTMBJt6XQKgYaoEw2qSmGlgfJsE1W7tmgXmBDipDRWLm/btm3ccccd9O3bF19fXywWCxMnTuSjjz5qdA3I8uXLmT59Or1798ZsNtOzZ0+mTZvGb7/91uL7t1Si8OWXX3adDwgIICUlpdn7FRYWEhUV5brmwQcfbLKvqqp88803zJw5k759+xIQEIDZbCY6Oporr7ySBQsWYLfbW/wajqusrORf//oX48ePJyQkBF9fX/r27cttt93G5s2bW30f0f1sOFJInm0dy6t+5JuCR/g661oOZ/0Fg6OSQG8vrcMTJ0Em33aiAwdOjPLGxsY207P76+HVmwTvs7hu8UGGbclGV6MjgxCCSpPo+WetoxNCnIoXXniBp556CscfNuBau3Yta9euZfny5cyfPx9FUbDZbFx//fX88MMPbn1zc3P59ttv+e677/jnP//JnDlzTjqev/zlLyxZsoRly5ZhtVq56aabWLNmDfomFrPdcccdZGVlATBkyBBeeumlRvvt3r2bmTNnsnPnzgbnMjMzyczM5LvvvuPFF1/k66+/ZuDAgc3GuXfvXqZNm8bhw4fd2pOTk0lOTmb+/Pk88cQTPPvss634qkV3VFKx3vW6VOfEaDuIUzHiZZAx1a5IkvBOkp2dzSuvvOI6Pp0XZQKEGBOYEjSHMO//oqs55mqvNg7WMCohxKl66623ePzxxwEYOXIkQ4YMQVVVfvvtN44ePQrARx99RL9+/fjb3/7G9OnTWbx4MV5eXpx11lkkJCRgtVpZvnw5hYWFqKrKQw89xOjRoznrrLNOKiZFUViwYAFDhw6lsLCQ9evX89xzzzU6av7uu+/yzTffAGA2m1m4cCEmk6lBvzVr1nDZZZdhtVoBMBgMjBo1in79+mE0GklNTWXt2rVUVVWRlJTEmWeeyYYNGxgwYECjMR49epRzzz2X3NxcV9vQoUMZMWIEDoeDzZs3c+jQIZ577jlCQmT+7+mmtLIWxV5LZm0q1Pvs2FsJY3hCqGZxiVOkig5TUVGh7tu3T33llVfUsLAwFVABtW/fvmpJSUmb7lVaWqoCamlpaQdF27leW3pI/deSJPWTl+er+/v1d/1JGjdedTqdWocnNFBZWanu379frays1DoU0UbH/20DVC8vLzUyMlJdt26dWx+73a7+5S9/cfULDAxU586dqwLqlClT1LS0NLf+JSUl6tSpU139p0yZ0uT7P/30065+Tz/9dJP9vv32W1c/vV7fIMYDBw6oPj4+rj6vv/56o/fJyclRw8PDXf2uv/56NTMzs0G/Y8eOqdOmTXP1GzJkiGq32xu9Z/2vNTg4WF28eHGDPp999pnq7e2tenl5uf2ddzXys952b686rH5/32PqxtED1Pev7q/e+ehAdfx/B6kLP7xPfmd6mLbka/L8oh2tXbvWbW6kj48PgwYN4i9/+Qt5v2/JfuGFF7JhwwYCAgI0jlZbAyMsAJRHxLnaas0+6GJiUSsrNYpKdEX2oiK3P2oz828b9K2tbbpvcbF735qaVvd1NtPXUVLS+r6lpe59q6ub7vv7iKzW9Ho9S5cu5cwzz2zQ/tJLL7lGgktKSpg7dy6DBg3il19+ISYmxq1/QEAACxYswGCoe2C7evVqcnJyTim2K664grvuugsAh8PBTTfd5BrJrqmp4YYbbqCiogKAiy++mPvvv7/R+zz++OOuEevZs2ezcOHCRndDDg8P58svv2Tq1KkA7Nmzh//9738N+i1ZsoSVK1cCdaP23377Leeff36DfjNmzGDevHnUNPM9I7qnihoHPZL2YrGqnLkHHvzOyZMbLNQEnu+2FkN0LZKEd5LAwEA+/fRTfvnlF4KDg1vsX11djdVqdfvTnQyPDgSgIiSMbXc9wapn3mP5Pxay7oEX0fn4aBuc6FKSz5zg9qemmUV3h885161v1cGDTfY9evElbn0rduxssm/q9Kvd+trWr2+67003ufUtX7Giyb7pt89262v96ecm+2bee1+T5zrT3Xff3eSUC51OxzXXXOPW9uKLL2I2mxvtHx0d7UrmVVVl27Ztpxzfv/71L1d8KSkp/OlPfwLg//2//8eOHTuAukX08+bNa/T6/Px8Pv30U6Dug8Krr77a7Pvp9XpeeOEF1/Hxa+t7//33Xa+vu+46Jk6c2OT9WjovuidDRTkBGUfc2vLGPESRXz+NIhLtQeaEt6OIiAjuvfdeoO4XRllZGUlJSWzfvp2SkhJuvPFG3n//fd5++2369u3b7L1efPFFnnnmmc4IWxOh/r/PsdTpyR882tVeZJMRHiG6spbWuwwefGLdh7e3NxdddFGL/desWQPQYlWT1vDx8WHhwoWMHTuWmpoaPv30UywWC2+//barz7x589yqWdW3bNkyqn9/InHppZfi5+fX4nuOHTsWHx8fKioqWLt2bYPzq1atcr2++eabW7zfLbfc0qqqMaJ7qLY7CE7ei6I6XW0OoxclCf01jEq0B0nC21FCQgJvvvlmg/bs7Gwef/xx5s+fz8qVKxk3bhwrV65k2LBhTd7rscce46GHHnIdW61WoqOjOyRuT1HjrMCoND4iJoToGgYNGtTs+aCgINfrvn37uqabtKZ/ez0RHD58OC+++CIPP/wwULeY9Lj77ruPiy++uMlrN2zY4Hp96NAh7ruvdU8gjk8ZKC4uxmaz4etbt8NhVlYW+fn5rn5jx45t8V7jxo1r1XuK7iHpWBn5g0ez/pF/EnR4H8FH9uHUG3Aavbh6ZFTLNxAeS5LwThAREcG8efOwWCy8/vrrFBcXc/3117Nnz54mS2SZTKZGV+R3J07VwbayhRTXplNsT8fmKGB66L/BGgA+wWDo3l+/EN1RS+td6ifdrVkbU79/bTNz+Ntqzpw5/PrrryxdutTVNmjQIF5++eVmr8vOzna93rJlC1u2tH1vg+LiYlcSXj8B9/HxaVXlk+4+ICPc1TqcqHo91pg+WGP6kHb2Fa5z0cEyfbMrkyS8E7344ovMnz8fq9XKgQMH+OWXX7j00ku1DkszOkVPcsVKqpylrrYxB2bD5kK4bTHEyGiPaFni+nVux3qLpcm+fZYvc+/r799k34Sff4J6m8rom5l2EPfV/9z66prr+8knqE5nq/rGfPA+ar1a27rfE7fGRP2n4VM4LbRlkZiWC8oURWkw5eTCCy9scn76caWlpc2eb436m/eUl5e7Xvu0cj2MbzPfB6L7qbY7W+4kuiRZmNmJfHx83CoGrFu3rpne3Z+iQJDBvSJCmv73ka7cfRpEJLoiQ3Cw2x+lmekNDfoajU33DQpy7+vV9I50f+yra6avPjCw9X0DAtz7NvN0rLkPH6KhhQsXNlgk+dprr7G+mUW14J4Av/baa6iq2uY/cXFxrnvUn1N+vDJLS2w2W6v6ie5h09Ei9uQ8zpFjz5NXvoYaZ93//5GxQS1cKTydJOGdrP78xsLCQg0j0d60EZEEGU88VvWrUKnI9aLokC+VW5r/RSiEECcrLS3NVRUFoH//ugVufyxb2Jjw8HDX6+Tk5FOOJTT0xEYrFRUVrfq9kJGRccrvK7oGW7WdWmcl25wHWe3cwY/Wf7Mw5xZ0hd8yJr7lSmvCs0kS3snq17ltTanC7izcYibaNJKhflfx2ncWPvy3g4u/8SJ3ewBlW5suHSeEECfreKJ9fFrJeeedx5YtW1wVq1JSUlxVrhpTf+Hk4sWLTzmeyMhIt0R848aNLV7Tmj6ie1i6P5fSis04683c0qESaIzDbGx8TZnoOiQJ70SFhYVuK+ubqqV7ujAb9USahzPKciO60CFu56qNQ5q4SgghTt4LL7zgKhMYEhLC/Pnz8fPzY+HChRh/n570ySef8NlnnzV6/QUXXOBaLHr48GF+/PHHU45pypQprteffPJJi/0XLFhwyu8puoa07CJ8kn5B7zix5mRgjZ1i/8HNXCW6CknCT0FRUVGr+6qqyn333eeqL2symU7rRZl/lBs30u24KilJo0iEEN3Vpk2bePbZZ13H7733HhEREQCMHDnS7dw999xDWlpag3tERkZy0003uY7vvvtusrKyWvX+TqfTrRrKcbfffrvr9eeff95sDfDPP/+80VrjonsKTDnIVfMP8PGrDv7+aS1XrXfQRw1BVaSuRncgSfgp+Oijjxg9ejQfffRRs3MId+/ezUUXXcSiRYtcbY888kirSlF1d76musdpZZHxADgMRkqje2MeO67Z7ceFEKItysvLufHGG12VSWbPns20adPc+jz66KOuUenS0lJuuukmHPWq0xz3wgsv0KtXL6Cuzvfo0aP53//+h9PZeBWLrKws/v3vf9O/f38+//zzBufPP/98Jk+eDNQN2Fx55ZUsWbKkQb9FixZx66234tXMYl7RfZRX2wk+XFekwFALCekKlx6JILbHn7jtrHiNoxPtQT5KnaKtW7cyc+ZMDAYD/fv3p1+/fgQFBaEoCoWFhezevZvDhw+7XTN9+nSefvppjSL2LFedEcXHG9KwhUXy2+NvUhEagarXMzY+mOgWNvEQQojWuu+++zhypG7b78TERF577bUGfXQ6HR9//DFDhw6luLiYtWvX8uKLL/LEE0+49evVqxffffcdF198MQUFBeTk5HDNNdcQFhbG2LFjCQ8Px+l0UlhYyN69ezl69ChqvRKWf6QoCh988AHjx48nPz+foqIiLrjgAoYPH87w4cNxOBxs3ryZpN+fEL722ms8+OCD7fZ3IzzTpqOFBB1xrxSW3280pZbRBHg3XdlJdB2S5ZyC+pvp2O129u7dy969e5vs7+/vz9y5c3nggQea3KTndNPDr+7vUNXrsfU8USnlaIGNM/v00CosIUQ38sUXX7jmURsMBj799NMma21HRUXxzjvvcO211wLwzDPPcP755zNmzBi3fqNHj2br1q3cfvvtLF++HIC8vDx++OGHJuMIDw8nMTGx0XO9e/dm2bJlTJs2jaNHjwKwc+dOdu7c6eqjKAqPPfYYDzzwgCThp4HdGSWMr6p0ayvq3fyOtKJrkST8FNxzzz2cc845LFu2jE2bNrFv3z7S09MpKSkBwGKx0KtXL4YPH865557L9OnT3WrCiobsag1l9mNQFtNyZyGEaEFGRgZ33XWX6/iZZ55h9OjRzV5zzTXXMGvWLObPn4/dbufGG29kx44dDf79jo2NZdmyZWzYsIEvv/ySNWvWkJGRQXFxMQaDgZCQEBITExk1ahTnn38+U6ZMcdsB9I+GDh3Knj17eOutt/jiiy84dOgQ1dXVREREMGHCBO666y63vSZEN6cobHj0XxjLSgk6up/gw/soSTi9Czp0N4ra3DMy4TGsVisBAQGUlpZi6Wabcvzfr5vYUPoexbUZlDmOoaIyu8d/eWCQUrdrpk6eGpwOqqqqSElJIT4+vsVdC4UQXZf8rLfOq0sPNdo+pV8oI2Jkox5P1ZZ8TRZmCs0ZFW/SqjZjdWSj4gRUztt1Jcy/GIqOah2eEEII0alKKmqaXEcwNCqwc4MRHUamowjNGXVm/PVhlDlyXW2HvbwYWFMLefuhR+NzKIUQQojuaFVSPlX577O8eikxuggCvYfj5zeROVPOQa9TWr6B6BJkJFxobkRMIEHGujngphqVPlkqHDJxbJuFirUrNY5OCCGE6FwpBTZKKreTp3ewVclgWdUPpB6bS7CvlKfsTmQkXGhuXEII/Q6dR4x5DLf950P80ssAM8WAfl8aPloHKIQQQnSydDXP7ThCH6tRJKKjyEi40JzZqCfaPJK+Pmdjixnmdq7aGaVRVEIIIUTnczhVIrb/guWok8DyE/PC/XzHaRiV6AgyEi48Sm7cSMLrbclcldT46nAhhBCiO6qsdRC7fClz0ut2YC3zh2+mQsTl52kcmWhvkoQLj1IWEYeq6LCFRVAWEcvQyaNRVRVFkYUoQgghur8Dafn4Z6W5jv3LYGjEo0wZ0kfDqERHkCRceISYYB/Siyooi4xl6SuLcHrV7aQ5dlKCJOBCCCFOG3tXbmacw+46VhWF/IQR9Arw1jAq0RFkTrjwCGfE/r7xgE7vSsChboW4EEIIcTop6D+cWnNdWYLynjE4vKVEQXckI+HCIxjq1T11qnas9mNUOktZuh8GRwZoGJkQQgjReUoSBrD13mfA6cDvWCbGinKtQxIdRJJw4RFC/U3k1RxiXclblNqzcWLHWxfAg74Pw+6dMPRarUMUQgghOo9OT3mElCXsziQJFx7BbNTjpfhQbE93tVU6S7lo722w2wl9zgWfYA0jFEIIITpWemEFtdWp6Lwi0StGV/vExB4aRiU6iiThwmNYDL3QY8RBrast2cvImKpqyDsAcRM0jE50FlVVW+4khOiy5Ge8aUs2bGV31n3sN5mIUf0IMybQM+gmRsX11To00QFkYabwGOMTQgk0RgMQWaByyW47bPMlfXUwtpW/ahyd6Gg6Xd0/R06nU+NIhBAd6fjP+PGfeXFCr5KtHPDyolaBI7pyNjh2U+G0ah2W6CAyEi48xvjeIYw6cBM6Rc/NC/4PQ3YFYMYG+BzNxVfrAEWHMhgMKIpCVVUVvr7yf1uI7qqqqgpFUTAYJAWpT1VVnOXrqPF2L8vbw0vqg3dX8jFUeAxFUYg0D6OXaTCFsSPczlXb/DSKSnQWnU6Hn58fVquM+gjRnVmtVvz8/GQk/A8O55URtPggl2x20j9DxVSjEoofk/rI4szuSj6GCo+UHzuM8A3rXMeyff3pwWKxkJWVhc1mk9FwIbohm81GVVUVISEhWoficZav2MnkA05mHqg7VhX4+KGx+HpJqtZdyf9Z4ZHKIuKoDAqlLDKOsohYJl0sizJPB35+fvj6+pKRkUF0dLQk4kJ0IzabjYyMDHx9ffHzk6ebfxSQlux2XOtrISz2Hvr19NcoItHRJAkXHqk0vh+rn33fdTxlUoKG0YjOotPpiIqKIjMzk/T0dMxmMxaLBbPZjE6nQ1GUlm8ihPAIqqridDqpqqrCarW61ntERUXJVJQ/UFWVgPTDbm2lMYmgKJiNeo2iEh1NknDhUfr19CfpWFmD9pUH87hsWIQGEYnOdjwRLy8vx2q1kp+fLyXNhOjCFEXBz8+PkJAQmQvehLyyaor6DMJQWU5A+hH8ctIojemtdViig0kSLjzKeQPDSTpWhqqqlDvyKbanYVerIe8srUMTnUin02GxWLBYLDidTux2u5QuFKIL0ul0GAwGSbxbsC2tmPwhY8gfMgYAXU01OnttC1eJrk6ScOFRjHodmVU7WFn8T2rVSgAsSiAXldtg43IYd4/GEYrOptPp8PLy0joMIYToMH98Auz0MuH0MnFmb1nA2p3JR1PhcXz0wa4EHMCqlnDW4Sdh6VPgkJEBIYQQ3YulKotc66+U1R5zm34XHeyjYVSio8lIuPA4Y6P6832+ASd2V9shLy9GVVVD0VEI7adhdEIIIUT7cTpV+ma+w2s++6AcLE6FCH0UZ4Q/R0Sgt9bhiQ4kI+HC45w7IIIAQyQAE5KdPLCyGtNKPw7/GEb5ku80jk4IIYRoP8l55RTUnChPaNWppKo5eCkyCt7dyUi48Dhmo55JQX/GrPPn6g/uRs1zAnpqgeqsYqS6rBBCiO7i113pQCFwoh54T10k3l5GzWISnUOScOGRQoxxAOTEj6Fn3lpXe3WhVMgQQgjRfYRm7Sb2WzOGXnaSeupICVcIih/IjNExWocmOpgk4cKjFUUPpOemE0m4bF8vhBCiu6h1ONHl2gjOUTg7B87GSZWfka+ePZdgX6kK1d1JEi48WmlMHwr7DqUsIpayyDgunz5F65CEEEKIdpFWWIF/5lG3NmvsMNfTYNG9SRIuPFppfD+23P+c69g8sK+G0QghhBDt50COlcA/JOFlUfEaRSM6myThwiOdERvE9rTiBu12hxODXor6CCGE6PoO55UTfN7VFCUOxpJ5FP/MFKxRvblwcE+tQxOdQJJw4ZHCLSYAKh0lFNWmUWRPQ4eOd9Zczr1T+2gcnRBCCNE+ivoNpajfULe2uBBfjaIRnUmScOGREnr4caTiN1aXvOZqC8bCbcXHQBcKkx/RLjghhBCiA3kZ5Inv6UD+LwuP5GXQEWiMdGsrwsrQjHdRt7ynUVRCCCFE+yiy1eBTspr0/NcpsK2n2lkOQA8/L/Q6RePoRGeQkXDhsQIN0SjoUXG42g6avBhZmotamosSEK5hdEIIIcTJyy6pRJ//Kct8C6F0NZRCAuF8ffNSrUMTnUSScOGx9IqRIEM0pfYsZm6wMSDbiW9+AAdL9cSM+h7fK+7QOkQhhBDipNQ4nGSrudRPxbwVs4yCn0YkCRcea1RcEBWOJzDrLFyy52oc9XbLrM4qRZatCCGE6Ko27TnEYYOd+qlYkKm/dgGJTidJuPBYo2KD2ZpaV6YwI+EsIgrXuM5V55RqFZYQQghxSuwOJ2GHtvHgxwYyw2o50FNHUoSCz7gRWocmOpEszBQey9tL73ptjXIvS1h1MKmzwxFCCCHaxc6MEpT8CrwrIDFV4fKNKnevDyTcNFjr0EQnkpFw0SUU9R5IxoQL6ravj4hjxoypWockhBBCnJSC8hosf9gpszRuBEadt0YRCS1IEi482tCoAHZnlmKNTWRfbKKr3ao3Y9YwLiGEEOJkHcixcmZWqlubNSoBnSKLMk8nkoQLjzY4si4J/6OVSXlcNzpGg4iEEEKIU7dr5kNYslLxy07DPyeN0thEZp0Zp3VYohNJEi48mqKAXa2hqDaVwtqjFNamoOJkIvdqHZoQQgjRZqqqAmDrFYOtl/tgUoCPUYuQhEYkCRcezajTcax6H0uKnne1eal6ns3LA91AOOdJDaMTQggh2ibXWq11CMJDSHUU4dECfYyEGBPc2moUBz4lS1CTftYoKiGEEOLkLDuQi5r7Hvuz/0p24TyKq/bjUGu1DktoQEbChUdTFAVvfQA+umAqnEWu9v1GLyJTjmCstKHzlm17hBBCdA35ZdUUl69go3cNVB+G6h8ZQjRT4t/QOjTRySQJFx7P16Snh1dvympMPPh9KlG54F9k4ahdR+yFi/E55yqtQxRCCCFaRVEdpCrlgJerrYchhlFxwdoFJTQhSbjweGf3D6e86lEURcfgjCtxlKiuc9UZhfhoGJsQQgjRFpayo6Qoerc2X58zGBIZoFFEQiuShAuPFxfig6LULV/ITDiLXtt/c52rSs3SKiwhhBCizbyz0nj3vyqlgXYyQlX299TjddUwjHpZpne6kSRceDxDvX+YrJFxbkl4bVa2FiEJIYQQbVbrcGIodqIAgSUQWKLQuyQEBia2dKnohiQJF11KwcAzQFEoi4ynLDKOmy45Q+uQhBBCiFZ5c8Vh+menubVZIxOxaBSP0JYk4aJLSAj15Wi+jbKoBMqiTpQs3Jtl5cw+PTSMTAghhGg9/5x0t+OyiFjG9JQ0/HQkSbjoEgZFWDiab3NrU1WVTSlFkoQLIYToMrbf+Ti+xzLwz07DPzuVwr5D8TVJOnY6kv/rokuICfalxllBZvUOCmoOU1B7hApHIdPD3tQ6NCGEEKJF1qq6DXkcJjPW2ESssTIP/HQnSbjoErwMOqqcVlYV/8ut/ex9t4H+Qtm+XgghhEersTu1DkF4GEnCRZfhrw/HS/GjRi13teXXHsGevkm+kYUQQng0W7Wdwsy/cZh8euij8fMejK/vmfT0i9E6NKERKUopugxFUejh1ftEg6qSbDdRsf0gTput6QuFEEIIjX29PYus2kPs05WwWt3DTxWfUVzwHpcPj9A6NKERGUAUXUZ8D18iy4fiZa/m0Y92EpyrQ1ftQxYQc/U6fCefr3WIQgghRKOMtWUcMTiBE7tl+poHE24xaxeU0JSMhIsuY0KfHgzxu5Jzwp4lrNyErvrEt291SqaGkQkhhBDN8y7dQmC+DoNddbWZfMdoGJHQmoyEiy6jh58XAKqiJ6PPZCI3r3Cdq0o+olVYQgghRLNUVcWrxMBL8xw4dVAQAik9FcKf6Kt1aEJDkoSLLkNRFNdra2Qckb+/tpvMVNcbWRBCCCE8SU5pFaaCuhKFOieE5YOfMxRTD9mk53QmSbjoUkbFBbE1tZi8IWOoCg7FGhlPZUg46HTM0To4IYQQohGfb8lgQKb7E1trVG/iZZOe05r83xddSq+AugUslaG9qAztpXE0QgghRPNUte5JrZe1xK3dGpVAbIiPBhEJTyFJuOhSvPT6Bm0VjmLMOnmkJ4QQwvOUVdsB2HXbo+yrtOGfmYIl4whFfYe4TbMUpx9JwkWXEhXkjao62VX+NQW1RyioOUyFs4grQ/+JtSIei4+UehJCCOE58qxVrtd2b1+KEwdTnDhYw4iEp5AShaJL0ekUFEXHoYrlpFdtpsJZBMDApHvJ//lFjaMTQggh3P2wKwen6mjQ3q+nvwbRCE8iI+Giy+kb7k+Pot6UO/JcbYcNtZxxbJ+GUQkhhBCNy0i7k72GciIIIcgYR7D/hUztN03rsITGZCRcdDlDowLoYezjOvapUqnOM+KzJQlHSYl2gQkhhBB/pKpkqwXk6uzs0OWywrEJW/kKvL0arnESpxcZCRddTlSQNxGmIYyqHMUDb67DVKwHDJRjp3LXDvwmT9U6RCGEEAIAv6p0jhjdE26zzxkaRSM8iYyEiy5HURR6ePVmVPD9mIy+bucyd+zXKCohhBDCndOpYshbw8gklfAiFeX3coU+3sO1DUx4BBkJF11WjcGPjD6TiM5b4mrL2raH/hrGJIQQQhxXWlmLX14P5nzrBKDGC9JjjAS+GqtxZMITyEi46JLO7B0CQFlkHABOvQFrZDwVIeEaRiWEEEKcUFnrwJxb5Dr2qoEg3QDGxodoGJXwFDISLrqkYdGBrD9SyLHhEyhOGEh5zyhUg1HrsIQQQgiXz7dkcEaG+3b1pdG98TLIGKiQJFx0UebfF7nUWAKpsQS6nXM4VfQ62YVMCCGE9mp9/an2C8BUXgqANTpB44iEp5AkXHQLtc5K8msP460LxFoZR5Cvl9YhCSGEEOy5ZQ6oKqbSIiwZRyiN7at1SMJDSBLeDlJTU1m6dCmrV69mz549pKenU15ejr+/P1FRUYwfP54bbriByZMnax1qtxLi58Xa3O9Jsi2l2J6OipMh3uezOSmGC85I1Do8IYQQoo6iUB0YQn5gCMNjArWORngIScJPwY4dO7j77rvZvHlzo+eLi4spLi5mz549vPvuu0yZMoUFCxYQExPTyZF2T1P7hbE8p4wie6qrTSn+Af2+UDjjb9oFJoQQ4rS3J7OUKnshRr0FvXJizdKE3j00jEp4EknCT0FSUlKDBLxv374MHjyYHj16UFJSwvr168nMzARg1apVjB8/nt9++42EBJkTdqqigrwJ9XJ/rLff5IV/RbJGEQkhhBB1lh3IJSP9btabnEQ6TfTUhREZcBVeBpmOIupIEt4O+vTpw+zZs7npppuIjIx0O+d0Opk3bx5//vOfqaioIDs7mxtvvJH169ejKLJ48FQoikKoMRFFBYNdJS5fZUy2He+cHWScm0F072itQ+zSSn/4kdJvvsHUrx+hf74fnbc3ULf5hN2pUlnjYG92KX4mA0MiA9DJYlghhHAxOKo4qq/BoRhI11eTTgaX1qRqHZbwIJKEn4JevXoxb948br75ZvR6faN9dDodt99+O8HBwVx11VUAbNy4kSVLlnDBBRd0ZrjdkpfOhysMU7n+1cUo1TrqSt9Xsvr737hpzg1ah9dlVezYQfajj4KqYlu/nurkZLxfeY2jRVWsP1LYoP+Kg3mu18G+Xlw/JkZKcAkhTmu+tr1kGd3TLC+fMRpFIzyR/JY8BZMnT2bWrFlNJuD1TZs2jTFjTvzw/fTTTx0Z2mnD20tPdOC1OHsEu7X7Z6VoFFH3UPzpQvh9e2UA29q1bP3bM40m4H9UZKvhPysPcyDH2pEhCiGEx1JVFe+jq5i23smwI04sNhWDCv6m3lqHJjyIJOGdaMKECa7Xqamp2gXSjVwxPAKbKYzMhDPd2iUJPzUhd9yBYja7tcUF7GFMxgeY7GWtuseve4+xN6sUtV4yL4QQp4PUwgp8c6O4frWTx79w8v7rDv7xhRcDewW3fLE4bUgS3onqzwF3OBwaRtJ9eP++aU9ZZDwAttBeHBs+nqK+QymvtmsZWpemxvcm8//9w3Uce24+A7zXMzZzHk6l5Sc/xy3dn8try5KpqpXvdyHE6ePbHVn4ZaW7tTkjJjM+QbarFyfInPBOtGfPHtfr6GhZNNgeAn3qNuXJGTWRnJFn4TD7uM5tOlrIOQPCtQqtyyoor+bjDWkQFIty05VMsb2F3lQ3mp0SNIFavU/jF6pOUBr/XP/WqiPcd3YfjHr53C+EOD1YMt2fyFqjEmQjOeFGfiN2koyMDFasWOE6PvfcczWMpnsZEx+Mw+TtloAD7M4s1Siirqva7qhLwH/X22+7KwEHqDQEuM0Vr2/Ysf9x047rGZPxAUEVqQ3Ov7niMA6nTE0RQpwGVJXCfkMpieuH3atuap81Ol7joISnkZHwTjJnzhzXFJSYmBguu+wyjSPqPgrKq4G6hTCl9iyO1ezHas9hTMBMVFWVUpCt5BoBr+e7Af9ibOaHjMt4H4B8337QxN9nYsFyQisOE5p+mAnpb7Ml8hbWxt3v1uf15cn8+ZxE9FLOUAjRnSkK+6+7p+6104lPYS6VQbJJj3AnSXgnWLBgAV999ZXr+MUXX8RkMjV7TXV1NdXV1a5jq1UqTTTF32zAaj/GjwWPUeU88fc0yvtcqu29MRtbP4f5dFVSUdMgAQdw6oxsiLmLjZZEsqzfkmzKYPLv5wKPHiBu+bfsnvUw3qqVKOsOinV1D9eCnE5y/Ic0+l6vL0/mgXMSpa64EKJbarAGRqejIrQX142WaajCnUxH6WBbt27l7rvvdh1fd9113HBDy/WrX3zxRQICAlx/ZA5500bGBuOnD0V1lLu115b8wqqkvCauEvV9uikd/4yjBKYcdJtuUlBzlF8LnuGDiv/wqyGLI1VrqXSUErpnM6PffIqeuzcydMG/SChYhYLKvAAL50ZH8nxIKAcDBjf5fksP5HbGlyWEEJ1u9aF8Km1bsNZmoKpOV7u3DAiJP5CR8A6UkpLCZZddRlVVFQBDhgzhnXfeadW1jz32GA899JDr2Gq1SiLehABvIzpFz0C7nh3GE//gHavZz4GcMi4c3EvD6Dyb06ny7+XJAAz6dRHhuzdRHh5F1tizyR4zlUpTCdk1u+tdoeKz8VNGfLEUnbPu77rnrg3k6PUsvPwNvqx6lRrFzucWb7zyH2Z8wGx6+0xs8L77s61cMKhnZ3yJQgjRqfZnlZKU+zzbzQbMKkQ7fRkYcBOKcqfWoQkPI0l4B8nJyeG8887j2LFjACQkJLB48WICAgJadb3JZGpxyoo44brR0ZSkhpNbmMGwbAcjc+zEFmSx89ZcoK/W4XmsX/fVfX96lZUQuncrAH65mfT7/iNqffypnnA+MebRpFdtcV2zPzCXc7xM6KoqXW2qTs86L5tbWcgatZxKZ0mT751VUklkoHc7f0VCCKEtn+o8ko11Ew2qFEjW2xigOrCYjRpHJjyNTEfpAIWFhZx33nkcOXIEqNveftmyZfTqJSOyHcXPbGCo11j+vaCWW3+EodsMBKRVYck4KpvFNKG0spakY3Ub70RuWIbOeWIeo8PoRc4ZZwEwxjILPUbMOgtD/a4iNPEWtt/5OA5jXamtrDFns/vmByinCF29z/VRphEM8r3E7T31jiqG5nyFojr4YksG+WXVCCFEd1FWVYvJtpWyP5RjNfueIetgRAMyEt7OrFYrF154Ifv27QMgJCSEpUuXEh8vpYk6kr/JQEnwZCp7rcGcmnOiPSuF1MIK4nv4ahid56mxO/lw7YkatlWBISiBBtSSupHs0sEDcHjXlXy0GHpyQcjT9PDqjUGpS7yLEmH7nY8TtnsjB66+E3Q6hvtfQx/vyWyxfsyxmv1MDLwf5XjdcNVJ//xfmZD2Xyw1uTh0BvaFX8EnG9OYc548qRBCdA9H8m34JW/lz3vsJPXUkRamUNhDwVcfpnVowgPJSHg7stlsXHzxxWzdWvdY32KxsHjxYgYNGqRxZN2foihYzZHkxI9xa/fPSuXbHVkaReW5/rPysNtxYdRe+l6QTszZBVhiKhjRYzl985e4zvc0DXAl4K5r+g+HBx4B3Yl/RvwMYUwNfpgrQ/+Ft/7E1KsLkp/louSnsdTULcickPYWRkcFAJ9ualiVRQghuqKVB/MwlgzgrN1w+xInz37i4JmvfAmzmLUOTXggGQlvJ1VVVVx++eWsW7cOAB8fH37++WdGjhypcWSnj+HRgeRFxlFlCaIsMp6yyDiKe8sHoD+yVtW6He+zfsUmVlHUI4jHlWJ8w2oo8wojLWh8g2t7+Hlx49hYt8eqxxe+qqrKmysOY3eqeOsD0NXWoNjtOLx9OBB6IQPzf3Jd41tbyKisj9kQcxd51mrsDicG2U1TCNEN+Genuh3b4s/i0qEyHVU01C5J+JNPPsltt9122k65qK2tZfr06a4dMU0mE9999x0TJkzQOLLTi16nkD16Ctljz25wzuFUZYMYwO5w8sFvJ6ahHKpYwabyhQB8YfGnQqfjufxClvZ5gmqDv6ufl0HHrDPj8DU1/U+Goijcf04iWSWVfLkxlWHzXsFcnM/2u58gPWgcKYHjiS/ZwNd+vmz3j6J/8BTXtSsO5nG+VEsRQnQD/lmpbsdlkXEE+sh29aKhdhl6+r//+z8SExM555xzWLRoETU1Ne1x2y7B4XBwww038PPPPwNgMBj44osvZFt6DcT38HWbGnGcqqos+b0KyOnujRUnpqFY7cdYX+JeMvNHP18+jTzfbRR89sR47pncu9kEvL4Ii4mrVy4gfM8mAjKPMv6VR/DPOMqquHt5PDyWp0ND+M5cyTolw3XNvmyrLNIUQnQLmRMuIGv0FMoiYnHq9JRFxGkdkvBQ7TYdRVVVVq1axapVqwgMDOSmm27itttuY9iwYe31Fh5HVVVmz57N//73PwB0Oh0ff/wxl19+ucaRnZ6ig+sWEtqd1eTWHCS7Zjc51XuIMA1DUW7koiGn9+PAX/fmuB1bDD0ZHzCb9aXvoVJXGWW0ZSZFfie+f2+fGI9/G8tqFbz5H8q++851bC4pZPi8l3ny7p5k+pyoVLPB+gFhXv0JNEYByCJNIUSX5nDW/fuWevYVrjbFXovayOCQENBOSfiMGTP49ttvXZvSFBcX8+abb/Lmm29yxhlnMHv2bK6//nosFkt7vJ3HeOutt5g/f77ruHfv3qxdu5a1a9e2eG1ISAjPPPNMB0Z3+tpV/hW7yr9yHSuqEyw3ahiR9lRV5UBOmVubT142Ay0TCAiJYEXxK/TxnsKQegn4jeNiTqqubcDll1H644/UpqcDdeUOd816mN5+2WSWnNj4x6HWkFy5ktHGm11tybllJIb7N7inEEJ4ukO5ZQ3aVIORIZGt2x9EnH7aJQlfuHAhpaWlfPLJJ8ybN4/t27e7ajNv376dP/3pTzz88MNcffXV3HbbbUyaNKk93lZzeXnuW6InJyeTnJzcqmtjY2MlCe8IqsoNmT+zK/BEU749hWpnOXllVYT5n34r1FVV5dudDSvEDP70DfyzU8kafy7hZ/0N1dLHde7GsTEn/XflFRdH3OeLyLr/z1Rs3UrUKy+zVBdHb/qQV3uIA7ZfMChmxlpupa/POW7X/rg7hznnSRIuhOh6dmWUYCtcRKVXKD7ew/HWB6MoCmMTgrUOTXiodntGEhAQwL333svWrVvZsWMH9957L8HBwaiqiqqqVFRU8PHHHzN16lT69evHP/7xD3Jzc9vr7YUA4NoxMQyrtmNyOt3ac6r38eXWTI2i0lZWSSWpBRWu45CKIwzcvYjgo/sxVlUQt/J7Lnz+b4QcOQjAGbFBp1xOyxAURMyHHxD9ztsEXnA+f5raG4DR/jfTx3sKV4b+k36+56IoDRfLyuZKQoiuKLe4jB1lC/m+7L8syruTr7OuJc/6c5un9InTR4dMVBo2bBhvvPEG2dnZLFy4kPPOOw+dTudKyA8fPsxjjz1GdHQ006ZN46effsL5h6SpK5g7d67ra2rrn9TUVK3D75YiAsxYvXtz9YEa7llTwxufV/HRWzoGFAVTY+9632PtYfG+Ex92dU47Fxyay+AlH7j1qQ4IoiS+H4nhfkzuG9ou76t4eeE3eTIAJoOeED8vDDoTk4Lux2LoCapKz+1r8avI5vzkZxiaU7e2Yul++XAuhOh6AmyHOGo8McGgVOdEbwjXMCLh6Tp0tYCXlxczZsxg8eLFHD16lKeeeorY2FhXImq32/n++++5/PLLiY6O5oknnnBt9S7EyVAUhUK/RKYvg6nrdIQfNWAuqSEoM6Pli7uhqloH1spaVFXloG0JwzLfI6z8IKgKcGLEOW3ixah6A5cOjeiwWG4ZH0fM74tnAaK2Lmf4vJc556U76JP8K+PT38HLXs6+bCuVNY4Oi0MIIdpbsa0Gp20z9j883fM399coItEVdNqS3ZiYGObOnUtKSgqLFy9mxowZmEwmV0Kek5PDiy++SN++fTn77LP58ssvcTjkF7Fou9Bx11MU675JjyXzKAAVNXYtQtLMW6vqPtQerlzN+tJ3eEn9lS3eJiLPLKb3pXl4D9RTbQkkc8IF3Dg2psPjuXBwXS1wU2kR/b98D4DqIgMpi0OpSaphTOY8AHKtVR0eixBCtJcNRwuxpGXy94W13L7UztRdTkZl6RgTF6l1aMKDaVI3Z+LEiVx00UWu7dwVRUFRFFdCvnr1ambMmEFiYiKffvqpFiGKLqxPv8Hkxp3h1uafVbdBzYqDeY1d0i1tSysCoMJRzKbSDwHINBq4vVc4bwYGYPCDdTf/H6ue/YCLJ/TrlG2VfU0GzuwdwsAv3sZQeSLRVp0Kqp8din/E4Kjimx0NF5IKIYSnslXb0dmGkpCmcMFWuOdnJ3cutzA6ThZliqZ16rb127Zt44MPPuCzzz7DarUCuJJvo9HIxIkT2bRpEzabDYDU1FRuueUWfvzxRxYuXNjoIi4h/kivUyiN70txwgCsUQlYo+IpjUkEIDm3XOPoOkd+WTVrDhUAsKl0HjWqze18qDGezdGjyPMbQP+e/iSE+nVabGMTQtg2+w7KX8jC71jdYllrfC33jImhTK/nGqUWE2aO5JfTuxPjEkKIk5VZXMmgY+lubeVRQ/Ex6jWKSHQFHZ6EFxUV8cknn/Dhhx+yZ88ewL36QWJiIrNnz2bWrFmEhoZis9n47LPPePPNN9m9ezeqqvLFF18wfvx4/vznP3d0uKKbKBhwBgUDzmj0XI3diZeh+26eoKoqn2xMcx2fYbkOm7OQvJq66icJ3meR3etBcn7foEeL7eJHnj8B69hvWPPYs/Ra9yOPXGKmWFcDKuwq+5oxATP5fmc2D56bKB++hRBdgn+O+9qj8l4x6HTy75doWodlIkuXLmXGjBlERkYyZ84c9uzZ45puYjKZmDFjBsuXLycpKYlHHnmE0NC6igy+vr7Mnj2bnTt38u9//9t1v3nz5nVUqKIbOmdAmNuxqjopqDmKzVHIV9u7d6nCI/nuo94BhkguCXmOcZbb8dOHMc5yOygKqmLgzkkJ6DX6JWEJ8CN52mz+MWc8xf4nYjhg+5VKRwkAx2RuuBCiizhy/nQOX3gdx4aPpzwsUrarFy1q15Hw9PR05s2bx7x588jIqPtEWH/Uu3///syePZuZM2cSEhLS4v3uv/9+vv76a1avXs2hQ4faM1TRzYX/Pr85s2oHKZXryKzeQaWzhDP8r8dXf7XG0XUch1Plh13ZDdoVFcZYB9K/1/nolLof+wl9euBr6tQZaY0aGD6TA3nbUH8fmQ80RlPpLMVbH8gve45x21nxGkcohBBNyy+rrvvvkLHkDxnrak8Ml+l0onnt8hv4iy++4IMPPmD58uWupPv4f81mM9OnT+fOO+9k4sSJbb730KFDWb16NVVVMiImWi/M3wSqSp7tN5KrV7vaM6t3MNy/+ybh9aehhJYnUWEMwmYKI2zvFs547wXyB47k6HnTKe4ziDHx2i8YmtwvlNVJ0Md7MlZHDsP8phNpGu6aglL6e3lFmZIihPBUe7NKG22/aHCvTo5EdDXtkoTPmDHDtcDyuEGDBnHHHXdw8803ExQUdNL39vLyao8QxWlGqS7jT5umssXLwT09T0xNya85RLWzDLvDiUHfveaFZxRVUGSrAcDoqODSpL9irrWyMv5hApesBCB0/zZC92/Db9pVcN7/aRkuAMOiAlmdlM/4wDswKF7gdGDJOEJw8h5CDu0GLx2pI94mvoev1qEKIUSjdmaUUJTzApXGIMw+o/E3D8BL54tMBxctabdn0aqq4u3tzbXXXssdd9zBmWee2S73nTFjBoMHD26Xe4nTiNmCYvRhVFUBJqeTap0OvUPFog+l3JHPxqNFnJXYQ+so29X/ttXNdVdVJxNTXyewqq7M36S1L5Ce5v61Ws4c1+nxNUavU+gVYCbn94GkXtvXMWzBP13nFaPK4g27ufuy8RpFKIQQzfOuLWZj7SaOqQaoWQbARX53oCh9NY5MeLp2ScKHDh3qGvW2WCztcUuXkSNHMnLkyHa9pzg9GHsNomTpZl7aXk1ggQ7vYgNb/nQXRREJbEktYkKfkG4zzSGjqAKo+zD8W+6jVNfsJlanI9DpxGnXofjoUCucAOgjI7FcdJGW4bq5dlQ0/16eDEBRnwFu59RahbHb3yBvygjC/Du+jrkQQrSVb/kujhnc0ymzuZ9G0YiupF2ex+/cuZN777233RNwIU6FEj6IkqM+RCQZ8SnUozhVLJkprvNJuWUaRtd+7A6naxQ8o3orh50pLAzw55KoXnxs8UcfAxsff4WD025DDQgk9M47UQzaL8g8TqdTGBlbN2WtOjAUAt2noEXtX8MPqzZqEZoQQjTLWlVLlW27W5tRhQBjtEYRia7Ec34TC9HezryPqlHlsGSpq+n49vUAv+w5Rv+eXf+D49fb66adONRaNpd+5Gq36vXMDwggNOQaii29KT67N1c88ScUD1xnMb53CNvSigE4NmAs0XtX4htWjTG8hppetcQVb0BVJ3ebJxdCiO6hxFaLb5mB9z+1kx2ikhSmozLExOAzArQOTXQBkoSL7ssSQeiYseTXS8L96yXh3UVWSSUABbVHsDny3c4NDbqLA37nA3DjuBh0vp45pcNYb5HsrusepGZ8LetIZrGpkp7GvkwJnU7EsTIG9Or6H5qEEN3Hb4fzUR3jsZQux1Kq0P+oSq0ZAv9foNahiS5AknDRrfmNGsnOMWdjjYrHGpVAWWSc2/muXv5uZ0aJ63W4V3+uCnudrdZPSKlaRw9jItF+54Oi45bxsYT4mbQLtBUGRVjYl20lvXY3H5q2o1I3h/1o7T7OsB/j171IEi6E8Ch51mric/6wXX1EPJEesAeD8HzyXSK6NXP//uy5+YEmz7+2LJk553XNFezVdgcrD+a5tfkbwpga/BADqy9Gr3ihKHUjzJ6egAOcP6gn+7Kt9PQagFExU6NW/H5GJbliBSMtN2ganxBCNMbvj0l4rxiCfT1v2p/wPN2rULIQjahfitCh1pJRtY21JW9x0LZEw6hO3fEEPLAyHVSnq11fXcWYdUmEEQnA2ATtN+VprcuHR2DUedPHZ4pbe6n993nvTrWRq4QQovMV/74vw9Hzr2b3zQ9y9NyryBs8muKEAV36CavoPDISLrq9gb0srE0uIMm2jM3W+dSqdXOoi43p9Pc9n4oaOz5eXetHweFUOZBThndtMdftmU2RdxxL+jxFqXcUcSu+JfHnz4hb9QOHLr+F0VNv1TrcVkv4fVOevj7ncLRyLX28p9DX5xwCjVEAHMixMjhSFjwJIbSXWmgDwNYzGlvPE9VQwiye/+RReIaulXkIcRJ8a4uIKdmEybabdUqlqz2/9hAVjiKO5IUzJKprJXavL08GVeWcIy/iU1uMT20xN+28gXUht9Nj2U8AeBfnM2zBPykin/DHHtM44tY5PnoUbIxjRvh76JS6f6K8ykoAWLofScKFEB7hSL6t0fbEMP9OjkR0VZKEi+6tIBneHMV0oBb4ODaKct2JWVhpVZvZnt6zSyXhVbUOAPrk/0Kxbb2r3ctZSa9ly1Brqk901ukIuGp6Z4d4Ss5K7MHa5AJCDh8kfNcGQg7twT8njYLJ4zl23nlA15zDL4ToXjILy0jPuJ8qQyAW0wBMfqOxePVmaBf6fSK0JXPCRfcWFA/6ukeDRmCirZLwYpUYRx9GW24h2nQGRb/P6+sqFqxPBeA3XRa39wrnnvBQjhoNVBoC2HTFYxT0H+7qGzh9OuZ+XStpPf4LLGzfFuJW/4h/ThoA0ftXMTLrY7anF2sZnhBCABBYkcIGXQ5rSeLn6m/5pvBx8is2YjbqtQ5NdBEyEi66N70BQvuSvywFW66JWSUmbq11sHPWJRyLnuTq5nCq6HWev5BmT2YpFTUOqp02VtrrRsHX+nizwdvMBYYJ9AwfSNGf5nJhwV68Pnqf0D/fr3HEbWcy1P0CK0wcSvzyb13tlYVeJBRu5ccDmQyJDHCrLS6EEJ1Nb9uOTef+75DFPEijaERXJL/FRPcXNpDKQi8q800otXVN9bevh9/nWHu4kooalh3IBWBX2f+oclpd5xyKghp4Yd2BojDghukk/PwThtBQLUI9ZRcM6klx7wGo9X7BKToVZ4mTSOtODuWWaRidEEKArWIXPlUnKjYFOHV464I0jEh0NTISLrq/oddijt6OLefEIhr/rJQG3Q4es3r0Nvbz1qW6XgcbY/HWBVLpLAEg1jyWXqa6EZjpZ9RVElF0Xfczdr+e/iw2+5A+8SL62lYQHpjOvggDc0PiqKndTPq+sQyKkHmXQgjtBFTGMf+/eykJhJRwlfxe/qhXOlu8TojjJAkX3V/vczBf+yRs/puryVxS2KDbL3uOeXQSXl8fnynEmseyu/wb9tt+YbTlZte5mBAfDSNrH3qdUrdA8+o72ZVv5ofa5ZRSDlTj59xPtKp2+d1OhRBdl6qqKLZ+wI8ElsCIEoXqbD1B/xejdWiiC5EkXHR/ioL3qLGEPvBnTAMG8HG+ieqAxjewySurIszf3MkBtuzDtSl42cupMfi52ow6b86qnsrQsCsx6usS7xljopu6RZczKjaItckFWAPOorTgO1d7uSOPvNokSiriCZJd6YQQGtiZUYIl44hbW2lsX4YFd/1BENF5uu7zaiHawNizJz3uuQf/KVOoDgyBeiOoiTlfYiv4GFVV+XRjejN30YbDqUJxCrdvvZyx6e+hc9oBMJUWcubLDzPu3VcwlRRyRmwQvQK8NY62/Rwf5Q4xxhNgiHA7d7TiN44WNF6jVwghOtqqpHwsmUfd2qzRveXpnGgTGQkXpyVVdZJRvZ3iok/5zJlKparjtiJ/CLmSsqpa/M1GrUME6h55vr4siWuSn8XsKOPMjHfpXfQbixOfInbhQoyVNkL3b+OsF+4n6snHUROv7Ha/BBRFobf3JLaXLSLQEE1v70kkeJ/FmkP5jIyVRVBCiM5ld9TN+956z1P456RjST9MQMYRCvsO1Tgy0dVIEi5OO/5mA9bKWnYVvUE+5fD7AsaCwncZZohhZ0YQExM9o6rIa8uSGZG9iCjrDldbuO0Aw5f8B+P+E6MwxkoblevWEXzVNC3C7DD3TOnNW6uO0NfnXGLMowk2xrmd96QPTEKI00NOaRUAqsGINbo31ujeZGock+iaZDqKOO3cNC4WBTiv2n3qxlIfE0HWrWxN9YzNYBzOutJXRmcVbwcG8onFn1qg1BTBjmG3UhEc5uqrhIQQ/sTjGkXacY5veuGjDyJYH4N/xlHiln+LoaIcgM0pRVqGJ4Q4De3MKGm0fVi0VGwSbSMj4eK0YzbqQVFQo59Dl3s3TgUMqkp/JYKNPafhB2QWVxAVpN0CG1VVXbXLl/a6kG/0v+LEwZf+fozzvwlzyFDW//VVBn/6Bj13byTyuecwBHXPqRm3T4xny+z76bF/G16/J98Dq5eQP3Q0Sd53ahydEOJ0k559jK1Zd+DU+9LDEIuveTAB/mczNCpW69BEFyMj4eK0NC3OTHRyBuNqp3JLVQj/p17IiMj/4Geom4by5VZtHy6+vfrEVJPNpQtw4gDgqJeRRdX/w+YoxO7jx87ZfyPg7ffxP3uqVqF2OIvZiFdZiSsBBwg4nERiwXKslbUaRiaEOB0Flu9ln6GavbpiVjl38lPFJ5TVZtLDz6R1aKKLkZFwcVo59vz/YV38K478AkYBPlffQfqkP5GkNPw8WlnjwNtL3+kxqqpKVW1d0l1Ym0pG9Va384N8L8FXH1J3oChETJnQ2SF2uqLEIfRI2uU6rsgzkWBLwqem0OM3WRJCdB/5ZdXYK7bhqLcAXlEh0CtBw6hEVyUj4eK04iwvx5Ff4Dq2ZKZAIwk4wKaUhhv6dIbXliW7XocY47g45HlCjHX/wJt1AQzzv9p1/t6pfTo9Pi2Yx45xvTb62fHuUYPdCWrx9/y8O0fDyIQQp5Pk3DLKS/YTd0xF76hbt9NLNWHUdZ/ysKLzyEi4OK2YB/Sn9NsTx/5/qPNa3470EibH+aB8dy9M/iuED+zw+I6VVoHqdPtgkJhvYljeFfzWvxqDYsJLVzdX/e7JvfEynB6fo6dcNplvDz3IMOVb0owH+CEwmo1e4dgcPzLNfg7QT+sQhRCnga1pxcTnDeQfX2Xi0EN+D8jobaH/kz20Dk10QafHb3AhfmfqP8D1WvH2xmH2AVVttK/RbiPrP5fC/m/ho8shP6lDY8soqmD5iiXcsmMGEda6qRc+eVmM+u9cRsx7mYtW55NgPjH1RIupMloxmb3IHjOVlcOe5vGecSz3sv7/9u46Tq7q/v/4646uu2Y92Y0nxJUkkBDcoRRpkUJbqEDdf9Xvt9S+9RaqtKVCKcU9IXiEuHvW3X1H7++PTSYZEiJkd+/K+/l47ONx77n3zrwXJrOfOXPuOXTSO01Yac87FqcTkZEiEDRxNPWuqmwPQEYt5LWNJi9ZK2XKmVNPuIwoEZMmkfXT/8M9fgKuvFz+u6UamrqOO6+1ezsf2v9zstu39TZ01sNfr4Dbn4OUoj7P1eML8MT6Q9y8/1skdxdzw/aPsin2OozH9uFubwWg6Pl/EVNdxvYP3cfHL+z/XvnBJjbCQTtJ5EbOYXfnC6H2ip5NbChpYlZ+koXpRGQkmDgqjpiyA2FtrTlFpMdFWJRIhjL1hMuIYo+JJu7SS3GPLsCw27lkckboWNAMUNK9jucavsF/m7/NM5Ge8IsDXvAdX7D3hQdeO8i8st+T0tU7PMbAZOzeZ4hoCR+X7m5vxTRsofmzR5KrpmUBkOOeGdbuNTt5bZ/GhYtI/9tV2Yrd0xPW1pY7xqI0MtSpJ1xGtGj30X8Ca1r/wN6uFaH9f8bYuaJnMoVtOwhEJGG/7WnImNLnGbaWt2CYfrLat9Jqs7Hd7eLc7h66i/LYmXM7k//xawBac8aw8WNf565lI3P8c0qMC4AM9yRy3DMZ5Z5KTsRM4hyZFicTkZGgrccHhsGaL/8MR1cHceWHiCs/QEveWKujyRClIlxGvAsmpLNydy3jopaHFeE9Zgf3517P1ysTeCvvk3w4fTLGSR7n/Shv6mLVnjowHPxn8oNsrfosG4xKrmnvJDfrq7THTMbm8ZL71vNs+MS3mTUpmxj3yPxnaxyeEsxhuFie/LXjjvf4AiPyGwIRGRhPbakKbfujYmgaN5WmcVMtTCRDnYajyIg3JTue+OK9pDhHkxsxO9QeY08jypXDUxN/RmN0IdWtPSd5lDPX0OHhsY1HFwU61LOODUYlAE/ERvOnzt/Q4D1E2ZLLWPOF/8MXE8f80cl9mmGoWVSUgqOrg7Rt6xj/2B+Y+cB3cfvbifHU8uiGcqvjicgw1tDuIWAev0DYnALdjyLvz8jsUhM5RvtrrzH/p1+iZtp8Oq69lCZ7KdNirqMw6jxsxtF/Im8daOCGWTnHP4BpgnHmfeQPrykFwOb1EFmyldVxvw877g12EWVPACDgjuC2Bfmh3uCRarSnkaivfAjjmBltPvLKRRwYfTEr3N+0MJmIDHdxXeX8rfE+3LjItCWT5BxDStJtZCVkWR1Nhij1hMuI5m9upvob/w+AjC1ruOr+H/Dp8g8yNvqCsAIcoLK5m5+t2Ed7zzE9IWXr4A9Lob3mjJ63/PCMLLHlh5j/ky+w4IEfcVHnxTiMo3fYz4+/iyj70R6WpGjXmf56w05i0Rh80bFhbT11DvKb14Bp0tLltSiZiAx3EZ1baLIbVNt9bDJqWOl/G5/p0fSE8r6pCJcRreZb3ybQcHQFTWd3J4HImJNe88c3izlQ1wGlq+Hv10LVJvjrldBRd8rn8weC1LT28NjGCoqeeZgFP/48sdVl2P0+rnp0Ndcm/IAM10TyI+YzOvLc0HX3nKe77wEMmw3b9PDZUTpr3cT4GkjpOsCuqjaLkonIcGaaJl3dW8LaIk2DOEfGiP+GUt4/FeEyosVddhn2hITQft3k2TRMmnXK6za++QKBh68Fb0dvQ8Ne+NtV0NX0ntc0d3r51aoD/OudMnJb1lHQswbDDIaOx1aVMvPFlVyS/B0WJXwy9MY+Oz9JNxweI2nhAgIOJ64MSJ3SRsy4Lt6MjGFt+z9ZdWC/1fFEZBjaUNqMv3I/83YHSWs2wTTJNmMZnxlvdTQZwjQmXEa0uIsuJHL6NOp++CPaV6xg97V3vue5ybs343E76MifRKt7FG2OFBL9x9wMmJALrujjrvMHgmyrbOX1vfUAuPwdLN//PWIzajmQkIm/pbfYbs0eTcX8CzAMG04jMnT9wsKRfTPmu6Vffw2PpU1jVs3DfJ91bLK34CcAwW2c69kKzLc6oogMM2/tb2Bq2RTOe+stADxu2DsrhhnXJlqcTIYyFeEy4jnT0sj6v5/gq64mLzmNB18/eNw5nmAHOY/9mIy6Tjyx8TSPmchzF36TK2q/Rbyniq7RFxHxgb9hc7jxNzbSs2MHnv37qVm3iW1jZlAzc3HosZYU/4xoby2GDUZNb6T8jSRqlpzPlis+jelwhj3vp5YW6qvOd3HEROOMiuCdnDupa2rC37M2dKzKs1VTFYpIv4ioaQltuz0QFbcgtH6ByPuhIlzkMGdmJk7gQ/Py+Pva0lB7ec8m9hX/mqvqOoHeVSsztqxhzzUf4T+TH2Rm1T94I/0zBF8rxWYYZKx9hal//wXQO94rvdMXKsKjvQ0kNq/ixlEZfKa5hYXpPUTeksnmWZ8BI3x02GcuKFIB/h5unZ/PH944xCj3OZSEFeHb6Pb5VYSLSN8KBomrCO+gac0Zg8OuUb3y/unVI/IuqbFuXI7efxp+08ua1j8waW9z2DmdMZH0JKbSHpHJa6O/QNDW+3k2aJp4Y+LCzk3euxWCvWO/6+wGN+VOYI/bxb1pqbwWncCKKd85rgCfnpugAvwkjixYlOU+BwADG2nOcYyPuog39led7FIRkTNimiaOni6aC8aHvb9ruXo5W+oJFzmBm+fk8pfVJTgMF8uSvkxHxBcpT/GSc3gilbbcovecG/zdU+i5OtuJqzhEfXYGT9d/me5gb0HvtRl8Ni2R5UYDmYQvvb64KLXvf6lhJjnGBR3pLE/6Gmmu8bhtvePxD9Udv5iGiMj7daihE39UDBs/8W0wTSKaG4itLMYTr/t15OyoCBc5gcRj5uROdubTuuQzfH7qTylqy+CaposgftR7XuuNiccbHUtn6ihiYtuISezElxCH2xZDUdT5bOt4PHRulD2VOEf4Y33y/EJsNvWCn0phWgyNHU3kRMyEYBBnZ3voA9DB+g7GpJ58qkkRkdPR0nXMB3vDoCcplZ6kVM7J0cwocnZUhIu8h08tLeTXqw4AMDpyIWAyKn0qDfa4E55vmiaGYdCdksGq+x/mvOL/Y2r1qwBcWvYtnprwM2bG3kSLv4KynneId4zi4uRvE20/2ptyx8L80FAYObmpzh6qX3+OpH3bSDqwk46C0Xiumky7O4Ontyzms8vHWh1RRIYBr89Pq6+cGEcGduPozfMFKfqgL2dHRbjIe3Dabdy2IJ+/ri4BCFs850RWNf+YzkADblssM7qamV79ZuhYbusGLt/zJZ6c+AuWJNzLhvZ/MCP2Rty2o2/iY9JiSIjSnfany79pAxMf+31oP2X/ZsYefIGSpAUcSlp8kitFRE7f7h3v8HTLlzExyA5GkGFLIy/9a0S7cq2OJkOcinCRkzjdpeL9ppcKz2YCZu+y6d3OVLod8UT6WwEIYmN32qVgGDiNSObH3xV2/Tk58Swdn9634Ye56Llzw/aDXhueFgfZ9o3YAz0Eg6aG9YjIWQt0bsJ3+B6gEnsPJZQxxhZJaqzb4mQy1Ol7b5FTuG9Z0SnPqfXsChXgAE3BBv418Sf02GMJYueFsd9jb+rFJ7x2clY8541N67O8I4UzMxNnbnhPVHejC2fQQ1bbFgKmaVEyERlO2nt2hu2nBey4bTGawUrOmnrCRU7BZjO457wxPL+9mtLGrhOeU+HZ/K4Wkz0uJ49P+jWx3hoOJC894XUz8hJZMlYzobxfcZddyraN+xgTuQ5bUikvpiXwZuwYtvb8nkU9V5AWrdXspG/5Kiup/+UvCXZ1kfyxjxM5ZbLVkaQfVbd2E7+3mCvag5SmQUm6QXZEPAUpx6+OLHKmVISLnIYIp51rZ2TzsxX7Tnh8RuyNZLmn0R6oxW/24DAiiLGnUhubRi0TT3jN8onpTM7S3fVnI+2++9i+Yh+1rRv4SeeP8eMHWsGEJ3e/xcdmXWF1RBlGTNOk4t776NnZ2zPatX4Do194HkeiPuwNV89tq6aodBwLtq4Pte1bkEDOBVEWppLhQsNRRM7AZy448dAUpy2S7IjpTIi+mCkxVzMh+mJiHSceYnLLvFzuW1akAryP3Dw3l7r4WaS6xoe1rypZjdcftCiVDEeBhgZMv//ofksLzQ//3cJE0t/ae/xEV1eGtXnzljN5lN6/5eypCBc5A4Zh8JkLipiWm/C+rp9TkERabIRuGOxD6XERAGS4J4W113h3sqGkyYpIMkw5UlOJXRY+tKzpb3/D39z8HlfIUGf39BBVXx3W1pZVoKlkpU/oVSRyhgzD4LyxqYzLiD31yYcVpsVw56ICFham9GOykS3TNYkIWzwFEQuYH/9RliR8hnXFKsKlb8VefHFotVxbdDQp99yNLTLS4lTSH+rbPdi9PVQsuJCW/LEEnC5Mw0ZHpqYmlL6hMeEi74NhGFw6JZMLJqSzs6qVdcVNdHsDxLgdjEmLZmt5a+jcRUUpzMxL1J30/WhKVjxmxQRuSv+T/jtLv4oYO5aE66/HnphI8l13Yo878eJdMvS9trcOb2wCO2/8RG9DMEBkUz2TR2s2K+kbKsJFzoLLYWN6biLTc8NvzNKc3wNr8dhUtle24ujqIPHgTjozculKzQSOrmQq0lcyv/ddqyPIAKho7g5vsNnpTsk47fUjRE5FRbiIDHkdj/yL+X97hLjygximSc/CIlImtbMt4zoO1o+iME3LS4vImattf4nIiCnEOjIwjN4RvBNH6dsP6RsqwkVkyPOVlxNfdiC0n7R/Bzk5jbRE5PDM1gv57PKxFqaToS7Y3a1x3yNQ0FvBc+2/h3aICkKeGcOc9O/jduj9RPqGbswUkSEv6l1L2Hc3uAj6IadtI9A7JEXk/ejevoP9ixZT8z//i+fQoeOO76pq4+mtVVS3dhMM6nU2XJimibd9bWi/ywbFRht2u26ul76jnnARGfKiZs/CNGwYZhDDZhKZ4iXgsRPhrMTftYOK5mxykrS4hpy55n/+k2BHB81//zvNf/87EZdfQdt9X2PVnrqw8w7WtJG58Q0mVe9h8i//T/chDHH1HR5aPeHL1Y/227E7IyxKJMORinARGfLssbFEffHLvNEVwbyWL/FIUhLrI0dxwNZBYsdDLG5ZoiJczpi/uZm2554La9tGHIeOLcBNk5RdGxn79MPEVZUA8PdfzuHKj11HfKRzANNKXwoETSZuKKOgzs++dBsl6QajE+K5fWG+1dFkGFERLiLDQv5HbuWJFft4qOdHPNv0PaB3mshGfxnbqmqZOzrZ2oAy5HStewfT5wvtB+0OKuZfGHaO4fcz6d8PENncEGob+/Tf+PP4aUzISmBaTgIZ8eo9HWp2VbWRV5VP2s4GFtO78m7ZggziPqkPVtJ3NCZcRIaVJNcEbMf0L5gE2du88yRXiJzYUwnjef2bD3Jo+XV4YuKpmbYAb1xC2Dmm08mBS28Ka4urLCZl9yZ2V7fxr3fKaO32IUPLtopWYg9/s3FEc9FF1oSRYUs94SIybEzOimdHZSvJzgLqfftD7a3+SgtTyVBU1thFQ7sHUjLYd+Wt7L/kJpw9naHjqR17mVX5MCawdsqdtGfkEFtTTntmLvuu+DANE2eGzv3zW8UA3LesCJtNY8WHAkdXR9i3GwDto/KtCSPDlopwERk2FhWlsKOylaKo88kMTCHdNZ401zjcthhaurwkRGmRDTm13dVtvLijJqzNdDrxOhMAmFT7FEsP/hCH6aPTmcQrY77KnmvvxN3WTNXsJWCzn/Bxf//mIe5eMqa/40sf2XfFh4mpLiW2qpTIhloiR+dbHUmGGRXhIjJsRDh7i5/x0cd/bfzE5kruWFgw0JFkiNlR2cqKXbUnPGYL+jj/0E+YWvt4qG1tzl34HNE0TpjO682/JLW7h6LI83Hajp9XvNsboMvrJ8qlP72DWV17D/6oGA5deP3RxmCA6ydlWRdKhiWNCReR4cU0ia4pJ/eN55j2px/g6Oog2lNHS5fG5crJBYPmCQvwoBlge8dTNPpKSeouDrU3R+SyM+0KDNNPq7+Kg92vs7b1T/y79uNsbX+cQNB73GP97vVDdHsD/fp7yNlZd6jp+EabnexELdgkfUsfx0Vk2DADAS7+/j1QUx1qm5i0hvS0Kn43+wVAK93JiQWCJr98Zf9x7R3+el5r+Tl13j3UuGeSNe5+bt56K7HeOhJ7ylhY9gBv5X2asp4NoWu8Zicb2//BB8qfID52KZtH3YTffnSGlAdfP6hVXAex3TX1VNf/hujIaURFzSLSkQCgud+lz6knXESGDcNuJyovN7yxogOA7NZNFiSSoWJbRQsAKbs2Me2PPyB5zxaaPId4puEr1Hn3AFDu2cghs5Znx/+QHnssz4/9Hm8UfJagzUH5MUU4wFRyuax5D+eW/ZYPbbqR+J6KsONPbtbNwoORaZq0d29jZWANT3U8wL/q7uS5ig/i9jSc+mKRM6QiXESGlai5c8L2O+vcAGS3baK8qcuKSDIEvLa3HoDcN58nY+saZv/mW1x2/3eZub057LyN7f+kJnYyf5r1NHtTLw61T465ktyIOYCB04jge1V7CXgN6rfH0vCYj6s3fQq3rzV0fnFDJ82dxw9XEWs1dnrxdK4La0v0dZM9KtOiRDKcqQjvA4FAgG3btvGnP/2Je+65h1mzZuFyuTAMA8MwOO+886yOKDJiRM+dC0AgNpL4/C6SxnVQZbOz3b+Dv72z3eJ0Mhj1+HrHaEc01ZG682iPdnxjM5OcS0L7MfY0ZsV+CACvIybsMXIjZnFB0pe5MuUHXGdbQvyWLg4+m07Dzlj8XQ4qDubgccSGXfOX1SV0evz99WvJ++DxB2n27g1ryzNjcLk0Hlz6nsaEn6Unn3ySW265ha4u9bCJDAaRU6fS8ad/s7e2hG2NP2KNy0sL3UA3izxbgblWR5RB5GB9B09vqQIge80KDNMMHQu6nQTnf4xZ3lzKPRu5IOmruG3RJ328FFchpBeyx6wgybs11G5sqcN1dRve2ISw83//xiGNDx9EtpS1sHCrn6t3+9mXCofSbYxOSychSitlSt9TT/hZamlpUQEuMogYTifnzJ1Mfex4dsWNP1yA96r17rYwmQw2pmmGCnCA2AlB0ma24Y7vnUknMbeVdM9epsRczSXJ3z5hAe5y2BiVEMHyielh7Tuv/BjmMTfy2X0ekvdsYV/nSoq7V4edW9aovyGDxb7adrJaJjO6FC7eAJ94LsiErXFMy0mwOpoMQ+oJ7yPp6enMnj079PPSSy/xi1/8wupYIiOSy9Hbv5DuGk9pz9HxnUdusBMBqGrtCdtvi88muaiDpMIOuhtcOCIDLCh9kMcmP4Bh9P65nJIVz7IJaSecKWPSqDh+vrJ3hpXO9GyqZp9P1jurqDlnPvsvuZG349azqfUR7IaLeMcokpz5APx3U4V6wweBlq7eMfox1aXh7XkzQmsQiPQlFeFn6eKLL6a0tJTc3PAZGdatW/ceV4jIQEl3TQhtu4xoYuypbC5rZHpusoWpZDDo8QV4dH15aD9g+jiYfD7rsu9gbsVDRKV6OZC0hJeKvg2HC+5b5uWSFhvxHo/YO4XdZ5ePpbXLx5/fLmb/ZTdTuuQyWnNGs7r1D+xtf/nwc3lZ1fRjrky5H5ctFgyDP7xxiLsWFWgaPAs1d/kgGCSmujysvT0z9z2uEDk7KsLPUkZGhtURROQ9JDnzOTfhk6Q5xxLvGIVh2HhtbyPnZCdhs6nYGckeeO1gaNs0TVY0fp9IewKe7FtJ69xLVew5vJN9Oxg2LpiQzpTs+NN+7PgoJzfPzeWf66AnKRVMEzDDzmkL1NBZeh/nOs/lnZw76fD4KWnsoiDl5GPOpf88ubkSwzTZ/qF7ia0qJaa6jNjqUmaeP8vqaDJMqQgXkWFpwZhkVh9sZGzUUgCMgB/T3jtMZfXBRs4tSrEynljoUH1H2P6B7tep8m4DoMKzmfK82xgTdR6GYbBsQtoZFeBHpMdF8JkLithc3sLre+uZF38njb4SGnz7MbBxc5ebz9fuwMkOehzxbMu8nic3V/KZC4rUG24h026ndvpCaqcvDLV9ZvJoCxPJcKYbM0VkWJqWHknK7k2MfeqvzPvxFzj3+58mq3Uz+c1vs77kBMtSy4jx1DE3Y3qDXaxv+2to3xNsZ2P7v/CbHvJTopianfC+n8cwDGbkJrJ4bAp2w8nSxM+T4ZzAr5tcfKV2L0fm21h66EeMre8dqvLSzpr3/XzSP/ShSPqLinARGZbM0hJm/fY7jF75OAll+4muq+KadXezqOSXVkcTC717wabgwVXM3dqOy3d0uMj8hI/itEVwzfTsPnnOI4V8jCOVS1P/B1/y1fi6jv759dij6XCnAbC7ur1PnlPOjD8QxGhZxe6Kz1BV/yCN3VvwBXtOfaHIWdBwFBEZltzjx0NsHLS3hdo669ykRB8i0td8kitlOHt5Vy0Ayw58H8MM0v5aD4nbfNy5ws4bEwNsnTeF3FGz+dTSwj57TqfddniMeBnRtRUYL5ayf3MmYy6uxZ8Sx+OTfk1DdFHo/FV7alk6Pv0kjyh97fkdNXjaV7LGXg6+cmheQVYwgouy/2F1NBnGVISLyLBk2GzEzptD+4qVobauOjcJBd1ktW6mvWcGsRFagGOkaev24fa3MbHuOejxcWBHBiYGEZ4AF26GlPxxuBZG4rT37RfF6XERnPPkn8hY9SyGGQRg96FpbDr/67RGhve4by1vVRE+wA7WdVDnK4VjZiLMNs/8XgCRM6HhKIOUx+Ohra0t7EdEzkz0woU0F4zHMSOOtPMbqVzYwy9SR7M2uIPqVn3VPNLsrekd6jG+/kUcppe20ijM4NHxvkGHg+a5V3LBhP4pgCePzQoV4ACufdUEWnr3A6aPSs/RFTbfPWxG+pdh+qn0d2APHB2WlOQay+z8JAtTyXCnnvBB6v777+c73/mO1TFEhrTEG29kXfIMGhv+xDPeboKYgJ9EiknZVs3Y5bFWR5QBYpomz2+vBmBi3bMAuOL8RGf00FnTO/d37dR5zJicT2K0q18yJN9xO81//zvB9t4PAwGXm5iqUvYntbGm9Q+0+qu4KvXHJDnzeWxjBXcvGUOkS4vEDARnoIcbNydTsK6R4iyTDfk2EqeNYWGh1hSQ/qOe8EHqq1/9Kq2traGf8vLyU18kIsdJiHLij1t4uADv1ewvxxfsPslVMtwc+83H0+N/wlt5n8CXn0bueU3s/9w9HLjkRkoXX8aCwv6butIeF0fSrbdCVDQHL7ye17/zBx4bs4MXGr9Fi78CkyDr2/5+NOfWyn7LIkd1evx4HTEk12Xh8sG4EoNbXjOZuKlKM6NIv1JP+CDldrtxu91WxxAZ8i6alEHDOx3YcBDEf7jVpN53ADjHymgygP59zOqYDQ4367PvYH3W7WS1baEqbipmgZ0PzOqb2VBOJumO20m85RZe3FgPQFRb+HCHSs9mmjteZ4wthypGY5qmCsF+trWiBcPnI7F4T1h709ipFiWSkUI94SIyrI1KiMRhuEly5mNgI9k5mvFRFxNhi6WiWeNuR4INx8wL3xVo5tHau1nV9GMa/SVUxk/HNHqHfGQlRPZ7FntMDI6kRD44OweAKTFXEmlLCB3PDri4Yu//4/xDPwFg5e66fs800pU0dBFXWYzd5w21mYZBc+FkC1PJSKCecBEZ9haPTaHN/1kibQk4bRGh9hW7arljYYGFyaS/mabJm/sbQvt7Ol8kgJeSnrWU9KwlP2I+5yd+ntsW5A9oj/OowwW/0xbJjNgb2db6MF+oL+PKjs7eP8w960nuPMCOykKWT9RMKf2ptq0H8sey6vt/JWn/DpL2b8fV0cqlC8dZHU2GOfWEi8iwNyUrgThHBk7DTXRNOTHVZQC0dPksTib9bVNZS2jbb3rZ0/Vy2HGXLZqC1GiSYwZ++N+V00YBUBS1lOvSfsXFHldYz9j0qkeA3jHL0v+8sQnUzDiXXR+8hy13foW85GirI8kwp55wERn2fBs3MPUvfyJp/3Yi2prpmDgGx0WZ7E++ABhrdTzpR2/sqw9tN3oP4ersxmGadET19npPir6My6eOsiTbmNQYLpqU0btUvT2OHcYFzOE/APhsEXgdvUXg7984xGcuKNLY8H7g9Qff85jdpv/e0r9UhIvIsOerqGDUxjdC+/EH91FU9SY+exSmeYOKmxFgbP3LjLE5mbv7QopWPsPmQgdbpmcza/LYPl+Y50xMyIxl0yNPU/jCI8RUHKLhqix2j7uW7elX4XEeXSymqrVnQMasjzQljZ34ij/NWkcLGY5cYiOnER19LsmRWVZHkxFARbiIDHtRc+eG7Qc8djytDjLjt9PY6SXFgqEI0v9au3uHGxlmgEWlvyK2p4YDb2fgD9iYtdfDrL0HiXf/C2Z+2ZJ8pmlSdvsdzFy3LtS2tWIJ25bdety5j64v57PL9a1NX3trbw0VgUPsd0ew39wDXXuY49lF0dj7rY4mI4DGhIvIsOfKzqI7KS2074gM4O+2k9Gxk2BA48KHo0DQ5M9vFQOQ07qBOE8N3fUu/B3hf/YSL7/UingAGIZB5LRpYW2ZG98kqq53fnC/6WFv5wqCZgCAbm9goCMOe+7G3exyhfdHxkTNZFFR/80XL3KEesL7wKWXXkpVVVVYW01NTWh7w4YNTHvXGy3A888/z6hR1oxFFBlpvB/8MKUNDUz0/oyN6bFsiBnDHpedb9TUkRYfY3U86WM7q1pD25NrnwLA0+bAsJmhpeodBaOJmGztNHRJt99G88MPE+zqnS6zKyUDR2s9O6I2sr3jKbqDLThtkYyOPJcHXz+o3vA+FtP4NqP32+jJM2mN7n1dxEdM1dAfGRAqwvvArl27KC0tfc/jnZ2dbN269bh2r9d7grNFpD9M+OhtvP7mTr5Z80/ABDoAeOrALuYUFWDTTVjDyivHzK99KPFcYjx1ZBVuJS63m/VdVxHc28a46y6z/H4AR2IiiR/6EO0vv8z6xddQM2MRL7Z8n8q2LaFztnc8RUHEQgzDwB8I4rBwDPtwEgyaeJoz+OxTvTdnNibB9tEOuj48yvLXhYwMKsJFZESIj3LiskWR4MiixV8Ram/wHuBQQweFabEWppP+tCftUvakXUpiVwmT6p5hc9aHufLbU0iKGxz3AqTcczep993Lxk1VmC3djI26gErPltDxRt8hWjpXkxizkD017UzOin/vB5PTVtLYSVTZ0YWckptgWtxo1tpUGsnA0MfpPlBSUoJpmmf8k5+fb3V0kREnxVkYtl/v28/6kmaL0kh/OHZe7SrPNl5q/B4l3WtojMzmrfxPM7Ygj6yESAzb4PgTaIuMxLDbuWZG74wceRFziLVnhI5P8Tm4eu/XifC1sGJXrVUxh53tla0kHdge1tZYNJUl41ItSiQjjT7uiciIkuoqosa7kxRnIamuIjJck6hp7bE6lvShf71TFtre0/kylZ4tVHq2EGGLZ1rs9dxZ8EkL0703p93G8onprNhVy9Toy4moeZC7mhuYfHjoYnvds2zK+hD17R5SYwdHL/5QVlLfSUJ0HH5XBA5v73tA09gpnJeub8VkYKgIF5ER48ppozA3X8iE6IutjiL9pKXLS3tPb094d6CVsp71oWM9wVYwIdJptyreKU3OimfFrlrGxVzCxYG3meB9KXRsSs0TbBp1C39fW6obNPtAENj08W9gBPzElR8kad92WgrGE+NWaSQDY3B8FyciMgDGpMZgGDbsnh6S92yh6JmHia6tOPWFMmS8sOPozFQHul8jyNGhKXZcjIlabOniPKfjokm9Q1F2JF9BZ60r1O4OdBDnqbYq1rBS3+4JbZt2B6354yi+8HoC7ggLU8lIo497IjKiTP3r/5Gx+W1sgd45l8d2rMI2LZnqOf8mM17Tkg11R4YWJXSXMcU1l5y2dmY98xwrJvdQO20Wdy+ydkrC0zEmxiB/5eMUrHqKss4UIm7OZOeYD3AwaTFBmxOA/bXtFGnYxPv26PpSvIEWnLZ4zYQillERLiIjSsDpChXgAJGllWTk7+e3a4u576KJFiaTs9Xec3ThpWUH72dU+3b2bx8LZV0UloF/xRq89b+Cz3/ewpQnF/R6Kbv8csbXHZ1icU/lbPbPXRZ23rPbqvnMBTEqIN+nxJZdrKv/MgddbvJJItU1joSkm5iYOsbqaDKCDO7v5ERE+lj3xGlh+131bhwBD6md+wgGTWtCSZ94aWfvzCHxPRXktm7A5vNg21sfOu7w+TAG+XADm8tFzNLzw9py3noRZ3vv4kOeYDut/t4VNffUtA94vuEirX0ru10O2mwm22yNvOJfTZu/msunZlodTUYQFeEiMqLMv3Z574YBkcleEsd0EggYpLVvpa1HS9gPVaZpUt7Uu+rkxNpnAeioiiDoDf8zF3/1VQOe7Uwl3/VRsB+9ebR5zEQ62vfwVstveaT2Y7zd8iAALx4z/l3OjLdzAz3vmqIy1TWWKJcGCMjA0atNREaUpPxsXvj097AHH6bUUc42dxSH7N0sjU0loa6DWflJVkeU96HqmGkm3YEOAoaDmFE9ZC1soqy6EHtpG1HTp+HKzrYw5elxZWcRf+WVBNraeHn6JexK7+Dlpv+B3s8Y1Hh30eQrJcmZZ23QIcrrDxL12gGuSLGxI9egJB1SbHFE2DTGXgaWinARGVEcdhtNY6fyQkM01V4f0Ps1f4VZy5v7G1SED1GPri8Pbb82+gusy7mT8XUvMDn2KbZc/hU+uGg+weahsyhT5v98D8Nup23FPjJNH5G2BLqDLaHjuztfYGHC3Xj9QVwOfal9Jt7eWkz6doMPm73L1Xtd8J87JxGRN3inrpThSf9yRWTEGZcRS6rrXStnevdblEb6kjfYxb7OlbTaXWzOupmHpz2CO2cazpQU3EVFVsc7bcYxw1HshpNxUReE9m2mQWHDCiK9Tfzm1QNWxBvSKt9Yh2Eevf/DEXSQWngvS8ZqpUwZWCrCRWTEWVSUQoozvCBr9B3EPNwzJkPLkbHgACU9a3mr9QH+VXMXrzb9HxWeLVw9PcvCdGfn00t7PyyOi1pOStDJPc1trCwv5we1ZUyqewaAssaukz2EHCMQNEk8uDOsrSV/HEGXm6Ro13tcJdI/NBxFREac2Agnqa5CMl1TSHUVHV7CvhDDsBEMmthsmvZtKHls49EFlw52vQ5AAC/FPasJ4MNhu8GqaGfNYbeRGOWErhR+1TWOyS3Ph45NqX2SDVkf5r+bKrSC5mmqaummqXAyzs42Eg/uJqaukqYxkwBIjXVbnE5GGhXhIjIiRduTuSTl28e1lzZ1UZASPfCB5H0xjxlW0BlopNob3ss5JnLJkJ9L+8ppWfx1dQk7Mq5lXMlL+DrtRKV5SeipIKttK5Xx0zFNc8j/ngNhY2kzDZNm0jBpJgDO9tbQ0BS7PnzLAFMRLiIjk2kS2VBD8v7tJO3fQVzFQTZ8/nus3GHy0fPGWZ1OTlNjp7d3wwziDXaR7TqHovVb2DzGpCs2mh9c8kFrA/aBpGgXuT2NxD7zBgfWpeOIDOC9Yybbsq6nJqZ3BdCK5m5ykqIsTjr4FTd0hu37YuMtSiKiIlxERqjlmU7s994d1nb7ist58rzfEwiOVa/YEPHqnt6VJZce+hGJ3WUsNheS9fwGgoZB2ZgYvLEvEnn5ZRhOp8VJ3z/PoUNM/PJdEOy9Z8HfZWdn8yJqxk8JnfPYRg1JORV/IEhcVxmHAoeIjZ6F2xYTOnbD7BwLk8lIpRszRWREmjS5gI608Bv2umpdZLZto7ihw6JUcqYqmrtxBHoYX/8iua3rmfLGnwGwmSb5B6qo/+Uvwxa+GYpcBQVETpsW1jZ6xWMQDAAQNP0AePyBgY42pDR1ecmr/AVPt/+Kf9TcxsvlN7Gp9tsETB9ZCZFWx5MRSEW4iIxIhmHQNHZKWFtnnZtR7dtp7/FblErORPvhFU6LGlfhDnRiBqGtNLyYir/8Mgzb0P5TZxgGKXd/PLQfcLqonzCdyta3ebnxf3i+8VsArDnYaFXEIcFmGNT6jk7pWGH3Uho4hN0Yut+SyNCm4SgiMmJln7eQwObXSEhqJjrdgy/DR1f3XnZVtzE9N9HqeHIKR2ZFGduwAoCg3yA63UNrZTT4em+2i7viCsvy9aXoRYuImDWLXQm5bF00mye9/0d398uh482+MjaXwXnj0ixMObg1VJWw394DHB2GkuYcY10gGfFUhIvIiDXhg1fx7YgqalseYY8zQBNdjI08j3PbPFZHk9PQ0tXbE/7s+B9Q2Pgak2ufInfeeraM/iytVTGc76shYuzwGCdtGAb5D/+NrVuqcNe3QW34PQt7u1YyL/4j7KhsZXKWbjY8kfI//YkLVrtJyA2wM8dgd45BfOZ0LpuaaXU0GaFUhIvIiGVzOqmyB1jnbA+11fkOAmi+8EHOHzi6sJLPcLA39SL2pl5EXE8lna5UpsxNI2OY9QobhsGCwmSKGzopijqfbR2Ph47VtK8gKuJyVuxCRfgJ9PgC2CpbSa43uKje5KKNJiWTklh75wwKU2NO/QAi/WBoD5QTETlLqa7wlTNb/BX4gt3Utas3fDDbUdUG9M4T/nT9l3i58X/Y3/UaDa4EAjYXS4qG5xLkqTG9C8qMjVqGAUz22flufSPPlR1kUt1zQPjc6dJrU2kziQd3h7V1Tv4gCc5sfdgWy6gIF5ERLcmZj8HR2TMchotWfzXrinWT22B2ZGrCZn8ZTf4SKjybebPlV/yz5iOMzekatoXVkQV54hwZ/LprIv+qKOaajk5iTJMptU+CGWRXdZu1IQehrRv3EtlcH9bWPGaiRWlEemk4ioiMaGPTEpne8QEibYmkugpJcORgM+wcqu889cViueLut8P2I23xnFcwyaI0A2N2fhLrS5qoTP8g1L5IV70LuztAfFwVeS1reXnnAiaN0pCUY3liE1h37/+SeGgXiQd3E11bQUd6NpnxEVZHkxFMRbiIjGiLi1I5VP+B0L7N68HV0URP0vAczjAc7D6mp7esZz1On4nP2dtDXBC5kGj38J5ybsGYZNYXNxIo7Wb/q9n4a4NEFQSovu4yGqIKgd4x0BHOoT0/el8ynU6aiybTXDT5cIMJhsEV54yyNpiMaCrCRWRES4x2EV1TQebG10nav4OEkn10jC5g/0c+Spd3NFEuvU0ONi/uqCGtYzfJXYcwEr7CpH/+D4GeRl6d4GHcFXOtjtfvbDaDotUvMOaR33FkRvuOUidboq+l2917M+qm0mYWFKZYF3KwOzysJ9qtf99iHY0JF5ERL6amjMIXHyXp4C5sAT/xh/Yyp/RPbChptjqavMuRVSGn1DzBxfu/zT1vXkP2wTLyKju5faWf+Z/7Gp3vvGNxyv63/NO34ne5Q/u2YJD8VU+G9tcVN1mQanAKBE3sVT+nouH3NHv2EDS1sqgMDirCRWTEaxoTPobYDNhILtnJ5lIV4YPN2kNNYJqMaXoDgM4yV9hxw+0mcsqUE106rLiTk6hYcGFovzshmZaMdPZ0vsyuzhcA6PRo5VeAkkP7ONj5Ei97X+KJxq/z78ob2Nv6b6tjiWg4ioiILSmRroxMomqqexsME3tjB9E91cDwWOxluNhU2kxq5z6ifb2z13RUu8OOxy5bhi0y8kSXDjs5d3+Utn3b2b34XJ4qKqXY/wiBVh8RtjjGRy3n928c4rPL9frd9c5KNkccfZ1028DuSCNGQ1HEYuoJF5ER77oZ2ZTOv4S4CV4yljTivbGJN2akEO1rsDqanIDN9FMaPwe/4STn3CYSLzConH0etuho4i65xOp4A2bi1EJWf+XnlMxdwAH/GgL0riDaE2yjwrMZ6B2KMZKZpomj/m2abeHlTrp7Ih+YlW1RKpFe+hgoIiNeelwEG8+dwu/H51BNM0GCuI0Ybo6ZrJUzB5GWLi8AtbGTeHzyb3AEuslp3Ygz2M2+lOUsXZSLYR85M4LYbAbn5CawtdwgzTmOOt/e0LGqlseYkFRAZXM2uclRFqa0VnFDJ1l/28VfgwEOjTLZlm1n0xQ3MZlpJES5Tv0AIv1IPeEiIoDbFkMljQTpXQ7dY3bQHqil+XDhJ9Z7eE0pAB3+OvZ1vUKH4ac46Vz2pSwHwBYRgeEc3tMTvtvS8ekAFEadB4DdNFjSHeSTVauZXPsk/91UYWE66+3YtBdnp4fIbph00OCm14Nc4LoFp13lj1hPr0IRESDGnkqELS6srcF3gL8dLvzEev7DQysOdb/NWy2/5V81H+GFhm9zoOt1ClKiLU5nnQsnpVMQuZBbvTm8VlbOr2sqWNzdw+SaJzHMwIgektK5eUvYvjcqFjP/corSY60JJHIMFeEiIsDtCwtIdRYd3jNIcGRjmiO3eBlsmjuPfiNR0rMWAJMg1d7t1Hr3cNGkDKuiWW5ceixuWzSjUj5OQjCIGYDW0khie2rJb17Dqj11Vke0hGmaxFUWh7W15I8Fw2BBYbJFqUSO0phwEREgKdrF1JhrmRxzJSnOMThtR2fYaOjwkBLjPsnV0t/eKemd97rDX0+D70DYsbExC4h0jZyx4O/mODy0otGZT2nxaLzbOvF322mLzCRo2NlR2cryiekWpxx4z2yr5uAVH6Z8wUUklOwlvmQv7dkFAMRFjKxhSzI4qQgXETks3T0+tB3ZUEvSge205I+jsSNTRbjFdlX1LlXvNz3M6jiH3O3beGt8kJakWL65/AqL01kvOzGSjO/+P7r29QC9H0gq92dRevU8APyBYKhYHykO1nWAYdCdkk53SjrVsxZbHUkkjIpwEZFjjHnhEbLXvkJkU+9X+D0LC9k+4beMy9AYUqtNqXmcgua3adwaSezbPm58DWpyXPREP0vEdddaHc9SV0/P4rGFF5Gyb1uoLb78IMl7t9I4fhoPvn6QTy0tOskjiMhAG1kfi0VETuKKczKJ7GgMFeAASft30la938JUUtnSDUBh46uMbnyD5G2bQ8cyyuvw7NtnVbRBw2m3UTNtPp0pR8fGNxVOot3poc1fjS9g4g8ELUw4sEzTJKl5FSsrPsS+6v9HfetzeAK936YsHZ9mcTqRXirCRUQOK0yLpXbcrLC27kYXmU1brAkkADy6vhxHoIfs1k14Whx428O/xI277FKLkg0ul03LpviC66iZPIvH7vkg37nFxYORP2ZT+yMAbClvsTbgADpY30FX6wrKbN28Ze7imc4/80TNnQTNAFOy4q2OJwKoCBcRCdNcOCm0bXcHiBnVQ2bDFlq7fBamGrmOzFCT3bYRh+nF5jBJKOzE7urt1XVmZxMxZYqVEQeNwtQYKhYs55+3zOTRhP9S7d0OmJR2v4M32Mmb+0fOCrDPbK2mLBA+M8pokrEZdi2+JYOGxoSLiBzDHxVD+xUzSTVfZktGNBtiM1gQOZ7a4sYRPQ2eVerbPQBUx0zmhaLvkt+yhryktQTOS+dV1ye4amwihqGiCnpX0MQwKIhcyLq2v2ASACCAl7LO15gUOTJuTKxr68Hd2Yy3vIvIXAfdEb2vj0zXROaP0dSEMnioCBcROcbEUVF8cspBeswjU7p1EkiaTHpVm4pwC3gPj2PuccSxJ+0S9qRdAmaQSF8L3a4k4paPtTjh4BNpjycnYgZlPet79007M0t/ycS4CmCmteEGwD/WlZFxYCd3/dfgTgI0JsGmAmj64HlMy0mwOp5IiIajiIgcY0JGEpH28N6yep9uzLTKE5sqAXit5We80PBtdnU8T0eggW5XErfMy7U43eDz8SWjASiKXMokM5Uf1zXwRmkJH2ltYlLt0xyqbbE24ACJrqwAwABSmmBOUyHxEZOJcI7c+eRl8FERLiJyjKzESFJdhWFtKsKt0eML4A+a+E0v5T0bqfZuZ23bn3i07h6Ku9eQFhthdcRBJ8rV+wV3XuQcLo//LBd3dhFhmvh7bNgrWtj+6n/o9gYsTtn/4svDF3Rqzp+EYajkkcFFr0gRkWPYbQYpzt4iPNKWQI57Fpmu3ps1D9Z3WBltxDlSLFZ7tuM3e445YpDhmmhNqCEgJcYFQH3MOCoC46neEM+BZ9KpWJ1IStte3thfb3HC/mcEAgRtR3u923ILKUiJtjCRyPE0JlxE5F0KIheQHTGDaFty2E1/T2+p4rMagzxg/MHemVHKezYQ3W3SGdn7/yLNNY7JmVlWRhvUrpuZze9eP0RkQy1t/2nDoLf4DATsVFXlUzGM72/wHb6HYOMnvoXN5yWmqpT4sgM0FU7iQk1NKIOMesJFRN7lIwsmEmNPweb3k3hgJ2NeeIRZv/4mNq/H6mgjyuqDDUR5G1gUcQW/eiiKX/w5ghvedjCttUgLrpxElMtBhNNOd0o6TWPDp2/MX/UkBIPDds7wX686Ogwl6HTRlldE+aJL8CQkM1o94TLIqCdcRORdUmPc2Lweln71wziOKbwnbXsELtOc1APBFwhyqL6TRVX/ZOLWf1PamkJMK1xfC7zxBM6LPgoFBVbHHLRumpPDQ2+XUHzBtSTv2w5A0O6gpWAc9p4uXt1TN+xmCvH4e4cvtfmribGnYTPCb8LU/OAy2KgIFxF5F8MwCLrcOBIMOLqCPRl71lkXaoTZUdkKQF7zGtrLw2/A7MjIxq0C/KQSonrHhTeMn07TmIk05OWzak4cm53rmcpmxrCILq8/dCPncOAPmJhmkBU19+LHZCypjHJPJSXhOiIjh+fwGxnaNBxFROQ9dOWHT4HnLqmmrUcrZw6E1/bWE+2pI7XrAF31rrBjMRddbFGqoeWa6VlgGDx4xzn8v7krWWU8RrO/lAPdrwKwpazF2oB9bHNZCy2efbTagnTaTDbb6njOt5L49q1cPzPb6ngix1ERLiJyAhFOO7XjZwMmEYleksZ1kD6ugdU7S6yONmIkdx3CZ4sg/4IG8pY2EDfWS09cIvnXXm51tCEhKzESgHhnFibBUHuVZzudgUbWHWq0Klq/WF/SRGv7K2FtuT4fnviFpMdpOksZfIbP91AiIn3oznML+GXbuUTf8iDrk1LZGhnNdOdcnPXdqB+2f7V0eQEoS5zHA3NXktW2hbzmNTDdxpu5n2LaWM1Qczqc9t5+tryIOTiNSHxmNwAmQWKLv8Rc52yaOn9AUrTrZA8zJAQOz6QTV7aT8+uCHMowKE+FaT43fkeUxelETkxFuIjICbgcNlZ2/ZG/5iYCfqCVQGQks+3qUetvD71dAkBJ91pSXUUEEuZSljAXgNsW5IdNGyknZ7cZgJuCyAUUd73Osi4P17Y2MKenjB5nJSv33MtVM/OtjnnWVu3pvXljUelUcl7tXWXVb4eGaQnMuE33D8jgpOEoIiLvIcVZFLZf7+ud/qy1S+PC+1tPsJ1Xm/+Pf9d+jKfqv8SW9v/gDXYOi17bgXTnub0F6IzYm/hE3Df5cW0l83s82AF7XSuOLU9YG7CPHLmRN6qiItTmCEBHyjLio5xWxRI5KRXhIiLv4d3L1zf4DhI0A7x5YPivOGiVIx9wyns2hsYxN/oOsrXjcWz68vaMRbsdJEY5ibIn0h4zicqYKXRUuyl9NZnil9IofPUxTNO0OuZZaew4PI1oMEhc+cGwY535hSe4QmRwUBEuIvIerpowD7vhIs01nknRl3Nuwj2YBIl02k99sbwv64p7bxYs63knrD3LfQ65SVrx8P2YOzo5tF2+J4fy15PpqnUD0LPby9pdVVZF6xN/X1sGgMPTTcOE6XQlp4eOzb90kVWxRE5J3QoiIu9hyZjRfPjQ349b9KOhoRVIP/FFclZ2VrUBkFMXZMEWG6vHBShNg9yIOVw3Q9PMvR/jM2LZXtlKZXM3Oxd+iAVvbQkdc3V2cOCRRwl+5zNDdjGb4OGefH9kNFs/8iUAnJ1txFYU8+GiPCujiZyUinARkfdgGAY2w46zvZXUXRtJOrCTxAM78MQnwaL/Wh1v2Mpu2cCijc1Er/VyzdvQmBxDxeJGHFfpy9v3wzAM5o9O5rGNFbRlF1E/cSapuzYC4IlNIGh38vs3D3H3kjEWJz1zXn/whO2+6Diaxp0zZD9YyMigIlxE5BTSDm1iyt9/EdqPbq6htKqZvFGJFqYafmrbegCYVPs0ru078B3+E5Xc2IHbOHGxJacn4pghVMXLriayoYad5y1hxYR2JibOJsobwB8I4rAPrQ86j2/qvRHzUMNvSTWduJM+gMueYG0okdOkIlxE5FQyo8AwwTzcqxaAjc+8RN7Hb7Q21zDz8s4aMINkFr9DTac77NjYG66yKNXwkBLjwmYYBE2Tjdnt/P3uRGp8j4IXHF0JTIu9nneKm1hQmGJ11DNS3dqDN9jFW55X8Btgr3mBMWYi8xLvZfKYc62OJ3JSQ+sjr4jIAPvY4tHUpEzDneAPa0/e9po1gYaxhg4vaZ37iDZaSBrXgTOq9795T1IycedMsTjd0GYYBh9fMhqACu8Wanx7Qsf2da3ENIOsK26yKt77cmRWl8aON/Af+XxsGBwymhnXvj/shlSRwUhFuIjISUS7HQRsboyCOGKzu0mf3kreRXU4p8UM+andBpMjUxP6bW72jr6cqLkRjLmijqTL7ez8wCe0QE8fODIkZXzUhWHtHYF6XNW/Zmr1f/D4A1ZEe18qmntXADUOPUVi+9F/izN7fJSlXkqi5geXQU7DUURETqHNX80/lxdR4y9jtxPSnGOYm3IHcVVtTM7StHl94cktvascNkUVsLLoG2CaJHcdJMrXRCBrgcXpho+x6bGYNYUkOfJp8pcQZzq4rq2V61r/SZwtnsfXf5Cb5g+NubUf29g7HvySVzx8uCzAunHwzBw741IKWDK5QB/cZNBTES4icgqVnq2sse2Cw4s1dpu1zLY5WbGrVkV4H2nq9OILdrOy6QdkuaeRHTEDM2oMhlHIp+fmWh1v2JiVn8i+2nZmxN1EZE8F39n5vxzpLzZ9TSSv+wft079GbMTQ6EWOqSohvaR3bvkFu2HB7gA7b5nF5Kw4i5OJnJqGo4iInML5+bPC9tsCNXQHWi1KM3xVerZR7d3Bhva/82T95/hv3acImoEhN2PHYJYeFwFAbsQsUhOupjZuOkGfQdO+aA4+l0bOH//NX17abnHK05f32rNh+57YeLoW36pecBkS9M4mInIKl42fgcMIn62j3rfPojTDz5Gx9RWejWHt0fZUitL1TUNfm5V/dGrNHYmXc+DZNGo3xePrdIDfJHv1yxamOz2v76sHIOCOIOB0hdrLF17M3HGZVsUSOSMajiIicgpxERHkRcwDTFJdY0lzjiPJ2bsSn2ma6nU7S1WtPZimSVPzBnCZcPi/Z07EDOYVJFmcbvhZVJTKhpJmAPaNuoiMghdx76kMHc97/VmC3s9hc7ne6yEs1eMLsKm0N/+e6+7i4MUfJHv1y+SsfpmyRZdwSWq0xQlFTo96wkVETsPX53yXJYn3MTH6ElJco7EHgiQc2k3xrkNWRxvy1hc3YZoBvvVYBA/+zs0dr7opqjDJcU0n7fDwCelbR+5lCNjcbLrsvrBj3tgEfvfEO1bEOi1PbK4M2/dFx1K8/Dre+OaDeOMSNXxJhgz1hIuInIaUmN7hKNmrXyZj45skFu/B7vOy7+CNjP7RtyxON3QFgybFDZ3M2fsQKWW9xdUla3t/3oltsDjd8LVsfBo7Knvva2jNH0fT6In4oqJZt3AsPeMWEedM4/nt1Vw6ZfAN7ahp7SHSU0+7EcDhyjh6QN9IyRCjIlxE5DS4Hb29awV7XyZ63/5Qe+rOt62KNCxsLOsdVjBq65t4j2k33XYiZ8868UVy1my2owWrJ9jJX++Yw3bPy3QENjOhq4358Xext6Z90BXhgWDv/QNZFT/jGxF7mBCMJTtqMYnx1xDlSOK8cakWJxQ5ffrORkTkNGTG9w6LiEtpD2uPLKsk6PNZEWlYeGt/A85AF66K2rD29nFFLJo4yqJUI0N2YiQA2zueYE3X3+kI1AGwv+tVvMFOoHf89WCy+mADTn8ne7ybCRoGO+0dvOR5npV1n8U0TaZmJ1gdUeS0qQgXETkNR26+rC0K7511xJgc2ltqRaRhI7t1I9nzmii4qI7kie244vyUzLyYzPhIq6MNa9dMzwJ6V9A0jikH/GYPZW1PkN/8Nh0ev1XxjuP1B9lQ0sy4sqd5MTr8ptHciAUYhoHdpiEpMnSoCBcROU3LJ6ZTOWouqVPayDi3CW5oIPUqO89X9lgdbUhq7PAAUJown0en/oGtU27FnJ+F68YcbEsvsTjd8HfkBsYYRxp5EXND7YV+J9cV/56L932Lp9YftCrecfbWtGP4fGQ8+Bj3/gsW7gzi8PcOT8mLvYTlE9MtTihyZjQmXETkNOWn2rk/uJFHL82n2NaJnwA3pf+ZSNvgnMptsHtjfz2mGaTdbCUYN42quGmszrsHW9DHZXmJp34AOWtXTRvFU1uqmBR9Oa5AF98ofYlpHi+9/cndZB16jqpxaYwalWJxUli5u5bMrWtwdPsZWwFjK4J0R8L/3J1JojOXsemxVkcUOSPqCRcROU0Rjgh2da9kv60NP71jZeu8ey1ONXSVNHTR6DvEv2s/xuN197Gu9SEqejYTMBxkJ0ZZHW9EGJ0aA0C6ezznpn6T5IipGIC3w07NpjjyfvYQ63/2e4KHb4i0SufhYTE5b78Y1t6VPZmF+b8CwOVQSSNDi16xIiKnyWFzkOosDGur8/UW4a1dujnzTByZ5aLCswWAFn8FOzufZW3rnzEMgwin3cJ0I8stc3ND29vTr6Fpb+8S9s37YsBvkvv6s2wvsXa6yN+/cQhHVwfRteFzhJcvvBibzckMfXMiQ5CK8D7k9Xp5+OGHufTSS8nLyyMiIoLMzEwWLFjAT37yExoaNOetyFCX5hoXtt8VaALgz28XWxFnyCpr6gKg8nARfkR2xLSBDzPCHbsg0sHk82gePR7Mozc4RrQ1s+dfj1sRLYw/KobXvvtHttzxRRrHTsUTm0DtOfMAmKUiXIYgjQnvI3v27OHmm29m8+bNYe01NTXU1NSwZs0afvzjH/PQQw9x6aWXWpRSRM5WTsQsDAxSXeNIcxXhtmkc6vvx6p46TG8nF7+0n7VFJvuywDQMstzTuHFOjtXxRpzlE9NZsauWgM3F0+c9yJytXyPpwE4ATMNGdF0lB+raKUwb+Nf7/tqj04KaDic1M86lZsa5OLo6MB1OAKLdKmdk6NGrtg9UVFSwbNkyqqqqgN6pzBYvXkxhYSF1dXWsXLmS7u5u6urquPrqq3nhhRdYtmyZxalF5P24e975PL5pbGjf3dJI0oEdxJfsw1z2QwybvmA8Ha3dPvJ3vMGEtT1cthY6YiLYPD6allsmaGpCCxSmxbBi19G52ouXXkVcxSGK5y1h9dws0rOvZP/Waj6+JJIo18CWDs9uqwbTPG5FTH9U73j2OxcVDGgekb6iIrwP3HLLLaECPC8vj6effpqpU6eGjjc0NHDjjTfyyiuv4PP5uOGGGzh48CAJCQkWJRaR9ysvORoAe3cXC378OaLrq0PHDq67mcL5062KNmQcucmv6J0nQ20xHT3MqE/lTYduyLRChNPOB2Zl858NFQAUj8vn5S+cx7bA6wTwco1vGonOXH73+iE+u3zsKR6t7zQcnsZyVtkD/NR4gzz3dNKSbifSeXQ6wlj1gssQpS6bs/T888/zxhtvAOByuXjmmWfCCnCAlJQUnnrqKUaPHg1AU1MTP/rRjwY8q4j0nTTfAeK6q8Patj67yqI0Q8vm8haMQADngZqwdttoDe2x0pEZaQKmj6ebvsLmwAoCeAHY2P7P0HkbS5sGLNPDa0oxTD91bc9zwOHjlcA7PFp3D2tqvkjA7L0Z2jC0QI8MTSrCz9JvfvOb0PZtt93GlClTTnhedHQ03/3ud0P7v/vd7/D7B89KZCJy+orSY+h0JROT2hXWnrH3HYsSDS2by5qJ6ywnubAdd/zRWWUOzbqUW+fnWZhMIpx27IaTCdHhiyWV9ayn4OCXiPbU88a+gZlkoMfXOw1oftPbPBpztD1gGHQYYDecXHFO5oBkEekPKsLPQkdHB6+88kpo/4477jjp+ddffz2xsb09PU1NTaEedBEZWhaMSaHNPQp7Zu8iPTZnkJhRPZAbo6kKT4NpQjStOGfHMfqSekZfWkvyPA8VOQtIjnFbHW9Eu25m71L2k6IvD910bMfGDe1ezq17neUHvgemyYG6jn7P8sBrvat1Zj/yBwq2OIjrPDpXeVHctczIS2RMasx7XS4y6Gkg1VlYvXo1Hk/veLXo6Ghmz5590vPdbjfz5s1jxYoVAKxatYqlS5f2e04R6VtJ0S4wDJomTCQ6YQ0bMyOJcufTkzaPNw/Uc/nUUVZHHNSCpklV3Dk8NPNJ4rvLyW9ZgyPgwTQ0N7jV0mJ7pyt02aKYFnM9wbbX+V75m2T5e3ulU1rWMLX03zxj3MinlxbisPdPX15rd++H2eiacqL3tHPbHvjwqwG2jIFHLo0jN3MOS8am9stziwwU9YSfhd27d4e2p0yZgsNx6s80M2bMOOH1IjK07Ox4ljvTG7nsnHS+mRbH7zNncCh5Cftr+7+HcCjzB4K0e3rY2v5f6r0HaInIYmvmDWzM/jATMuOsjifAR87tnW1kUszlzE79OvFGIqYJnTUuyl5PIvu3/8Lh6eI/Gyv6LcOf3+qddz9r3dH7LGwmTKqNYcaoz5OdGN1vzy0yUNQTfhb27j26XHVe3umNY8zNPboy2Z49e/o8k4gMjJykCNa1tYb2a736UH06frXqAHXevWxs/ycb2/+J2xZLlvscFifcy/nj1bM5GMRHOkPbPc4EVuZ8iam//TGelqPt6ZtWUzn/AoJBE5utb2+MPFR/+INsMEjmxjfDjlXNvoCE6GksVi+4DAPqCT8LjY2Noe309PSTnHlURkZGaLupaeDuMBeRvnX1hEVh+63+SroDvUV5W4/GhZ/IkRvtjl0l0xNsp9Vfhc2w43ZoOMpgMTs/KbRdnHk+XbHhRW/ea8+AafLYpgoCQfPdl79vDR0entpSFdrfdcPHqZq1BL+rd5hM1ewlAGQcs8qnyFClnvCz0NFx9GvnyMjTW1zi2POOvf7dPB5PaLw5QFtb2/tIKCL9ZVLKBBxGBH6zB7ctlnTXeHxmF5HE4/EFQTXCcapbe7B5PVT1hK8snOWexuKxKRalkhM5tyiF9SVHO4q2XPopZv7uf0L7ES31RDbWUWmk88tX9nPvsiLsZ9kjHgiaPLym9GiDzUb95NnUT56Nzeshee9W2rN6h8poWkIZDlSEn4Wenp7QtsvlOq1r3O6jd/53d3e/53n3338/3/nOd95/OBHpVw6bg/MSP0OsPYMERxaGcfSLxQN1HaTGapaPd3tldy15rz7FD18rZ9PYCN4u7GJHXu9S9RMz462OJ+/y6aWF/GrVAQDqJ86kM3UUGLBp4VT+VrieeTE1ZNH7LfAvX9l/1ov4HFv0dwWaiLDFYzt8s27Q5aZ+yhygdxpFkeFAw1HOQkTE0a4ur9d7Wtcc27t9st7zr371q7S2toZ+ysvL339QEekXN066mERnDrZgkITiPRS8/Bgzf/tt2r//PaujDUrtPX5yN79CbIeHJZs6+NqjQb64ejJprrFEulRYDTYOu40JmYcXULLZeOuTX+Z/PzGOX41fSaujlbdaf4s3eHSu/L017e/7uTo9ftYc7B3iGTQDvF73FVZWf5zm7o3HnXvHwvz3/Twig4l6ws9CTMzR+UlP1qt9rGPPO/b6d3O73WG95iIy+EzLTWD1wUay165g0iMPhtp9sTEEg0FsNvVzHGGaJu7WRiIrw1fJLMyKpNZwvsdVYrULJqSzu7q3uN4TcYADrUdvlOwMNLCu9SE+2ZNOXcx4nt8OBSnRuBxn9ro3TZM/vlkc2j/Y/jTVZm9BXtH8fRbVxTM9+XN0xExm8dgU9YTLsKG/EGchOTk5tF1bW3ta19TUHP0DlJSUdJIzRWSwO3Ij4XSeCWt3tnewae0OKyINWiWNXSTv3RrWZnMGaRtdhE3jewcth91GSkzvcMuxUUvJdE0OO17YvJbzD/2Qi/Z9C0egh9+8eoB/rCsleAY3a/585X6CZu/53d5yNrT9Pex4tVlPvK/3g8C0nMSz+XVEBhUV4Wdh3Lhxoe3S0tKTnHlUWVlZaHv8+PF9nklEBl5d9jnYIwJhbYdWvvkeZ49MK3fVEpiQzuhLa0k7p5XIFC8xo3ooTV7AVdO0uNFgdv3MHAAMw8a5CZ/AYUTgwMl3Gjr5UfUebEBSTxnnlv4agLo2D794ZX9owZ0TCQRNnt9ezc9W7Atr99vcTG2OJbXlaBH/yY5IKhPmApz1zZ8ig4mGo5yFCRMmhLa3b9+O3+8/5YI9mzZtOuH1IjJ0VcbPIDftMTytTqLSvESmenljwuRTXzhC+ANBOjx+cCWzYfJHyc9aQ277dprcObRFjCIvOcrqiHISkS47F0xIZ+XuWmId6SxJuI84ewrz678LNHK4E5tp1Y+yNeN6mqPygd4FdxKjnHxoXl5oZc2GDg+rDzZy8D2WvY83E/jEozYiWwLsHwVNhVC3+P+BYePeZUUD8NuKDBwV4WdhwYIFuN1uPB4PnZ2dbNiwgXnz5r3n+R6Ph7Vr14b2tWS9yNB3xTmZPLNxHNnn+1gTG8+mqHRucF2HNzYR0zQ1lRpw4PDiKx3uDN7JuZN3cu7E7W8j1tM7PE//jQa/CZmxrNzdO+wyL7J3lpIVeV/j0mfuoXWPm9hpBm9d8PVQAX5Ec5cvNMPK6Zj+xx8Q2dI7HryoCqiCnZnVkD5NveAy7Gg4ylmIiYlh2bJlof2//OUvJz3/8ccfp729d1xbYmIiixcv7s94IjIARiXa+Wvdx/noqGT+HGuyxd7GWwkF+O0RHHiP3r6R5oXtNfiC3Txedx9rWv5AWc96OmxOGqLHsmBM8qkfQCznsNv41NLC0H726pc55wffpf6dGLxtTg6VTaA0cQHQe6Pl+1V27kVh+0GbnZpzFvDpY55bZLhQEX6WPvGJT4S2H3roIXbu3HnC87q6uvjmN78Z2v/4xz9+yqErIjL4RTmjSHBmhbVVeXpvynx2W7UVkQaVIwVZtXcnLf4Kdne9yMqmH/Cv2jvxm15m5esG9aHCabdRkBINgN8dgavz6JSE8SX7iS/ZR6u/iucavk6jr/i9HgYAW9DP3LI/YPgaw9rrJ8+hJf/o/VYHLr2RxXOKQsNZRIYTvarP0mWXXcaiRb3LV3u9Xi6//HK2b98edk5jYyNXX301Bw70fiWXlJTEl7/85QHPKiL9Y0FW+DC0au/29zhz5Flf0gyEL1UPkOIsxGG4NMRgiLlsaiYAtdMW0J0Q/i1GysaVvNT4Pep8e3mm/itsaX8Mv+k57jGcvg4u2HUfb3Y+yrM1d+PxH1OIGwb7rvgQjUWTWfu5H3LoohuYmp3Qn7+SiGVUhPeBf/7zn2Rm9r4xlZSUMG3aNJYuXcpdd93FVVddRW5uLitWrADA4XDw6KOPkpCQYGFiEelLF485FzBIdhYwOfpKzom5LnTsbL6aHw7ePtBAxqa3SNi5Bnvg6H+LLPc0RiVEnORKGYycdhsfmpeHaXdQtvgyAOonzGD13V/mJ+fuoyNQB0AQP5va/0WTL3zmsMTavSz84Yf5a1kFf4+Po9YeZFP1ZwgEjy541zR2Kus//T+0FIzn7iVjBu6XExlgGg/RB7Kzs1m1ahU33XQTW7ZsIRgM8uqrr/Lqq6+GnZeamspDDz0UNo5cRIa+eZnzuDnjISJssWHtrvYWisvrGZ2bZlGyQcA0GffEn5nW0ojH7WRHYTT/mt9FVso0rpqWderrZdBJjXUzPTeB7Qsvom7KHDozcugKNGNvioBjZuqc4JzGvI4aDiX1LmefumMDUx/+Kc6uIB94FdYUmrTEGOy2d+Fs/CkzU7589CZdw+D6mdlaSVWGNfWE95Hx48ezbt06/vrXv3LxxReTk5ODy+UiLS2NefPm8cMf/pBdu3Zx2WWXWR1VRPqYy+4KFeCp29cx8d8PcO7/fpKlX7uNQ088Z3E6a8VVHArNduH2+Ji5s4Xr4r9IsjNfKx8OYYuLUvFHxdCZ0TuHeJQ9kctSvsfk6CsBA6dp4/8OvczF+75JrKeGxAM7mfm77+Hs6gQgpgfufDkIgB07kZFTwh7f5bCRk6SpK2V4U094H3K5XNx6663ceuutVkcREQs4Aj2Mf/0RovceOtq4eQNwh2WZrJa2bV3YvjPGz0z/K2yLPdeiRNIXbDaD2xfk85fVJaE2u+FkfswHubvydVp8h8jx9wBw4f7v8N+Jv6Z2yhzSt78TOj+v1mSKbxxjsz5FvCN8waa7FhUMyO8hYiX1hIuI9IGJo+Kwm14KoraEtacc2IrHHzjxRcOcPxDEk5RIRPLR8b6xWT2UJC7g/PEjeIjOMJEY7Tpu6sCAPYIUZy5XdXSG2nJbNzCx/jl23HIv3Um9/9/Lpk5j9Rd+wOy87x9XgH96aSFuh74lkeFPPeEiIn3gvHGp7Kpqw5uTBpt7Qu2u1ha6Gltwp4+8+bArW7oxxidSEGzA122jozICd0qA8vhZXJkQaXU86QMOu42b5+byz3VlobbXCr5ATssG4ry1mBhsHHUze1MvImBzs+WOLxBfup+yxZcR9a5FmqJcdj62eLQWb5IRQ0W4iEgfONJzV1Mwi9ScFUQmeyHNR0v+bNbV+7g43eKAFnh8UyUkzuOPs54hr3kN+dlrMEwTnyNahdYwkh4Xwb3Liujo8dNYXMbuB/7LrtopjJ/p4OXCb1IZPyN0bmv+OFqPmQf8WB9dpAJcRhYV4SIifcQT7OCZ+HhaPpDOJpeJ3R7HVWk/IlDdxsWTM6yON6De2t8AQKOvmKArlx0Z17Aj4xqAEfffYiQwGxvouP9+PM+/wOjDbY9d/jPa40ef9DqAxWNTmZ6TgE1zxssIoyJcRKSPtPgreM73ErgPNwS76TC7icSFLxDEOYJW/Vtf0kRPoI2n6r+Iy4gk0z2FLPc0CiOXMCEzzup40sdssbF0rlkb2jddLmKqKmgf9d5FeHykk8vPySQtVvPFy8g0cv4iiIj0s0W5M3AY4QVFlWcbANsqWq2IZIlOjx+AKu82wMRrdlHas4532v6CYejPznBki4gg4cYPhvYNr5fF6a4Tnjs7P4lPLS3kI+cWqACXEU094SIifeSiiaP4zc5JlHs2htrqffsYwyLe2FfPzLxEC9MNnN+/cQiCQSp7toa1Z7gmcfOcUw9PkKEp6ZZbaHnsMQL1vUORvKte5jN/uRnDoVJD5ET0L0NEpI847DYmJiwg2BIg2z2dLPc04h1HV4X0B4I4RsCQFJvPy+Lv3k1qtskbhUG2jDbodhuHl6rXrCjDlSMlhby//pXWp5/GkZZGwvXXqwAXOQn96xAR6UOX5V9NVvl5oX0jECC2spjo2gpWZMRyyZRM68INAH8gSPLebUS0NDKzBWbuAL/Dzne/NJfsiOlWx5N+5h49mrTPfMbqGCJDgopwEZE+NDkrni3lLUQ01THpkQdIPLQbh6cb02Zj5dS5w74If/tgI2nb37VKZoqDD0Qtp/Jdi7KIiIxkw/97URGRAZQS03szWnKwjNS9m3B4ugEwgkESivdaGW1AbCppIv1dRXhqRh3OYJdFiUREBicV4SIifejIYiN2R4CIRG/YsZT9W+j2DvMl7A2DptsvIGNWC9EZPWAzcefYKI+fzceX6KZMEZEjVISLiPSxm+fmUhV7DpGp/lCbK9ZPNE28sb/ewmT9yx8IAtCcWkTz7BmMOr+dsdfUUJ63gPjYGKJcGgEpInKE3hFFRPpYWqwbvz2Cnsm5pCftY382VCZn4kifzsGqNi6aNDxXjHzz8CqZpYnzKU2cj8vfQX7zatoiMrnyHI0HFxE5lopwEZE+ZhgGDd5DfGFcAsVFmXgJEGNP5gNJ52EAwaA5LJfo3lLeAsCmtn+R6MxnlHsK+1IvBCAx+sQLt4iIjFQqwkVE+oHNsLE3WBLa7wjU0eqvJMGZzZ6adiaOGp5Lt3cGGtnS8RgABjZSnUUsTfqCxalERAYfjQkXEekHhQlFRNmSwtrKejYA8NLOGisiDYhKz5bQtkmQFn8FEbZ46wKJiAxSKsJFRPrBFedkkRsx6/CeQZprPNH2ZADsw3Aoyv6SWtK2rqW2bX1Y+yj3VK6dkWtRKhGRwUvDUURE+kFStIuxUReQ6ioi2z2TSPvR3uBA0LQwWd/r8vpZ/+jzzPjzj5jqsLM/P4Y3i7pYOc0kO2IGBSnRVkcUERl0VISLiPSTL5y3jL+sLgHA1d5C4sFdJB7YSWv+OKrn5JAZH2ltwD6y+kAj6dvXAuDwB5hwoJU02wSMpR/gE/OXWpxORGRwUhEuItJPjswIUvTMw4x5+bFQu7dqA4/MWsxnl4+1Klqf2l7exAU7w4ehjI9dR6HjaxSmpFuUSkRkcNOYcBGRfhYX0Ri27y6rgWDQojR9q8vrx9XRjj3JAcbRYTbdYwvwOIbnDDAiIn1BRbiISD+rGT83bN/0QGbZO3R6/O9xxdDx6p56vLHx5CxtZuw1NWQtaCJ5fDsH8y6wOpqIyKCmIlxEpB9dcc4oKrPmYo8yMRxBojN6SJ7SxijPTn7/xiGr4521fbXtYBj8dfqjvDjlf6mesYj4mUEOJp/H3IKkUz+AiMgIpTHhIiL9KDsxEmw22j8wgWr7ep5OzGCv08aHE5dbHe2s+QJHh9R47G72pSxnX8pybEEfQZuT6bmJFqYTERncVISLiPSjCKed7kArd44qJUAi4AFgn72VTIb2EvbbKloA8Ac9PFL7MdJcRWRHzCTHPYNYWzqRLru1AUVEBjENRxER6WcXjBtDgjM7rK24ezUAB+o7rIjUJ97Y1wBAtXcHXrODCs9m1rb+kcfqPsUojUQRETkpFeEiIv1sTkES+RELwtrKejZgmiZ7a9otSnV2mju9oe3ynk1hx9Jc41g6Nm+gI4mIDCkajiIiMgAKIuezqf0RRrmnUhA5n7yIORiGwYG6odkT3t7jJ23rWrLWraImdx/VY0xao3uH1WS7Z5AS47I4oYjI4KYiXERkAMQ5Mrkl4yFctmOWcDdNMAx2VLYyOSv+vS8ehLZXtpKzaSWp29dz+3a4zYC35+Xw4Pmt5EbMxjCG5jh3EZGBouEoIiID4JrpWbiIJK50P/mvPMn033+fpV/9MAn1+1mxq9bqeGdsf1ULybu2hPYNEybG53BzxkPcNH2WdcFERIYI9YSLiAyA/JRowGTOr76Bw9MTaj93zQ959so/WhfsfXj7QAMJxXuw9fjC2qOyAtgMB+MztFKmiMipqCdcRGSALBybjjcnLawtuqQce9DDoSE0S8o7xU3YEu1kzm0mNqcbmyOIO8HHvtGXkhjl1FAUEZHToCJcRGSAxEU6qB4XvoR9T52drNbNPLWlyqJUZ8Z/eIEeb0wCJfMvI2Wxn6Jrakg+L0h17BQ+PD/f2oAiIkOEhqOIiAyQjLgI1oybRdHbjxOX3AZpPlbn26nvegsS51kd77RUtnQD0O7O4NUxX+aN/PsobHodt78D07BjH6ILD4mIDDQV4SIiAyQhykVLwXjeumcpq30b2OjsJECQLHcXFwF17T2kxUZYHfM9mabJ45sqAegOtFLas5bciNnsTb3I4mQiIkOPhqOIiAygD83LY3PCObzjbCdA79COKs92OgON/GNtmcXpTm57ZWtou7RnHatbf88jtR/lmfqvsLPjOc4bl2phOhGRoUVFuIjIAEqNdZMXMQeHcbTH2yTIoe43Aahv91gV7ZRe2V0X2i7uXh3arvftp9a7m6nZCRakEhEZmlSEi4gMMIfNTcHhZeztOCmIWEiqcywAm8uarYz2nnp8AQAiG2sJtFVQ490ZdvycpCUaDy4icgY0JlxEZIB9amkhDS9eTJprHPmR83Efs4rmzqo2LpyUYWG6E3t0QzkAk594gKRtW5iYG8/aMT28Nc5Hc2Ikn194lcUJRUSGFhXhIiIDzGm3keIaQ4prDACOrg5cHW10pY0CYH1JE7Pzk6yMGMYXCNLY4SW1bTepuzYSNG0UlLZQUArZCZeyIS+PxKgYq2OKiAwpKsJFRCwQW1FM9uqXSTy4i9jqUrw5qaRdFODZ8T/irf0wKy9x0Cx60+XtHYoyefM/CfrCRzH6z7mWSTFpJ7pMREROQmPCRUQssDDOT96bzxNXVYJhmkRU1pLRsp2Jdc8AUNXac4pHGBimafLnt4qxBX2MqliPYQ+GjgXS4/AkpXL9rGwLE4qIDE0qwkVELDB22cKwfTNg0NPsZErNk2AGKW/qsibYuxxq6AQgvqcS9zg3Y6+pIXtRIwljOimbeyEAWQmRVkYUERmSVISLiFjAnpBAe2ZeaN+wmfg6HBTTgKP5OdYcbLQw3VFPb6kCoDkqnz/PfILHz/ktFdOW4lk+gb3LP2xxOhGRoUtjwkVELBK44lr2VdUzM/gfdqXW8/W0HPY5esgKbuYirqC9x0dshNPqmCFdwRbK4mdRnjAbTBOAG2bnWJxKRGRoUhEuImKRSZ+4g7VvFrOmyc9zPY8BvePAK71bafKV8NreGK44Z5S1IQ8LmgGeqv8iblsMhZHnUxi1hCh7IqPiI059sYiIHEfDUURELBJ3uJc7OfFaImxxYcd2dDzDgboOK2IBvTdkvrrn6AqZlZ4tdAdbaPFXsKH9Yf5d+zEMZ+ugmcFFRGSoUREuImIxh+FmQvQlof1oewopzt45xCuarblB82B9B1vKWyAYwAj42d/1atjxFOcYPrVopiXZRESGAw1HERGx0M1zc/nnujLGR11EpWcrE6IupiByPjaj9+35Pxsq+MT5Y3A77AOa65mt1QCk7tjApH8/gH+andapJs2xvT3fRVHn47CrH0dE5P1SES4iYqH0uAgy4yOoboXLU/73hOfsqmpjem7igGWqa+8dm+4MdDH/+fvxtplc9gZc8paN1xdm8adFLXzjvJsGLI+IyHCkbgwREYtdPzMbgkFiKkvIfeM53K2NxHeXs6jkl0R76nhtb/2AZTFNk3+sLQNgwr4n8FYeXZzHFgySmn05H0z/AzkJKQOWSURkOFJPuIiIxeq+/nWWvbQCZ3fvwjjTGh5lTPouALz2KNbl3DVgWfbVHr0ZtGDLC3g45sZLl42qWedxw8zRA5ZHRGS4Uk+4iIjFAh3toQIcIKq0MrQ9ufYpDDNAa5dvQLI8v713LHhsTzWjc/dScFEdCWM6MRxBWmZMJehyk58SPSBZRESGMxXhIiIWi5o5K2y/q8EV2rZ5a9lX9xN+8fo6NpY29WuO4oajHwTaIzL527R/sXPSDcQvsJF9bQ+br/g0V00bHPOWi4gMdRqOIiJisahZR6f660pKw5XUjD8Ijyam8JvEeNoC71DQ5iR23+eYkBlHlKvv37p7fAGe3FwZ1lYVmU5jwWd5K+/TJHaX4IlOYXRqTJ8/t4jISKQiXETEYhHjxzPqJz+hecxEXqzwUdD0Jg963+LF4AagdxhKcc/bTPReykNv2/jk+YV9nmHl7tqw/WZfGU/Vf5ExUYuZGnMNwehC4iKdff68IiIjlYajiIhYzHA6ib/8MvLG5wNQnLSIpLRP4TLCe503tz+K1x88wSOcvf214atzbu34L0H87O9axX/r7uXtlgf5wKzsfnluEZGRSEW4iMggYRgGyyakARBhi2V67AdCx/Ij5rM44dMA7K9t77PnNE2TvTXhj9foO8Sh7reOPYtIWyJxEeoJFxHpKxqOIiIyiEweFc8ru+sAmBB9MWU965kYfSl5kXND5zy7rZrPLo896+cKBE1++cr+sLbst18i/8Cb7J3sZk+mBwCXEcXdM2496+cTEZGjVISLiAwiNtvReblthoNLUr4Tdtww/ZiGg5+t2MdV00ad1Y2S7y7Aozz1THr5zxhNPXx3A1RmJfDQ4i4mLPswCwvy3vfziIjI8TQcRURkkLlpTu5xbfaglwWlD/DBbR/FFvQD8NSWKsqbut7Xc/T4AmH7Tn8nl626F6OpJ9SWVdnCkoR7+Py8O9/Xc4iIyHtTES4iMogEWlqI3riacU8+xIT//B6AtI7d3Lz1VuZW/JnMjh3Mqvxb6PzHNlbQ0OE5o+fwBYI88NrBow2myaX7vo6xozHsPFu8nc7xS4h0RL7/X0hERE5IRbiIyCDRuXo1++bNp+ITn6TglSfJXrMCw+fhwv3fI6XraNE8r/wPJHbsZVv7E/QE2nh4TSl17T0neeSjmju9/HrVgfBGw2BbxnUkzewmdUobjqjenvZ9593AuePS++z3ExGRo1SEi4gMEu4JE8L27T4vcZUlrCj8OsFj3q5r7Db+2/ZzNrT/nZXNP8RvevnH2jJ2VrUSDJonfGx/IMiqPbX8ZXXJccdMM0hx0iKenP0A0efYGXW1lz23f4ySBZczKy+xT39HERHppSJcRGSQcCQm4iocE9aWeHAXtbGT2Jj1IQBeThjD1bkFlNA7g0qddw9vNP+SoOnn5Z21/OKV/Zjm0UI8GDRp6vTyq1UH2FreetxzBs0Aq5p/wrrWv1AZM45Hpv6Jpyb/gpKZl7F8biGGYRx3jYiInD3NjiIiMohEzZyFr7yCyHPOIWrWTDoTxwOwJvdjdLhS2ZC6FHvjN8DsDl3T6CvGE+wk0h4PwM9X7j/hYx/L7ukmqqaC6tJ/UZm/Bb/DoMa7g/MSP0t85EQARqdoiXoRkf5imMd2mcig1dbWRnx8PK2trcTFxVkdR0T6SaClBVtUFIbLBUB7j48/vlkcdk6Tr4TnGr6Bz+wmxp7KpcnfI8aRelqP7+5uYcH/3oe7tSXU9rm77FSk9vZ4R9mSuD79N9w4azQ5SVF980uJiIwQZ1KvaTiKiMggYk9ICBXgALERTuYUJIWdk+TMZ1nSl4mzj+Li5G8T40gltqcaw+cloXgPea89g6O787jHdvvbuHr/54nyNIW1j2rq7Yux4WBJ4r1MGZWiAlxEpJ9pOIqIyCC3sDCFd4rfVTi7p3Bt2s+xGXZc3jaW/eSj9DTY4fD03+2ZuezOdxPvzCLCFktK5z6u3P1F4j1VlMYl09XjDj1WbrOb9QRYlPBJMt1TmD86eSB/PRGREUlFuIjIEDAtN4EtZS1hbTbDDsCU+qcwe4IQsIeOxRRv5oXYFwjix2lEMt99Hh/yVAPgivPTVddbhHclpTEmdh7nJU6gIHIBH1lYQHyUc2B+KRGREUxFuIjIIGWaJt6DB+l8+23GvP023fMuYW/OpLBz7IEeZlb+nbbUAJ7Wo8WzWbaB4NTe+b59Zjctjgj2pVzAuIYVJI/rIGK8k2fn/ZSG+N5pEQsAu81QAS4iMkA0JlxEZLDy+Whf9Sp1v/glnW+8ybSqXcedkuCpxGePJCrFG2rrSkvlQGxd+EMFu1mbcxcmBg2jJvLYeX8JFeAAsREO7l1W1H+/i4iIhFFPuIjIINSzdx9d69bRs3MnZlcXAN2rV7Pwlnt4+0BD6LzGqDH8ZcZjTEx+iinRf6cnJ5N/n/MN1rb+GbtnJwF6i3Of2UNT1Ggen/hLKuJnEbQdffsflRDBVdOyBvYXFBEZ4TRF4RChKQpFRpbKz32OtudfOK69cNUrbOpxs/pg43HHDDNAhL+NbmfvKpcB00dHoJ7uQDOR9kTiHaOOu+a6GdnkJmsmFBGRvnAm9Zp6wkVEBqGUT3+anp278JaW4sjMJHrhAmIWLsQeH8/cUdFMyornD28cCrvGNOyhAhzAbjiJd4w6YfENcMu8XNJiI/r19xARkRNTEX6WvF4vW7duZcOGDaxfv57169eze/duAoHeecJuu+02/vKXv1gbUkSGHHdBAaOfexbT48GIijpu+fgYt4O7FhUct5DP6UqPi1ABLiJiIRXhZ+HXv/41n//85/F6vac+WUTkDBkOB4bjvd+mYyOcfOTcAv781pkX4tfN1BhwERErqQg/Cw0NDSrARcRS8ZFO7l1WRFOnl7+vLT3l+Smxbq6bkYXbYT/luSIi0n9UhPeBnJwcZs+eHfp58MEHeeyxx6yOJSIjhN1mkBrr5uNLRrOxtJlOTwDTNNlT0x4659yiFGbmJmKzGSd5JBERGSgqws/CHXfcwT333EN6enpY+8MPP2xRIhEZyaJcDhYVpYb2L5mSaWEaERE5GRXhZyEvL8/qCCIiIiIyBGnFTBERERGRAaYiXERERERkgKkIFxEREREZYCrCRUREREQGmG7MHKQ8Hg8ejye039bWZmEaEREREelL6gkfpO6//37i4+NDPzk5OVZHEhEREZE+oiJ8kPrqV79Ka2tr6Ke8vNzqSCIiIiLSR4bdcJQHH3yQn//85336mPfffz/XXHNNnz7mqbjdbtxu94A+p4iIiIgMjGFXhDc0NLB3794+fczW1tY+fTwRERERGdk0HEVEREREZIANuyL8G9/4BqZp9unP7bffbvWvJSIiIiLDyLArwkVEREREBjsV4SIiIiIiA0xFuIiIiIjIAFMRLiIiIiIywFSEi4iIiIgMsGE3T/hAmzZt2nFtZWVloe2nn376hOds2bKl/0KJiIiIyKCmIvwsbd269aTHm5ubaW5uHqA0IiIiIjIUaDiKiIiIiMgAU0/4WTJN0+oIIiIiIjLEqCdcRERERGSAqQgXERERERlgKsJFRERERAaYxoQPEUfGnre1tVmcRERERERO5Eiddjr3DKoIHyLa29sByMnJsTiJiIiIiJxMe3s78fHxJz3HMDW9x5AQDAapqqoiNjYWwzAG5Dnb2trIycmhvLycuLi4AXlOGbr0epEzpdeMnCm9ZuRMDfRrxjRN2tvbGTVqFDbbyUd9qyd8iLDZbGRnZ1vy3HFxcXqzk9Om14ucKb1m5EzpNSNnaiBfM6fqAT9CN2aKiIiIiAwwFeEiIiIiIgNMRbi8J7fbzbe+9S3cbrfVUWQI0OtFzpReM3Km9JqRMzWYXzO6MVNEREREZICpJ1xEREREZICpCBcRERERGWAqwkVEREREBpiKcBERERGRAaYiXN633bt388tf/pIbbriBiRMnEh8fj9PpJCUlhVmzZnHfffexefNmq2PKIOH1elm/fj0PPPAAH/nIR5gyZQoOhwPDMDAMg9tvv93qiDIAvF4vDz/8MJdeeil5eXlERESQmZnJggUL+MlPfkJDQ4PVEWWQCAQCbNu2jT/96U/cc889zJo1C5fLFXrPOO+886yOKINMSUkJf/jDH/jQhz7EOeecQ2JiIk6nk6SkJKZOncrHP/5xXn/9datjHmWKnKGXX37ZnDRpkgmc1s8HPvABs7Gx0erYYqFf/epXpsvlOunr5LbbbrM6pvSz3bt3m9OnTz/p6yAtLc187rnnrI4qFnviiSfMqKiok75WlixZYnVMGSQ2bdpkzpkz57TrkvPOO88sLS21OrapZevljG3cuJGdO3eG9g3DYOrUqYwdO5bExETq6+t56623qK+vB+A///kPu3bt4vXXXyc5Odmq2GKhhoYGvF6v1THEQhUVFSxbtoyqqiqg931j8eLFFBYWUldXx8qVK+nu7qauro6rr76aF154gWXLllmcWqzS0tJCV1eX1TFkiNi7dy/vvPNOWNvYsWOZPHkyKSkptLS0sHr1aioqKgB47bXXmD9/Pm+++SajR4+2IjIAKsLlfZs2bRof/ehH+eAHP3hcce31evnpT3/KN77xDQKBADt37uQTn/gE//73vy1KK4NBTk4Os2fPDv08+OCDPPbYY1bHkgFwyy23hArwvLw8nn76aaZOnRo63tDQwI033sgrr7yCz+fjhhtu4ODBgyQkJFiUWAaD9PT0sPeMl156iV/84hdWx5JBqrCwkLvuuosPfehDZGVlhR0LBoM89NBD3HvvvXR1dVFVVcUtt9zC6tWrMQzDmsBWd8XL0PPf//7XfOKJJ07r3J/+9KdhXwHt3r27f8PJoFRSUmLW1NQc137bbbdpOMoI8Nxzz4X+P7tcLnPbtm0nPK+jo8McPXp06NyvfvWrA5xUBovq6uoTDhf41re+peEocpzXXnvNfOihh0y/33/Kcx9//PGwuuTFF18cgIQnphsz5Yxde+21XH311ad17r333suoUaNC+88//3w/pZLBLC8vj/T0dKtjiEV+85vfhLZvu+02pkyZcsLzoqOj+e53vxva/93vfoff7+/3fDL4ZGRkkJuba3UMGSKWLFnC7bffjt1uP+W511xzDXPmzAntP/fcc/0Z7aRUhEu/stvtzJ07N7RfUlJiXRgRGXAdHR288sorof077rjjpOdff/31xMbGAtDU1MQbb7zRr/lEZORZuHBhaNvKukRFuPS7Y8daBQIBC5OIyEBbvXo1Ho8H6O3pnj179knPd7vdzJs3L7S/atWqfs0nIiPPYKlLVIRLv9u+fXtoOycnx8IkIjLQdu/eHdo+Mjf8qcyYMeOE14uI9IXBUpeoCJd+tXr1avbv3x/av+CCCyxMIyIDbe/evaHtvLy807rm2LHAe/bs6fNMIjJylZeXh33DZmVdoiJc+k0wGOSzn/1saH/u3LnMmjXLwkQiMtAaGxtD26d7c25GRkZou6mpqc8zicjI9dnPfjY0BCU3N5crrrjCsiwqwqXffO973wtNnm+z2fjJT35icSIRGWgdHR2h7cjIyNO65tjzjr1eRORs/PWvf+W///1vaP/+++/H7XZblkdFuPSLZ555hu985zuh/S9+8Yuce+65FiYSESv09PSEtl0u12ldc+wfxe7u7j7PJCIjz4YNG7j77rtD+x/84Ae5+eabLUykFTOHlQcffJCf//znffqY999/P9dcc80ZXbN+/XpuuukmTNMEYNmyZXzve9/r01xy9gbL60WGt4iIiNC21+s9rWuOzKYCp997LiLyXoqLi7niiitCnQJTpkzhd7/7ncWpVIQPKw0NDWE3QfWF1tbWMzp/165dXHLJJXR2dgIwe/ZsnnzySZxOZ5/mkrM3GF4vMvzFxMSEtk+3V/vY8469XkTkTFVXV7N8+XJqamoAGD16NC+99BLx8fEWJ9NwFOlDxcXFLF++PHQj1sSJE3nhhRf0R1RkBEtOTg5t19bWntY1R/5YAiQlJfV5JhEZGRobG1m+fDkHDx4EIDMzk5UrV5KZmWlxsl4qwoeRb3zjG5im2ac/t99++2k9d2VlJcuWLaOqqgqAMWPGsGLFirA/wDK4WPl6kZFj3Lhxoe3S0tLTuqasrCy0PX78+D7PJCLDX1tbGxdffDE7d+4EejsEVqxYQUFBgcXJjlIRLmetrq6OZcuWUVxcDEB2djYrV65k1KhRFicTEatNmDAhtL19+3b8fv8pr9m0adMJrxcROR2dnZ1ceumlbNiwAYC4uDheeuklJk2aZHGycCrC5aw0NjZywQUXhMYWp6WlsXLlSvLz860NJiKDwoIFC0KznXR2dob+KL4Xj8fD2rVrQ/tLly7t13wiMrz09PRw5ZVX8vbbbwMQFRXF888/z8yZMy1OdjwV4fK+Hfmq58jyr4mJiaxYsSLs62cRGdliYmJYtmxZaP8vf/nLSc9//PHHaW9vB3rfUxYvXtyf8URkGPH5fFx33XWhFTHdbjdPPfUUCxcutDjZiakIl/elq6uLyy67LNSrFRsby4svvsjUqVMtTiYig80nPvGJ0PZDDz0UGqP5bl1dXXzzm98M7X/84x/H4dAkXiJyaoFAgJtvvpnnn38eAIfDwaOPPmrpsvSnoiJczpjH4+Hqq6/mrbfeAnrn8X322WeZM2eOxclEZDC67LLLWLRoEdA7V/jll18e+gbtiMbGRq6++moOHDgA9M6K8uUvf3nAs4rI0GOaJnfddRePPfYY0LtK98MPP8yVV15pcbKTM8wjK6qInKYvfelL/PjHPw7tz5gxg/nz55/WtUVFRdx33339FU0GsWnTph3XVlZWRnNzM9A79CA3N/e4c7Zs2dLPyWQgVFRUMGfOHKqrq4HeP5JLlixh9OjR1NfXs3LlSrq6uoDeHqwXX3wxbBiLjDyXXnppaMatI2pqakJTXUZHR1NYWHjcdc8//7wmBhhhfvvb3/LJT34ytF9UVMSFF154WtcmJyeHrfA9kFSEyxm7/fbb+etf//q+rl2yZAmvvfZa3waSIcEwjPd1nd6iho89e/Zw0003nfSDVWpqKg899BCXXXbZwAWTQSk/P/+0p7U8VnFxsSYHGGG+/e1vv+9COi8vj5KSkr4NdJo02E5ERAbE+PHjWbduHY888gj/+te/2LlzJ7W1tSQkJDB69GiuueYaPvKRj5CSkmJ1VBGRfqeecBERERGRAaYbM0VEREREBpiKcBERERGRAaYiXERERERkgKkIFxEREREZYCrCRUREREQGmIpwEREREZEBpiJcRERERGSAqQgXERERERlgKsJFRERERAaYinARERERkQGmIlxEREREZICpCBcRERERGWAqwkVEREREBpiKcBERERGRAaYiXERERERkgKkIFxEREREZYCrCRUREREQGmIpwEREREZEBpiJcRET6zaFDh4iLi8MwDAzD4Kc//ekpr7n77rtD5+fn59Pa2joASUVEBpZhmqZpdQgRERm+Hn74YW699VYAXC4X69atY9q0aSc896mnnuLqq68GwGaz8dprr7Fo0aIBSioiMnDUEy4iIv3qwx/+MDfddBMAXq+Xm2++me7u7uPOq6qq4s477wztf+1rX1MBLiLDlnrCRUSk37W2tnLOOedQWloK9A45eeCBB0LHTdPkwgsvZOXKlQDMnTuXt956C4fDYUleEZH+pp5wERHpd/Hx8fzjH//AbrcD8OCDD/L000+Hjv/kJz8JFeAxMTH84x//UAEuIsOaesJFRGTAfOtb3+K73/0uACkpKWzbto3q6mrmz5+P1+sF4KGHHuL222+3MKWISP9TES4iIgMmEAiwePFiVq9eDcCyZcuoqKhg7969ANxwww38+9//tjKiiMiAUBEuIiIDqri4mGnTptHW1hbWnpOTw7Zt20hISLAmmIjIANKYcBERGVAFBQX89re/DWuz2Ww8/PDDKsBFZMRQES4iIgMuLS0tbD8rK4s5c+ZYlEZEZOCpCBcRkQHV2NjIbbfdFtZWXl7O5z73OYsSiYgMPBXhIiIyoO68806qq6sBKCoqwmbr/VP04IMP8swzz1gZTURkwKgIFxGRAfO73/2Op556CoCoqCieffZZvvrVr4aO33nnndTU1FgVT0RkwGh2FBERGRB79+5lxowZdHV1Ab0F+cc+9jH8fj8LFy7knXfeAeCiiy7ihRdewDAMK+OKiPQr9YSLiEi/8/l83HzzzaEC/KqrruJjH/sYAA6Hg3/84x/ExMQA8NJLL/GLX/zCsqwiIgNBRbiIiPS7r3/962zatAmAzMxM/vjHP4YdLywsDCu8v/KVr7B9+/YBzSgiMpA0HEVERPrVqlWrWL58OcFgEMMwePHFF7nwwgtPeO4HPvABHnvsMQAmT57M+vXriYiIGMi4IiIDQj3hIiLSb5qamrj11lsJBoMA3Hvvve9ZgAP8/ve/Jzs7G4AdO3bwpS99aUByiogMNPWEi4hIv7n++uv573//C/T2bG/YsAG3233Sa1599VUuuOCCUOH+/PPPc8kll/R7VhGRgaQiXERERERkgGk4ioiIiIjIAFMRLiIiIiIywFSEi4iIiIgMMBXhIiIiIiIDTEW4iIiIiMgAUxEuIiIiIjLAVISLiIiIiAwwFeEiIiIiIgNMRbiIiIiIyABTES4iIiIiMsBUhIuIiIiIDDAV4SIiIiIiA0xFuIiIiIjIAFMRLiIiIiIywFSEi4iIiIgMMBXhIiIiIiID7P8DK/BxTQ83/6YAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAALNCAYAAACBLr/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RVVfbA8e99NS+9J6QnhNCrAtIERCzYGyioYEVn7L2LM/Mbx+7YxQYqWMZeaVKk995JAkkI6b29en9/RB48UgiQ5CZhf9ZirXfO3ffeHSDJfuede46iqqqKEEIIIYQQotXotE5ACCGEEEKI040U4UIIIYQQQrQyKcKFEEIIIYRoZVKECyGEEEII0cqkCBdCCCGEEKKVSREuhBBCCCFEK5MiXAghhBBCiFYmRbgQQgghhBCtzKB1AqLpXC4X2dnZ+Pn5oSiK1ukIIYQQQohjqKpKeXk5UVFR6HQNj3dLEd6OZGdnExsbq3UaQgghhBDiODIzM4mJiWnwuBTh7Yifnx9Q+4/q7++vcTZCCCGEEOJYZWVlxMbGuuu2hkgR3o4cnoLi7+8vRbgQQgghRBt2vKnD8mCmEEIIIYQQrUyKcCGEEEIIIVqZFOFCCCGEEEK0MinChRBCCCGEaGVShAshhBBCCNHKpAgXQgghhBCilUkRLoQQQgghRCuTIlwIIYQQQohWJkW4EEIIIYQQrUyKcCGEEEIIIVqZFOFCCCGEEEK0MinChRBCCCGEaGUGrRMQQoiGqKqKw+HA6XRqnYoQ4iTp9XoMBgOKomidihBtihThQog2x2azUVJSQmlpKQ6HQ+t0hBCnyGAwEBAQQGBgICaTSet0hGgTpAgXQrQpVquV/fv3AxAQEICvry96vV5G0YRoh1RVxel0UlFRQXFxMcXFxSQkJGA2m7VOTQjNSREuhGgzHA4HmZmZGI1G4uPj0ev1WqckhGgGvr6+hIWFceDAATIzM0lISMBgkBJEnN7kwUwhRJtxePpJTEyMFOBCdDB6vZ6YmBgcDgelpaVapyOE5qQIF0K0GRUVFfj4+MicUSE6KJPJhI+PDxUVFVqnIoTmpAgXQrQJLpeL6upqfHx8tE5FCNGCfHx8qK6uxuVyaZ2KEJqSIlwI0SY4HA5UVZUHtoTo4Mxms3v5USFOZ1KECyHahMOjYjqd/FgSoiM7/D0uI+HidCe/7YQQbYosRShExybf40LUkvWBRL1UVSWnrAaATgEWjbMRQgghhOhYpAgX9Vq8J59NGSUA9IkJYEz3CG0TEkIIIYToQGQ6iqijxu50F+AAW7JKqbE7tUtICCGEEKKDkSJc1FFWY6/Tt/5AsQaZCCGEEEJ0TFKEiyZZk16kdQpCCCGEEB2GFOGiDgV5cl0I0XJGjRqFoigoisLixYu1TkcIITQhRbioY3NmidYpCCGEEEJ0aFKECyGE6NAWL17sHnkfNWqU1ukIIQQgRbioh14n01GEEEIIIVqSrBMu6tDpFLzsJYRUpRJalYrJWcXamCnYHC5MBnnfJoQQQghxqqQIF3V0KlzNyDWT3G2bzpu10TeyMq2QkSlhGmYmhBBCCNExyLCmqCO+Wz+PtslVhb/1EBtkrXAhhBBCiGYhRbiowxwYTY3B36MvtCpVo2yEEO2Fy+Vi5syZjB07lsjISLy8vEhISOCyyy7jhx9+OKFrlZaW8sUXXzB16lQGDx5MaGgoJpMJf39/OnfuzHXXXcfXX3+Ny+Vq8BrTpk1DURRGjx7t7luyZIn7Ic2j/yQkJNT79SxdupRnnnmG8847j7i4OLy9vTGbzXTq1IlzzjmH//u//6OgoOCEvjYhhACZjiLqoygUeHcmvHw72/3iSLNEYTcEap2VEKINy8nJ4fLLL2f16tUe/QcOHODAgQP89NNPXHHFFcycOfO41/ruu++YOHEiVqu1zjG73U55eTlpaWl8+eWX9O3bl++//57ExMRm+1oO3ycxMZGDBw/WezwnJ4ecnBwWLVrE888/z3vvvcf111/frDkIITo2KcJFHbuKdnF3RCCFoQnY1Rq8dEVc59dbtvARQtSrpKSEc845h507d7r7EhMTGTJkCGazme3bt7NmzRq+//57dLrjfwCbl5fnLsBjYmLo0aMHkZGReHt7U1FRwc6dO9mwYQOqqrJ582bOPvtsNm3aREhIiMd1Bg0axN///ncOHjzoHomPioriiiuuqHPPY891Op3uAtzX15eePXuSlJSEv78/drudrKwsVq1aRVlZGZWVldxwww0YjUYmTJhwQn93QojTlxThog4fgw85jiPTT2pcZVS5ivDRhzRylhDidPXggw+6C3CTycS7777LzTff7BGzZs0axo8fz7fffovJZGr0etHR0Tz//PNcffXVJCcn1xuTnp7OnXfeydy5c8nKyuLRRx/lww8/9IgZN24c48aNY/Hixe4ivEuXLrz11lvH/Zp0Oh033XQTN954I8OGDcNoNNaJsVqtvPHGGzzxxBM4HA7uuOMOLrroInx9fY97fSGEkCJc1BHtF42P0YdKe6W7r8i+Hx99CDV2J15GvYbZCQGqqlJtd2qdRptlMepRlNb57GrPnj188skn7vb06dOZPHlynbhBgwYxb948+vfvT1VVVaPXvOSSS7jkkksajUlMTOTnn3/mzDPPZMuWLcyaNYuXXnqJoKCgk/tCjmEymfj4448bjTGbzTz88MO4XC4ee+wxSkpK+Oyzz7jzzjubJQchRMcmRbioQ6fo6BrUlQ15GwDw0vljc9UW5LNWZ3DL8OadeynEiaq2O3l/SZrWabRZU0cm4W1qnR/vH330EaqqArWFdn0F+GEpKSncd999/Pvf/26WexuNRiZNmsSWLVuoqalh2bJlxy3eW8JNN93EY489BsCCBQukCBdCNIkU4aJeU/tM5ZsNGYQYE7HoAt2jamXVdo0zE0K0JYsWLXK/vuGGG44bP3ny5BMqwktKSli1ahXbt2+nsLCQiooKjxVRdu3a5X69adOmFinCXS4X69evZ9OmTWRlZVFWVobdXv/Pwk2bNjX7/YUQHZMU4aJeQ6OHsnpHqNZpCCHasMMPRh42ZMiQ456TkpJCcHAwRUVFjcZlZWXx2GOP8c0339S7Skp9mnupQIfDwRtvvMFrr71GVlaWJjkIITouKcJFg1KCFcoObCGkKo3QylRqjP6sjr0Vl0tFp5O1UoQ43ZWWlmKz2dztuLi4Jp0XFxfXaBG+ceNGxowZQ3HxiW0QVl5efkLxjbFarVx66aXMmzdPsxyEEB2bFOGiQQMrFhO+5SF3u9CSwOrYW8kpqyEq0KJhZuJ0ZzHqmToySes02ixLKz08XVFR4dH29vZu0nk+Pj4NHrNarVx11VXuAjwsLIypU6cyZswYkpOTCQ4OxmKxuKfIzZgxg5tuugmg0Y17TtRzzz3nLsAVRWH8+PFcddVV9O7dm6ioKCwWi8eKKYfzOTw/XgghjkeKcNEgR0g3j3ZQdSZ6l5Ws4mopwoWmFEVptQcPRcOOXYqvqqqq0QL7sMrKygaPffvtt6SnpwO1SxWuXbuWTp06NRjfEiPPVquVN998092eMWMGN954Y6vmIITo+GTbetEgY2R3j7YOJ0HVByipsjVwhhDidBIQEOCx5ndGRkaTzsvMzGzw2B9//OF+fd999zVagEPtjpzNbc2aNe5R/p49ezZagLdUDkKIjk+KcNGg0JAQSrxi2OMTz1fhZ/Fy3DisBn+2Z5dpnZoQog1QFIW+ffu626tWrTruOXv37qWwsLDB49nZ2e7XvXv3Pu71/vzzz+PGnOia6S2RgxBCHEuKcNGgnUU7OS86iKvCVf7lk83n+j2UmsK0TksI0YaMHj3a/frzzz8/bvynn37a6PGjt7U/3qY+69evZ+3atce9p5eXl/t1Q0sLnmwOLpeL6dOnH/eaQghxLCnCRYMifSKpdpW6205slDkOaZiREKKtueWWW9yvV61a1Wghvm/fPl577bVGr5eUdOSB259++qnBuKqqKm6//fYm5RgSEuJ+ffDgwePGH53DkiVLKC0tbTD2pZde8limUQghmkqKcNGgIFMgnSsD6Zp15Gn/QnvtA1OyAoAQAmrX/Z4yZYq7feuttzJz5sw6cevWrWPs2LFUVlZ6zCM/1tGb7cycOZNXXnkFp9PpEbNv3z7OO+88NmzY0KQHQRMTE90rtxw4cOC4o+f9+/cnOjoaqF2G8ZprrvGYogK1D28+88wzPPbYY03KQQghjqWoUk21G2VlZQQEBFBaWoq/v3+L3adm505y/vFPrHv24KqspMwCd9znQ7AxgV6+l5FgGcx5PSPoGRXQYjmI009NTQ3p6ekkJiZ6TB8QbV9xcTFDhgxh9+7d7r6kpCSGDBmC2Wxm+/btrFmzBlVVufLKKyksLGTJkiVA7Y6bo0aN8rjeyJEjPeZZJyYmMmDAAAICAti7dy8rVqzA6XQSHR3NvffeyyOPPALU7sY5Y8aMenOcNGkSs2fPBmqXUrzggguIi4tDr69dzjE4OJgnnnjCHf/JJ59w8803u9s+Pj4MHTqU+Ph4CgsLWbx4sXsZxVmzZjFp0iR3rPxabZx8r4uOrqn1mqzxJerQeXtTvXGju+1fDbf4vIk94MhHuvO250oRLoQAICgoiIULF3LZZZexbt06ANLS0khLS/OIu/TSS5kxY8Zxt5b/+uuvGTduHBs2bAAgPT3dvWzhYT169OB///sfa9asaVKO//73v1m4cCE5OTlUVVXx3XffeRyPj4/3KMJvuukm9u3bx7///W+gdlnF+fPne5zj5eXF66+/zsSJEz2KcCGEaAqZjiLqMMbGolg81wH3P9TwkmJCCBEVFcWqVav4+OOPGTNmDGFhYZhMJmJjY7n44ov53//+xw8//ICfn99xrxUREcGKFSt46623GD58OIGBgZhMJmJiYhgzZgzTp09n7dq19OjRo8n5xcfHs3nzZp5++mkGDx5MUFAQBkPj41D/93//x9KlS5kwYQLR0dGYTCZCQkLo27cvjz76KFu2bGHq1KlNzkEIIY4m01HakdaajgKQPmECNZu3AKD4+ZJ37ll4JSmEVqWS7d+HtTE3cf/YlBbNQZxe5CNqIU4P8r0uOjqZjiJOSdhdd4GqYu7aFf22D+i29CX4a1EBvWpnbcxN2J0ujHr5MEUIIYQQ4kRJES7q5TtixJFGQU+PYyGVqQCU1zgI9ml4lQMhhBBCCFE/GcYUxxfuOe/S116Al72EZfsKNEpICCGEEKJ9k5FwcXzBSWRa4tjkE842SwCHjN6k6Eyk5lVonZkQQgghRLskRbg4rh0le5kQCZAH5KGoOmJ1evnPI4QQQghxkmQ6ijiuBP8Ej7aKixJ7ljbJCCGEEEJ0AFKEi+MylVQyNCOIwbtc7r5ixwENMxJCCCGEaN9kRoFoUOWq1Rx88EGchYXcBxT6wZ5eCQQbE/DRhwFQXGkjSFZIEUIIIYQ4IVKEiwYZQkNwFha62yHlMN7nOew+Rxae33GojGHJoVqkJ4QQQgjRbsl0FNEgU0ICitHo0eeX7TkNxdcs7+OEEEIIIU6UVFCiQYrBgKlLMtYdO1EsFipDgumR8wsBzlmEVKWyJfIqHCl3aZ2mEEIIIUS7I0W4aFSn5/6B3s8XY2ws29+fTK+87+CvGSphlXuZv6eAM+KDtU1SCCGEEKKdkSJcNMrSu5f7daF3Z49jIVWprZ2OEEIIIUSHIHPCRZM5Qrt5tEOq0kF1NRAthBBCCCEaIiPhoskCk3rxR1o/tnoHsddkosLgSz8gv9xKmJ9Z6/SEEEIIIdoNKcJFk2XqCnk6oAgoAhX0dhN9UNmdUy5FuBBCCCHECZDpKKLJhsX28mg7sVHuzMXukikpQgghhBAnQopw0STO8nJ8dh3gog1mxm44avt6+wE2ZZRol5gQQgghRDsk01HEcZXNmcPB++4HYDKQH6hnz9DBBBniCTBEa5ucEEIIIUQ7JEW4OC5TfLxHO6zEyXmWu3BavN19DqcLg14+WBFCCCGEaAqpmsRxmTp3Br3eo8/vUO329YrqQOdysPVgqRapCSGEEEK0SzISLo5LZzJhTkrEmr4fc1ISxUY7Zx36iJCyQwRX7ef3lH+yJ3cc/eOCtE5VCCGEEKJdkJHwFvbAAw+gKIr7T0JCgtYpnZTY6dPptmE9ST/9SOhwO91ZQnjlHgyqjdCqVLJLarROUQghhBCi3ZAivAWtWbOG//73v1qn0SyMnTqhmEyAbF8vhGhbZsyY4R7omDJlitbpCCFEk0gR3kLsdju33norrg64hnahd5JHW4pwIYQQQogTI3PCW8gLL7zA1q1bAZg4cSKzZ8/WOKPms9cnnrSoUew2m9mvt6MYQhgOqKqKoihapyeEEEII0ebJSHgL2LVrF//6178AmDRpEmPHjtU4o2YWY+Ytcxrz2cle5z4O2HegqioHCqu0zkwIIYQQol2QIryZqarKrbfeitVqJSgoiFdffVXrlJrdkBjP7eutrnKqXSXsyinTKCMhhBBCiPZFivBm9u6777J8+XIAXnrpJcLDwzXOqPm4rFaqt28ncukGpvyhcOXyo7evz2DnoXINsxNCCCGEaD9kTngzyszM5LHHHgNgxIgR3HzzzRpn1LzKfv6ZQ089DcA4IDfEi73nXUSgMY4gY5y2yQkhhBBCtCMyEt6M/va3v1FeXo7JZOL999/vcA8pmrt29WiHF9kYbJlAF+9ReOtlox4hTkdH74Nw2ObNm7n33nvp1asXwcHBKIrC5ZdfXu/5hYWFvPLKK4wdO5bY2Fi8vLwIDAykR48e/P3vf2fdunXNkueJLmO4f//+dr+/gxCibZOR8Gby5Zdf8ssvvwDw6KOP0r17d40zan7m5GRQFFBVABTVhW9OBmWxyfhZc6g0hWqcoRBCa9OmTeNf//oXTqfzuLFvv/02Tz75JKWlpR79VquV0tJSdu7cybvvvstNN93Eu+++i+mvvQqEEKIjkCK8GRQWFnLPPfcAkJKSwpNPPtks17VarVitVne7rEzbBx91FgumhARUp5PMwCjCLJmcn/kvwrIPYHZWMrvPDAorkgnxNWuapxBCGy+99BLPPfccAJ07d2bQoEF4e3uzf/9+jEajR+x9993nsZlZaGgoQ4YMITIykpqaGjZu3Mi2bdtQVZWPP/6Y7Oxsfv31V3Q6+QBXCNExSBHeDO6//37y8/MBeO+99zCbm6cIff75592/0NqKpB9/QDGZ0BdUEvDhWQTXZMBfA16hVan8vDmbKcMStU1SCKGJJ554goCAAGbMmFFn+snRAwoff/yxuwD39/fnlVdeYfLkyXUK9UWLFnHDDTdw8OBB5syZw8svv8wjjzzS4l+HEEK0BhlSOEXz5s3js88+A2Dy5MmMHj262a79+OOPU1pa6v6TmZnZbNc+WYe3rk8M9aHQp+729cVVdi3SEqezygLPP07HCcQ28v+1stAz1mFrOLaq6JhYa/PEVhd7xtprGoktafhYK3G5XPz000/1zv8+PDhRXl7Ogw8+CIDJZGLevHnceuutdQpwgNGjRzN//ny8vLwAePHFF6mqkv0IhBAdg4yEn4LKykqmTp0KQEhICC+//HKzXt9sNjfbqHpLKPTuTJfCRe52QI32bxLEaeglzzeD/G0VhDfwTMbrvcF+VBF320KIPqP+2LcHQlXhkfbkXyBxRP2x74+E0owj7YlfQ8r59cd+ciHk7zrSvmYG9Lyi/tjProDsjUfal70D/SfVH/vlJLjp1/qPtZKrr76as88+u9GYjz/+mJKSEqD2YfbBgwc3Gt+9e3cmT57M+++/T2FhIXPmzOHKK69srpSFEEIzMhJ+Cp588kn2798PwCuvvEJo6On1YOJy/yQeSziPa5PPZWTyYB6N7KJ1SkIIDV177bXHjfntt9/crydOnNik655zzjnu18uWLTvxxIQQog2SkfCTtGHDBt58802g9iPTyZMna5xR69tpsLJa2eWeE65zeGubkBBCU2ec0cCnCkdZuXKl+/X06dOZOXPmcc/Jyspyv24L0/KEEKI5SBF+krZs2YLLVbtjZEZGBmeddVaDsYcf2gQ4dOiQR+zTTz/NRRdd1HKJtqBAQ6xHu8SRhaq6cDhdGPTyIYsQp5uwsLBGj1dUVFBefmRn3Q8//PCE71FcXHzC5wghRFskRXgzSE1NJTU1tUmxNpuN1atXu9tHF+jthaOggKp167lp8076rXJS5AsfXKjHoVqpcOaTWRxLYqiP1mmK08XDx3zveQU2HHvf1mNiAxqO/ftaQD3SNvs3HDt1Caiuo2L9Go696femx97wPbiOWm/b5Ntw7LWzGj7WSiwWS6PHj10P/GQ4HI08eCuEEO2IFOHihFUsW8ahxx5HB5wBFAd6sz3gJoKMcXjrgymuspGIFOGilficwLMYJxQb0vRY7+CWibWcwE60lsCmx2rEx8fz50JRURFBQW1zt93Dn3QKIURLkTkDJ2nKlCmoqtqkP5988on7vPj4eI9jTdk+ua3x6tbNox1UUkUvZSgRpm7oFePhDTWFEMJDYGCgx4pPOTk5rXbvo5dAbMpoenOM2gshRGOkCBcnzJyUBMes6euXlY63rZCYknVUW+XjYiFE/QYNGuR+vXz58la7r7//kelEhYWFjUTW2rp163FjhBDiVEgRLk6YYjLhM3AgPkOHkjF6HOZzArnq0ANMXXsB12y/k+1792qdohCijbr44ovdr999913UVvroLCEhwf168+bNx73v119/3cIZCSFOd1KEi5MS9/FHxH38ETuuuI3YyDT8DCXuY6FVqa32i1UI0b5MnTqVwMBAoHap1+eee67J5xYUFOB0Oo8fWI/u3bvj51f7EOyhQ4eYN29eg7G//vorv/6q7cZHQoiOT4pwcUqSwv0o9E7y6AupSmVPboVGGQkh2rKAgABee+01d/u5555j8uTJZGRk1BuvqirLly/nb3/7G3FxcVRXV5/UfQ0GA+PHj3e3b7vtNnbs2FHnXp999hnjx49v07sVCyE6BlkdRZySM+KDKPDuTGRF7S8zm86M4ihjwc5cukY2svSaEOK0NWXKFNLS0vjnP/8JwKeffsqsWbPo168f3bp1w9fXl4qKCrKysti0aVOzPST51FNP8eWXX1JZWUlmZib9+vVj5MiRJCUlUVZWxooVK8jIyMBgMPDee+9x6623Nst9hRCiPlKEt4IpU6a0y1VQmiI60ML7IV14wW8s2Uolhc48+vmF0dchy3sJIRr2j3/8g169enH//feTnZ2N0+lk/fr1rF+/vsFzBg0a5LHKyYlKSEjgm2++4aqrrqKqqgq73c6CBQs8Yvz9/fnkk08YMGDASd9HCCGaQopwcUoURWG3roKdrt3uvmJH/R8rCyHE0caPH89ll13Gl19+ydy5c1m7di35+flUVFTg4+NDdHQ03bt3Z8SIEYwbN46UlJRTvucFF1zArl27ePnll5k7dy6ZmZno9Xri4uK45JJLuPPOO4mLi2P//v2n/gUKIUQjpAgXpyzQWLt9vaKqqIpCsT1T44yEEK3lVB/CNpvNTJ48mcmTJ5/0NU7008bY2Fj++9//NhqTkJAgD5gLIVqUFOHipFnT0ymfv4DLFi7nmkwHhX4K/3ednlLHQVzqya1gIIQQQghxOpAiXJw067595L/6KofXRgmpMnFB8FMEGeNQ0FFeY8fP6+TnbwohhBBCdFRShIuT5tW9u0fbUm0lqboTNV6BACzYmcsV/WM0yEwIIYQQLUlVVQoqbAAoCijAoeJKrIUH8O+UTHK4L4qiaJtkGydFuDhpxuhodL6+uCqOrAkenLET9Nn42vLYw1gNsxNCCCFEc3M4Xby3JBW788gzE0ZHJX1zvmVA9izsem8+OeN7AM7rGUHPqACtUm3zpAgXJ01RFAIuvRRVdbGpxsHAmi+5puRBdFvBoZjYGzJa6xSFEEII0QyKKm3MXLG/Tn//7C84K/NDvBxlABQa/N3H5m3PZd72XPrEBHBOt3AZGT+GFOHilEQ+8zQAP/y2hgvXvOHuN6g2AquzgB4aZSaEEEKI5mB1OOstwAEMLqu7AAdwKXVLyy1ZpWzJKiU53JeLendCp5NiHGTbetFMaoyBVBpDPPpCqtI0ykYIIYQQzaGwwso7i1IbPL458mpq9Ed2yNapTnQuR72x2VkH+Gl9erPn2F5JES6aRbi/mQLvzgA4FD27fBOxq1YqrPV/IwohhBCibcsvt/LpygMEVh9AUev/fW4z+LKp03gA9gWPYm6XZ3Hp6o6GK6qDi3c9ytDFE5j541zyympwuU7vtfhlOopoFuf3jOTRtC5khZkocBVgU6s4xzeYgZU2fM3y30wIIYRoL2wOF1sPlrBzw3IuyppBl8I/+D3ln+wOO7/e+A1R17En9FwKfZIbvOagrBlEl28GYNLmG1hSeh9bIq9iSHIoZyWFNHheRyYj4aJZhPqayaSYbGcGNrUKgBJHJrLhnBBCCNF+uFwq7/2xHe9f7uT6zdeTUrgABZVBWZ+A6qr3HKsxoNECvFPZFs7K+NDdNrisnHnwM4yualamFrIitaDZv472QIpw0WwCDDHoXCoBFbWVd6njIHnlNRpnJYQQQoim+mBpGpHl20gqWurRH1qVWqevqWx6b4q8491tF3p+T/kndr03AKvTith5qKyh0zssmScgTlnNjh0UzZ7NvWvW4HfQSUY4PDHFQJkjh6V7CzgzIVjrFIUQQghxHDuyy6iyOakKOIOZ/f/HqPRXSCn8AwCr3gdve5FHvEO1sa7sM5yqHQCzzo9QYzIJlsEecYU+yczuM5MRB96k/6GvWRV7C4f8+3jEzNmWQ3SQBf/TaKdtKcLFKXOWllL6zbccntGVkG9gQshbeJsiNM1LCCGEEE2TX25l7vYcd7vSHMav3f7D/tyf8LPmsjHqWqwGP49z9BjZW7UIu1rt7uvmfUGdIhzAqfdicdLD7A0ZQ/YxBfhhHy2tXTnltrOTTovnyWQ6ijhl5m7dPNoGh4PwIjuKIv+9hBBCiLauyubg81UH6j22Oew8VsXdVqcAh9pN+/wNkR59IcbEBu9T7sgj1a8Laj1riR92ZtZM1nz1H/JKqxuM6SikShKnzBAUhCHS85sw+sBquuf9So/cnzTKSgghhBBN8f6Suvt6qKrKrsp5fJ13JxWOvAbP9dd38miHGJMajF1fPouvc6eyuvQTKpx1H8bsVLaFYQfe5Zy0l6iYcTX5uZkn8FW0Px1/rF+0iuDJkwGVjYf2Mar8Hbo7X4S9UGqOoqzm3tNqjpcQQgjRXtS3VrfNVcWfJW+QUbMWgPXlXzAy6N56z0+0DMWiDwSHA5/CXFKK8vEu3cuhM0fiNHu546yuCg5Ur8aJne2Vv7Czcg6DA26iu88FAJgcFVy452l0OAFIKl5G+UfnMH/cXMb2a7iwb8+kCBfNIuSmKQDkfP8zhs1vufsDrNm8tXg7d13QT5vEhBBCCNGgtxbtI6VgPjqXnV1hF4KisLD4ZbKtm90xqdV/0tPnYkJNneucn2AZwm2OcPQvPAnV1cB6AAq6D/AowlOrl+Kk9gHOM/e4UFQ7nQYdmbqSWLyMAGu2x7W3Rl7BtnwHXQoqSQj1ac4vu02QIlw0qyJLPC506DiylmhwVTrQT7OchBBCCFFXQYUVk7WIc1JfwOIopUf+b/yR9BgD/K4l17YTp2pzx+bYtnsU4Zf1iyIpzBcAa7qRtGrPOdwpwWa2HNWucZahoEPFxVXLXXTOAcdvz3Ko/zAyh13A7vgLsBr8OG/vP/CxF3HQvx9rYm4C4PuNB0kK8+HCXp0wGTrOTGopwkWzcuq9KPGKIagmkwOWaLb6RuFC0TotIYQQQhzjs5UHOD/9dSyOUgDiS1Zz46Zrmdn/K0YF3s/C4pcw63wZEXgXsV5nAHDnqM54GfUe1zElJKAPCcFZWOjuGxbnz5iuKThdKhU1Dlg+gS7eo0nL/R+JOfMAMNRUE7tyAdXBEZTFd2F/0DA+6/cFo9JfYVn8XajKkfuk5Vfy9qJ99d6/veo4bydEm9A/wcyk2GQGJfXkkkgdT/jmcMC7Ew5n/btsCSGEEKL1/bknn7CK3fTI/82jPy1oOGVe0cRbBjEi8C4uDn2ebiUR9P78v0wdElNvAawoCt5nngmAPigIr169UIy1z4LpdQoB3kZuHpaInyGc83P6eBSfDpMXmSMudLerTcH8J2oAG1w7UevZdvub9VmQsw0qGn5YtL2QIlw0q+4R4eQ4M6lRj+x8VeLIZG9ehYZZCSGEEOIwVVVZf6CYfN+u/NjtZcpN4UDthjyLEx90xyVbzqbnig0Me+l+olcvpGrW5w1eM/yhB+myfBkpK1eQ+M3/MCd5LlUY4G3k7nOScVh8KOzSG1Wp/ZQ8c9j52H2OLH9YZD/AhvKvWFryNguLX6LaWepxndLiQmyzrkV9dyjsmXfKfxdakukoolkpikKAPhpdQSpBFbAnRqHEnsWK1EK6d/LXOj0hhBDitLd075HlAdNCRpIZcCbDMt6l0DuJSnNY7QFVpd/HLxK5aYU7tuD99wm4/DKMEXU34zPFxh73vga9jhvuvRbuvZYZP64mcNkfZA8c5T6uqi6Wl7yH+tcKKWX5q9i/bQudh7+PSVf7YOY5aS9iKv9r6cLZ16AOuh3lvH+BwXyifw2ak5Fw0Wxqduyg7M7befWlNN5+18kD3zvRYcCqVlBWbdc6PSFEGzVt2jQURUFRFKZNm6Z1Ou1eQkKC++9z//79zXJN+TfqOGrsTtYfKAag1JHNspJ3qNCpLE56iK2RVx4JVBQKep7pca5aVUXh9A+aJY9LxvQj/byrsQaFuvuyrVvJt+/562YqU393cf//yun/1Qx0dhsp+fPonv+7x3Xy964FXfscU5YiXDQbxWzGvm4tlhoHAMEVcKvPO/T3G69xZkIIIYQA3AW4S3WytPgt9lT9wfd595NVs7FO7MWP3k7wLTe720HXX0/4gw80Sx4hvmb+Nrozob4md1+0V1/OCXoEL50/Z29TGZBaOyc8dsU8znr1EfIdcaQFDXfH1+h9+SnpOV77I5Xt2aX1ziFvy6QIF83GlJCAYrF49AUerH8bXCGEEEK0LlVVWZNeBMDOyt/Js+8GoMpVxLyif5FatdQdO3VkEhaTnvAHHiDgqiuJnf4+kU89ic7bu9nyMRv03DAkwWO6aoJlMBMs/+DmBZ4rq1kK86gxBPBj91f5I+lRHDozf3R+nHKv2h07523P5au17WuHTSnCRbNR9Hq8unVzt+3ePsTmrmDIgffolfO9hpkJIYQQYldmHnqXFYdqZVPFNx7H/PQRxHnVTj+579wueJtqp3goej1R//d/+J59dovldUGvSCYOjnO39f4xpF71NxymI5v9bJ10D9VhnUBR2NLpat7o+zE7QkZ6XOdQaQ2vzd/Dl2sycDqdLZZvc2mfk2hEmxUy9XZKyqvJTJ3DkOIZKMpeyIIs//44nA9j0Mv7PiGEp2nTpsk842bUXPPARcdTtOBVbj70DetibqQq5ClWlM8i27aFoHKVoXF3YtTVfpqtKK2/v0eEvxd3jurMu4tTQVE4eNa5lCR0pf9H/yG/x5nk9T3LHetU7fxS+SGuCjvnBD9MgCHK41qHSmvY894kDN5BFA59ku6xEQR4G1v7SzouKcJFs/IbNQofl8qGr7NQSo70h1SlsSO7lD6xQZrlJoQQQpyuVIeN/tlf4u0oYVT6qwzMCmFe5ydZqxvGpZ9/RE3cz2yenMJVQ+tuTd9avIx6rugfzfcbDwJQGRnLyodexmXwLKDXln1KoT0VgJ/zH+XsoHvdo/gA3fJ+dz/AGZS/ip9S/sWQoSNJDvdtpa+kaWRYUjQ7nU6h0Mfzm9jiKCXvUPuaqyWEEEJ0FOsWfou3o8Td9rEXUmkM5dJPfyOgpIqILasZ+/E/icSqXZJAQqgP949NwaCrHY13mi2o+iNjxgeqV7Oj8sgGQ76llawt+hCnWrsKm3/NQc5Je8F9PLQqjSu338VvG9Nb6StoOinCRYsoNUdh01nIMYczN2QAM6Iv5FBpldZpCSFaSGZmJs899xxnn302ERERmM1mTCYTISEh9O3bl4kTJ/Luu++Sk5NT59wTXf4uKyuLxx57jN69e+Pv74+/vz89e/bk/vvvZ9euXUDtlIzD10xISKj3Og3FLF26lBtuuIHk5GS8vb0JCAhg1KhRzJ49u97VFxYtWsQ111xDly5dsFgshIeHc9FFF/H777/XiW1MRUUFb7zxBueffz4xMTF4eXkRFBREr169uOuuu1i9enWTrnOiSxQuWrSIiRMnEh8fj5eXF506dWLEiBG88847VFXJz+2OwrLPc2fMbL/emLdmEJCZ6u5Ttm8l99/Pt3Zq9brrnOR6+wONsQQZauePh5aq/PMzF8/+GIyhdmE2wir3olMdHucsTnwQp85MZlHb+v8s01FEizhk28HZiSlUuoqBAnx0KhMI1jotIUQLmD59Ovfddx/V1dV1jhUVFVFUVMSWLVv44osvmDVrFsuWLTvpe3355ZfcfvvtlJeXe/Tv2LGDHTt28O677/LWW29x7rnnnvC1nU4nDz30EK+//rpHf3V1NUuWLGHJkiUsWLCAjz76CEVRqKqqYuLEifz4448e8TU1Nfz222/89ttvPPzww7z44ovHvfcvv/zCbbfdVudNitVqpaSkhO3bt/P2228zceJEPvjgA7ybYYUKh8PB1KlT+fjjjz36c3JyyMnJYdmyZbz99tt89913p3wvoa3t2aUs7PwoqcFn0y1/Dp2Ll7I79Hz8du33iDPGxxHx+GPaJHkMRVG479wuvL5gr0d/gCGKi0OfZ0vma9wyexVhZcCO7RhnvMSmmx8lNWQUs/t+xoV7niK8cg/bwy9iT9h5AGw9WEpscPOt7nKqpAgXLcKs8/urAK9V6SrE5mpb70CFEKfuhx9+YOrUqe62v78/Q4YMISYmBoPBQGlpKXv27GHbtm3YbLZTutf333/P9ddf7171QK/XM2zYMLp06UJFRQXLly8nKyuL2267jTfffPOEr//UU0/x+uuvo9PpGDhwID169MDhcLB06VL3iPInn3xCly5dePTRR7n66qv5/fffMRgMDBs2jOTkZKqqqli0aJG7mH7ppZcYMGAA1157bYP3/eqrr5g0aZLH1zV8+HCSk5OpqKhg6dKlZGdnAzB79mzS09NZuHAhXl5eDV6zKW688Ua++OILdzswMJDRo0cTEhJCRkYGixcvZseOHYwbN45LL730lO4ltDVvey7oTKSFjCQtZCRGRyUoCvbx3hw8awx9FnyF78Y1dJo2DUNw2xkwUxSFe8Z04Y0/PAtxo2Lmrq/yCSg50hexZTUpP33K7ituosg7kS/7fMIZBz9jU6cJ7hhXG1tHXIpw0SICDFH4VynE5zqJKIEF/XWUOg4C/TTOTAjRnJ577jn367vuuosXXnih3lHaiooKfv/9d9avX39S98nPz+e2225zF6r9+/fnq6++okuXLu4YVVV56623uP/++3nooYdO6PrZ2dm88MILdOvWjS+++IJ+/fq5jzkcDh5++GH3CPlLL72E3W7n999/Z/jw4Xz66ackJia646urq5kyZQpff/01AE8++SQTJkyod8WJ1NRUbr31VvfXNWjQIGbNmkVy8pGP4l0uF6+//joPP/wwLpeLlStX8sgjj/DGG2+c0Nd4tM8++8yjAL/rrrt48cUXsRy118OhQ4e4/vrrWbhwIe+8885J30toK6+8BoClxW/hpQ+gh884fAwh7uNlccn0mvkxSvo+zCkpWqXZIL1O4f6xKSzencfGjJLaTkVh51W3cuZ7/8BQU/sJXGV4FAdGXew+z6kz8VP4UML1Fvfc6zZWg0sRLpqfNT2dC//5dy7Kr31IwgVs7huFXa3B5VLR6Vp/6SPRcRXVFHm0/U3+GBrYwvjYWD+TH0Zd/ctWFdcUo3LkJ7af0Q+jvv7YkpoSXLjcbV+jLya9qd7YUmspTtV5UrE+Rh/MenO9sWW2MvxN/vUeaykVFRVs2rQJgNjYWN54440Glzbz9fXlmmuu4Zprrjmpe73yyisUFhYCEBUVxfz58wkJCfGIURSFu+++G4fDwQMPnNiufna7nbCwMBYtWkRkZKTHMYPBwMsvv8zvv//O7t27KS4u5tlnn6V79+7MmzfPo3AFsFgsfPjhhyxYsICioiLS0tJYu3YtgwYNqnPff/zjH1RUVACQnJzMvHnzCAgI8IjR6XQ88MADKIri/rrefvtt7r//fo/iv6lcLhdPPvmkuz1lypR6Pzno1KkTv/zyC2eddRZbtmw54fuItmHWqgxKHdnsrV4MqGyr+JkkyzAG+t+It752xTKLSQ9du2qa5/GM6hqOXqewbn/tp+wlnXuwfurTnPnONCojoln3t2nY/ALd8Yes25hT+BydzL0ZHXQ/Zp1fmxsJlwczRbMzRkaiK8x3t3XADfa7iTL3JjW/QrvERIc08quRHn/2l+5vMPaCby/wiN1dtLvB2Mt+uMwjdlP+pgZjJ/wywSN21aFVDcZO/n2yR+yizEUNxk6dP9Uj9vf0hh/0u3fhvQ0eayllZWXu1yEhIS22trDL5eKTTz5xt6dNm1anAD/aPffc4zGS3FRPPPFEnQL8ML1ez/jx4z36nn/++ToF+GF+fn5cdNFF7vaaNWvqxJSUlPDVV1+52y+++GKdAvxo9957Lz179gRq/06mT5/e8BfTiLlz55KZWbtalcVi4eWXX24w9njHRdt2eBR8e8Uv8NeggoqTzJp1GJXa6Uxnp4Rqld4JG9ElzOOBzeLknqz72zTW3P0vjwK8wpHHouJXUHGRbd3MT/mPUmzPaHMj4VKEi2ans1gwd07y6PP/6+nrX7Yc0iIlIUQLCA0Ndc9L3rZtG8uXL2+R++zcuZO8vDygdlR6woQJjcbr9Xquu+66E77P1Vdf3ejx3r17u19bLBbGjRvXaHyvXr3cr9PT6y6PtmLFCqzW2uXgQkNDueSSSxq9nk6n4+abb3a3Fy1q+A1cY44+b9y4cY2+oQE499xziY6OPql7CW3NWpWB3VXNvuolHv1dfc5zb8xzRnzbmQPeFEa9jjtHHVkGuTi5Jw7vI+t/q6rKouJXqXEdGSSocOZT5fT8dLMtkCJctAivHj0AcBqMVEdHElu1ngt3P0WP3J81zkwI0VxMJhOXX345UDtv+pxzzuHGG2/kp59+oqSkpNnuc3jKC0D37t3x9z/+tJvBgwef0D0CAgKIiYlpNCYo6MhmYykpKRiNje/AF3zUA25Hf2pw2MaNG92vBw0ahMFw/Bmiw4YN8zi/viUTj+fo+w4ZMuS48YqinPDfp2gbfKx5DMn+HxMDHqGb93noFRNmu44ePrVvIPvFBWqb4EnyMuq5f2wKPmZ9nWOKojAoYAoWXWBt26Uy0P8Gor36EuF/ag8zNzeZEy5aRMjtt7N1+KVEZn7IgLzvgA1QAKoi7/uE6Ehee+011q9fz969e7HZbHz22Wd89tln6HQ6evbsyYgRIxg7diwXXnghZnP989mPJz//yPS22NjYJp1zvIL6WI1NAzns6CL5ROPtdnud40d/XfHx8ce9HuCxnrnNZqO8vLxJb0oaum9cXFyTzmlqnGg79uVV0K1gLiMOvMmIA5Dl35/15nHEf/AzuWd+zYFRlzB6bNt7EPNE3H527Yi4qqos3pPPpr8e3IwwdePSsBfJW/kMly8uYft9I3EAZkPbqkGkCBctwty5M0Oj41j79SLIO9IfUpWK3enCqG9b3wii/VoywfNj1sYeTpxz1RyPtp/Jr8HYHy//sc6DmQ356uKv6jyY2ZCZF86s82BmQ94f+36dBzMb8t9z/tvgsZYUGRnJunXreOmll/jggw/Izc0Faucsb926la1bt/LOO+8QFBTEI488wsMPP4xeX3f0qjGHH1wEmrw+tq/viW1PfaLz2Ztj/vvRX5ePT8P/tkc7Nu5kivCT+ftsan6i7fh5czYT8+e62zFlGyndq6CrsRK3bA5xy+ZwcMOFRL3ySos9z9FaFEVhdNdwRnYJY9bqAxRU2OixdAVXfncQRVUxzngF+79fITKg/mc4tCJFuGgxvmYDhd6e29cHV+1n58Fiesc1PgdRiKYK9mr6fMYTiQ3yCjp+0F8CvQKbHBtgPv4I6snEtvbKKB739vfnn//8J9OmTWPdunUsXbqU5cuXs2zZMgoKCgAoLi7m8ccfZ9WqVXz//fcn9Ev/6IK6qTs4VlZWntgXoYGjv66m5ntsnJ9fw28Om3LfjvT3KY5QVZXgqnQiKo88fO5ygmtXmcc8ZH1gYLsvwI+m0ylMGhzP7renw7cfuvtDd28m+JdZRDz6iIbZ1SXDkaLFKIpCoXcSxcYAFgf14e3oUXyQcB1bMwu1Tk0I0QL0ej2DBw/moYce4vvvvyc3N5elS5d6bPTy448/8u23357QdUNDj6zekJWV1aRzmhqnpbCwMPfrjIyMJp1z9Db0JpPppIrwk7nv4dVURPuwfF8hTsXA1ojLqNHX/h8pKglDX+W5q23QxIlapNeidDqF5PFXYDjq/zlGI6ajpnK1FVKEixa1omY+Z8cEcndgCe+Z0vjNq4Zc2ThTiNOCTqdj+PDh/PDDD4wdO9bd/9NPP53QdY7eOGfnzp11tqyvT31LArY1/fv3d79es2aNe8OexqxYscLj/JMZxTz6vqtWNbyc5mGqqrJ69eoTvo/Qztr9RZRaYlmQ/BTTB83hx24vs+6su/jzmfdJG3sV+uBgvAcOxHwSS3m2B8aIcGLefAPFaEQfFkr8zJkETRh//BNbmRThokV564LgqHm1JY62PzolhGheiqJ4LL93eN54U/Xo0YPw8HCg9gHHwztRNsTlcnnsBtlWDR061P2wan5+Pr/++muj8ceul37OOeec1H1Hjx7tfv3bb79RVFTUSDQsXLiwXXyyIDztrJxDsT0T51/b1e8MH0d1aAR7Lr2R5MWLiHrhP1qn2KIs/foR/fprJH7zDd4D+h//BA1IES5aVIgaSfJBlbEbXNw2x0m5LRuXevzRHiFE21deXo7NZmtS7NHTGQ4X1E2l0+mYPHmyuz1t2rRGC8e33nqLPXv2nNA9tBAYGOix5vnDDz/c6Cj/W2+9xdatW4Hav5Pbb7/9pO573nnnuVeZqaqq4pFHGp4nW1NTw4MPPnhS9xHaUFWVMkcOK0s/4Pv8+/gh70G2lP+A3VW7cc/gpGB0JhPGqCiNM215fmPGYIyI0DqNBkkRLlqMs7SUiU8+w78/dXLbXBdjN6r0K++CzVV5UmvbCiHalvXr15OQkMC0adPYsWNHvTFOp5OvvvrKY1v0Cy+88ITv9eCDD7rX3c7KyuL8889n3759HjGqqvLOO+/wwAMPnPRyiK3tmWeecT8ouWfPHs4//3zS0tI8YlwuF//973/dW9YD/P3vf/dYrvBE6PV6/vnPf7rbH330Effddx81NTUecTk5OVxyySVs3rwZk8l0UvcSrW/x7nzSqpe520WO/Wyt/AG9UrsWx1mJsjBCWyGro4gWow8IQA0OhYIjaxReWH4u2Xp/yq0O/L0a3+hCCNH2HTp0iOeee47nnnuOyMhI+vXrR2RkJAaDgdzcXNavX092drY7fsSIEVx77bUnfJ+IiAjef/99JkyYgMvlYt26dXTr1o0RI0aQnJxMZWUly5Ytc4+4v/7669x9991A7ahxW9W5c2c+/PBDJk2ahNPpZOXKlXTt2pURI0bQuXNnKioqWLp0KQcPHnSfc9ZZZ/Hiiy+e0n0nT57Mb7/95p7a89///pdPP/2U0aNHExISQmZmJosWLcJqtZKYmMhll13G66+/fkr3FC2v2uZkY0YxadVLPfoTvYagUwwMSgxGp+s4q6G0d1KEixbl27sX1YsWutv+GfvIHjSatelFjOnedj8iEkIcn8ViwWAw4HA4gNqR0zlz5jQYf/XVV/Pxxx+fdFF89dVX89lnnzF16lQqKipwOp0sXryYxYsXu2PMZjNvvvkmo0aNcved6DrarW3ChAn4+Phw6623kpubi8PhYNGiRfVuS3/dddfx4Ycf4uV16jv/ff7551gsFmbOnAnULiP53XffecR069aN77//ni+//PKU7yda3vbsUnBVE2MegM1VRZWrdtpWkmUEAH1jAzXMThxLinDRonz69KJq8SKsoaGo4d7Eeu+g/+bJrCu4EbrfqXV6QohTMHjwYPLy8liwYAHLli1j48aNpKamUlhYiNPpxN/fn86dO3PWWWdx/fXXM2jQoFO+58SJExkxYgRvvvkmv/76KxkZGSiKQkxMDOeddx533HEH3bp181jNIzAw8JTv29Iuvvhi9u3bx8cff8wvv/zC9u3bKSgowGKxEBUVxejRo7nxxhubdft4o9HIjBkzuPHGG5k+fTrLly8nLy+PoKAgkpOTGT9+PDfffPMJb3wktLN0bwETdtzLtaqTfcEjWG/1IWrRn9QMt1GU4sLXLGVfW6KoMjm33SgrKyMgIIDS0tI2P7JzmLO0lLf/TOfitCdIKl7u7l8TM4VBt2qzw59om2pqakhPTycxMbFZRvnE6e2DDz5wP7h4xx138O6772qckThMvtdbhqqqTP9tFbevvRDlr1XJ8jb7Ubizdp1wZ1gEnW6ZQsiUKRpmeXpoar3WdifKiQ5BHxCA08u7zs6ZIZWpGmUkhDgdfPXVV+7XAwcO1DATIVpHRlEVicXL3AW46oKS/T7u4/r8XByHDmmVnqiHFOGiVdQpwqvTGogUQohT89133/HHH38A4OXlxRVXXKFxRkK0vO82HCSheKW7XZlrxlntWeYFXHlla6clGiFFuGhxUYFeHPJOZEVAdz7sdDaPJlzA54k343TJTCghRNOtWLGC2267jU2bNtV73Gq18vrrr3Pddde5+26//XaCgoJaKUMhtDUn5R981+O/bI68CmeEP0Vjh1AeFQ+AV48eeHXtqnGG4mgyQ1+0uNhgb57e+xl5wZVAJQCDTAPZlFnCGfHyy1EI0TQ2m40PP/yQDz/8kNjYWPr160dERASqqnLw4EFWrlxJaWmpO75Hjx78+9//1jBjIVqHzeFCVV04dSYOBA3lQNBQSHoEBRfqJXomBtfg67JqnaY4hhThosX1jQkkYH00efbd7r4Sx0H+3JMvRbgQ4qRkZmZ67MJ5rPPPP5/Zs2fj4+PTYIwQHUWl1cGOyt/ZU7WAOK9BxHsNJsSYCH9t0BNxZl+NMxT1kSJctDgfs4HEEl/C97nofEglKUflh3F7IVDrzIQQ7cnZZ5/NwoUL+e2331i7di2HDh2ioKCAsrIy/P39iYqKYvjw4Vx77bWMHDlS63SFaDUzVuwno2YNxY4Miisy2FzxDT18xnFWwC3cd24XrdMTDZAiXLSK8TMW4V/kcrfTc4Ogl4YJCSHaHZ1Ox+jRoxk9erTWqQjRZlTbnFhdleTYdnj0dzLV/pJVFNkhs62SBzNFq6iI7+bR7p0folEmQgghRMexPbuUbOsWVI4MdOkxEm3up11SokmkCBetoiwuxaMdkJkKqorT6WrgDCGEEEIcz5r0Qi4qzuRq3zvp5XMpgzNDidZ3x6AzM6JLqNbpiUbIdBTRKvz69qZmURBqhC/GEJXIoALuWDOWnIgZRPc9R+v0hBBCiHbJpyyV89Nf4nwg1xZP0Xd2bN7l5PZ9i+Rbr0WNOwtFJ2OubZEU4aJVDLj0XGaGdeH6jdcRVrWvttMBVVlbQYpwIYQQ4qR0Llzifq3bXQT4YaqqJHblfPL2biRgyWLNchONk7dGolUE+5qBujtn2rK3a5GOEEII0e4t31dA56LaIlxVoSzD4nHc/8ILUfR6LVITTSBFuGhVBccU4f7lezXKRAghhGi/VFVlbVo++T5dqTQG47Ir6M1Oj5iAi8ZplJ1oCpmOIlqNqrrY6htDWuQw9pp92G9QOMv/Zv6udWJCCCFEO1NQYUNV9PyR/Dh/qI8SWbGdpKRlbPK5jIiNKxlQloFXX9mkpy2TIly0GosZ3q2ejmr5a0UUF8QYHLhcKjqdrGMqhBBCNNVXazModWTjUp0EGmLI8etNjl9vANLHXsXlY1OOcwWhNSnCRas5Mz4c/6xISh3Z7r5SWwZpBRUkh/tpmJkQQgjRvtidKjsqfmVn1Rx89KHEmAeQbBlJhLkbo7uFa52eaAIpwkWr6RTgRb+D/oTuzXJvX79q1J+kd71KinAhhBCiiVRVBeCQbRsAlc4CdlfNw1cfRoS5Gz2j/LVMTzSRFOGi1UQHWjh7Qzm9Nx3ZoKdzLmw7WMrYHhEaZiaEEEK0Hw6XSpWzmBJHlkd/lLk315wZg1Ev6260B/KvJFqNoijok8Z49EUdLNEmGSGEEKKd+m5DFmWOHLx0R0a8jYo3IcYk/LyMGmYmToSMhItWVRbv+aCIT04mlso8nM5k9PLOXQghhDiu7OIqbkv7iEt9h5K3vQznoUPs7BmNIdRJgEWK8PZCinDRqsqjEynu3B3fgHJ8AqsI9stl6saLONB7FQmdu2udnhBCCNHmhVSlkVy0hOSiJaSvCKWm2ETPDXtx/m81xZWPE3TNNVqnKJpAhh5Fq7L4+7L63udJ6b6DzuHbCLLkoyhQsn+z1qkJIYQQbZ7V4SSudC0A9ko9NcUm9zF9TTWm6GitUhMnSIpw0aou6x8FilJn+3pz0R6NMhJCCCHaj7XpxcSUrgegPMvL45g+IADvgQO1SEucBCnCRasK96v9gXFsEa7m7dQiHSFEO7d48WIURUFRFEaNGqV1Oq1iypQp7q95xowZWqcjWtna/UVsjryaDZ2uw5YSSUT/UmriOqEqCr7nnINilDnh7YXMCT9FBQUFLF++nDVr1rB161ZSU1PJzs6moqICo9FIUFAQvXr1YtSoUdx4441Ey8dE2FyV/B4Yxw/msaQbFSr1FoaFPEYPrRMTQggh2oGMoLPICDoLksAyuBiHzsyQSF+6hFm0Tk2cACnCT9GUKVP49ddf6z3mcDiorq4mOzubefPm8dxzz/H444/z9NNPo9Odvh9CFDsy+dX2HegBFyguPYNl13ohhBCiUTV2JxWOPFKrlxFh6k6oqTPVxiAAkrvGY5SVUdoVKcKbUWhoKN27dyc+Ph5fX1+qqqrYt28fa9asweFwYLVamTZtGmlpacycOVPrdDUTaIjxaHtZHTjytoOMhQshhBAN+nlzNtnWLawvnwWAHiOxXmdyTvBD+JmlpGtv5F/sFI0aNYpLLrmEMWPGkJycXG9Mbm4u999/P1988QUAn376KZdccglXX311a6baZpwRG83W9T4M21hG8iGV6ALI6P4p6qSrURQZEhdCNN2oUaPcW3gL0dFlFVeTYzvyDJUTOwq1vzd1Ovn92d5IEX6KHnrooePGREREMGvWLHJzc1m4cCEA77///mlbhA+IC2RJZTijt5a6+yKy8tiTW07XSP9GzhRCCCFOT4ffbObadnn0R5i7c3ZKmBYpiVN0+k5MbmWKonDTTTe52xs3btQwG22F+JqJ7fmgR5+lvIyFS7ZqlJEQQgjRtmUWVaNzVBLj1Z+uZVHonbX9EabuyIfI7ZMU4a0oLOzIO9Xy8nINM9FeVWgkNm8/d9ul1xOVsUbDjIQQJ+PwUnlHTyXbtGkTd955J127dsXX1xdfX18GDx7MO++8g8PhqHONdevWMWXKFLp3746Pjw8hISGMHj2aWbNmHff+x1uicNWqVRiNRnfM119/fdxrXnLJJe74AQMGYLPZGoxdu3Yt999/P/369SMsLAyTyURkZCQjR47khRdeoLi4+Lj3O9oPP/zAZZddRnR0NGazmZiYGMaOHctnn31W79+dOH0s2JnLFbseYvq+X/nH7Dw+f13hxZ8T6bV+H4lml9bpiZMg01Fa0Y4dO9yvExIStEukLVAUDo4+j+TSJQQGFBDqnUm3qn+C429gMGudnRDiJL344os88cQTOJ1Oj/41a9awZs0afvrpJ3788UfMZjNOp5O7776bd9991yO2qqqKxYsXs3jxYn755Rc+//xz9Hr9SeVz1lln8cwzz/DMM88AMHXqVIYMGUJsbGy98W+//Ta//PILAN7e3syePRuTyVQnrri4mNtuu41vv/22zrHc3Fxyc3P5888/+c9//sMHH3xw3OmHFRUVTJgwgd9++82j/+DBgxw8eJAFCxYwffp0/ve//zXp6xYdT0VFOVFlW3CVOVGKI9ADCdv2wra9eF1+NkSEaJ2iOEEyEt5KsrOzefnll93t03U++NHSz72SlJgthPtlo9ODXnVCwV6t0xJCnKT333+fRx99FKfTSZ8+fbjxxhu56aab6NHjyMpHc+fO5Z577gHgb3/7G++++y46nY7BgwczZcoUbrzxRhITE93xX375JS+99NIp5fXEE08wfPhwAEpKSrj++utxueqOHG7fvt3jOZ9XX32Vbt261YnLyclh2LBhHgV4z549mThxIrfffjuXX345ISEh7vuNHz++0VF9u93ORRdd5FGAR0ZGMn78eG655RZGjhyJXq9n2bJlXHHFFdjt9hP/SxDtmsPpIqp8KwbVRkW25y6ZVr9AvHr21CgzcUpU0WIqKyvV7du3qy+//LIaHh6uAiqgdu/eXS0rKzvh65WWlqqAWlpa2gLZtq6Fu3LVV+ftVkv/naKqz/q7/7g2f6V1akIj1dXV6o4dO9Tq6mqtUxEn4PDPNUA1m81qZGSkumjRojpxL7/8sjvOYDCor776qvvn4aZNmzxiHQ6Het9997njfX191YqKinrvv2jRInfcyJEjG8xz//79akBAgDv2X//6l8fxmpoatXfv3u7jl112Wb3XcTqd6ujRo91xgwYNUjds2FAnrrq6Wp02bZqqKIoKqD4+PmpaWlq91/zHP/7hvp6iKOr//d//qQ6HwyNm9+7dat++fVVANZlM7vhPPvmkwa+5rZLv9RO3KrVAXfHhQ6r6rL966OIYdUfXruqOrt3UHV27qQcee1zr9MQxmlqvyUh4M1q2bJnH/EgfHx969uzJQw89RF5eHgDjxo1jxYoV+Pn5HedqHVukf+07+YKjtq93oaMge79GGYn2ylFU5PFHbWTebJ3YRkYUHcXFnrGNzAs+NtbVSKyzpKTpsaWlnrFWa8OxZWUNHmstiqKwYMGCeudmP/jgg5x77rlA7UZmDzzwAOHh4SxevJi+fft6xOr1el5++WW6du0K1E7VaGhTtKaKj4/nvffec7enTZvGmjVHnkN55JFH2Lq19uHwTp068eGHH9Z7nVmzZrFo0SKgdqrL4sWL6d+/f504Ly8vnn32Wfc0mMrKSl588cU6caWlpfznP/9xt5999lmeeOKJOtNvUlJSmD9/Pp06dWp0jrromFakFrIq9hY+7/s5u6+6GdPkeCou7EdO3yEEX3C+1umJkyRFeCsJCgriiy++4NdffyUwMLBJ51itVsrKyjz+dBSJoT4U2zOZHpbM7Unnc1HySG7oOZXP9ZdrnZpoZ/YOHebxx5ae3mDsvjHnesTW7NrVYGzauIs8Yqs2bmowdv9VV3vEVq5Y0XDs9dd7xFb8tWxpfTJuudUjtuzX3xqMzfr7XQ0eay1Tp06lZyMfi1933XUe7SeeeILw8PB6Y/V6PePHj3e3jy6YT9a1117LjTfeCNS+EZg0aRIVFRX8/vvvvPnmm0DtG4mZM2cSGhpa7zVeffVV9+v33nsPi6XxbcIfe+wx98/8L774os40mNmzZ1NVVQVATEwMjz/+eIPXCgsL47nnnmv8ixQdl6Ij37crG6In8dOZb7Js3HNsuvUxfEeO1DozcZKkCG9GUVFR/P3vf+fvf/87f/vb37jhhhsYNGgQBoOB4uJirrvuOs455xz27NnTpOs9//zzBAQEuP809CBRe+Rl1JNl3cCv9kWsVHeS4Uwnx75P67SEEKfgeM+69O7d+4Tie/Xq5X6d3sibqxPx1ltv0blz7Sdw+/bt46abbuKmm25yr8F8//33M3bs2HrPPXToEJs2bQKgR48edUbw6+Pl5cWQIUOA2lHvbdu2eRw/PKoOMGHChHofAj3atddee9wY0bEc/r+5tPgtlpe8x76qxZQ78mSTqg5AVkdpRklJSbz11lt1+rOzs3nyySeZMWMGixYtcn+E2adPn0av9/jjj/PAAw+422VlZR2qED96+3qdS8X/YAYRmctgbIqGWQkhTtbRRXN9goKC3K8DAgKIjo5uND44ONj9urk+CfTz82PWrFkMHz4ch8PBN9984z7Wt29fnn/++QbPXblypft1dXU1d93VtE8fUlNT3a8zMzM9fvYfvWfE4WL9ePn36tWLDRs2NOneov0rrLThVO2kVS/DiZ3dVfMBOC/4KYZEDdM4O3EqpAhvBVFRUXzyySf4+/vzxhtvUFxczLXXXsvWrVsbXXbLbDZjNnfc5foCDTGElqrc9bOTpBzwspejKi/jvGsCeh8frdMTQpyggICARo8bDEd+5Rwv9tj45lwRZPDgwUybNo2nnnrK3WexWBpcjvCw7Oxs9+v09HTefvvtE773seuG5+fnu1/HxcU16RpxcXFShJ9GnC6VIvt+nHh+D4SZunBu9/qnc4n2QYrwVvT8888zY8YMysrK2LlzJ7///jsXX3yx1mlpxlcfhjkgha4Hd6F31X6spqgqldt34D9ooMbZifaiy4rlHm29v3+Dscl/LPCMbeQB6aTffoWjPu7V+/o2GJvw7TcesbrGYj//HPWoecGNxcZ99CHqUett6xp5cxrzdt1P4VqbcgLb9p1IbEuIiIjwaHfv3r3e5QiPVlpaesr3PXbDnYqKCvdrb2/vJl3DRwYpTitOl0qezXMaa6AhBrPOl0BvmZrUnsmc8Fbk7e3N0KFD3e3ly5c3Et3xjeoWwflR/6EyKsGjf++S1dokJNolQ3Cwxx/F0PDYQp1Yo7Hh2KAgz9hGRkiPjdU1EqsPDGx6bECAZ2wjn4w19uZDeNqzZw/33XefR9+GDRsanYoCnsXvpZdeiqqqJ/xnypQpHtf0PepN2OEHNI+nsrKySXGiY1i5egX9HGZu2zaAi1M7E2LzJ8yYgl4ne9W3d1KEt7Kj50QWFhZqmIn2ekfXfhxdGn9kDnhNcDClh2TDHiFEy7Db7UyaNMldyB5eBhFqly1cu3Ztg+cePXqek5PTLPmEhYW5X2dkZDTpnMzMzGa5t2j7VFUlaf+X/H3r45z3+2pu/Ho377xazIMf7+dy/6a9aRNtlxThrezQoUPu10c/dHQ6Mupr//tV900k4FwDSVfk0f+8bQwMbXgZNiGEOBXPPPMM69atA2qL6j///JPJkycDtVNFJk6c6DFF5GiDBw92v960aVOzjEgfvcb4qlWrjhtfUVFRZ4UV0XGlFVQSV7KW6gITqqN25FtRVYL37yEqsfEHm0XbJ0V4KyosLPR4ur579+4aZtN2lMR3JSo0A7O5dq6kny0PqouPc5YQQpyYJUuWeGyY88knnxAeHs6bb75JUlISULts4T333FPv+UlJSe6f2zabjY8++uiUcxo9erT79VdffXXcB1C/+uorrI1s2iQ6lkXrthFSnU5FjudUtLKYRAwNrGUv2g8pwk9BUVFRk2NdLhd33XWX+4en2Ww+rR/KPFqJVxxO5Zh5vHkNb6IihBAnqri4mBtuuMG9Wc5dd93FhRdeCBxZtvDwaiyffPKJx9KFR3v00Ufdr5966in3LptNUd8UlokTJ7ofyMzMzOSFF15o8PzCwkL3Dpzi9GCpyaXEKwZzgB2fyBoUfe0D4AXd6u7SKtofKcJPwaeffsrAgQP59NNPG13DdsuWLYwbN44vv/zS3ffwww8TEhLSGmm2aQPig3DpDBRZEtx9peZIykpO7/nyQojmdccdd7jnUvfs2ZOXXnrJ4/hZZ53F008/7W5PnTqVrKysOte5/vrrOeeccwAoLy9n+PDhvP/++w1uJV9WVsasWbMYNWoUd999d53jAQEBPPLII+72M888wwsvvIDzqFVxAPbu3cvYsWPJzs6WzXpOEw6nizzf7nxyxvd8cfWPbLzjCTIfvIF1f3uWlCnXHf8Cos2TJQpP0bp165g8eTIGg4Fu3brRtWtXgoKCUBSFwsJCtmzZwr59njtBXnXVVTz77LMaZdy2DE4M5ttdv/F4dB/y1Vjy1GL6+V/L+a7+XK51ckKIDmHGjBl8/fXXQO2nkLNnz8bLy6tO3JNPPsm8efNYvnw5RUVFTJ48mQULFngsp6jX6/n6668ZO3YsGzdupKysjDvuuINHHnmEIUOGEB0djV6vp7i4mN27d7Nz5073soRXXXVVvfk9/vjjzJ8/n+XLl6OqKo899hj//e9/GTlyJL6+vuzbt4+lS5fidDoZPHgwnTt3Zvbs2S3wNyXakqzi6r92xVSpNgWTFjIS/hq763KmbGrXEUgRfgqO3kjH4XCwbdu2Rh+Y8fPzY9q0adx7772NbtJzOvEy6kmrXsoBxzp3X4k9i/QCWYJLCHHqUlNTPUagn3/++QZ3K9br9Xz++ef07duXsrIyFi5cyEsvveQxUg0QEhLC8uXLeeCBB/jwww9xOByUlZUxd+7cBvOwWCycccYZ9R4zmUz89ttvTJgwgTlz5gC1D/Ef/ekpwNChQ/nmm294/PHHm/S1i/Zte3YZxY4D/FbwDGGmLoQZUwg3pRBt7qd1aqKZSBF+Cu68807GjBnDggULWL16Ndu3bycjI4OSkhIA/P396dSpE/369ePcc8/lqquu8lgTVtQKNMRwgNq1wYPKVeJSt9C14BOsnW/HnJSocXZCiPbK4XAwadIk92on5513Xp31wY+VkJDAO++8w/XXXw/A008/zbnnnsuAAQM84iwWC++++y6PPvoon3/+OQsXLmTPnj0UFhbicrkICAggKSmJvn37MmbMGC644AL8G1nL3d/fn99//53vvvuOGTNmsHbtWoqKiggNDaV79+5MmjSJ66+/HmMja9uLjmVPbjl5tj3Y1EoOWjdx0LoJP30E10S8o3VqopkoqnrUNm+iTSsrKyMgIIDS0tJGf5i3N3f9+BFLSl7n2VkOeh61TG7ks88QdJ3Meztd1NTUkJ6eTmJiYr1TBYQQHYN8rzfNa/P3sLT4LfZWL3L3JVlGcEPnJ7j6jBgNMxPH09R6TR7MFJoLMSaS4DUENSjeo798/UaNMhJCCCG0Y3XUPpibZ/fcrj7cmMKFvSK1SEm0AJmOIjTXySeec4wPoUv5FTZPd/eXrt+gYVZCCCGENjZnljIo8yP6LfHFWhbLjiR/1sdWcPngIfiYpXTrKORfUmjuyv7RzFqdQUliNwAcXl5Yo8NxJMShulwoOvnARgghxOlj447dTM14j33bwrFXGojfCRcCkRFp0G3wcc8X7YMU4UJzYX61q8xEG3cQN64Eb78qFCWNvIAqKcCFEEKcdiLLt2Gr0GOv9CzTLA2ssCPaJ6lwhOYOr8FbZQ7Bx7+Kw0vyBlXsA3luWAghxGkmqnwLVbmeW9VbfQMwd+miUUaiJUgRLtqMQu/OHm2jswpKMzXKRgghhNBGkXcixd17EjakioDEKlx+XhR16eWxcZRo/2Q6imgTogMtHCwOp0bvi5ezgkJjMOXeicRbK5AfOUIIIU4XuWU17Ai/mB3hF8OZLkKq07HpvOmZlKx1aqKZSREu2oQ+sX78cOB9liQNId9VRJmrgCvDnmISscjmvEIIIU4Xs1dnUOMsQ1H0mHU+7k+Jz+oRpXFmorlJES7ahM5h/uyrXkK1q8TdV+LIYu62WFIi/LRLTAghhGhl2yt/YXPFt/jrOxFq6kyC11koigxJdTRShIs2Qa8oBBpiqbaVYLSrJOVAysa59MheRO6arkQ8/pjWKQohhBCtosC+D4Ay5yHKqg/how/VOCPREqQIF22CokCgIZpDtq2M3qJy6zwXULtZT3lpthThQgghTguqqlJgS/XoCzXKfPCOSFZHEW2CoijEeJ1BH98r8e12nccx+4EMHEVFGmUmhBBCtI7CCivW6kPorNUe/bE+MhWlI5KRcNFmdAsYSKx1AIqPE4fpWwy2Gvex6k2b8DvnHA2zE61FlbXhhejQ5Hu8YRsW/8CVc9/jskU2yqJCSU2MZFtnb+6bNEjr1EQLkCJctBmX9o3mizUZqDodFfEJeJUXoUb6EjSwH5Y+fbROT7Qw3V+7o7pcLo0zEUK0pMPf4zrZEbmOwEPL8EtPpVT1IeBgPgMO5hNVMQSjQa91aqIFSBEu2ozIAC8ARuz/L2f0X4jy18/nAz7eGELloZSOzmAwoCgKVqsVHx8frdMRQrQQq9WKoigYDFKCHKtT+VaqCzx3yizu3FOjbERLk7ehos0ptsS7C3AA39K92iUjWo1Op8NisVBZWal1KkKIFlRZWYnFYpGR8GNU11gJLdyJrdJz1LtIivAOS96GijbFz8tQZ/v6wJoMcFjBYG7gLNFR+Pr6kp+fj81mw2QyaZ2OEKKZ2Ww2KisrCQsL0zqVNueDJXvp2uNROkVsIiR9K8bMAva4hkHnzsc/WbRLUoSLNsXfYiTfOwmACr0PO3wT8PJKobetEkWK8A4vICCA4uJisrKyiI+PR6+XeZBCdBROp5OsrCwMBgMBAQFap9PmOHWmI9vVdweDsxqH3sKYzvKGpaOSIly0KeX2fOaWvc/XyYMpduahUM2NnR4lqMaLWG+tsxMtzWAwEBsby/79+9m3bx8BAQH4+vqi1+tRFEXr9IQQJ0hVVZxOJ+Xl5ZSVlQGQkJAg88EbkGvbhR4TQcZY0FsAiA+WZ2Q6KvkuEG1K/9gwXt+zwt1WgTLHIb5Zr+eewZHo/PykGOvgzGYziYmJlJSUUFpaSnFxsdYpCSFOkcFgICgoiMDAQJlqVg+Hs3bFmLWln5Jn340eI0HGBAb4TSDAW9YI76ikCBdtyoCYWCy6QKpdJSgulaE7VXrlf0T8gUL2HMqg89w5mOLitE5TtDCTyUR4eDhhYWE4HA6cTqfWKQkhTpJer3evfiTql11Sg0t1UGhPB8CJnQK7LErQ0UkRLtqcIGM81dYSVAUmL3ARWLXBfaxq/QYpwk8jiqJgNBoxGo1apyKEEC1mZVoBxY4snNg8+kNNsl19RybrA4k2p5v3+QwNmMrFYc9Tley5S1j1hvUaZSWEEEK0jIKyKsK2ryO5NBT+2lHUVx/OgJhojTMTLUlGwkWbc9/QK/lh40EASjv3ImrLGvex6i1btUpLCCGEaHaqqnLxxr9TNSOb85zg8PYiJz6aJZedz5hu4VqnJ1qQFOGizUkMrX0S3MtegjFSR01yNMYIHaazLyThur9rnJ0QQgjRfPJLKwnO2EmVs3bZRkNVDTE7U4mYMgyDXiYsdGRShIs269x9/0eX4sVwZm17nTUZnTxVL4QQogNZ9OdixuZ79lVGROHw9tUmIdFq5C2WaLOO3TkztCpVo0yEEEKIlhFasgVVBb3XkVWgihN7cF7PCA2zEq1BRsJFm1Xo41mEh1SlaZSJEEII0TJ2hV1A8VXxhJfvJDxnC9UFZrK6nsvYKNlVtKOTIly0WYXeSVh1Zrb5xnPAEkWoVx9GuJwoOtnKXAghRPvncLqwGXzJDBxIZuBAiNU6I9GapAgXbVKebQ8/Vkzn1fgYnNTgoytlQuQNDEOHlOBCCCE6goyiKgB2Vc7FS+dPsDERP32EbGx0mpAiXLRJl/VN4Jc/0t3tSlchVlcl5VVWvLL2ozqcWHr11DBDIYQQ4tTsyS3HpTpZU/YpDrUGAJPiw+0p/wZku/qOTopw0SZ1CUpChwEXDgD6pLk447tpZDyahbGmCp/hw4n78AONsxQum43yuXNRzGb8zj0XRSfPegshRFPtPFROmeOQuwAHsKmVDIyRnTJPB1KEizYp2NtCgCGKYkcGAAF2b2J273Efr964EdXpRNHL5BStqKpK5u1TqVq1CoDACRPo9Nw0bZMSQoh2ptCe7tG26IKIDZCVUU4HUoSLNklRFM70vwG9YiTIEEegjxO+u8l93FVZiXXPHry6d9cwy9Obbd8+dwEOUPLNN0Q88jA6Hx8NsxJCiPbB5nARfmAjYZvWoI9MYGNEPsWmSkKNSYT5mbVOT7QCKcJFm3VG+BDyyqwAWAOgMjQSn4IcAIyxsTiKirRM77RXtXGjZ4fTiT0vD3NiojYJCSFEO1JVWc75Cx4kf5MfZwAqkNOrN+ZXHtE6NdFKpAgXbVakvxd5ZVYiyrcTVrkH45kBmB1WUofdztjrpmid3mnPWVzi0fYdM0YKcCGEaCIlbwc1BUfKMAVw+YXRK6yLdkmJViVFuGizooMsbMkqZUzqC0RU7oTA2v4M2wFN8xK1QqfeTvAN12Pds4eanTsxRERqnZIQQrQbW9csJqLQ5NFXlNSLAG+jRhmJ1iZFuGizUsL9+J0cCnySaovwv4TI9vVths7bG0u/flj69dM6FSGEaFd8SvbhF1NNTZGJmmIjqkuhJLGr1mmJViRFuGizdLrazQoKvetuX+9yqe7jQgghRHuSV17D4i6P4Bc/mYiKHYSX7qCkMozK8GitUxOtSIpw0aYlhHqTV9yFnT4JbPCNpMQcQbTPKPoUVpIU5qt1ekIIIcQJq7Q6QVEoN0dSbo5kX8g5WqckNCBFuGjbLNt5vuZdbOEuIJtAg44rg4djyauQIlwIIUS7tPNQGQDLS97DTx9BiDGRYGMiFn2AxpmJ1iRFuGjTEoLCsakV7napIxuHamPv3iyGZG+las1agm+8AVNsrIZZClVVsWdkUL15M46CQkJuvun4JwkhxGlqd0451c4SdlfN9+ifPup/GmUktCBFuGjTUoJTqF24SQVAxcWAt54ias9uDv4VY05OxjRBivDWVPb775i7dMGUmEjNzl1k3norzpISABSzmeDrJ6GYTI1fRAghTmPH7pRpUMwMipXlCU8nUoSLNs3H6IO/PoIyZw5GxZtgYzxWH8+t6qvWriVowniNMjz9OPLzOXj/AwAoXl4YO3VyF+AAqtVKze49WHr30ihDIYRou6psDgAK7Wke/cGGBPQ6fX2niA5KinDR5o0Mug8vXQC++jAURaGy61zYuMl9vGrNGlRVRVFktZTWULPzyHKRak0N9txcjPFx2A9kuPurN2+WIlwIIeqxIS2H/j+9RnJRIT2iurE9ooJtIbmEGGWzs9ONFOGizYv0SsHpUt3t4uSeALjMXvidMQDvQQPBbgeZ/tAqanbs8Gh7deuGKTaW0gMZ6ENCsPTtizGqk0bZCSFE21a6fzM91s+jpshE8nq4BNh90XXsPu9SrVMTrUyKcNHmJYX5sDenjO75cwipSiW4ch/+F7r4dcTzTLnyAq3TO/3o9BgiI3Hk5ADg1aMHwTdcT+jdd2OMjpJPJIQQohHeuZuwlnjuilmW0A0vvY9GGQmtSBEu2rxBicHsza1gxP7/4mMvqu0MgGDZvl4TobffRujtt+EoKqJmx04MYaGY4uO1TksIIdqF0PSNqC7PwYrSuGQmD5Wfo6cbKcJFmxfmawag0DsJn9Iid39o5T6tUhKAITgY3+HDtE5DCCHaFZ2PjtABldgKFWqKTFQZg3B4+xLoLVMqTzdShIs2T1EUooMsFHp3Jq50nbs/tCoNm8OFyaDTMDshhBCiaVRVZV6/f6Hr4yC4Op3wip3keHUnNthb69SEBqQIF+1CmK+ZvX7dOOAYyDaLP9XGMLr4X4Ujr4IeUf5apyeEEEIc13cbane4cOkMFPh0ocCndl1w2f/59CRFuGgXdpQt4T37J3/9pMrFTykj1DuBudtz3EW4LFMohBCiLcsoqsLhsvJb4dMEGxMJMSYSYkziqsSRWqcmNCBFuGgX+kWmwJHlqSl35mJzVhKcW0DRp6uoXLkK24EDJP36ixTiGnKWlVG9ZSvVmzdRvWULEY89hjlR1r4VQojDihwHKLCnUmBP/atH4UmflZrmJLQhRbhoF86M6oaCHhWnu89xaD3DX3iF3KPibGlpmDt3bv0ETwPOikqKPv4Yr5498OrRA0NkZJ03PGmXXuZeuhCg+vwLpAgXQoijFB2zXX2AIQpfsyxPeDqSIly0C2aDmUBDNKWObIKMcQQbEqj2iaU6MARLSaE7rnLlKinCW4h1104K3nnH3TaEhZG8aCGK4ciPEUvv3pQfXYRv2UzglVe0ap5CCNGWFRyzXX2IMUmjTITWpAgX7cZ5IU9h0QWgU478ty1K6Uv0moXuduXKlQRfP0mL9Dq86q3bPNr64GCPAhzA0q8v5fPnHzln85ZWyU0IIdo6Z2E65/znFs40mdkfnUJqBKxKKCfUXwaOTldShIt2I9w7nEqr06OvOKUHkenbCT57GD5nDcHnrMEaZdfx1Wz1LKgtfXrXibH07YtiMuHVoweWvn2x9O/fWukJIUSbtnXBN5gP5hOKQmj6Qc4EYh96mb79h2idmtCIFOGi3bisXzTfLN/BGdmzCKlKJaQyFX/7Qd59YiF3X9hP6/Q6PK8+fXAUF1OzdRuuigq8etdThPfrR9d1a1FMsumEEEIcTb9tNXDUczQKVETFc0Z8kGY5CW1JES7ajTBfM07FwODMj1BQazsVCKneD/TTMLPTQ8iUKYRMmYLqcmHbvx99UN1fHMdOTxFCCFHLLyuV6qPajtAAXEaTrOh1GpPfmKLd0OkUnHovSrxiCarJcPeHVKXidKnodfKDrDUoOh3mJHmQSAghTkRFz64EW7ZjyC3GWmxkf+JZWqckNCZFuGh3CryT6hThu3LK6BkVoGFWQgghRP3sThfz+/4D+oLRUUl45R7yfLsSHyLb1Z/OpAgX7crEwdH8ktubn7x17DLpqNBbGBZyO/btuVKECyGEaJMW785HVWunUdoNPhwMqH1oPczPrGVaQmNShIt2ZV/ZVl53/ghGQAWdw8AZOiP6o2IcxcU48vPxSknRKk1xDNXpRNHrjx8ohBAd0LaDpZQ5D/Fz/qMe29VPibpR69SEhqQIF+1Kt+DuHm0XDortGcQXm8l98UcqV63EunMXXj17kvjN/zTKUtgyMqhcsZLqjRup2rQR37NHEvnkE1qnJYQQmim0p2NTq8ixbSfHth2LLhB/y61apyU0JEW4aFdCvAPw13eizHnI3VdgTyWlJJKijz9299Vs346ztBR9gExROVUVf/5JyXffY+ndG0uf3nj16IHOp/Etlst++5381193t6s3bmzhLIUQom2qsjkAKKyzU2aiLChwmpMiXLQ7oabOqDaVUGMSIcbORJi6U5IUgctoQme31QapKpVr1uA/dqy2yXYAlStXUT5nDuVz5gDgM2IEcR9Mb/ScYzfpqdm5E1dVFTpveQhJCHF6WZNehKG6kkJ7uke/bFcvpAgX7c5Lo/7Dr5tzPfpcQFFSd0J3bwZA5+ODs7BIg+w6npqtWz3alno26TmWpXcv0OvB+dcOp04n1du24TNoUEukKIQQbVbZxp8Z889XONvHQm50NOlR/iw408zl3YdrnZrQmBThot2JCfScCqGoDnxtBWQPGk3XkYPxHTEcS79+KEajRhl2HKrDQfX27R59XvVsV38snbc3vqNGobNYsPTvh3f//pjlQVkhxGkoYe88FKeKqayK2LIDxO4E23mzuLrHAK1TExqTIly0O94mA4HVGZyVMZ3QqjSCqvdj13vz3qD5BJyTjNkgq3A0F9XlIvLJJ6jespXqrVux7t3bpJFwgNi332rh7IQQou3zz9znsVOmM8Abh7evZvmItkOKcNEuqSh0L5jrbhscpXjbi5i3PZdL+kZpmFnHojOZCLz6agKvvhoAV00NOi8vjbMSQoh2wmnHnFNINRZ3V2V0rIYJibZEp3UCQpyMyISu2HWemxyEVKWyL69Co4xOD1KACyHECXBY2X/JlRgnxBA8zEFwSgVZ/UdhMkj5JWQkXLRTXTsFUmRJIqJyJ1D7YGZQdSaZgfLgnxBCiLbBbvBmVcIdkFDb9rYVUmUKYcqgOE3zEm2DFOGiXYoJMvJm5FlkueJI1VWRreYxIWIcRsDpUmXtVSGEEJr7Y2ceDtWG3VWNRR9AlSkEAF8vKb+EFOGinVJR+dS1GBVn7TA4UGDfRydzb7JLqokJsmDds5fKZUvR+fkRNH68tgkLVJsNa3o6Xl27ap2KEEK0ip2Hysi17mBu0T/x0YUQbEwkwtQNvfKI1qmJNkCKcNEueRm8iPRK4lDNXndfnm0vncy9yf1tLjXTX8eRlweAuUsXKcJPgup0ouhPbaUZZ1kZhdOnU7VpEzVbt6HabKSsWY3ez6+ZshRCiLat4K+dMitdhVRaC6lxlaGTT2sFUoQ3i/379zN//nyWLFnC1q1bycjIoKKiAj8/P2JiYhgyZAgTJ05k5MiRWqfaoST5d/cowvPtewDYWqXnrL8KcADr3r3Yc3IwRka2eo7tWcbkKTjLy93rfPsMH44hJOSErqF4eVE081NUu93dV715C77DhzV3ukII0SYVyU6ZogFShJ+CjRs3cscdd7BmzZp6jxcXF1NcXMzWrVuZPn06o0aNYubMmcTFyQMZzeH8pGGklaQTZupCuCmFMGMXAErjuqALCMBVWuqOrVy2zL3Mnjg+1WajesuW2ikku3dT8uVXxE5/H9+zzz6h6+hMJrx69aJ640Z3X/XGjVKECyE6vEOl1fhlpVOpZMBRA9/np8gmPaKWFOGnYPfu3XUK8JSUFHr16kVoaCglJSWsWLGCrKwsABYvXsyQIUNYunQpSUnyTvhUXdF1HPszkuv0q3o9PkOGUD5nDsboaHxGDJfdGk9Qzc6dqDabR5+lb9+Tupalf3+PItyem3NKuQkhRHtw4PPHGfbmXIYqCtUhAWRHhfLdRSkMjT5T69REGyFFeDNITk7m1ltv5frrryc6OtrjmMvlYsaMGdx9991UVVWRnZ3NpEmTWLFiBYoic8KajerC33oIs6OCfN+ulF5zI8n33oMpIUH+nk9C1VFFM4ApuTP6gAAAVFXF7lRxuFxszizFqFfoFxuIQV//urd+Y85BMZvw7t8fS9++7usIIURHFpW+kkpAUVW8C0roXFRK35v+Q7xfotapiTZCivBT0KlTJz755BNuuOEG9A08wKbT6bj55psJCgriyiuvBGDVqlXMmzeP888/vzXT7ZBiS9Yw7MA7hFSlYXJVk+vTldn9PmdelQ89E+UH3ckKuvZaLH36UL1xI1UbN2JOSKCkykZWcTXzd+TWiU9fN5ez01/D7KxgbeIdDLn8b/iaa3+8eJ9xBt5nnNHaX4IQQmjH6cBy6BCV+Li7rGGhqAYj3qZTe+BddBxShJ+CkSNHNvlhyyuuuIJBgwa5p6/8+uuvUoQ3g26dAui0fbu7HVK9H0V1oiryQ+5U6Ly88B4wAO8BA/CxO3l3cSos319vbEr+PC7Y+yx61QHAuTuf4TNzMl16D2ZI5xN7kFMIITqEgj2oVS6PrpLY2ueW5NNZcZjsm9qKhg078jDa/v37tUukA+nR9yyPtsFlJaDmIABVNocWKXU47y5ObfBY1/y5jNvzlLsArzQGMy/5aQq9k1iVVsjyfQW4XGprpSqEEG1CjSWc9Vc/RPXfh+F9WRC+Qw1kDj6fAItR69REGyIj4a3o6He/TqdTw0w6Dp1fGJXGYHzsRQBkmQLQWTPAEsfe3Ar6xgZqm2A7ZXO4WJ5awKaMkkbjsgLOoMzciQBrNgB7Q8aQ7d8XlNr392vSi1iTXsQtIxLx95JfPkKI08OKbCe7wsexK3wcdANUFRSFq3tEaJ2aaENkJLwVbd261f06NjZWw0w6lrc6X8aE5LEM7dyPC6MDWGooAWB5akGdWFdlZStn1/6U19h5e9G+4xbgAJWmUL7r+SZVxiAAVEWhxCumTtxHS9Mpr7HX6RdCiI5oc2YpVc5i8my7sbtq4K9BuJggi8aZibZERsJbSUZGBgsXLnS3zz33XA2z6Vhywy3syNx9pG3bRU8uxmp3odrtVK3fQMXixVQsWoQxOpq4jz/SMNu2zelS+XBp+vEDj1JiieP7Hm8QX7KKtdGT3b9sjvXh0nRuPzsRU2F+7cOenTvj1a1bc6QthBBtTkbNWlaUvo+CjgBDFLFeZ6Io/9Q6LdGGSBHeSh544AH3FJS4uDguueQSjTPqOLoH9WV+5i/udq5tJ6qqoigKJQv+IOf++93HbNnZOCsq0fv61Hep01ql1cHHc7bgX5BDWUwi6Jr+cGuebzfyfBsvqDvP+Yo9T83Bq7R26lDIrbdIES6E6LAK/9opU8VFiSOLIGe8xhmJtkaK8FYwc+ZMvv32W3f7+eefx2w2H/c8q9WK1Wp1t8vKylokv/bujAjP3cdcqoMaVykWfSAHO/dBbzTC4W3T7XYqly/H//zzNMi07aqyOZj+ZxpR29bS57PXsXt5U5LUnbxeA8kccSHetkI6lW8hNWQ0AFZXBWnVy/DRhxBsiMfXEN7gtU2OCmwGX3QOu7sAB6jauKmlvywhhGh1DmftqiiF9jSP/h7BPbRIR7RhUoS3sHXr1nHHHXe429dddx0TJ05s0rnPP/88zz33XEul1mH0i0ymm/d5BBsTiTB1J9AQjfLXg4HzD1Rw1cCBVK5Y4Y6vWrNGivBjHF77O2hf7XKPxpoqwnasx6U3UDawN1duvxv/mkP83O0F0kJGYldrWFn6gft8P30EfX2vJMXnyDQrRXXQO+d7hma8z9wu0yhO9Bz1rtm2DZfNhs5kaoWvUAghWsfe3HLCNq8kwlhDkb+CS1e7QlSfcCnChScpwltQeno6l1xyCTU1NQD06dOH9957r8nnP/744zzwwAPudllZmTzQWQ+dTsfQwKkNHvcdPRpnSQm+o0fjO3o0Xj3lB+HRXpu/x/06eN92j2O2uDAmbLnFvfrMRXue5Lseb5Lm18UjrtyZy9ELEUaVbeac1BcIq9oLwMj0V/mi64eoioKiqth8/Ag+ayCu0lJ0YWEt84UJIYQWZt/MGR/u4AxANegoiQjjf5PPp7O/TL8TnqQIbyGHDh1i7Nix5OTkAJCUlMScOXPw9/dv8jXMZnOTpq0I+PvoZN5euBcfeyEhVanYdV4c8u8LQND1kwi+4XqNM2ybNmWWuF/rrTWoxzxUGRBSgo/tyBQSg8vKyPRXyejj+XCrQfEiyXJkHfyAmix3AQ4QVJNJ75Kf2TzlIcqj4qkMj2ZIlzBiw2QzHyFExxKctZvDPzUVh4vAnHziwy+jb3QnTfMSbY8U4S2gsLCQsWPHkppau8lJp06dWLBgAZ06yTdgSzFt/Jg71vwDi6MUgH3BI/n5ryLc6nDhZZQdNI9VbXOyaFeeu+00e7HgyRdYm/F/hKbupmuWSlq3/vjk1NAr7ycA8ny68EOP19DrTIQbu1LqOIhVrSDJMhyj7sjSWzvDLqRPzrdElR9ZljOwOpN1Aya72ytTC+kU4EV8iDwkK4ToIGyVGPKKgAB3V3V4BKreIL+HRB1ShDezsrIyzj//fLb/tZV6aGgoCxYsIDExUePMOjijj7sABwitOrLL48JdeYzrLW+AjuZyqby3xHMnTKurnF/yH6fMdIi93XWs7A7Gipl0SnwJL0cpZkc5P3V/BZvBF4CLw/6NqrootKdj0h1TSCs6Fic+xHVbppDtncQfiXdTGDiMY3234SD3ndtFtnEWQnQIpRlbwQV6LyfOmtqiuyQ6WeOsRFslRXgzqqysZNy4caxfvx6AgIAA5syZQ48eMge5xYV392gG1BzE4KzGobewO6dcivBjLNqdV6fPpPgS5zWQbZU/ufucqo08ezq/pfwLFAWnznN6VEqkP3tzO9d7j1y/HnzT4y1ms4IS+09c4OpXt1gHXl+wl/vHppziVySEENqbnx+I6+pXCKvcR2jBToz5RexPuULrtEQbJUV4M6mpqeHSSy9l+fLlAHh7e/Prr79yxhlnaJzZaSI0BRUFBZUCUzi/RgxnZ9UiuviN0zqzNsfqcLIlq7ROv6IoDPS/EYNiYlPFN3jrghkb8jghxiScf8XoFIU7RiVhNtT/serXazM5WFLtbv9iyGBf+VIA5hb+i/NDnsak865zXnmNHT/Z1l4I0c5lVugg4AwOBpwBUUf6z+8ZqV1Sos1qlm3rH3roIXbv3n38wA7Kbrdz1VVXuXfENJvN/PjjjwwbVvfjd9FCTN6k9ruRcZ0HMybah5cN61hW/glWV+029VU2hztUdTqpWruWwo9Ov50zVVXl2/UH6z0WWJ2BoigM8L+OoQFTuSTsP4QYk9zHbxwSz73ndmmwAAcYPzCWyUMTAEivXsmG8i/cx/Lte1hU/Aou1VnnvBPdpVMIIdqqQns6+6qWUGzPcP+8iwmW7epFXc1ShL/66qv06NGD4cOHM3PmTKqrq49/UgfhdDqZOHEiv/32GwAGg4Gvv/5atqXXQOj5z5PtKsD117itiosca+3c/PeXpOEsLeXQs9PYe/ZIDtxwI3kvvYw9O1vLlFvdO4tTyS2rqdMfW7KWyRuuYWTaq+hdNrr5nIePvnblkpuHJXLPmC6E+DZtpZ5gHxP3junCZT0HYNEFehwLNXZGQUFnsxK0dxtJc7+m92evA7Avr+KUvjYhhGgL0quX82fJG3yffz+f5VzPqtKP8TPLxANRV7MU4YetXLmSm2++mU6dOnHnnXeybt265rx8m6OqKrfccgvffPMNULte9Weffcall16qcWanp0CLD+Gmrh59h2xHVufQeXtTNmcOzsJCd1/5/Pmtlp/Wth0sxeZw1en3shYxeNZzVGSY6LP/K67dchNBVfsBuPqMGAK8jeh1J/bgpE6nMKZzb2Ze+DFeOn90GBgReDdn+E/EpyCXcx+5jsFvPEnKL7OIXrMIc0khP2/ORlXV419cCCHasKN3ynSqNgyKWR4+F/VqlrdmN9xwA99++y1VVVVA7Qoh06dPZ/r06fTu3ZvbbruNSZMmERgY2By3azPeffddZs6c6W537tyZZcuWsWzZsiad/9Zbb7VUaqetTubeHLJtQ0FHqLEz/oYjD2QqRiN+55xD6fffu/vK5s0nePLk+i7Voaiq6t4VE6DaWcqBmlV0tYzl3NVPU7FLTwXBAJiDikiasohOlz9BbHDd+dsnontoF66KeZriyhoizT0wOSo4o+xLDDo7LueRMYCgtJ3kDBjOn3sLGJkim/cIIdqfvLIaVFWl0O45vS7EKKujifo1SxE+c+ZM3nrrLWbPns3HH3/M2rVr3SNaW7du5Z577uHhhx/mqquu4pZbbmHUqFHNcVvN5eV5rjCxd+9e9u7d20B0XVKEN79zYs8jOCeeSFOPOitx7MsrJ+K8se4i3Ny1K77Dh6GqaocfpVh41HrgqqqyrORtMq3rOVCzhgGFQUSQ5T5uc3oTfumjdInwa5Z7PzrqfF5fsBedy871myYRYM0mIzSYykNe7pigtB3kDBjOhgPFUoQLIdqlg3n5RK6cw9m6cHYF6cnwLQJF4fr+Q7VOTbRRzTYdxc/Pj6lTp7J69Wq2bNnCPffcQ0hICKqqoqoqNTU1zJ49mzFjxtClSxf+85//uHeTFKK53HDGGcR5DXQX4IrqJKRyHwA/bz6Ez9ChhD/8EJ3nziHpxx8IvfPODl+AV1gdHquh7KteQqa1dhnNg9ZN5O7f6RFf0GcE3ToFNtv9FUXhvnO74NIZ2Rleu1qNd6gNFBWvIBvFg/uR23uwO97pkikpQoj2xzLnIQZ8/S63ztrFy2/l88VreiZV3MyZMbJOuKhfs84JP6xXr168/vrrZGdn8+WXX3Leeeeh0+ncBXlaWhpPPvkkcXFxXH755fzyyy+4XHXnqrZ106ZNc39NJ/NHND/dX3OX/WuyGZLxPresu5Rrt9yM0VG7SorObCbkllswxcdrmWar2nWozP3a5qpkbdlMj+Mbu5jJ6d4Hp6n2wcve11zW7DkoikK/2EDWRk+mzBRBUJdKOl9VSN4tF7F8wp0Ude3rjv1+40H5/hBCtDuBOXtRnUcGdfRWG36Rw9ApLVJqiQ6gRf9nGI1Gxo8fz5w5c0hPT+fZZ58lPj7eXYQ6HA5+/vlnLrvsMuLi4njqqadIS0s7/oWFaES0l5UpG67irMwP8bPlYXJV07VgntZpacLlUlm6t8DdNireDPa/GS/dkS2Vrefez6a//ZMFL8wibuZMfIe2zEeno7uF0zepE38m3seBiGG8c8Y7POtbwk/Fz+NU7e64zKIqcupZwUUIIdoqq7UaS+4hjz6Htzc2v4AGzhCihYvwo8XGxvLss8+Snp7O3LlzmTBhAmaz2V2QZ2dn8/zzz5OSksK5557Lt99+i9NZdz1hIY5nZN8u7A/yLCR75f4IQHbJ6bN8JsC3G7I82oqi0Nl7BFeFv0E37/NI8BpCnNdAAC4fmIDP4EHo/ZpnLnh9hnQOYU/waJ6PH8vM8hc5aN1IiSOLzeXfecRtzqy7mZAQQrRVGXu2olecWEKt6Iy1n+yXd4qDDj7dUZwaTT4jGTFiBBdeeCHdu9duNa4oCoqioKoqLpeLRYsWMX78eFJSUpg9e7YWKYp2LMLfi20RnlMqdKoLk6OCr9ZmapRV69tfUElWseebDh9rHt62Qsw6X4YGTmVU0P0AjOoaRkJo3S3lm5tRr+OivpHsrVqMQz0y2r214gcqHPnu9s5DZbhkbrgQop2oDuzC7Eu/Z8M9z5B3/9XU3DqQbdfexaiu8qC5aFirrh6/bt06PvroI7788kvKymrnqR4uvk0mE8OHD2fNmjVUVNRu2pGens4NN9zAzz//zOzZszv8A3Si+aQHDWWPbyJzAuJZ6u2DyxTOcINvg/Eumw2cTnSWjrGrWbXNyfcbPXfGVFQn4/Y8RVD1AeZ2mcaBoCHolNrdL/vFBrZabl0jg3hi4DM8tOImVGpHjPSKkRJHFr6GI7+w5m7P4cLenRq6jBBCtBllNU4qzWFUmsM4EDQUYmv7u0a23CeLov1r8ZHw4uJi3njjDfr27cvgwYOZPn06paWl7mkoycnJvPjii2RlZbFgwQJycnL48MMP6devH1C7nNrXX38ty/mJE+L03slVYU4+MKWxy7GV9OqVuNTaretLqmwAqA4HFcuXk/3Ek+wdNpyS/32jZcrN6r0lqXX6BmV+TEzZRnzsRVy54x7OTn8NvcvG1JFJrf4G97wuA7gm5RoUdHT3voCrI94mxqs/Oqcd5a9/p1055Tic7e+BbSHE6Wft/iL2V69iQ9mXHKheQ4UjH1VV8TbJTpmiYYraQssQzJ8/n48++ogff/wRm+2vouevW5nNZq688kpuv/12Ro4c2eA13nzzTe69914URaFPnz5s3LixJVJtN8rKyggICKC0tBR/f3+t02nTsspyufD7cz36Lgz5B53MPQG4f2wKh557jpIvvnQf9+rbh8SvvmrVPFtCaZWdj5cf2SxCVV1ElW9l/Nbb0XGkqC0xdMJ62xIiIiK0SJOSmhLe/98cEvcXE5i2g/C9GwhJLGXfuRPYFDUBgAt7R9ItUv6vCyHattfm72FR0auk1yx39/X0uZgvr35ew6yEVpparzXrSHhGRgbPPfcciYmJXHDBBfzvf//DarW6R727devGK6+8wsGDB5k1a1ajBTjA3XffzbBhtZup7NmzpzlTFR1ctF84IcYkj74s6waPtt/o0R7tms1bsGW2/znjRxfg1c4Svs27lxXsJzVoiLvf4dBz8FsL1sefoGjmTGz797d6noFegQxaupres94gduUCzAVFkF3BkIz3sdiLAfh9q+wlIIRoH47dKTPAEK1RJqK9aJYi/KuvvuL8888nKSmJf/zjH2RkZLgLby8vL66//nr+/PNPduzYwf33309wcHCTr92nTx8AampkyTLRdIqiEGPuj1GxEO81mOEBd9LT5yKPGJ8hQ9AHBnr0Va1b34pZNr+le/M92psrvqXMmc2iik+5JVTh7cRJOBQjG9RL0VXXULliBbnP/4fUiy7GWVbWwFVbTsJoz1VsqgtMmB3lDDvwjrvP5pApKUKItiuvrAa7q5oyZ7ZH/5U9BzdwhhC1mmWy0nXXXed+wPKwnj17ctttt3HjjTcSeEyhcyJMJlMzZChOR719L6e/33h0iud/c0V1UmN34mU04nfB+dRs2Yr/xRfjP+5CjJGRGmV76kqr7KzbX+xuVzoL2V05390udmSwwJKET7/ZjFq7jGpWu49Z+vdDr8EUp6jhZ3H0zgBOqx5buZ4wv93oXTacOhN/7snn3B7aTJkRQojj+XnJKjqvWMhNth7sC6lgZ1Aehd42zojqrnVqoo1rticGVFXFYrEwfvx4br/9doYMGXL8k5pg4sSJ7oc0hTgREwem8M36v9bJVlUiK7bTK/cHYko38EvgT1w9KInIJ59EMRq1TbSZHD0NBWBf1RKcHNkER4eBAX7XUmwIw7nxDY9Y37MbnxrWUkwxMTiTu1Js8aGrcRnGCIUlfR5mQUgykYoBBdh6sFSKcCFEmzUk433MC9bRo/xISbV20q2E+jS8IpcQ0ExFeJ8+fbjtttu4/vrrCQho3t2hBg4cyMCBA5v1muL0EBvsDYDRUcmErbcSVrXPfcyUNh/7Gbdh7CAFeFGlrU5fH98rCDLGsbH8KwrtaaR4j8HXEMa1g2KJ+OZ/VK5YQfm8+ZQvWoTvKG2KcEVR6PXLD7w2fw95JatZb1JZXfkTeUWzOTf4MfdGQluySugTE6hJjkII0ZjQ0j0UVug9+hyRXTXKRrQnzVKEb9q0qTkuI0SzS4nwY08u2PXeHv29cn9kwY5LO8Q61KqqMnPFfo++6NINHPTvT5zXmcSazyCjZi2hps6cmRBEp4DatdD9xozBb8wYVLsdDNouo3V5/2geXrSJ3SXz3H1bKn5wF+F/7MyTIlwI0fY4rPjmZVKohnh0V0TGaJSQaE802TFTiNYyMDEIgK3H7KAZV7KG9Mys+k5pd5btK/BoJxQtZ/y2qVy28wEs9mIURSHeMggffQgjutTdvU0xGjXfCCshxJsIUzePvjzbLnKtu9xtq8PZ2mkJIUSjnMUZuPRG/OOr8Aqyoehd1ASG4PTy/n/27jrMjetq/Ph3xLDM7EWvmRljh5m5wbYpv23KzG/7Fn5NMSmlTdqGmRwwxo6ZYQ0LXmbUrrRize8P2bJVJ7YTr3cWzud58lRzZ0Y669qro6t7zznzzWLUkyryYkRLjTEDUJ5yMRdU/4YWUzxrUhfjT7sHrzGeYEhFrxvenVhP3oxp93VwaeWPACjsfo+7dt/OW2N/RF3CXK6bPnTLZSmKQqF1ITv7nsQVDH+osOoScYcckWve2NfMDTNkdkkIMXTUK1m8dOlq4pc2kuYqJ87TyP74a8iIt2gdmhgGJAkXI5qiKHhDTg6613N94RwaAkcxKvu4w5SIjvDs6skdzUJeL861a3G8/AqZP/8ZhsRE7YI/C1XtzhMHqsolFT/C5j8pKfd3kuCuo3TBNRSk2DWI8OxdMiGbg66rONL/DpPt11JkW4peMWIO9DK2YxX7uUHrEIUQIsqBJgcoOhzWXBzW3Mh4TqJVw6jEcCFJuBjx8lL0PHHg0cixT3XR7C0j2zKVv7x7lAcvHgtA6y9+Sc+LLxJyhGdfe197naS779Ik5rOhqiqv7jmpLq2isC3zVlJd5dj9XQBUJi1lX8ZNPJg9sBumz4fJOfHMrb6aSX2XENfSQJ9Nx6SWF1lY+zDWgIM+UzoefxEWo/7MTyaEEIOgotXJnr7ncQQaSTIWkGwsINlYyPzCYq1DE8OAJOFixLtq4gT+dqSYDv+J6ii1nq1kW6ZGXRdoa4sk4AA9L780pJPwsqbo5jrOQDu/8j3KmyW38WDLLgqcR1lZ/F0S7eFa+/6WFvreeYfYiy7CmJWlRcgfKORy0fnYY1y4dTv9e/Zg8Hkx3ZNHkXdL5JoLqn9Dd+/1ZCYnaBeoEEIcc7yRWL1nB+3+Cqrc6wGYFfsxDPrpWoYmhgnZmClGvFizgTGWE53LDIo56nxrb7gba/z110eNew8ewnPo0PkP8CNQVZWVB1ujxvY7X8YT6mWH+3XuSejiweIb8BgTuHFmeB117+uv0/qzn1O5/EKqb7qZrv88oUXo70sxm+l89B/4tm3F4PMC0Ogsibom0VNHyzsPaRGeEEKcot8XIKQG6fLXRo0nGws1ikgMNzITLkY8RVHIt87DEWhkjGUu2eapGHQnEvEtRzu5dlo29vnzMGRkEGhpwTZ3Lom334a5eGh+pfi3DUejjvuD3ZT3r44cB1QPvTqVrAQLsZZwLXTHGysi5z0HDmAeN3Tq2CoGA7bp03Ft3BgZ62+30FQ6may+/QBUJC9jV8wFyPySEGIoaOxx4wg0EiS6T8Ps7EkaRSSGG0nCxagwPbOEeMMXosZ0oQAF3RvIr9wMU/+JoteT+eMfYczOxlxUpFGkZxYKqbi80eX6Gr17CBKIHOswMDnmOm6dnQeAt7IS73/N6sdfddX5D/ZDsM2eHZWEm3u7WVfwFS6p/Anr8r9EVfwUTDobgWAIg16+xBNCaGvvljXM3LeFcXWl1KZAVWIvdckBLi4duu8fYmiRJFyMCldOzuQPa8JrwvVBD/Pr/8aEttcjGxip/zTkzSNmyRINozw7m492AhDvacAYdNNhL6HEtowUYzF7nS9Q7d5IiW0ZDyyYEblHMZtJuO1W+t56m2BPD4bUVGxDrBNtzJLFBLu7sM6axb9cifjtcXhDLr5ZcieH+58gxbGVpYlfZO2Rdi6WNvZCCI3NbngM+9Y9OKptkW/o6udfRNIDJk3jEsOHJOFiVDh55jSoM1Pcue5EAg74tv0DU948LUL7UGo7XWyr7kIXCnD5ke+S6qpgfcEX2ZtxM4nGXC5I/BLTY29hanYq6XEn6tSacnPJ/OEPyfjOd3Bt2kSwtxdFP7SqjFgmTMAyYQIAGTsb2NK0mdXdvyCghteIOwMdzI//BAcaYU5BEvFWo5bhCiFGudT+Cnp6o9MoZ0aeRtGI4Ui+0xWjxqUTM8IPFIUD/9VBUzn4MqH+nsEP6kPw+IO8uKsRgPl1fybTWYZB9bH86K+45vBXMfvDlV3iDVlcN3nC+z6HYjQSs3Qp8VdfPWhxfxTLSlNJMuYTVE8ssQni46g7vFxl7eE2rUITQgjwOIh3N+L9ryTclZH7ATcIcSpJwsWoMSErLvL4YNqVBJXwTHBj7GTWFH6D9dW9H3TrkPDE1joAsnr3MrvxX1HnkvprCOnCM8PT8xI0b0N/rpLsJqz6eHItM6PGG7y7AajucGkRlhBChLk6aLMWk1DaT2yuG1N8gJDegDNDuvqKsyfLUcSo8sCSQv66/igdeoXvFVzLNl0zxTHXUGq/CJo8LJ2gnpLABjo76Xn+BRJuuB5DaqpGkUOv2w9Aa8x4dmXdzsymJwEIKgZWlP4Uv94GwJIS7WIcKIqicOfcPOreXU6jZw9jrHMosS4n03yi6oDHH5TGPUIITahJhTw58yl00/0kuauJ9zRxNGExi0rTtA5NDCOShItRxW42sKv3afY4nwdUCEKwf1U4CQf2NzqYkpMAQP+u3XQ/8QS977wDfj8hj5u0L35Rk7hPXn4R1JlYX/AgFfHTuKby52zPvpu2mPEAXD01E51ueM+CH5cWZyHHPJ3bMv6OWWfH4u8hp+tdchw7SfA0cHTiM1HfbgghxGCp6+oHIKQz0mEfS4c93Hl5xpgkLcMSw4wk4WLUSTEVAWrkuMNfQae/hmRjPqsPtTE5Ox5FUeh54Xl633gjcl3Pk0+R8slPorPZBj3mPfU9Ucf+kIff+P7DM0XLmBS7kCQgzmqkOC026jrPkSOYx44dlstT/K1tZO3aRMhoxleSwb27bkY56f+3J/fvZULWYg0jFEKMVi/uamR11y9xBbtIMRaQZCwgxzwdnW6s1qGJYUTWhItRJ8c8A5suerai1r018rih2w1A8r33Rl0TdDjoefnl8x3eKR5aWX7K2OH+t3CHeqj07uDljq+yqusXXDstumyfr6GR6muv4+hll9Px17/hbxsemxl7336HyksupXLpUqY99v8oWP0SPZZcPIboWe/kju0aRSiEGO1UVaXVd5gOfwWH+99hk+MvtPlP/V0txOlIEi5GnYvGZzLWthw9JoqtF3BF8k+ZHntL5PyK/c0AmEtKsC8Jz7QqZjMJt96Kff78QY31yWObMU/mD7nZ53w5aiykBkiJiZ6hd7z4IgC+2lraf/Mbqq+9DjUQYKjT2az460783PG1Fej8fhriZ0Rdl+PYQf2xr4SFEGKwqKqKO9SNJ+SIGk82FmgUkRiuZDmKGHWm5MQz8eBVTIy5GrMuJuqcOdBHdsc2VPXTKIpCygMPYJ0ylcQ7bseQNLhr/VRVpbXXw9j2d6hKWkJQH6773R2oA1WNuvbTUz4Tfa/PR89zz0WNxV1+OYph6P+Tt06fATodhEIA6IIBEmqOUB8/i/zuTTTFTaM+fia1CfPpP9DCJ5cUahyxEGI0qWxz0umvjhozKlbi9BkaRSSGq6H/jizEAFMUBbPupLXTqkp27x4mtb5CSecqjCEvZftnMXHKbGyzZmGbNUuTOH+7qoLijjVcWf4dOmxFrBj7UzrtxaSZSrk5/RHKXK9zwPkameaJXDshutGQv60dQ1oagfb2yFjCzTcN9o/wkehj7FgmTMBz4AC62FgsM2YQMhgpS7uG/enX0xPqpNq9iQwjpHuH/sy+EGJkObTuaS6pO8KV72XRkBZLTXKAtvRYrro0W+vQxDAjSbgYlT6+uIBHN4RnMnRqgCuPfDOqg6Z7y2MwRbu27tuqu4j1tnBx5U8BSOmv4o5997Km8GuUpV+LSWdjeuwtTLBfwQXjT60QYsrJJv/553Dv2UP3v/9DoLMTy/jxg/1jfGTp3/wGOpsNc2kpil5Pz8pyjro3csD5Gh3+CgCKrReQbh6Hqp5aVlIIIc6Xqc3PEb9/H81HEsk6AnMAZ3oOxV+MOeO9QpxM1oSLUSnOcqLleUhn5FDalVHnJ7S/QWu3ds17NlZ2cFHl/2IJ9kXGDCEvKtHJplkXw7y84vd9DkVRsE2fTvZv/h95/3j0vMY70GyzZmGZMAFFf6IOuDvYHUnAAWo9WwmoPtYeGR4bToUQw5/XHyDVVY631xg17kzPGTHlYcXgkSRcCOBA2jWRxwFFT0PcDFZsO6hJLM/tqAfg3YIv02YviYwfTrmEg2nR7ebvW5h/Vs95cjI7HF1Qmkq+dT6c9CHEr7pp8Oxmb73jg28UQogB5Oxswubvxvff7erTpVOm+PAkCRej1kXjT5T067bl82b6RXwyfxF3jrudN8b9Hz26JPzB0Cn3qaqKa8sWWn7yU9T/2iB5rvp9gUiJxC5bAU9P+Se7M2/FYc5iddG34KRlF9dMyyLBZhrQ1x+qpuUmYNcnk2GaAIBZF0uJdTkx+hSNIxNCjCaVTe1UJC/HWGoleXwf9hwffRm5BPNlg7j48GRNuBi1JufEs+pQK45AI1scj/IPW7jGq+JpYHzgZuINWfxxTSWfXVaE2aBHVVX6t26l/Y9/xL1jJwAxS5cQs2TJgMTT6/FH1qkfF9SZWVf4VZ5Kn0+63hL1qbkodfSsPzy+5ntG7O2ohEg3jUOn6FHUIKZAL6GQKl8FCyHOu05jFpvG/QLGgSngJM7bTIe9JGpSR4izJTPhYlS7bFIGJiWGVt+RyJhKiD19z0eO3zrQEn4QDNL83e9FEnCAtl/9akBqb4dC6ikJ+HGtvsO86fgNL7Y9SK17G6qqcv/CU+vRBrq78be0nHMsQ9WcgiQyzOMpVROY2fwM1xz6Cp/eejEXVv0fz+9s0Do8IcQokJ9sxxtyoqoqPkMMHceWDE7IOnWDvBBnIkm4GNXGpsdi1ccz3n5Z1Hijdze+ULgRzNF2FwCKwUDKZz8bdZ23opK+lSvPOY5Vh1rfd1xVQ2xzPA5Ab7CJ1d2/YE33r4i3GU+5tuvRR6m8+BKav/d9fLW15xzTUKD6/bj37KHjL38l63+/TnzNEfJ6tnFB9UMUda3HEuwjx7GTxm5p2iOEOP/eLmvh9Y5v82TLvbzV8SO29/6b3kAzevkmTnwEkoSLUe34L87J9msxKBZMip0ZsbdxU9qfMOlOdKDcU98DQPy112AeNw4AQ1YmWb/6JbGXXnpOMVS1O2mu3EtB14ZTzlW419H+X62QLy9eeMp1gY4Oup58Cvx+ep57jqrLr6D7v5r1DEe1H7uLmttup/2hh/Bs3kzy4b3Ux0fXbbf7u0hy1xAKDez6fCGEOJk/GMIfcuMINOFVnTT59rHf+TLekFPr0MQwJUm4GPXumJuHRR/HRUnf4Ob0R5gWe3NUAm71d7P2cBuBYAhFryf9m98k9StfpmjFCuKvvhpF99H/GXU4vbyxq5rLy7/DdYe+zAVHf40+5I2cTzOOJcM0MXKcYMzkgWkfO/V5Hn4EtT96Ntg+W7s65wPFMmVK1HFWzUEclhz6TGlR4xnOMhp73IMZmhBilDnS0keXvxY48YFfQUeiMU+7oMSwJhszxaiXHhduB59lPpHw6UM+ijrXMan1FXJ6d/H3Wa9xsDmNKTkJ2OfNxT5v7jm/rtMb4N+ba7mg5g+kucL1r6c3P0OOYxevTPgNfeYMEow5XJ78Iyrd69je+y9+uvh7GPWnLkUxpKWh2GyRRDz+uusw5eefc4xas8+dQ/e//x05jqk8iBIIcDj1Mqz+HurjZ1IfP4seYxwHdzbw4MVjNYxWCDGSdbp8dAVqosYSDDkkWu3aBCSGPUnChQBun5PHU9vqAFDUAPfuupE474lNjhPaVrD6UApTchIG7DXXHm4jva+M6c3PRI0rhOg3nHgdRVEosS3jM7OvY3LW++/AT/n0p0i46UY6HvkzjpdfJvULnx+wOLVkmz0bdDrMRYXY5szFNncOBGDDmM/THaij1rOVut5fElT93JD2O+meKYQ4b5Ttf+fj7mY+/kIK3TYLDSlWHGmpTJ0sv3PERyNJuBBAepw58lhVDNTHz2Ji2+uRsUmtr7Aj+y4eWlnOXfPHkBJjfr+nOWs9/T4q25wQM4FVRd/igurfYAh5CejMrBj7U4J6yyn3fFACfpwhJYWM732X1C99EX1s7DnFN1To4+MZu2kj+oSEyJi6spxOXyWvdnwj6treQAt1XdmMSZZZKSHEwJvS9TaxLXsor84kDhgDwCFy7vyytoGJYUvWhAtBeLb5ppknOp4dSL8u8rhXp/CSpZ84T7gM3r8317K7rvt9n8e9d+9pywSqqkqH08s/N9Ycf2H2Z9zAk1Mfp91WzLv5X6LTfmob+o8vPrUk4QcZKQn4cScn4AB3zR9DsrEQiy4+arzBu4uNlZ2DGJkQYtQIhbB1H8bXFz13qSoK9sKz//0sxMlkJlyIY3KTTmzGbIqdQqe1gLU2Ow/FBeiln4Whw5SSC8C6I+10On1cNCE8O60GAnT89a90/OlhbHNmk/foo6ds2PT4gzyyrup9X7vTVsRTUx+nNVBHkhpAp5z4p5kSYyLOcuo68NEqJcaMoujIMU+n0r0uMt7k3Udr7xXaBSaEGLHa6g6RFnLj6LVGjbuT0tCZRkfnYjHwJAkX4iTZCdZwlQ1F4X8KL2Vf/4rIuS2Of5BiKibZGJ712N/oYH+jg9vyzXi//y3cu3cD0L95C13/fIzkj98PQDCkcrill3fK3r8W+HEdwRZWdP6AZGMByxK/gk2fCMBtc07dea8GAiiG0f3PN8cyg3Z/BTnm6eRYZkRa2su6cCHEQHvlQCfTsu8mWXeQJLUWf59ClW4+sVkZWocmhjFFVVUprjtM9Pb2Eh8fj8PhIC5OunOdD8GQyu9XhyuV1Hm2s6rr/6LOZ5uncmny96PGDP1OLvz1l1HaT0qyDQYKX32Fprh0Xt7deMbX9YZcvNb+DXqDzQBYdYlcmPQ1vnfx5dhM0cl2yO2m5vY7iL/6apLuu/ecSiQOV2/sa+ZIS28k2TYHeslx7KLNXsolC2aTl2w7wzMIIcTZe2hldL8GU8CJzxDDxxcXyDeV4hRnm6+NvndvIU5Dr1P41NJCAPIss5lgP7G8Ic8ymwsSv3LKPQFbDNtv/wLqsYQwpNNz8Pr7ebjSf0oCPr3xSWy+jlOeY1PPnyMJOIA71I05cdcpCbiqqrT86Md4Dx+m7Ve/ou7e+/A3NX30H3iYWpZtRlEUZjX8izv2fIzPbL2Iaw5/jeLOtXT3+7QOTwgxAnX4KiONeXyGGABJwMU5kSRciP9iMxlYMjYVgNlxd5NuGs/suLu4MPEbmHXvX3mjq2QyVZfcjC8mju2f/zF1S66E/1oSMa5tBRfUPMRde+4gv2tj1LlZcR8jTp8ZOU41FvGtud885XW6//0fHC+/HDnu37aN5u9+96P+qMNGyOOh9803af7hD6m6/ApqL7iAOAIkuOtIdx1BOdY8I7d3J2sOt2kcrRBipAmpQd7o/B5PtNzDs62fYXXXL+kLnH6JoRBnIkm4EO9jak648oZeMXJ58o+YHHPdGdcZV15xOxu/+Tu6Syadci7e3cCFVb8AwObv5vpDX2J+7SOR87GGdK5M+V+SjYVYdQn844o/YtafWgbRXFKMYjux1EJns5H+3e99pJ9xWAkGafza1+l5+hl81dXg9zOxq5qG+JlRl2U7dqGoQWSVnRBioPT7AjgCTQTV8LdszmAbtZ6tGJRTS8kK8WFIEi7E+zDodWQnhHfB6xQ9ABZ/D9Mbn+S2vfdhDJ5oEa+qofADnQ5vfNL7Pt+Smt9iCkW3le+0FUUdW/XxXJH8Yx6//J/kJ+Twfuzz55P36N/RHStDmPXLX2AeBeWxdHY71knRH24SyvdTHz8rchzQmWmLGYfF72BPfc8gRyiEGKncviBd/uqoMbsuGZsh/gPuEOLsjO7yCkKcxs2zcvjtqgpQQ1xW/n1KOtdgUP0AjO1YRVn6NXhDTt7q/CET7FdQbL0ARXn/z7Uri7+LuqGfHM9uXEkhWpKvpDz1klOuu2lGEYUpMaeNyzZ9OmMefwzX1m3EXnTRuf+gw4Rtzhzce/ZEjq2Vh3HNu4F1BV+mzV5Kc8xEetQuegJVuI8kMT0vUbtghRAjRiCk4g71oMdIkPB7QJKxgBnyO0acI0nChfgAiqLwmQuKeGRdFeagK5KAA0xqfZkDaVezoeePdPqr2dDzJw663mRW7MfItkw95bnUjg6cb3VQ7k/j7SU6rNO/eMo1NpOewtTTJ+DHWSZMwDJhwkf/4YYh+6KFeA4dwj53Dra5c7GMHw9rj/Je+iXs7nuGpo6/4gy2o1dM3JnxuJQqFEIMCM+b3+cbbVX07solVN1BS1oivWkmEuMPwtilWocnhjFJwoU4DYtRT0a8hf3p11HY/V5kPKtvPzXd/6LOsz0y1uk/ild1nvIcRkc3k/70dSzuIABXrwlRW/ctDn3x4cg1SXYT9yzIByDQ1YXjpZdwbdxI7t//PipLEL4f+5w52OfMiRq7dloWz+7qo7x/DRzbnBlUfbT7jtDeV0xanKzZFEKcG1vtasb0V1Jfm4SzxUJsSxdQRWLReLhcknDx0cm7uxBncPucPGoSF+IyJhNQTBxKuZRnJzxMveKIus6mSyLfMveU+0tf/w+pjmDU2KqSTtzBHgAy4i3cOTfckKf5hz+kYvES2n71a1ybNtP75pvn54caIQpS7Jh1saQYC6PGG7378PhDGkUlhBgx/B6S3OH14N7e6HlLa1Hh+90hxFmTmXAhzsJnLxrHbuuf2OFMwWsMb8ZZwmwKrIvY1vtPHIEmxtkviWo3f9zBmx+gR9/LpI3bAKhPge0z0lkc6qEwKSOqI6Y+Lh6CJxL29t/9nrhLLkExSi3a93N8uUmWeQod/ioArLoE9IoRFamQIoQ4N67GA9jVIGoQ/C591DlTfr42QYkRQ5JwIc6CUa9jzpLLad7TyNF2V2Q81zKDbPNU6jzbSTeNAyDFVU5uzw52Z90Gio6QyUzNrV/j1TH3cs/qEPuvuIZr029jVn4yi0tSol7HOnVK1LG/rg7Xpk3ELJWvPD9IdqKVTv8CrLoEssxTSDDkoigKW6u7GJP8/nXdhRDibGzrsuEv/i6pvYdJuuIgSpebMvMlpPW0ShIuzpm0rR9GpG390PDoe9X0uv3ve84QdHPH3rtJdtdQnbiAt4t/gNsULlsYVP3oVT2XTc5kbEYcet2pmwYD7e1ULF6CYjYTe/HFJN31MaxTT93oKU7wB0P8cU0lqCrJ/VXkOnaS1beXt0p+zN2Likm0m7QOUQgxTP3l3Sr6fcFTxu9fWEC8Tb6hFO/vbPM1mQkX4kP6+KICDjX38taBllPOXVD9G5LdNQAUdG/irj238/ykR+iyFaJXjBSk2hmf9cG1ZQ2pqYx58gks48ahO6kpjziVGgjgOXCAoMuFIRjD/Tuvw+7vipzfnXkrL+yy8InFsm5TCPHRuLwBKtxrSTTkkWjMw6CEP9RLAi4GgiThQnwE4zPj6PME2FjZERlLdlUyqfWVqOucpnR6LLkk2IxcPz2bBNuZZ2VtM2YMeLwjiXvfPjr+/Bf6t20j5HRiHjuWwBd+hduYGJWE5zp2si1OvkUQQnw0qqriDnXzXs+fAFDQkWDI5bLkH2gcmRgppDqKEB/RnIIkvjBF5U73f0i0KHTai3l96sN4LakA+HRWVpT+lMljUrhnfv5ZJeDizNRAAOeaNYSc4XKQ3vJylqcborpnAuQ6dgAQDMmKOyHEh1ff5abDfzRyrBLCGWzDbpDloGJgyEy4EB+WqsK+Z2Dn4xjqNpEG3Hv7fCi9HBgLrkvg5c9imnAt900fPR0tB4t18mR0Nhuh/v7I2Ji6Q6yPn8n05mdwmDNpiJ9JTcJ8ANr6PGTGW7UKVwgxTG2t7jylXX2ysYCx6ZKEi4EhSbgQH5aiwLa/QeOOE2O7/nUsCQfsKXDHM9rENgooRiO22bNxvvsuAOaSYhQFahPm8ejMl+kyp9LuK6fFdxB938vkVNzOzbNyNY5aCDHc9Ln9GBQz8fpMHMEWQCXJWMDcwmStQxMjhCThQnwUM+6OTsLL34beZojLDB9Lu/TzKvHuu4i76kpsc+diTEsDILCynH2+Bt5t/gpBwtVr7PoUJnddq2WoQohhauHer3Olu452Xx4814ojJZnetEaCzX9F/exnUPT6Mz+JEKcha8KF+Cgm3QDGYzWobSkw/7OgyD+nwRKzcCHxV18dScCPizdkRhJwAFewA2ewjX5fYLBDFKNETYeL1/Y2cbTdKfsPRpiMvjLSXUfIr12P3uMjqaGF/F076H7ySUnAxYCQmXAhPgpzLFz4fYjNgNIrwCCbLrU2Kz+R7dUqFl0cnlBvZLzFV8bO2nEsLknVMDoxUjj6/TT2uHm7LLpEaWVbeKPwxKw4LpmYoUVoYiC5e4j3NgHgc0anSqa8vPe7Q4gPTZJwIT6qeZ/WOgJxktn5Seyo6SbdNJ46z3aSjPlkmCaQaMjncHOfJOHinKiqygu7Gqnv6j/tdWVNvZQ19XLH3DzS4yyDFJ0YaGrrAY4vKvT1Rc96G8dIEi4GhiThQogRwWIMv1HOjbuXxQmfw6QLLxdS1CBOryxHER+NNxDk4bVVH/q+J7fWMSbZxswxiYxJtp+HyMT5VG8pZcukP5PmKifVegD9uF7KzJey0OrBOmWK1uGJEUKScCHEiJEeZ8HYHUN2z25yHTvIdezEp7fx/OQ/ax2aGIbWHm5jT33PR76/trOf2s5+bpmdS3aClMkcTjbVuWmOn0lj/EzIOjF+48VjtQtKjDiShAshhrVAdzf9W7fh2ryZGYWlHLJ4uP7QlyLng4oBQ9BDIBjCoJfNs+LsOL2BqAR8fNsblCdfSFD/4ZeYPLu9HoDPLSvGZJC/g8NBXXc3e/qeI8lYQIqpkDh9JopsvhcDTJJwIcSw1fHII7T//g/hBkqAfdEiGm/8LCH06AgCoFcDZPXtZUdtNvOkvq84Cx1OL//eXBs5Hte2gssqfsisxn/zRunPoNGFpasdVacjaLbiSsvGlZ6NIeQlcJok/U9rK3lQZlKHhU5/Dftdr0SOTUoMd2Q8qmFEYiSSJFwIMWyZCgoiCThA/86dBG400Roznkzngch4jmMXm6rmShIuTktVVWrfXkPZa6uxLroMd0oGCe5aLqz6PwBS+qu4Y+897Ns2DVtlXeS+6uXX4V9axMUVP2FX1h3sy7wJryEWAKOrj5DBSNAcTs67XD6S7FJNaSjr9fjpPKldPYBdn8yycZkaRSRGKknChRDDlm3u3Khj1e0moaac2sR5BHVGGuJnUh83k+a4yaiq1HAWp9f5l7/i/u1vKQR684pxJ6dzScVPMIXckWuMIQ8hXfSyhKDJzJz6f2IL9LCo7mFmNz7OxjGfZW/mLeRsfJuSFU/Rkz+WjgkzecJ9OXddNJEEmyTiQ9Weup5T2tWnGAuZlBWvUURipJIkXAgxbBkSEzGPH4+vpgbbzJnY58/nmgtn8XjFRJyBNpp9ZbR4t9LS/g9mxt0BlGodshiiAn19ND/858ibYkxLPSgKK4u/y5VHvk1qfwUAX82ZycQ9Dcw76d4YOqO+eTEHXbgNCQDENRxFFwyQVHWQpKqDpJbt4J/mn/HFi0vR6aSz7lBUXn6IVGMRnlAv3Z4qnEoPScYCWc8vBpwk4UKIYS3nD7/HkJaGznTSzGJFOZsdf6feuzMy1OI9qEF0YrioefYlDD5P5Dh1/zaqLr2Fbls+T035B0trfkt2725aExaQlPgiR9NBp4LVB7FKa9RzOcxZVKQsB8JJ+MkSjx4i5cgefqfT8aWLSlAUScSHmlv3fZx7Ar20xoynZ2WIYJsZZ+pamra0EH/DjdjnztE6RDFCSBIuhBjWTDk57zuebpoQlYS3+g6zp76HabkJgxSZGE7KDtVRZDSh9/sAiG84inqsNXlQb2FN0TcxBvuZqAR5dtk7PHXBiSUq92T+gMOuu5jT8BjFnWvYlXU7qmJA9ToxdzZHrnPkFVN5+e10jJsOQH2Xm7xk2yD+lOJMQo4mYn1tAOT07sbbkYrPZSTJVYGjpgLb/PkaRyhGEknCB0AwGKSsrIzt27ezY8cOtm/fzr59+/D7/QAsXbqUdevWaRukEKNMumlc1HF3oI63D1YzLXe6RhGJoUpVVY5eegt1i68ga/u75G58myPX3nPKdX69DTMw0X4Ve5zPk2jII86QgYpKe0wpb4z7OfHuBlym8AbgA/7VPPUlPTduDOHPmYptyffQKSe6L76wq4G7548hOcY8WD+qOINQ4y6OLzpRQ+Bz/VfL+jFjBj8oMWJJEn6OXn75Ze688076+0/fylgIMXjunJvH41t8xOjTSDEWkWYqJd00DoMibcRFtKYeN88cq+MdsMVQt/RK6pZccdp7JsdcS6n9Yuz6U6vtOKzhb2ZcwU529z1LwKzwxHI9cICCnof4aaeHTvtY9mTdCsC/NtfKspQhpKv2AGnHHvv79RCK/v9FknAxkCQJP0c9PT2SgAsxxKTFWTAoJm5JfyQ8oKokuasJhFqB8ZrGJoaWVYdOrOfO796ILhTgbWuIgOplvP2y973HqLNi5EQHzJQYE1NzE1h9qC0yVu/ZSUD1RN13Sed+prQdIqAYqY+fSae9GIBNVZ0sLE4ZyB9LfERPGG7AOvsC0p2HyOjdT3+unebQeJbEeDB3tKFPTNQ6RDGCSBI+QNLT05k9e3bkv7fffpvf/e53WoclxKik+v0ofj8FfZsZ1/YmOb27sPu72JH1MVR1qcw6CgB8gRCdzvAa8BhvC5eV/4D9Bg8bM9IJKRBQPUyOuS7qnpRYM3fOyXvfyiZTchJ4fFMNXS4f4+yXYFQsvNfzMEH83NcHn+84BIBB9XNZxfd5asrjhHRGtlV3SRI+hLhNSdQkLaQmaWFkLE+aLInzQJLwc3TZZZdRW1tLXl5e1PjWrVs1ikiI0clbWYlr40Zcm7fQv20bGTd/hvS0Q5R2ropck+vYyTsHW7l0YoaGkYqhIBAM8ae1leEDVeXSih/Rozr5alpGZAXC9t5/4wu5mRF7G4qicP30bPJT7Kd93nsW5OPxB3lkXRVFtiXY9Ik0evey2NsBPBG5LtVVSZ5jGzUJC0BReGhlOV+8sETKFmooEAzhCDSyo/cJko0FJBsLSTYWYtPL7Lc4PyQJP0cZGfJmLsRQ0ParX+N8993I8Zi6g9SXzGZe/d8jY6muI1TVNeIqTsFull9/o9lT2+shFASdnpLONeQ5dvDdlCS69fqo64Kqj8nZ8Vz8IT64WYx67luYzz831pBpnkymeTKbY7wU9Gwhpb8KhzmLVVlfw7zhKHOqXmfbF/8XdDq2VHeyoEhmxLWyraaLNl8FtZ6t1HrCE2l2fQq/nvucxpGJkUoqzwshRgT7gujSYUmHdtMcM5GAcqJ+uNOUSpynicc21QxydGIocfT76ejzMu6lfzLnd9/GXRHkvYwH+E6Xi0/2ONAd666aa57F3eM+96ES8OMSbCYevHgsV0wOtzoP6sy8VfIj9idfw6bGaxj7mz9QtPJ5ko4eJG1/OOHberSLQDA0cD+o+FC2Hu06pV19srGQ+UWnbsAVYiDIVJAQYkSwL1gQdRxqacHU7WBr7sfpNyZRHz+LbnMGrlAXsQFJdEazf2ysRgn4ydq+DpOrj6TKMgImC2/f+g2uVd9GZ17CCqWKpYn/w+WTss7ptUozYomzGnh6Wz3tMaWsGvttFr7wRQzeE5s2i998mrbJc0Gn4w9rKnlQ1h9r5v3a1etliZA4TyQJF0KMCKbiYixTpmAuLsa+cAH2+fN5a2cHa4LXcMS1kjbX32jvqcCsxHBrxl+1DldopMsV3oiZdmA7JldfZNzg89BaMIsXU64CReFi4EsXlQzIa2bEWbCa9Lh94eUvVZfdyrTHfh05H9dYQ3xdBY780gF5PfHhqUE/RZ3rmGqaT5IxH1ttGcG+RpKn5Z35ZiE+IknChRAjgqIoFDz7TNTYfQtjeGhdA3udz0fGAqoXZ6AdVZXazKPRxsoOADJ2b4wa7yqeSH9qZuT4MxcUDdjfD0VRuG12Lv/cWAPA9vFmUlJ0ZHaGeG+iwuvzzMzKiSX+2PX/eK+a+xcVDMhri7NztGw71xz+GtcQXrbWsCkJtdKD/5Xf0bT5AAm33optxgytwxQjjKwJF0KMWAk2E/GGLMxKTNR4q+8wDd3uD7hLjGSVbU4A9t31JXZ//Bu0TZyFquhonHth1HUWo/79bv/IEmwmpuclAKDXW3j4CoX/+bSeP12tpzY1wNbuP5PWewAAh9tPMKQO6OuL0zu6d0Pksc3dDjXhb0mMbheOV17FW16hVWhiBJOZ8CHM6/Xi9Xojx729vRpGI8TwpCg60kyl1Ht3RsYcgSb21PeQm2TTMDIx2Fp7w+uw7b4OvHo7u8bbaZ76bay9PfitJz6oXTc9+7y8/gWlabT1eqFnCrVjr6Dd9SYANtXAXa1budK9k8dnvkRQZ2J3XTez8pPOSxziVBnOsshjV6sZNXDSSUUh9sLlgx+UGPEkCR/Cfv7zn/OjH/1I6zCEGPYKrYtJMOaSbhpHqnEsVn18ZEZUjB5Pbq0DVeWy8u/TGWjgb2lGEgx5zIv/OJmmSQCMTY9lzHn8cHbL7FweWlnOrNg7aXBv4SJHEw92dZIYCm8WntD2OvszbmBDRQeFqTEk2U1neEYxEEKKAa/ejjnoQgH8mUkYm7sAsE6fjiE1VdsAxYgkSfgQ9q1vfYsvf/nLkePe3l5yc3M1jEiI4WdBUTJULaaIxRgDLrJ695Lr2MnO7I9pHZoYRKFjyzvGtb9JnmM7v0lLQcVId6CONzt/wFjbhSxK+CxXTsk8wzOdu08uKeRv649yXdofuL39SySG2iPnZjc8TlnaNYR0Bh7fVCOVUgZBMKSypuibrCn8OonuOjJKDtJ81STcHhu3+aolARfnjSThQ5jZbMZsNmsdhhDDVqCri+IDm9gWyuKamm+R27MDHUEAWmPGo6pzZHPmKPGvzTWghlhQ9xfKTEZW26Nnu+36FBaVDE6jnJhjjaKMOivbcu8nt2wXACoKLbETMfl78ZjDS1H8wRBGvWzfOp9aji1TQtHRbcun25YfPrZC0sULPvA+Ic6V/MsWQow47X/6E9U33EjFgoW0ff3rJJfvQ0WJJOAAuY4dHGyWfRajQU2Hi+5+PwmeekxBFy6djjy/P3LerMQw0X4V03MTBi2mB5YUAlAXP4fGuGkcSr2c59J/Q+PGBMY+/Vjkuv9sqR20mEarXrefo+6NvNj2JdZ3/4Ey5xt0+Cq1DkuMApKECyFGHPfevXgOHowcz2ovpz5+VtQ1OY5dvFPWOtihCQ28tLsRAGNVGyt7Pokj4Ys84kjmK70G7PoUJsdczw3TijAM4oyz/dhsOIrCGxk/pG2Nkcm/+xWZuzeSuXMDtvZmAHr6/ad5FjEQNlZ20O4rpydQT6V7HVt7/8Huvue4oFSWoYjzS5JwIcSI89/dM5UdW6mPmwlAUNHTGDuViuTloErnzJGu+1hzHoAx775OyetPkvX7J6neVIhB93VuSvsjE2KuoDgt5jTPcn7cuyAfAJ8tjqTKA5FxRQ0Rs+L/Isf1Xf2DHdqo0ucJnNKuPsVUxPjMOI0iEqOFJOFCiBEnZuHCyGPFZsNSWkqncQwvTPgDD89dy2MTf8XTadPxhKRCykh3fDmH2dFJ8pF9AOhCIdLKdmDodaFXjHx6SakmewMS7SZun5OH3x5L3aLLo84Vl9XQ66oC4PmdDfiD8oHxfFBVFVUN0eE/CuqJ2uzJxsIBrxUvxH+TjZlCiBHHVFxM6pe+iG3mTKxTp6KYTARWlvOUdw8NHf/EFQx3TVyW+BV8gRmYDDIfMVIFjlVFydz5HspJ33wELFZap8zFZtITazFqFR4Z8RYAKpdeQs66l/CY4I3ZOt6eqZDpe52l9i8CUNbUy7RBXLM+WgSb9jGj6Tmw3sbUR1+lLUHHlrEh0mfnaB2aGAUkCRdCjDiKopDy6U+fMu4MdkQScIA2XzlHWvqYnBN/yrVi+PMFTiTd3QXjaJyzjPQ9mzH4PLRMnU/IZOZj88ZoGGHYzbNyeG4HPHvPMt5OXI/XFJ6VP+rewMW6GfjiF7P2cJsk4edB7/43uKDmD8zvNXC0Lo2sOpi2D4KvfAHvlJcxFxRoHaIYwWT6RwgxKlhNelKNJVFj7f4KvIHgB9whhrs/rT1W4UJVachNYN/H/oe1P3ucvfd8mbqlVxFrMZzYIKmhnMRwucSYKfcTNFsByAoa+XF7B9dV/zWyTKKhW9aGDzRn1TYA+hosUeO6uDhMY7T/gCZGNu1/+4wAV1xxBU1NTVFjLS0tkcc7duxg2rRpp9y3YsUKsrKyznd4Qgjgxhk5VKw70fjEqFgxK3Z21Up78JGoxRGu/ZzYX8Plh7/GjRkmVH0cpfbLKZmxDIsultunDJ3fv59bVsyf1lZykWExFzY+xcWufsIrkg+T37OJmsSFPLejQZr3DLCknv3AqUl4wkUXouhknlKcX5KED4CDBw9SW/vBtVxdLhd79+49Zdzn873P1UKI8yHZbiLNNJZF8Z8h1TSWeEM2OkWPyxfE4w/KJqwR5qltdQBMaXmBfUorDlIh6GF77+Ps6n2Km9L/SEb80Eloj+9LyE75BHPr3kHPiVnvufWPUpOwABQFpzcQafYjzlHAS3XSItKdB8laVI2r0Ui5Yw6xRyuJu+RiraMTo4D8SxZCjAo6nYJJZ2esbTnJ/UfJ6nyFrN69dNqK2FX7JRYUD063RDF4DEEPE9re4POpsVHjycYCbpw6UaOoPtiycWmsPdzGtpz7uLTyxwB49DHUxc9BFwoQ0hvZUdPFBaVpGkc6MnR5FVYVfwcAfdBDmquc5thJGPtdfG7OFI2jE6OBJOEDoKamRusQhBAfQFVVvOUVuDZuZNar76C/OIMF7f+InG+OmcTT1XdLEj6CHF/nX9K5mlDISbfOHnV+vP0yxmXEvt+tmpqaE8/aw20cTr2cqS3PUZWwlMb2fHKfe5Oky/fRMXEmu+t6JAkfII3dbvwhN3rFBHoLzXHhxDs1OxXFqF3FHDF6SBIuhBix1FCIqssux18XXpqQAjRMuS5qS3qa6zD6oAdVVTWpFS0G3lsHwntyKuKXEUwN8r++zTi7t/BYYjbbrVY+OfO6Ifn/taIo3DYnl6e31bMm+ABjH/s3kzteBaBg9Ut0TAw3nDrQ6GBStlT0OVe9Hj87+56ivH8VSYZ8UkxFjLHM5baxl5/5ZiEGgOw6EEKMWIpOhyk/usKBrraH0Em/+vRqgHTXYfxB9b9vF8OQNxDkaLsLgOSDuyn8/aN0vx6gwfEFZsd+j5vTH2ZM0tDthJgZH66OYvC6sXec2OCfXLEff9U7AKw82KpJbCPNtuouOv1HCahe2vxHOOhaQavvEBlxljPfLMQAkCRcCDGi/XcL+8TyA7TbCnGYsziUehmrC7+OwyKNOUaKrUe7Io+ztq8DIKGmnNIXH6fw6SfQK0YSbCaNojs7N8/KoWnWBXjiome7EzY+G3kcCsmHxnPh8gYIqcFT2tUnGwuH5LckYmSS5ShCiBEtZuFC2gBDViYxi5ewK7aQTRMm4TYY6fRV0+4vxxY8wr6GcVKqcATYWdsNgNHZS2rZzqhzzbOWcPOsof+BKzvBimo0smv+BBa8vZmjGfDqXB1bxnVxQ6CFOEMGb5W1cMXkTK1DHbY2VHTg9DUyucLNgTEKfmM48U4xFmkcmRhNJAkXQoxopuJiCle8gamgAEVRaFtZzgHna2xv/zcq4Q182eapbKhYKEn4MHdy46WY5joCFhum/j4AgkYTLVMXRBrjDGWKovCZC4r4s+uT/G/yPvbmeeDY7Gxr56MUxNzKkZZiLhqfHiltKD4c645HuL6yDOPzIQJGPTWF6RwYG4clU9bai8Ej/3qFECOaoiiYC098xbxsXBp2fUokAQdo91WiqiH6PH6twhQDYE9dT+Rxd8kk1v7sMXZ8+vs0zllG06ylXDy7ULvgPiSLUY9qTyYw4eJIAj7Np3BL49ssqPsLAKsPydrwj6qkczUZB7YAYPAHKT7SyPLdHu6YJ10yxeCRmXAhxKgyNSeetLLoJi0+1UVvsIWyplTmFSZrFJk4V5uqOtGFAsxo+jc/NR0kyTyJkrHL6Jj4JRQFLskcuhsy38/Ns3JwbLmEVFcFX25YS4E/ED7hXkeKq4LDLSVcLktSPrygnzTnEWqbome92yfOYq5syhSDSGbChRCjiqIo2HRJWHUJKOhINORRYlsOwOaqTo2jEx/V8W8x8ns2EdPyd5oCRzngepWX2h/k1favM6Ng+NV9zkm0EW/IpjTtO2Sq0cto5taHa93LBs2PoLUMnd+P3hwC5cSfX9vE2RoGJUYjmQkXQow6iqJwWfIPidGnYtSFZ750oQAhjeMSH917FR0AjG97kydjY6LO+VU388bkaRHWgPAb7OzKvI0F9X8FoNNaQGXyBQAcae1j/DCb4ddarddGXdHnyEg/SGbnQfqbdBzwX4RjTLHWoYlRRpJwIcSoc0FpKlu3tJIZ2kpW3z6y+vaR5jzE32a9QSAYwqCXLwmHm8MtfZgDfeR0reed3OiOksXWZZgMeo0iOzcTsuI42NTLnqzbyHNsZ1/CtXiPeIjbfwDuuZS3DrQwLiNWyup9CC9WAjn3RI6NwX78ehvJMUO7dKUYeSQJF0KMCmooRP/WrTjXbyBuwwaWVlYy5upubHZ35Jqsvv14AtOJkSR8WHF5w2ulDSEv5elX8XD7WtZYVN6MsdFiMPLpmbdoHOFHd8mEdA429RL0KRw4NIPcrY9j8HkBqFl+Hb25Reys7ZbKPh9Su68Sqy4euz4Fvz681Cc7wapxVGK0kSRcCDFqNH7t6wQ7OiLHLZ15FNqPRI4z+/bh8QeJMcuvxuFk9eE2AFymFLrWG3Bm3s/4IjMzdb2sTF1KacrQrw3+QRRFYUpOPPtr/KTv3RJJwAGy1jxL7z3fYkNFhyThZyl4bA39+p7f4wg0YtUlkGoqYVrMTcwcc5HG0YnRRqZ7hBCjgqLTEbNwYdSYq8UcdZzVu5eDTb2DGZYYAFVtTgDsLQ1k7nqPkjeeIv/3j2F6aj9Z/bEk2of3MoOFxSmoBiO1iy+LGs/ZvRWjM/z31ReQHQ1no7rDhS/kwhFoBMAd6qHOsx0Vdch3UhUjjyThQohRw754cdSx2umjNnYmW3Lu56UJv+W18b+KdFwUw4PHf6Lee8au96LOWXo6uPuKGYMd0oCzGPUsLE5hw4w4fHoIKrBxvMIP79TTaw0n3xVtfRpHOTy8treJDn9V1JgOA0nGfG0CEqOafOcqhBg17AsXYJk6hZhFiwnOnseTPVYcoVba/RV0+A7i69vB0sQv4vYFsZqG50a+0WZfgyP8QFXJ3LUh6lzL9IVMt5nf567hpyQthvSUZTx8zWMcyQrQGRfeiBnf/y5zzQt5pwwmZkm3xzOxtjez8PWn8OaY2JXvxWFXSDIWcNnE4btkSQxfkoQLIUYNQ2IiBc88Ezlue/1V3uj8TuRYQceC+E+xs7abRSUpWoQoPqSNlSfW+Jfd9lkyd24gY89GTM5eWmYuPs2dw0ui3YRRZ6V1+iI63e8CoFcVSpr/yfX9z/LEtCdw9PuJtw2/euiD6bJVD+Le5aZ0V/i4bmweKz5xLROzpMyjGHyShAshRq1kYwEKOtRjFcJVQnT6j9LulE1uw4GqhjfZ2X0dVKudtOUZ6Cr6FIdu+iSJlQeYfcUSjSMcWJdNyqB55zJc3iPc236QK539JITCf3cT+2t4dZ+Zu6Tt+gdSXZ3oa7qBE10x7fYU8q3zpcSj0ISsCRdCjFofX1RKgiE3aqzDX0lNR79GEYkPY2+DA13Iz8d2305L03d4vePbPN/6ANtcT1JdlMrE7JG1PGNcRiwZpklcmf57rnObIwk4wNiOlXT0eSMfTMSpXOWb6W+L3nzZOGnkfFsihh9JwoUQo1aS3USqqQSbLok8yxxmxt5JlnmK1mGJs7T2cBv53ZvwhnrZbQonpH2hLvY7X6bTXz3iZjcVRWFeYTKqoqc8JbqcXrrrMADvHGzVIrRhYd+2taRO7SUm243OEP770jF+BnMK5JsvoQ1ZjiKEGNXmx38CfcKxdbSqSpy3GTXYjMtbiF3qhQ9Zx2d8x7e/yTqbleBJCbdBMTPGMkur0M6raXkJbK3uojzlYgq636M85WJq1OnE7ijDnNHBQeDSiRlahznkhEIqB3JupPOqEjKcZaQ5ymjz5OOLTWBGXqLW4YlRSt5hhBCjlhoKkVhfw9hdL5NW0kF2/35ifO3szryFbdXjWTYu7cxPIjThcPtR1AAprgoUA+T4/TQYwx+mcszT+ewF4zWO8PywmcJv202xU3jN8l3yX3+NyYd/AUDAaqPyyjsJhVR0upH1LcC5auvz4jKlUJmynMqU5VHnpBKS0Iok4UKIUUcNBGj+zndwbniPBV1dAOSoHdjTfEC4ac+6+h5Jwoewf26sAcXAM/kPk9W9h1/4tqF2beS3BXeQlzAtkqyOWIpC2v5tpBzeExnK3fgOVZfewtbqLuYXJWsX2xC0u66bkBrkgPM1UkxFpBiLMOlsWoclRrkR/ltKCCFOpRgMeCoqCB5LwAFczeZIEp7qqsAYlM2Zw0HehjcpXP0SfZl5tE69i/mZS7lk+lytwzqvbpuTy9Pb6qlbcgV5G9+OjJv7esjYs5kthiWShP+Xwy199ATq2dH372MjCgmGbK5O+T9N4xKjm2zMFEKMSjGLoqsiOJtPlC3zGmKJ9zQMdkjiLDX1uMMPVJWMPZsAiG2uo/itZ8nasY68pJE9w5kZbwVga1wZh3LDb+N9Fli1IJXuwnEAdLt8msU3VLX5yk86UgmoPm6fXaJZPELITLgQYlSKWbyIzr/+FQBnWjaeXBPvFD5AU/w0uix5oCh0OL2kxIyMjosjyTPb6wGIaziKrTO6GkjHjAWjYj309LwEao4k8fxCSOrTsWm8gt/Ywy3xOmKAdeVtXD9dukBCeBOvEvDT5jsSNZ5mKiU9zvIBdwlx/kkSLoQYlazTppHxwx9gX7SIPxzso8G7mw5fBe3u/9DRW8m1qb/m3SN2bpwpicxQcnIdbHNPB564RCy93QD0p2QwbtHIrIry35aOTWV77UzeK4zBpx5fOqWiNPyU9KQHqGGCpvENJd6jVVz0jTsYOyaFPXmJbM9xUJkZJM1Uyij4vCaGMEnChRCjkmI0knjbbeHHB4+wvvv3+FRX5HyHr5K6LmldP9Q0OzyRx+2T57Ju4mwSao6QsXsjnoRkLh8l5eYURcGgmMi3zqfStYY53gDX9HZzYX89h4O5tMZOoK6zn7zkkb0052y0r3gZvc9HQUUTBRVwdayFJ77/A2KNWRj0sipXaEf+9gkhRr2S9FhSTMVRY+3+CgDpQDjE7GtwMLfub8yr+R2vtXyeLX2PcTg7xMEb7iPhvvuwGEdPubl7F+QzLeZmfhlcyt+aG7na1Y9NVRnbsQpFDfLCLtnXANC2dk3UcVxqP+mWSdj00qRHaEuScCHEqLd8XBopxqKosQ5fVfh/nbLBbSg50tjJ9OZnULuepz3UzEHXG6zo/D7PtD7AnEK71uENqkS7iRhDKi0pV0WNx/g7yOrdA4DLG9AgsqFDVVWs1dEfRrxjMgG4YUa2FiEJESHLUYQQo57dbCDdNJ4M0wRSjMWkmIpJNYarJgRCIY2jE8d5A0HyuzdhDThYFR+97MSuT8VuHF1JOBwvVwjtthJS+yvosBVxJPkiqO0lLqGSTVXxXDwhXeswNeNw+4m9OZ74qnL6W8242ky0jp0CQG6iLNUR2pIkXAghgFzLDHItM0BVMYQ8ZPSVkdK/hpqOz0VKwgltrTrYxtjOVYSAtbboBCrfMrJrg3+Q43831xZ+FX/AhHV/NXmvr2By22u0Tp7D7rziUZ2E13X1s3bmX0geX0W68yAZzjJq05cCjIoqOmJokyRcCDHqhTweJjeWoaxfSc6+deQvb8Ns8wPwl5SLmV80X+MIBUB5ax/+lEvx68z8X/d2dhocvJaYTwPdjLGOziQc4BOLC/j7Bsh9703Gv/D3yHjage1YutpweguJMY/Ot/tt1V2EdAbaY0ppjynlANdrHZIQEaPzX6UQQhyjqipVl1xKdlsbACGgv9mIuSichGf27SMYmodeZs005Q0EAahOWkTCC+txZtxE0vhirk4ZT7c+xCcXTtM2QA0dT7CbZl/A2Ff+hdETLlmoqCo5m1fyt6Q0Hrx4rJYhaqbPE6Cqfz1N3n2kmUpJM5WSYMjh5ll5WocmhCThQojRTVEUbLNm0rvizciYs8lMYlE4kcnq3ceRlj4mZMVpFaIAjrT0AWBvaSB931bS922Fd8K1wbd94aekxY7epiuKEv6AWBnajW1yDAu3h//udqcl404evUtRylvDf2fqPDuo9mykwr0WgHG2S/hy0v/TMjQhAEnChRAC+5IlUUm4q9VMIKinI34sfeZ0mtqdkoRrrLXXC0D63k1R4zqfl/uun6NFSEPKpRMz+OK7b1E1pZOQS2HVdB39JaVcmHwREG5jn2g3aRzl4HpjXzMAbf7oTpn/XQlJCK1IEi6EGPViFi8Go5Gu3BL6SovxFWawsngZLl0IBQVTm1PrEEe9A40OADL2RCfhrVPnM91k1CKkIWV8ZixF1iVsTCvjD9eGa6XrvLuwO/fhipnCY5tqRt2SlKQj+2hNteEKdkSNp5nGaRSRENEkCRdCjHqG5GTGbt5MDwa+v/pf4Rb2nSvoDbYwP/6TjLdfpnWIo5rzpFrXB2/+FOl7t5C+bwu2jhZapy/QMLKhQ1EU8q3z2ez4GyECmFSFC/r7uaTxS7w6802COjNuXxCraXQ0M1J9Pmb+5cfo/X4WpCVwJN/Gs/O8dMYEmZJRfOYnEGIQSBIuhBCAPsZOMtDo3cNR94bIeIevEkZf+ekh5cVdDehDPjwEKc/R0VVwN0euu5eYplpSJ8us5nEPLJpI1YoruKr2n1zk6sd+rNtrfvcmqpKX8cKuBj42b4zGUQ6Ops070PvDm6uT23pY0NbD2HlXsiHtVq6YJE16xNAgHTOFEOIkqaaSqON2fyUAzQ63FuEIoNPp4+b9n6Lg8L283vFtnmu+h/e6/8DB5A6WjsvQOrwhI8luYkLCPczQlUYScIDSjpUAtPd5tQpt0O18ZVXUsTnRR7zSiVUfP2q+DRBDnyThQghxkvGJE6KOncE2AqqXV/Y0aRSRMAd6SXceZLc+vC7chZtyz7sccq3AZpaE6r+Vp1wSdWzzdaHzebF0t2sU0eDyBoLo/T6Uk77rt6f5aImd8ME3CaEBWY4ihBAnuWbCLN5rXU6qqZgUYwlJxjx0igG3L6h1aKOSqqrkOHYSIsR6W3QZwlzLbMwGScJPNibZRoV/OZNaX6EiZTl1oUkkbt/DBf/5OL15RXDLQq1DPO9WHmyl+spbmJv1KvamJvrbTdhSfLTGTOC2OblahydEhCThQghxksLkRBYnfg4l4Cf38LvExe8m03OQqqQlwOiqLjEUbKjoINexk3a9ntRgEIf+RNJ93diLNIxsaLp2Wja/X93Pk9P+RUrZDmb9+SeRcymH97B7axnT507UMMLzr7HbTUBv4d+znscUcJLuPES68xCdtgIy461ahydEhCThQghxkr43Xmfqk6+QWbYZfCFyFnURm+NBVXSo6icijVHE4NhZ240x89PkeSfydaUeY9dmXk/MZ789jQVjSs78BKPMyZ1du0om47faMbpdkbHG/zxNweTvkWAbuTXD+499axVU/fgMMdQnzKY+YbbGUQlxKlkTLoQQJ+l5/gUyd28EXwgAZ7MZCLevX3mwVcvQRq2kw3spefjPmP+xnfYjC8l338SihM+MuuYzZ2t6XgIA/QYfB6YXRp2zdrfxny21GkQ1uLyhPv7TfBevd3yHHb1P0ODZTUgNnPlGIQaRJOFCCHGSmKVLo46dTRZUFVL6j1JZ16BRVKNTKBSu8JG+bwsA1q428te9RtHbz2oZ1pC3uCQVZ7CDp1s+wb8mHsRhg1fmKTz3zQfZd89X8AdVgiH1zE80DKnHqsK0eA8RxE+b7zD7nC+yuuuXLChO1jg6IaJJEi6EECeJWbok6lix6ii3X8C6gi8DshRlMB1u6UMJ+Ekt2xk13jplHrfPydMoqqFPr1OYnVNIgiGHxhSFT39ezxPL9Oyxl0WuefS9oxpGeP78dlUFAC2+g1HjaaaxTM9N0SIkIT6QrAkXQoiTmAoLSbjlFjYY0nAVF9CZnEd3oI4QIdIMsVqHN2qEQipvl7Vg62rHb4+NWtfcNmUOGfGW09wtLihN5dmKJXT11hDUhz88OpwbKPEVUpF2OS7vyKz2k1K2g5iWBvYm70aXohI6tkY+wzwRi1Eq6YihRZJwIYQ4iaIoZP74R2x57Sn29D1KV0s1QfxkmiZzecoPtQ5v1GjoDjdH6k/LYv33/0xMcy3pe7dg7WzFGy/LCs7EYtQzJeEC9vY+wZJ+N1f3OVjc76Yp4Q0q0i4HoK3XQ1rcyPowM2H9f7AdrGYc4DcZeXfZOF6Y6yPTNLIrwojhSZJwIYR4HyE1SLu/PHLc4a9EVUN0OL2kxJg1jGx0WHWolfS+MiqDRzlAMzlJM+m59HoMOjMTs+K0Dm9YuHfuVMY038v1rT+IjOX2bMfq68JtSuKl3Y18ammRhhEOrLZeD/aaWo6vdjf6/CxQQwRSf8ns/CRNYxPi/ciacCGEeB/LC2dFHftVNz2BRl7bK50zB4PD7WdB3Z/xtv6RQ/1vs7LrZzzZcje7ep/mwvHpWoc3LCTYTDQkLcOvOzHbrSNESecaAPq9gcjm15FgxcsrUftDUWOdJdMAWCibMsUQJEm4EEK8j6snlmLXnXjjjtNn4Q310tPvj1RgEOeHNxBEH/KS1bub92wnmqsECGDRxUXVwhanF9BbjzWagqbYKazN/zIdnWlM/eevmfzv31LR5tQ4woEzpmczCUUuTHF+APSWEEeKrwKQ+v5iSJLlKEII8T4URWFO/L2YFDsppiLMupjwCTVc3s2glzf18+WFnY1k9e6jwqDSpY/eTHfX1Es1imp4mpAVx2b3p3gv/wsorX1M++svyehqAyCkN7By8xFKr591hmcZ+spb+9hXeieO9GLGdqwkv2k9dUwhYLBxkXxzIoYoScKFEOIDFFgXYHZ2Mnb7M6SW7SSu1EtcfB+109+jKDVG6/BGrNZeD0VBF0ZDOl/s6mGDzcIes4UYQxaLC8ZpHd6wsnxcGn9sCpdzNKTEYO7tjpzTBQNkbV+Het3MYT9T/Ma+ZtAZqU5aRHXSIvTFXiyBPgDZQyCGLEnChRDiA0x79mHSNq5EFwqvM7WrfSRP6ePFrbsoumrJGe4WH8XxJjLew16qWq4gflwxH7N0cZXByN7EScM+WRxsRr2OsemxlLf2EbDF0DhlOnm7tkXOZ21fhy/4IGbD8C3f5wucWAfe4NlNrCGNOH0WLlO4LrhOli+JIUqScCGE+AA5eekENpx4g3c2WUib0kdW7z5AkvDzodPlBSB30zvE11XCOvDFxNF5w8dJTivQNrhhalpeApvqd7Oj70m2le7h+7ugPs1A3+J7aJ59ARU7Grhr3hitw/zIdtR2AaCqIdb3/B5PqBe7Lpks8xRuKLpb4+iE+GCyMVMIIT5A1qUXRh17e4z4+3Vk9e3TKKKRb92RdszdHeEE/BiTsxdvXCI3zsjRMLLhKzvByoz8JJq8eykbA9+4T89X7lfZPG8MfnscHX1ePP7h27xn69FwEt4VqMMT6gXAFeqkwr2WqTlSmlAMXZKECyHEB7DNmIHfakfV69DnmPAuL+Wt8T9mS+4nCARDZ34C8aE1drtJK9seNea32ukunkhmwshqLDOYri6dTZIhH1VRqM5QQFHobn+YOE+45OYj66o0jvCjOblSUYNnV9S5GH0ak9MLBzskIc6aLEcRQogPoBgMbP/cj3CmZeMw9tHur6Q30MQ0YwKv72vmuunZWoc4oji9AQC6SiZTefltpO7fRnzDUdonzsRoNmHUy7zRR6XX6SixLWdr7z+wqXqu7Ovjpr79+H3/Yk3RN4FwbfZ4q1HjSD+cg829TGx8ifin15OaZSM2w86+TCddcQq55hlahyfEaUkSLoQQpxEYn8Z/jn4u8jU3wDjbpVR3aBjUCLWlqhOAntRk+i6/mcorbsfS3Y7O7+eGGfKB51zodQrLcy5j2p4NfKJpDZZjM8iB1lfZmnM/LnMa/3ivmgcvHqtxpB/O1p07uX3Hr6ipSWVmDcwEVEXh99+/g0TbNI2jE+L0ZFpBCCFO49650/Crnqixdn/lB1wtzsX+RgfFnWvoafgGTzffxbrOX7DffIDOZBvJdrPW4Q17N88oxZT5ZQwnzb8ZVD+zG/+lYVTnZmzHKvo7TFFjzowcSlNu4c5pizWKSoizI0m4EEKchtlgJNNSEjXW7qsAkHXhA+h4mbnS9pVUBKvx4OOodxsbev5Imet1DFJm7pwZ9Tpc5jTK0q8BIKgY2Jd+A3tSbyJz+zqyN6+iy+XTOMqz1+fxM7bjHdz/lYT3FIwHYFxGrBZhCXHWZDmKEEKcQWHsOBrcZZh1saQai4k3ZAGw9kg7F0+QbnwDYU99D6ghzM4dHI6Lbq6SY54htZ4HyMUT0tniuYeQYmC/5XLSN2xg5s5vY3S78MQl8q85y/jSZeO1DvOsbK5oJiNmMrkT12JJ7KW/w0RvdwI9BaWUpMdgkD0EYoiTJFwIIc5gUfr1pLGcWH06iqKg83mJ6amlIpAkSfgA2VjZQZrrCEf03qhxk2Llm8ulVf1AKc2IZaUlk3WFXyWmqZa8996MnLP0dpNyaBcNc8eQk2jTMMqzU9npo6z4W+gKv0auYzsF3Rt5d8wXQYXPT8zQOjwhzkiScCGEOIMZWYV0Vx1gyub/R3LZHmjoJWV8H3uu/R/CW8HEQAi4wJ50N//u2kJV6Chr7Im0JC8g0WbVOrQR4+QKM86sMfSMKSGhtiIylrN5Jc9Nmj0sNmh6/eElTCGdgdrE+dQmzo+ck1lwMRxIEi6EEGdQnBbD0dUvkbxuw7ERBWejhay+vTi9AWLM8qt0IIx/9GFMfQ7aJ83CP+Fu5iWn0ZEwTuuwRpyLJ6Sz4kANVe71dEzq5mO1EAI6x02jadZSILzfYSgnstUdrsjjtzt/Qpwhk3zLPNJN45meJw16xPAg7xxCCHEGep2CcfFSWPdaZMzTbSK9ZR/+QAikcMc56fcFsHa0ENtcB0DOltXkbFnNli//gqVzUzWObuSZlB3PP3YdYpPjr1jHqhh7dbw7WWFu4e2km8MferyBoZuEh0IqL+9uBMARaKLRu4dG7x4Oud7Eoovjyhn/0ThCIc7O0PwXJoQQQ8y0K5cSNJ+UbSsqSmsfR+qatAtqhKjt7CftQHSXTG9sPD1jSpiak6BNUCPc/TMuI1afjtui8MIiHR3xCjWOp7jy8LcwBZz8df1RrUP8QLvreyKPa91bo84p6BibPGaQIxLio5EkXAghzkJcjI2mWUsJjU2k67rF7PreT/nXjW+zuWH4lHQbqt460EJsY03UWPvEWaDTo5eqKOfFpOwExtlPbHjNCuq5pmU9YztXMbXlOQAeWlmuVXin9d7hZgAUv58a95aoc2Msc9ApktqI4UGWowghxFnQ6xT23HI/q/xLaPUdoc33GtP9VlJNJWe+WXyg+q5+AA7c+QWqLrmJtAPbSTuwndYp8zSObOQba1tOm+8Id3fWclPbtsis3IzGJ9mdeRsBvZVgSB1SH4RUVWVh3cPkd2+ktiKfC3bVUZeXwYFMN1vG9DBpxiKtQxTirEkSLoQQZ0GvU1jR+T06/dWRsUzzRFJNJUN+E9tQ9vzOBnShAI2+Mjwx/TiWXkjtsnAzmflFyRpHN7JdNqEI8+Gv4zcdRtd2V2TcFuhhcuvL7M66naYeN7lJQ6dc4aGmXko6VhHvbcZ9tBuny0rJoX5KDsGkRctY+j+XaR2iEGdN3jWEEOIspRqjZ71bfUcA2FrdpUU4I0Zx11p6G7/H2u5f82TLPbzT9g3qPTuZWyBVLs6nabkJALTFjONoYngG2WlMYV3+gxy2LSOmqZZ2p/c0zzC4VFVl79ZwAq6q4O6M7pTZXziNeKuUsxTDhyThQghxlq4bvyDquN1XjqqqbJMk/CMJhVQAMnq2sMOsD4+h0hCoxK+6UZShswxipBqTHJ7l3pz3AGvyv8Kr1u+jrqhl8Q8+y4Rn/8y7R9o1jvCEhm43hV3vARDo1xP06KPOJ82arkVYQnxkshxFCCHO0uK82fxip55kYz5pplLSTKWohFDQ4w0EMRv0Z34SEVHR5gRVpcO9E6/txJ+dosLyMbK2dzBcPCGdv2+opi1mPFQ5mPH3n0fOJVUdxNbWyMGmDCZkxWkYZdgb+5tx532KmsT5jG1/h4Jr11AVmEObM5eYlnqmzp2kdYhCfCiShAshxFnKjc3lrox/Y9CFSxVaHG0Ubf0XBr2f4NL/0zi64WdDRTtx3mYSfR3Mc8ex02LBryhkGsawqFDKzA2GWIsx8rh94kx8MXGYnL2RsZzNq3g7LZuS9JiobpuDLRRScfuCoOhoiptGU9w03i38CvqQj4A+vARlYaxFs/iE+ChkOYoQQpwlRVEw6MwU7X6VK39yIxd89xPkvvAyY1a/xsFGh9bhDTt9bj/p76ymTvcDbjZ/gked4/jfbgOT4j5Gkt105icQA+LTS4sAcClOdk/NiIwHjEaUULg1/Gt7ta2H/8b+5shjR6CJWvc2AoQiCXiM2YBuCFVxEeJsyEz4APL5fDzzzDM89dRTlJWV0draSmJiIgUFBdxwww3ce++9pKSkaB2mEOIc+fVWgm0BIPym7+vUcWjTemYVXK9tYMNIp9OLvbWBopXPAxAwmeksnUbtxx4lxxozpMrijXRWkx6bSeHZ+m+RML6N5KOwZqqOhumzWJB1HxBuqKSlyjZn5PFh1zuUuV7DpMRQYF3AWNuF3Dp7mYbRCfHRyEz4ADl8+DBz587l7rvv5s0336Surg6v10tLSwubN2/ma1/7GhMnTmTFihVahyqEOAdzC5KoH78UxahGjRfsfhuXN6BRVMPPztpu0vZvixwbfF7i6ysJWO0sH5emYWSj09VTcxhru4iGVIVv32tg1XQdh9lOYsvjXFf2PyhqgO012mxAbna4I4+Dqp8q97sA+FQnR/rfodazlcx4WYoihh9JwgdAQ0MDF154IXv27AHCX1kvXbqU+++/n6uvvhrrsZJJbW1tXHfddaxZs0bDaIUQ52J2QRKq0QR5sQAohhCmfD2+xHj6PJKEny2H20/qgR1RY22TZoOiMHEIbAIcbTLjLYy3X45JCVdLUYAL+0NcWPsIBT2bKW1/h/cqOmjt9Qx6bE9vq488rvVswxPqjTp/S+l1UklHDEuyHGUA3HHHHTQ1hdfLjRkzhldeeYWpU6dGznd0dHDbbbexevVq/H4/N998M1VVVSQkJGgUsRDiozq+Oa384tsxLerj6KTLcJvj0Cl6OsrbuWV2rsYRDg8NXf0YJ89GQSWh+giKGgon4SBLUTSgKAqfWTyJQ29dS7e/lm837Wae40jk/JyGf3I49TKe3FrH/1xYMmj/H3n8QXShAHPr/05l8jJaDAlMcZZSbjyMx6yQYZrIFeOnnvmJhBiCJAk/RytWrGDDhg0AmEwmXnvtNSZPnhx1TUpKCq+88gpTpkzh6NGjdHV18ctf/pKf/exnWoQshDhHiXH9vJlvodVfS3vvD4nRp3FJ8ndo7HGf8V4B7X1eUBSqL7qB6otuwOjqJeXQbrpKwr87ZVZTG/E2I1NjbkRRFFrVd8Hx1ci5ZHcN+d2bqUlayAu7Grhl1uB82Hx2Rz2lHe8wr+FR5jU8Spd1DI1vWNG3h2hPjaV7DASnHcE4fvygxCPEQJLlKOfoT3/6U+TxPffcc0oCfpzdbufHP/5x5Pgvf/kLgYB8dS3EcORSKnnP8QgV/WvoCTTQ5juCqoarSBxvQCM+WEN3P/HuBuqaf8Kajh+zj02UTxtHyGTmismZWoc3qs3KD3cpPZq0hHZbuENsU+xkXhr3EPWWaQA0dg/Oh81gSKWzz8Pshn9GxhL6ajG096KoKmltvZRu30vI6TzNswgxdEkSfg6cTierV6+OHN93332nvf7GG28kJiYGgK6uLtavX39e4xNCnB9Xjp0fdexTXTgC4SVptV3aVpEYDvxBlXEdb3HUu50a3142O/7Gc22fpcz5OqUZsVqHN6rNKQgn4SgK6wq/wotjH2Jj361k//lpJj19YtJp7eG28x7L71dXUNT1LsnumsiYp8cIJ3/O1emwTJhw3mMR4nyQJPwcbNq0Ca/XC4RnumfPnn3a6y0WC/Pnn3jzlg2aQgxP+QnZ2HXJUWNtvsMAvLy7UYuQhpVAMIS9Zx1HTcao8TRTqUYRieMsRj05ieFiAs4OK0X/789MevphYlvqSd+7GUtXuI39nvoePP7geYvDHwx/s1SduIiVRd+hx5IDQKc/h5DuRHdVc0kJOrv9vMUhxPkka8LPwaFDhyKPJ0+ejMFw5j/OGTNmsHLlylPuF0IML2Osc3EHe461rx9HkvFYh8fQ+UtMRgJVVTlw+DAJaiOQFBm3YiXFVKhdYCLi+unZ/GFNJc7MPHR+f2RcFwoxZvULHLn50wA8sq6KBy8ee15i+PO6KgBCOiMHMq6jLP0qxnaswj0hgYZrZxDbUM11lh4Uq5QmFMOXJOHn4MiREzvHx4w5uxbLeXl5kceHDx8e8JiEEIPj50u/xyt7mkBVSa/bxZg9vybh8EGcxhRCF78u3fs+wOObajD5nZSYpvLTjgNssRjYaLWSZJ/BPfMlCR8KDMcqAAVsMdTMmU/xe2sj5xzuKlBVOLZ51uUNYDcPbCrR7wsQOGlvRZN3PybFipp6WWRswkULSCpMfr/bhRg2JAk/B52dnZHH6enpZ3VPRsaJlsBdXdo0PhBCnLuClPBX4De+fTeuN07ULY6ll7qjDeQXS6nC/6aqKv2NzSz6+XfpGDcN//jLWZiocoGhn90Jl5IcY9Y6RHHMLbNzeXZ7PU/MaOVbm6ElEf52mZ7K3AauD7YSp08HReGv64/y2WVFmA36Mz/pWXB6A/xt/dHIcUgNsLHnz/QFWxhjmcv02FtJMo6hMEWWoIjhT9aEnwPnSTuyjzfkOZOTr3OeYUe31+ult7c36j8hxNBwvIyec0wBOkPoxDjgWPeuRlENbcGQSurBnRjdLjJ3b2Tikw+T+8f/cDD9WqZkZZz5CcSgyU4Iv1cVjfk4P7nDwDfu13MkVyGID0fzz7n20IPhGXHg4bVV9PsGptrXyQk4QEX/WvqCLQDUerbycvtX6PBVyQc2MSJIEn4OPJ4TncNMJtNZ3WM2n/jF4XafvszTz3/+c+Lj4yP/5ebKzJoQQ0l+io2mxGnYM7xR473rpPLR+9lZ201q2c6osc5xU0GnZ0GRLC0Yar50UQkppmL0pVcQ1CtYVD3f6OzlV3WbKOzeyPy6v0Su/cu7R0/zTGen6b/q7AdUH3ucz0eNpRqLSTYWSkMnMSJIEn4OLJYTG0J8Pt9Z3XO8mgqcefb8W9/6Fg6HI/JffX39aa8XQgyuWWOSaIqdQkyWB71VRZkQj+PGBey+7bNahzYkbS5vJbl8b9RY+8RZACTYzm4iQwweRVG4dloWM2PvYJz1Qp5pcfGx3h6OLzyZ1/Aope1vRa5/u6zlI7+WPxjime31oKpcWv5DpjU9gykYYEbsbVh08ZHrZsTdzieXyN4BMTLImvBzcLzmN5x5Vvv9rjv5/vdjNpujZs6FEENLTqKVTlshL13/Lzpvz6AzVEuiIQ+jzorbF8RqGph1siOFqjew4bsPk1q2k9SyHSRX7KN9/AytwxKnUZBix6izsiDxs+wunEH+wS+hI1wBqMNWSFPsiZbxB5t6mVeQTLzN+EFP94Fe3ROusz+59SUmtL/BhPY3mNPwD3Zl3UlR+q/Z3v8K+bv3UDo+iRiDzIKLkUFmws9BcvKJr09bW1vP6p6WlhMzBUlJSae5Uggx1CmKwj7nqzzleYz/tN/H6x3fptl3AICnttVpHN3Q0u3ygarSHuOnct48dj/wbVb/33/wx8af+WahGUVRmJaXAEBd4jzWFoZb2dckzOP15B+Q/+zTKCeVMfzHxmp+u6o8Uuf7bPxnSy11XeEuqkuqfxsZt/u7mN70FCadlcW667nnhRrm/fTzHJk1m5rbbifQ0TEgP6MQWpGZ8HNQWnqisURtbe1Z3VNXd+KNedy4cQMekxBicDV6d0cSb4AW70HyLLNxuP2nuWv02dPQw6LaP/Iom9lk8pKuzyfDOoci2yKWFkzUOjxxGouLU9hT1wPAvsybcKsx6LY2Mnvdd9CFQnjjEim/7t7I9aoKf1xTycfmjSE19v2/zQ2FVN6r7GBnbXdkLMldQ3hr8wkri79LQG8lpf5EXw3V48Fz5Aj6xMSB+hGF0ITMhJ+D8ePHRx7v37+fQODMu8N37dr1vvcLIYandFN0y+wW30GNIhm6VFVlT203BZ1r2GtwowItwRr2OJ+l1XeEhcUpWocoTsOg13HjjJzIsf2N3RSseRVdKDzbXbj6JRy9B0657z9banloZXlUZ81ej59VB1v53eqKqAQcoDppEf+e/iQNcdMB2Jd+PTVJCwGIq6+MutYybhyKXpZ7ieFNZsLPwYIFCzCbzXi9XlwuFzt27GDevHkfeL3X62XLli2R4+XLlw9GmEKI8+ieGcvYs/7ZyHFIDRJSg+gUPYFgKNL4ZDRr6fWQ5K6mVm3HqYvuqZBjno7JIH9GQ11u0olCApVX3E7age3ojnWH3Vms8Eb//+Ny649INOadcu8jx7pfnok/5OYAzfRO+jNTWl7iUNrlkXOqTo8hM5NAczMAlony7YkY/uQ33zmIiYnhwgsvjBw/9thjp73+xRdfpK+vDwivB1+yZMn5DE8IMQgW5s5kov1qLkz8BndkPMZ1ab9Gp+ixdray/pH/aB3ekPD0tnqKutbTYDRgDZ1YK5xkyMemlyUFw4GiKHzpohIAnNn57L3wxPvXoVwFT6iXNzt/SE7ri8xq+FfkXGJlGROe+TNxddEz2YoaRFFPfHscVP2s636IVV0/Z1ffM+zNuB6/3hY5v/zHX6Vk7RpKNm0k929/I+Hmm87XjyrEoJGZ8HP02c9+lhUrVgDhJPwLX/gCE9/nE3p/fz/f//73I8cPPPAABoP88Qsx3FkNVq7MfgCHo4fs9h2MWfUKtvJa1K7wmnD/zZdiPMuOuiOV3tNPY9sY7Onf5C/9m+h1bWVFYhGdccv5+OICrcMTZ0lRFK6YnMmK/c00X/EpPB37mLOnk8M54XXcswIx3FT7cxSg15JJecrF5G58m6wd75L33pt0F46n/sLLyU46yuSWl9iU9xkOp11OUPWztvv/Ue8N15Df43ye7kA9SxK+gFFnpSDFTpwlXHHFkJREzOJFWv0RCDGgZCb8HF155ZUsXrwYCC83ueqqq9i3b1/UNZ2dnVx33XVUVoZnApKSkvjGN74x6LEKIc6PC0rTKOh6j+vKv4J9Z3kkAQdwrl2nXWBDQGuvh5TDe5jyz99S8Ku/4XpLpdPxefKyf8nEmCsjyZUYHkozYgHQGax03Psnvv6N8VRmwaSAnd/Xbo5sq7y0/Idkt20jfe/myL2JRw+x9L2fsKj2YeK9zUxpeQEAV7CTFm9Z1Ou0+A7iCYW7RF83Pfv8/2BCaECS8AHw5JNPkpmZCUBNTQ3Tpk1j2bJlfOITn+Daa68lLy+PlStXAmAwGHj22WdJSEjQMGIhxEDKTbLRHDcFRQcxmZ6oc47VqzWKamjYVNVBatkOAHTBAMnl+0g9sAOf4fR9EsTQdfzbC6POytLM71NoX8bd+mWc/HHKoPoo3vIyev+JRnaqXkfy2L7IcXbfXlJc5cQZMlia+CWOV0YxKBYuSvwmsYZ07p4/ZhB+IiG0IUn4AMjJyWHNmjVMmzYNCFcCWLduHY8++iivvvoq/f39AKSmpvLyyy9HrSMXQowMfeYM+kxpxGSfSMKDNgt9ccmoqqphZNpyuv2ntKpvnzATgPsXyVKU4SjOYuSKyeGJJ5POxpLEL3A46172pd8AQAgdawq/xtbFD1Jxxe10x4XT871T81ibFl0Jp6hrPQC5lpnMjL0Dg2LhkqTvkm4ex/JxaSTHSMM6MXLJouQBMm7cOLZu3crTTz/NU089RVlZGa2trSQkJFBYWMgNN9zAfffdR0qKlOISYqRqiJ9JXHEtfn8srZPnUTnxCjzmJCYro7fDn6Otk77sfIyVB9AdK+N6vFV9vFWWogxXY9NjWLH/pAFFYW3h17AGejiQdk2ktODOixbxyqRnWXBIR2VmPbmJ+Sx3OTiSchH7Mm6iJSa8h8ra0crNGxyMvfhnWM3h2e+puQmD/FMJMbgUdTRP0Qwzvb29xMfH43A4iIuL0zocIcRJHlpZDqpKf6ibJu9++oKtTI+9BYAHLx6rcXTaeWhlOQB6r5vkw3tJqC2n/Jq7gdH95zISuH1B/vzu6csP7ux9ir3O5yPHGYYSbkj8Jh5jQtR1M/7yU9IObMcTn0TZrZ/h6k/fSrzNSNDhoOvxx7FMnIhlwgQMGRkoo/hDrRgezjZfk5lwIYQYAFMLfXx/y1dxBBoBUNAx0X4lJp2dtl4PaXEWjSPURk7PDrbomujRKeRMmE78lLkowIwxUppwuLOa9HzxwhJ+t7rifc+rqspR94aosT61+5QEPHX/NtIObAfA4uhi5l//l2C6AnfeiaesjI6HH4lca8jKpHjVKhSdrKYVw58k4UIIMQDm5BbS915r5FglRIsv3MK+rc87KpPwHqebK8u/zYupJg6YzWzjMWJ1ycyOv48vFN2ldXhiAOh0Cp9cUsjf1h895ZyiKFyW/EOaffvp8tfgCfWhoKCq6onZ7FCI0lcej7pPHx9P7MUXA+Aui66aYkhOkQRcjBiShAshxACIMdlIM5XS4juRNDR595Nnmc3Kg61Myo7XMDptrFn9JhcEHZSZTpSY6wt1YtLZpZPoCBJjNvCli0ro9QQIBEP8a3Nt5FysIY1Yw2mKEeh07HrgO4x//q+kHtoNQMYPvo8xLQ0Az8GDUZdbJk4Y+B9ACI1IEi6EEAMkyzyFFl8ZJsVGhnkiaabRu+b5cEsvuW1r2Wi1oJ60htegWBibMEXDyMT5oChKZKPtkrGprC9vP+t7J86ZxJxb/03/K6/g3rObuCuuiJyzTppEsKsbz8GDhPr6pF29GFFkY+YwIhszhRjaHt+2hyPtTSQbC9ApegiFyK18F1t5LWPrj5D324cw5eVpHeageGhlOQtqH8bQ+RKv2XVssFpoMxjINc/i75c9TFaCVesQxXl0uKWXN/e3nPYavU7h+unZ5CbZTnsdgBoK4a+vRx8fj176bIghTjZmCiHEIFtePJYuh43cnm2UdK7B/u9N+DvDs8B+wLl2LUn33KNtkIMgGFKJrynH/U4PneMfZFqSmasDe1gfP4tOWy4Zo3B9/GgzLiOO/GQ7j6w7tXrK1Nx4FhSlYDHqz/r5FJ0O0xhp3CNGFknChRBigByf0ZvS8iJjO1fTFBePo9MeOd+3ZnQk4W/sbyb1wHbS928lff9WAFqmzINPLuX2ienodFJibjSwGPVShlKI05CdMUIIMYAWFCVTnbQIgNhsb9S5/h07CDocWoQ1qKranKQejO6S2Z8a7rA4LkOW0gkhBMhMuBBCDKh4m5HdiQtRUbBneFF0KjqbQuO0pdRNv4hxdvuZn2QYU1UVU28P8fXRyxA6JswAwuuAhRBCSBIuhBADKj/ZjtuYyL6MG+gzZ9DwjUk0pU9D0Yd/3SqGkf1r92iHi6DZzL6PfZGUQ7tJObQbXdBPd+F4rUMTQoghZWS/GwghxCCzGPWoqspzebfS4NlNo/cVTI7VXJT0Da1DGxTry9sJmq3Uz1lM09zlEApi62hBNRi1Dk0IIYYUScKFEGKAtYW280b7LyLHBsVMQPVhUEx0OL2kxJg1jO786nO6uKnsf/hBopFqQ5BM63xy42eSpmZw25x8rcMTQoghQzZmCiHEAPviwsuAE2ufA6qXVu8hAJ7b0aBRVOefqqrkOraT1buTcrWejlAr+10vs6Lze5T3ryZbaoMLIUSEJOFCCDHAMmNTSDUWR401eMMtuT3+oBYhDYqKNieFXRvYZzbh0EfXgH5g1hUfcJcQQoxOshxFCCHOg2zzdDyhXnLM08m2TCfTdKzdtqriPFyOJTkRQ2qqtkEOsDf2NvHJrvX8yxY9451oyGNmTqFGUQkhxNAkSbgQQpwH02JvZHrsLSiKgi4UoOjAa+TtWAnVfdT39JL64IOkfOoBrcMcUHqvm5XZX2euZxtT299jp7Gfl5PHk2mZpXVoQggx5EgSLoQQ58EVk3N460AL05ueZF7d3+jZpqe74kSNcOfatSMuCU87sJ3Sf/2OnvwSOsffQVZRBlenLUVF1To0IYQYcmRNuBBCnAfFaTEAePWxWIJOYrI8Uefde/cS6OjQIrTzotvlI+XgLhQ1RGL1EUpWPEXq2vdAUbhoQobW4QkhxJAjSbgQQpwHRn3412v1se6ZtjQvOkMoct6QkYGvvl6r8AZUMKTy2HtHSTm0O2q8fXy4S+aUnAQNohJCiKFNknAhhDhPPresGLcpiebYSej0YJpoxb1wLHse/Dbef7+Ibfp0rUMcEOWtfdg6WjB43VHjHRNmMLcwSaOohBBiaJM14UIIcZ6YDOF5jjWF36DfmETTXB/OQDvZlmm0HGpj0giZId7f4KA/LYvVv3iCxMoyUg/uxNbWhDslQ2bBhRDiA0gSLoQQ55Ez2MH20DbqHNtwBJqw6ZK4Nf2vKIpy5puHgWBIpa2zk0RvG/t13bQVxdEx7n4UJfwBRD9Cfk4hhBhokoQLIcR5NC7TzLN7Xo4c94e66PRXkWIqpsvlI8lu0i64AXCwqZeCrve4ovw7XJ6bR6MB7EoMWdY5TLZfi9U0VusQhRBiSJI14UIIcR5dMW4KcfrMqLFaz3YAHt9Uo0FEA2vtkTaKut6lxmig8di0jkt1UtG/hiA+bYMTQoghTJJwIYQ4j+xmI3mW2ZFjqy4RgzK8Z7+PU1UVNeAjv3sT6/6rS6ZNl8Qn5izSKDIhhBj6ZDmKEEKcZ4XWxegUA2Msc0gxFqEoOnQBH6lVu2na+RKWvFyS7rhD6zA/tGaHh3hPIwGdhdiQmwKfn2qTEYBcy0zGJNvP8AxCCDF6SRIuhBDn2X2zF/Ha3kJMASdjOtdSuOVV9OuqCXkVHIBn/PhhmYQ/s70em9PIO65Po6Qm8G3KcLlqeSJzPumm8SNm86kQQpwPkoQLIcR5drx7ZnHnGi6t/An9fhO13pTIee+hQ/ibmjBmZWkV4keWsXsTY1//DwD9KRk4513I5JLruGba8PtZhBBiMMmacCGEGCQ1x7pnWlN86EyhqHN969ZpE9RHFAqpAKQc3BUZs3W0YO7tASBflqIIIcRpSRIuhBCDpN+UTEvMRBQdxGR6AAikxdF948ewz5mjcXQfTofTi6HfSULN4ajx9gnhVvV6nSxFEUKI05HlKEIIMQjuWZDP45tqqEhZjtcQQ+3lU6lLnENH1hQAFhQXaxzhh/PE1jrMXg9Nc5aRcnAXlt5uggYjXSWTKUyVWXAhhDgTScKFEGIQHG/KsyPrY7ydOp9q9yaqPY9wZfCn2PXJqKo6bDYyNvW4AfAmpnDgzv8BVSW2sZqYlgZCJjNXTM48wzMIIYSQJFwIIQbJxxflc81Lt9Dpr4qM1bg3MzHmKrZWdzGvMFnD6M7eM9vrKelYTbLrIN8zHybRMpUxKXPIyJ6PHjDqZaWjEEKcifymFEKIQWLQ60gy5EWNVbs3AbC5qlOLkD6yiW2vYux4htZQC4f73+btrp/wZMv93D5/eHyQEEIIrUkSLoQQg8Sk15FvXRA11uY/Qn+wGwh3oBzqulw+jAEXuT3bWf1fXTJj9KlkxEgSLoQQZ0OWowghxCAx6HVkmSdjUmIw6iwUWZdQYrsAmz4RgG1VHcyICWLMyNA40g/2+KYainu2olf9rLTbos6NsczVKCohhBh+JAkXQohB9Pll43Cu+hlx+kwURYfJ7aB02z9IOHgQw9F26lISKXpzhdZhvq+23nBZxU5bIduz7+Gh7nfZru/k9bg0Kgx+FmUt1zhCIYQYPiQJF0KIQWQx6ok3ZJPYX8OSmt+RVrWb+nfiI+d9fT14q6sxFxRoGOX7e2JrHQDGimbUtyqpHX8NccXZ3BCfQbU9lbtmyky4EEKcLUnChRBikBWlxdDcEENh93uoiaC3xBD06CPnnWvXDbkk/HiHTIDUsp3ENVQT11ANK6F18hzaH/gONpO8pQghxNmSjZlCCDHIrp6SSb8pheaYiSgKxGZ5os57Dh/+gDu1s7s+vHlUCQZILdsRda67eBI3z8rRIiwhhBi2ZNpCCCEG2fGmPEeTlpDpLMOe48XhSaZl8nyOzLmFpNIibtY4xv+2vrwDgNiGagwed9S59vHTyUm0vd9tQgghPoAk4UIIoYEEm5FDqZcTUgyUzbqMKlro8tcyKSaL/m43wZCKXjf0Omj2jinh3R/9jTHrXmPMu6/jzMzDlZl35huFEEJEkSRcCCE0cMnEDP69tYu1cXqqur+LK9SJgo5863xi9ClsqGjngtI0rcME4KXdDQBY/d00qg569I24r7yJmguvw9Tn4ILSVI0jFEKI4UeScCGE0EB2ghUdBg66VhBQw2vCVUKUu1YxI+42dtf1DIkk3NHvp6ajH4BrDn2Fh62drLMbMGMi37qQsQmX8am8RI2jFEKI4Uc2ZgohhEaMOivF1iVRY0f6VxFSAxpFdKr/bK0FwObrJMl5gDWW8NuGFx9H3Gtp8u7VMjwhhBi2JAkXQgiNLCxOodR+aeQ42VjIjNjbUAmXAzzS0qdVaBG+QAiAsR2r2GC10KePftu4a9L1WoQlhBDDnixHEUIIjUzJiWdjZT4zYm8n2zyNVFMxADHOJpIqD1D5SjNj//DTSDUVrZj6enAb4olRbMx1e9hmMaMqChmmiSwtGqtpbEIIMVxJEi6EEBqxGMMNeqbF3oQu5Keo8S1Knnkctd6JGji27KP8biylpZrEt6e+B1SVmQ//CBSF2ou/wefVraTVv8ovi24H+xwMevlCVQghPgr57SmEEBqKMYfnQqa2PM+V1d9D39YbScABql5eoUlc3S4faw+3kXpgG/ENR4mvr2LKP36L54VW1uT/hTGpX+B7y2/RJDYhhBgJJAkXQggN3TkvXGP7cMqlhHR6YrKju2f2rlmL0zv4GzUf21QDqkrxm89Ejet9XtrTJgCQHGMe9LiEEGKkkCRcCCE0ZDMZmFeYjNuURGXy8pNa2Kt4c1JpnbaAFfuaBjUmjz8IgLm3+5TumFWX3QI6PddNzx7UmIQQYqSRNeFCCKGxeYVJbDnaybac+0jvKaP7qvlsm3MLew37mBBzOYYez5mfZAA9sq4KAG98Eu99549k7NpA8VvPgAotMxYDkJ8sbeqFEOJcSBIuhBAaO179pMNewu9nPMyB/jep6P8uAdWLSWdjnP2SQYulp98HwKKaP+CwZLM79VIqZ0ymeeZirN0dqHo9cwuSNK/YIoQQw50k4UIIMYRs6v0Hjd49keN9zpcosS3jQKODSdnx5/31/7mxhhRXBbMa/42CSrXjOf4Q6yfXMotS+8VkqynMK0w+73EIIcRIJ2vChRBiCPjU0kIAJsVcEzXuDLZR0b+WlQdbebus5bzG4HD7AZhT/w+UYy2D3jA7UVGp82xnZdfPqFIfR6eTWXAhhDhXkoQLIcQQYDMZiLcayTJNIc0YrguuoGes7SJyzNMAONjUS31X/3l5/VBI5R/vVZPgrmVs52oA3rNaqDKZoq67c9LV5+X1hRBitJEkXAghhog75uahKAoz4m6nxLacm9L+wKKEzxCnS2Js61soQT/P72w4L69d1tQLgN9pYOWYb9FlHUO3Xk98MBS5JsGQw4KsBefl9YUQYrSRNeFCCDFEHO+gmWWeTJZ5MmZnF1O3/JqsvRvwNYYw39XG/ul3o6rqgG+MXHWoFVSVSf/5A7a2JtZfeDvGCTa+g4OX4hMoc77O/ZPulQ2ZQggxQGQmXAghhpBPLC6IPF7+q0+R9MoGPDUQ8uso2fkKqCFWH2ob0Nds6w2XQEwq30/i0UOYnQ5KX/kXOX94ksbQXMbbL+PGtN/zsUk3DOjrCiHEaCZJuBBCDCGxFmPkcdf4yVHngjVuCrs2sL/RMWCv94/3qnliax0AxW89Hf16RjPOjBwAJuckYtQbT7lfCCHERyNJuBBCDDGxlvBKwSOzb4wa9zqM+FzhFvYPrSxnb33POb3OH1ZXRCqi6L0egiZL1Pmjl9yIajCSm2Tj4gnp5/RaQgghosmacCGEGGLumJvHX949Sk/BOAJxMZgT/NRPu5B1U8axiqdY4EkixzKdNYfDy1Km5iZ86NcIhVQCIRUAq78bHX52fub7xNeUU/TWM8Q21dAw9yIArpcW9UIIMeAkCRdCiCHGZjKg1ykE0bP6R4/j1rnZ6vgnVe7fA7DJ8ReuNz2EUWdlzeE2kuwmcpPOvo18KKTyu9UVAFj8Pdx44HMYQ26enfgw21Jr6Xjgq1g9QVRjePmJXuqCCyHEgJPlKEIIMQR9bN4YAFSDgTrPNqrc70bOOYPt7Ox7MnL8/M4GKtucZ/W8/b5AJAE3+x3cWPY5UvsrSPA0kFn5GTY6/szzbV/gMDtQ1RBFaTED+FMJIYQ4TpJwIYQYgpLsJ5rklFiXkWGaGHXeG3KiqidqeL+2t4ktRzvxn1TX+2SqqrKtuou/vHs0Mrb86K9Ic5UD0K8o/Ck2vDzFHepmfc8fWNv9G66cnDlgP5MQQogTJAkXQogh6rPLigBQFB0LEz6NHhN6xcSihM+yJOF/yOo7QLy7PnL95qpO/rimEl/gRCIeCqn0efz8dlUFGys7op7/vYwHaPWFZ9z/mhBHozF6heLyvAtlKYoQQpwnsiZcCCGGKLNBz9TcePbWO4g3ZLEo4bMkGceQaMwjp2sb1x75Kh5jPM9O+it9lhMz1n9aW3nG506oOsjUfz1EvTEV3aV6bnA7WZ86jQr/HgDSTeP55HSpCy6EEOeLJOFCCDGELSlJZW99uC54kW0xRlcfU1/6PzJ2vYfhMg9xITc3lX2GZyf9FZc57YzPpwQDFK94isKVL6IcW86yt+pC6q69nkWWHLI9m9jueJxvz/k+MRapCy6EEOeLLEcRQoghzKDXceWUTFBVit58miU/fICUDZsJuPR0ldsBSPA0Mrvx8dM+jzHYjyHoBlUl5dDuSAIOkL1xNcajrSiKQqF1IQ8U/o3lRZPO688lhBCjnSThQggxxI1NjwVFIb6uEqOnPzLeeTiGoE+hInk5b+TcwVbHPwmq/sj5qc3PcveuW/jslgu4sOr/COpMqAYj++7+MkHjiY2fXcUTcWbmRY6vmJQ7OD+YEEKMYpKECyHEMHD55AwqrrwjaiwU0FHunsuzxV/mje6fUuZ6nRUd36MvEG7iYwy6SXZXYw66GNf+FuPb3wSgNdXC7mtvJKQ3cOSau9n2hZ/gSQovZbl6aiYZ8dGdM4UQQgw8WRMuhBDDwLiMOJzL5tD8zkIy9myiecZi6i++kub0VFZ0/hBnMJx4t/sreLn9y9yS/ghOY0rkfgWVRZU/YX1wP29yEGtpLLd98+cEMsZGvU5xWuyg/lxCCDFaSRIuhBDDxMwxifzlmrupuuwWnFn5AHR7D+AKRZce/Ny7qcza/Rmc44uh5MT4L5ITeFXdAYBf7ec105Ncqn4XnRJ+K/jSRSUIIYQYHLIcRQghhglFUbjkohmRBBwg0zyJq1J+Rqw+A4AUTwwLNh7F1N9H0s7drFPv57lJf+afM16gJ/urUc/X7NvPXueLxFoM3L+oAEWRmuBCCDFYJAkXQohhpDA1Jlwt5STJxgKuTf0l42yXcl3j7KhzCW9spk0poseaR7p1VtS5EusyPjfzHj6xuJB4q5QjFEKIwSRJuBBCDDNj02P5wvJiDCd1szTp7CxIeIAph/uirjV43cTVh5v32PSJJBrGkGeZzZXJ/8svL/hf5o6RSihCCKEFWRN+joLBIGVlZWzfvp0dO3awfft29u3bh98fLhO2dOlS1q1bp22QQogRx6DX8cklhTyyripqvGXGokg5Q2dmHoevvx9XRk7k/DWpv0CvhGe9ZROmEEJoR5Lwc/Dyyy9z55130t/ff+aLhRBigFmMej63rDiqTX3LzMW0zFz8gfccT8DvW5h/vsMTQghxGrIc5Rz09PRIAi6E0JTJoONLF5WcdVJtM+m5Z0E+CTbTmS8WQghx3shM+ABIT09n9uzZkf/efvttfve732kdlhBilFAUhQSbic8tK2ZnbTcOtw+zUc+eup7INbPyE5lXmIxRL3MvQggxFEgSfg4uu+wyamtrycvLixrfunWrRhEJIUYzk0HH/P/f3v3HRF0/cBx/Hf4AU0GJFDT8gZTa/DV/Tp2CkmkoztQ2wV9Zt5LKrdVWa7k053K1dH+MKwAADhRJREFU2mojpzOnpq0fi5KcDAuc6UItNcL5gy1FlB2QSAiCgsJ9/3B+Jl9FOb17f+7g+dhu+3zuPu+7F9t7d6+9+dznBjxq7U8Z2MPGNACAe6GEP4TIyEi7IwAAACAA8X9JAAAAwDBKOAAAAGAYJRwAAAAwjBIOAAAAGMYXM/1YXV2d6urqrP2qqiob0wAAAMBbWAn3Y+vWrVNYWJh1i46OtjsSAAAAvIAS7sfeffddXb582bpduHDB7kgAAADwglZ3OkpaWprS0tK8+pxr167V/PnzvfqcLREcHKzg4GDjrwsAAADfanUlvLy8XAUFBV59zsrKSq8+HwAAANo2TkcBAAAADGt1JXz16tVyu91evTmdTrv/LAAAALQira6EAwAAAP6OEg4AAAAYRgkHAAAADKOEAwAAAIZRwgEAAADDWt11wk1LTEyUy+Vqcl9paam1feTIEY0YMeKOcZmZmerVq5ev4wEAAMAPUcIf0smTJ1VUVNTs4zU1Nfr777/vuL++vt6XsQAAAODHOB0FAAAAMIyV8Id07tw5uyMAAAAgwLASDgAAABhGCQcAAAAMo4QDAAAAhnFOeABxu92SpKqqKpuTAAAA4G5u9bRbva05lPAAUl1dLUmKjo62OQkAAADupbq6WmFhYc0+7nDfr6bDbzQ2Nsrlcqlr165yOBw+f72qqipFR0frwoULCg0N9fnrIfAxZ+Ap5gw8wXyBp+yYM263W9XV1erVq5eCgpo/85uV8AASFBSkxx9/3PjrhoaG8mYHjzBn4CnmDDzBfIGnTM+Ze62A38IXMwEAAADDKOEAAACAYZRwNCs4OFirVq1ScHCw3VEQIJgz8BRzBp5gvsBT/jxn+GImAAAAYBgr4QAAAIBhlHAAAADAMEo4AAAAYBglHAAAADCMEo4Hdu7cOW3atEmLFi3S8OHD1b17d3Xo0EHh4eEaNmyYXnnlFf322292x4SfaGhoUH5+vjZv3qzU1FSNHj1aHTt2lMPhkMPhUHx8vN0RYUB9fb22b9+uxMRE9e3bVyEhIYqKitKECRP0ySefqLy83O6I8BO8Z8BTgdZLuDoKPPbXX39p+fLl+uOPP1p0fHx8vLZt26Y+ffr4OBn81c6dO7Vw4ULV1tY2e0xcXJz27dtnLhSMO336tJKTk5WXl9fsMT169NCWLVuUmJhoLhj8Du8Z8ESg9hJ+th4eKygouGOiP/nkkxoyZIgiIiJUWVmp3NxcFRcXS5L27dun8ePH68CBA4qJibEjMmxWWVl5zw9TtH7FxcVKSEiQy+WSJDkcDk2ePFkDBgzQxYsXlZ2dratXr+rff//VnDlzlJWVpalTp9qcGnbhPQOeCNReQgnHA4uNjZXT6dSiRYvUu3fvJo81NjZq69atWrFihWpra+VyubRw4ULl5ubK4XDYlBh269mzp8aMGWPd9uzZo88//9zuWDAgJSXFKuB9+/ZVRkaGhg8fbj1eXl6uBQsWKCcnR9evX9fzzz+vM2fOqFu3bjYlhj/gPQOeCLReQgmHx6KiorRlyxYtXrxY7dq1u+sxQUFBevHFF9W9e3fNnTtXknTo0CH98ssvmj59usm48AMzZsxQUVHRHf/6O3z4sE2JYFJmZqYOHDggSerYsaN27dqloUOHNjkmIiJCGRkZGjZsmM6ePauKigp9/PHH+vDDD+2IDJvxngFPBGov4YuZ8FhcXJxeeOGFZif67Z577jmNHTvW2t+9e7cvo8FPRUZG2n7uHezzxRdfWNtLly69o4Df0rlzZ61Zs8ba37hxo27cuOHzfPA/vGfAE4HaSyjh8LmJEyda2+fOnbMvCADjrly5opycHGt/2bJl9zx+3rx56tKliySpoqJC+/fv92k+AG2Pv/QSSjh87vZzrRoaGmxMAsC03Nxc1dXVSbq50j1mzJh7Hh8SEqLx48db+3v37vVpPgBtj7/0Eko4fO748ePWdnR0tI1JAJh26tQpa3vo0KFq3/7+X0UaOXLkXccDgDf4Sy+hhMOnzp8/32Ql6+mnn7YxDQDTCgoKrO2+ffu2aMzt5wKfPn3a65kAtF3+1Eso4fCpN9980/pXT58+fZSUlGRzIgAmXbp0ydru2bNni8ZERkZa2xUVFV7PBKDt8qdeQgmHz2zbtk3p6enW/rp16xQcHGxjIgCmXblyxdru1KlTi8bcftzt4wHgYfhbL6GEwyeOHDmi5cuXW/vJyclKSUmxMREAO1y7ds3a7tixY4vG3P6hePXqVa9nAtD2+GMv4cd6WpG0tDSlpaV59TnXrl2r+fPnezSmsLBQSUlJ1ofvsGHDtGHDBq/mwsPzl/mC1i0kJMTarq+vb9GYW1dTkVq+eg4AzfHXXkIJb0XKy8ubfAnKGyorKz06vqSkRNOmTVNpaakkKSYmRllZWQoNDfVqLjw8f5gvaP1uXfNbavmq9u3H3T4eADzlz72E01HgNZcuXdK0adN05swZSTd/RjY7O1tRUVE2JwNgl0cffdTaLisra9GYWx+WkhQeHu71TADaBn/vJZTwVmT16tVyu91evTmdzha9dlVVlaZPn64TJ05IkiIiIpSdna3+/fv78k/GQ7BzvqDtGDhwoLVdVFTUojHnz5+3tgcNGuT1TABav0DoJZRwPLSamholJibq6NGjkqSwsDBlZWXpqaeesjkZALsNHjzY2j5+/Lhu3Lhx3zHHjh2763gAaIlA6SWUcDyUa9euafbs2fr9998lSY888oh2796tUaNG2ZwMgD+YMGGCdbWTmpoaHTly5J7H19XV6dChQ9b+1KlTfZoPQOsSSL2EEo4Hdv36dc2bN8/65ang4GBlZGRo4sSJNicD4C+6dOmihIQEa3/r1q33PP7HH39UdXW1pJvng0+ePNmX8QC0IoHWSyjheCANDQ1KSUlRZmamJKl9+/b6/vvv+Vl6AHd49dVXre2tW7da52j+v9raWr3//vvW/ssvv6z27bmIF4D7C8ReQgmHx9xut1566SX98MMPkqSgoCBt375ds2fPtjkZAH80c+ZMTZo0SdLN001mzZql/Pz8JsdcunRJc+bM0T///CPp5ir4O++8YzwrgMATqL3E4Xa73XaHQGBZv369XnvtNWv/iSee0DPPPNPi8d7+gRgEhsTERLlcrib3lZaWWpet69y5s2JjY+8Yl5mZqV69ehnJCN8pLi7W2LFjVVJSIklyOByKi4vTgAEDdPHiRWVnZ6u2tlbSzRWsrKysJqexoO3hPQMtFai9hBIOj61evVoffPDBA49nyrVN/fr1a/El6m5XWFiofv36eT8QjDt9+rSSk5OVl5fX7DGPPfaYtmzZopkzZ5oLBr/EewZaKlB7CSfbAQCMGDRokA4fPqxvv/1W33zzjU6cOKGysjJ169ZNMTExmjt3rpYtW6aIiAi7owKAz7ESDgAAABjGFzMBAAAAwyjhAAAAgGGUcAAAAMAwSjgAAABgGCUcAAAAMIwSDgAAABhGCQcAAAAMo4QDAAAAhlHCAQAAAMMo4QAAAIBhlHAAAADAMEo4AAAAYBglHAAAADCMEg4AAAAYRgkHAAAADKOEAwAAAIZRwgEAAADDKOEAAACAYZRwAIBPnT17VqGhoXI4HHI4HProo4/uO+b111+3jo+OjtZ///1nICkAmONwu91uu0MAAFq37du3a8mSJZKkDh066ODBgxo1atRdj929e7dmzZolSQoKClJOTo7i4+NNRQUAI1gJBwD43OLFi5WcnCxJun79ulJSUlRTU3PHcaWlpVq2bJm1//bbb1PAAbRKrIQDAIy4fPmyhg8frqKiIkmS0+nUpk2brMfdbreeffZZ7dmzR5I0evRo5ebmqkOHDrbkBQBfYiUcAGBEWFiYduzYoXbt2kmSvvzyS/3000/W45999plVwDt37qyvv/6aAg6g1WIlHABg1KpVq7RmzRpJUnh4uPLz81VeXq5x48aprq5OkrRp0yY5nU47YwKAT1HCAQBGNTQ0aPLkycrNzZUkTZkyRWVlZTp58qQkae7cuUpPT7czIgD4HCUcAGBcYWGhRowYoaqqqib39+7dW/n5+QoPD7cpGQCYwTnhAADj+vfvr/Xr1ze5z+Fw6KuvvqKAA2gTKOEAAFv06NGjyX5UVJTGjRtnUxoAMIsSDgAwrry8XEuXLm1yn8vl0htvvGFPIAAwjBIOADDO6XSqpKREkhQbG9vksoU7d+60MRkAmEEJBwAYtXHjRmVkZEiSOnXqpF27dmnlypXW406nUy6Xy654AGAEV0cBABhTUFCgkSNHqra2VpK0fv16paamqqGhQZMmTdLBgwclSQkJCfr111/lcDjsjAsAPsNKOADAiPr6eqWkpFgFPCkpSampqZKkdu3aaceOHerataskKScnR59++qltWQHA1yjhAAAjVq5cqWPHjkmSIiMjtXnz5iaPx8TEKC0tzdp/7733lJeXZzIiABjD6SgAAJ/bu3evpk2bpsbGRjkcDmVmZmrGjBl3PXbBggX67rvvJEmDBw/W0aNH1alTJ5NxAcDnWAkHAPhURUWFlixZosbGRknSihUrmi3gkrRhwwb16dNHknTq1Cm99dZbRnICgEmshAMAfGr+/PlKT0+XJA0ZMkR//vmnQkJC7jlm//79mjJlilXcf/75ZyUlJfk8KwCYQgkHAAAADON0FAAAAMAwSjgAAABgGCUcAAAAMIwSDgAAABhGCQcAAAAMo4QDAAAAhlHCAQAAAMMo4QAAAIBhlHAAAADAMEo4AAAAYBglHAAAADCMEg4AAAAYRgkHAAAADKOEAwAAAIZRwgEAAADDKOEAAACAYf8DGHiEe7pCNZIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1064,8 +1050,7 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "5838c08a", + "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" @@ -1076,8 +1061,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", - "Scaled input bounds: {0: (-1.731791015101997, 1.731791015101997)}\n" + "\n", + "Scaled input bounds: {0: (-1.7317910151019957, 1.7317910151019957)}\n" ] } ], @@ -1113,8 +1098,7 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "3c011e72", + "execution_count": 9, "metadata": { "pycharm": { "name": "#%%\n" @@ -1126,7 +1110,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.14.6: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -1134,7 +1118,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.14.6, running with linear solver MUMPS 5.2.1.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 10\n", "Number of nonzeros in inequality constraint Jacobian.: 0\n", @@ -1152,40 +1136,47 @@ "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 1.38e+00 3.79e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -9.8829559e+00 1.00e+01 1.00e+01 -1.0 1.51e+01 - 4.01e-01 6.53e-01f 1\n", - " 2 3.0013574e+00 3.76e-02 5.49e+00 -1.0 1.29e+01 - 1.82e-01 1.00e+00h 1\n", - " 3 -2.9560646e+00 3.57e+00 6.97e-01 -1.0 5.96e+00 - 1.00e+00 1.00e+00f 1\n", - " 4 -2.5231565e+00 2.87e+00 4.13e+02 -1.0 2.42e+00 2.0 1.00e+00 1.85e-01h 2\n", - " 5 1.4379333e+00 8.70e-06 3.20e+00 -1.0 3.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1984487e+00 9.36e-02 1.98e-01 -1.0 2.39e-01 - 1.00e+00 1.00e+00f 1\n", - " 7 1.3270178e+00 1.66e-04 8.22e-04 -2.5 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.3272416e+00 1.65e-06 7.95e-06 -3.8 4.48e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.3272438e+00 3.30e-09 1.58e-08 -5.7 2.00e-05 - 1.00e+00 1.00e+00h 1\n", + " 1 -9.7109089e+00 9.94e+00 9.96e+00 -1.0 1.33e+01 - 4.30e-01 7.33e-01f 1\n", + " 2 3.0399169e+00 1.08e-01 5.32e+00 -1.0 1.28e+01 - 1.79e-01 1.00e+00h 1\n", + " 3 -4.8527966e+00 4.82e+00 3.49e+00 -1.0 7.89e+00 - 5.97e-01 1.00e+00f 1\n", + " 4 -1.1738476e+01 1.11e+01 2.82e+01 -1.0 7.46e+01 0.0 3.43e-02 9.23e-02f 1\n", + " 5 4.0647885e+00 6.99e-01 1.31e+01 -1.0 1.58e+01 - 1.00e+00 1.00e+00h 1\n", + " 6 2.5376230e+00 6.70e-02 2.88e+00 -1.0 1.53e+00 -0.5 8.80e-01 1.00e+00f 1\n", + " 7 -2.1307021e+01 1.85e+01 5.65e+00 -1.0 3.46e+01 - 2.92e-01 6.88e-01f 1\n", + " 8 -3.4923942e+01 2.79e+01 8.07e+00 -1.0 2.09e+01 -1.0 9.12e-03 6.50e-01f 1\n", + " 9 5.4733784e+00 3.32e+00 9.32e+00 -1.0 4.04e+01 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.3272439e+00 5.03e-13 2.40e-12 -8.6 2.47e-07 - 1.00e+00 1.00e+00h 1\n", + " 10 6.2585992e+00 1.93e+00 8.03e+00 -1.0 1.69e+00 0.4 1.00e+00 1.00e+00h 1\n", + " 11 3.6221165e+00 5.40e-04 2.88e-01 -1.0 2.64e+00 - 1.00e+00 1.00e+00f 1\n", + " 12 3.5580841e+00 4.26e-03 3.93e-01 -1.7 2.66e-01 - 1.00e+00 2.54e-01f 2\n", + " 13 3.5291931e+00 1.81e-04 4.83e-03 -1.7 2.89e-02 - 1.00e+00 1.00e+00h 1\n", + " 14 3.4762808e+00 5.13e-04 1.95e-02 -3.8 5.39e-02 - 9.95e-01 9.81e-01f 1\n", + " 15 3.4758624e+00 4.84e-09 4.22e-07 -3.8 4.18e-04 - 1.00e+00 1.00e+00h 1\n", + " 16 3.4755696e+00 5.01e-09 4.35e-07 -5.7 2.93e-04 - 1.00e+00 1.00e+00f 1\n", + " 17 3.4755659e+00 7.89e-13 6.91e-11 -8.6 3.70e-06 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 10\n", + "Number of Iterations....: 17\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 1.3272438509677871e+00 1.3272438509677871e+00\n", - "Dual infeasibility......: 2.4045793167397605e-12 2.4045793167397605e-12\n", - "Constraint violation....: 5.0263265771732790e-13 5.0263265771732790e-13\n", - "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 2.5067285679867112e-09 2.5067285679867112e-09\n", - "Overall NLP error.......: 2.5067285679867112e-09 2.5067285679867112e-09\n", + "Objective...............: 3.4755659182795648e+00 3.4755659182795648e+00\n", + "Dual infeasibility......: 6.9056316220894587e-11 6.9056316220894587e-11\n", + "Constraint violation....: 7.8914652590356127e-13 7.8914652590356127e-13\n", + "Variable bound violation: 1.5551582244199835e-08 1.5551582244199835e-08\n", + "Complementarity.........: 3.0181336980863786e-09 3.0181336980863786e-09\n", + "Overall NLP error.......: 3.0181336980863786e-09 3.0181336980863786e-09\n", "\n", "\n", - "Number of objective function evaluations = 13\n", - "Number of objective gradient evaluations = 11\n", - "Number of equality constraint evaluations = 13\n", + "Number of objective function evaluations = 21\n", + "Number of objective gradient evaluations = 18\n", + "Number of equality constraint evaluations = 21\n", "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 11\n", + "Number of equality constraint Jacobian evaluations = 18\n", "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 10\n", - "Total seconds in IPOPT = 0.060\n", + "Number of Lagrangian Hessian evaluations = 17\n", + "Total seconds in IPOPT = 0.010\n", "\n", "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + "\b" ] } ], @@ -1222,8 +1213,7 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "e1be60be", + "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" @@ -1237,9 +1227,9 @@ "Reduced Space Solution:\n", "# of variables: 6\n", "# of constraints: 5\n", - "x = -1.4471585254908634\n", - "y = 1.327243850967787\n", - "Solve Time: 0.08578801155090332\n" + "x = 2.0000000155515822\n", + "y = 3.475565918279565\n", + "Solve Time: 0.024790048599243164\n" ] } ], @@ -1270,8 +1260,7 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "d70e68df", + "execution_count": 11, "metadata": { "pycharm": { "name": "#%%\n" @@ -1282,7 +1271,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.14.6: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -1290,7 +1279,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.14.6, running with linear solver MUMPS 5.2.1.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 2915\n", "Number of nonzeros in inequality constraint Jacobian.: 0\n", @@ -1307,156 +1296,153 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 7.07e+00 3.07e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -4.4039611e-02 7.06e+00 3.74e-02 -1.0 4.28e+01 - 1.00e-03 1.03e-03h 1\n", - " 2 -4.4641596e-02 7.06e+00 1.61e+02 -1.0 3.53e+01 - 1.05e-03 1.71e-05h 1\n", - " 3 -4.9792868e-02 7.06e+00 3.54e+01 -1.0 5.83e+01 - 1.76e-04 2.18e-04h 1\n", - " 4r-4.9792868e-02 7.06e+00 9.99e+02 0.8 0.00e+00 - 0.00e+00 2.75e-07R 4\n", - " 5r-3.0571300e-02 6.85e+00 9.99e+02 0.8 9.36e+02 - 4.15e-04 2.25e-04f 1\n", - " 6r 4.6611081e-03 6.60e+00 9.98e+02 0.8 4.99e+02 - 5.56e-04 5.01e-04f 1\n", - " 7r 7.1113187e-02 6.26e+00 9.97e+02 0.8 3.70e+02 - 1.33e-03 9.02e-04f 1\n", - " 8 6.9065201e-02 6.26e+00 8.81e+00 -1.0 3.86e+01 - 4.10e-04 5.30e-05h 1\n", - " 9 6.8739760e-02 6.26e+00 4.43e+02 -1.0 5.63e+01 - 3.42e-04 1.52e-05h 1\n", + " 0 0.0000000e+00 6.95e+00 2.28e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -4.0740903e-02 6.94e+00 5.95e-01 -1.0 4.63e+01 - 1.32e-03 8.80e-04h 1\n", + " 2 -4.1300350e-02 6.94e+00 1.31e+02 -1.0 3.98e+01 - 6.10e-04 1.41e-05h 1\n", + " 3 -5.1148271e-02 6.94e+00 3.02e+02 -1.0 7.21e+01 - 1.57e-04 3.44e-04f 1\n", + " 4r-5.1148271e-02 6.94e+00 9.99e+02 0.8 0.00e+00 - 0.00e+00 4.32e-07R 4\n", + " 5r-3.1179870e-02 6.67e+00 9.99e+02 0.8 8.44e+02 - 4.03e-04 3.16e-04f 1\n", + " 6r 5.4986374e-03 6.37e+00 9.98e+02 0.8 5.94e+02 - 3.80e-04 6.16e-04f 1\n", + " 7r 4.0604225e-02 6.14e+00 9.97e+02 0.8 4.90e+02 - 1.48e-03 6.33e-04f 1\n", + " 8 3.8375120e-02 6.14e+00 5.20e+00 -1.0 4.06e+01 - 2.85e-04 5.48e-05h 1\n", + " 9 3.7391021e-02 6.14e+00 3.46e+02 -1.0 7.11e+01 - 5.67e-04 3.92e-05h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.7273948e-02 6.26e+00 9.54e+02 -1.0 5.79e+01 - 1.73e-04 7.06e-05h 1\n", - " 11r 6.7273948e-02 6.26e+00 9.99e+02 0.8 0.00e+00 - 0.00e+00 3.67e-07R 2\n", - " 12r 7.1938135e-02 6.23e+00 1.00e+03 0.8 5.39e+02 - 2.22e-04 6.56e-05f 1\n", - " 13r 1.4246126e-01 5.91e+00 1.00e+03 0.8 3.11e+02 - 2.21e-03 1.03e-03f 1\n", - " 14r 3.3587850e-01 4.93e+00 9.99e+02 0.8 3.78e+02 - 3.91e-03 3.73e-03f 1\n", - " 15 3.3307174e-01 4.93e+00 1.00e+00 -1.0 2.83e+01 - 7.18e-05 1.05e-04h 1\n", - " 16r 3.3307174e-01 4.93e+00 9.99e+02 0.7 0.00e+00 - 0.00e+00 3.39e-07R 5\n", - " 17r 3.4023541e-01 5.01e+00 9.99e+02 0.7 1.02e+03 - 1.36e-03 2.43e-04f 1\n", - " 18r 3.9776865e-01 3.94e+00 9.94e+02 0.7 9.76e+02 - 5.58e-03 4.29e-03f 1\n", - " 19 3.9289774e-01 3.94e+00 1.15e+00 -1.0 1.80e+01 - 1.97e-04 4.25e-04h 1\n", + " 10 3.2490611e-02 6.14e+00 2.56e+02 -1.0 7.19e+01 - 1.29e-04 1.98e-04f 1\n", + " 11r 3.2490611e-02 6.14e+00 9.99e+02 0.8 0.00e+00 - 0.00e+00 2.51e-07R 4\n", + " 12r 3.4070427e-02 6.12e+00 9.99e+02 0.8 5.66e+02 - 7.45e-04 3.14e-05f 1\n", + " 13r 1.1894166e-01 5.52e+00 9.97e+02 0.8 4.43e+02 - 1.91e-03 1.78e-03f 1\n", + " 14 1.1709483e-01 5.52e+00 1.00e+00 -1.0 3.81e+01 - 5.89e-05 4.85e-05h 1\n", + " 15r 1.1709483e-01 5.52e+00 9.99e+02 0.7 0.00e+00 - 0.00e+00 2.68e-07R 6\n", + " 16r 1.1949108e-01 5.53e+00 9.99e+02 0.7 5.72e+02 - 4.95e-04 7.88e-05f 1\n", + " 17r 2.2036232e-01 4.63e+00 9.96e+02 0.7 4.12e+02 - 2.55e-03 3.22e-03f 1\n", + " 18 2.0437600e-01 4.63e+00 2.60e+00 -1.0 2.57e+01 - 2.35e-03 6.78e-04h 1\n", + " 19 1.9248698e-01 4.62e+00 2.91e+01 -1.0 3.46e+01 - 4.29e-03 5.63e-04h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.9267917e-01 3.94e+00 2.91e+01 -1.0 2.73e+01 - 1.08e-03 5.35e-05h 1\n", - " 21r 3.9267917e-01 3.94e+00 9.99e+02 0.6 0.00e+00 - 0.00e+00 3.00e-07R 3\n", - " 22r 3.9185050e-01 3.82e+00 9.99e+02 0.6 3.38e+02 - 5.59e-03 3.32e-04f 1\n", - " 23r 3.5535322e-01 2.80e+00 9.92e+02 0.6 1.57e+02 - 1.05e-02 6.53e-03f 1\n", - " 24 3.5197556e-01 2.80e+00 1.27e+00 -1.0 2.12e+01 - 2.06e-04 4.71e-04h 1\n", - " 25 3.5212595e-01 2.80e+00 1.89e+01 -1.0 2.54e+01 - 8.83e-04 7.77e-05h 1\n", - " 26r 3.5212595e-01 2.80e+00 9.99e+02 0.4 0.00e+00 - 0.00e+00 2.81e-07R 4\n", - " 27r 3.4831712e-01 2.71e+00 9.98e+02 0.4 3.17e+02 - 1.05e-02 2.86e-04f 1\n", - " 28r 2.2012525e-01 1.57e+00 9.87e+02 0.4 1.10e+02 - 1.61e-02 1.03e-02f 1\n", - " 29 2.1836112e-01 1.57e+00 2.71e+00 -1.0 1.70e+01 - 1.69e-03 6.57e-04h 1\n", + " 20r 1.9248698e-01 4.62e+00 9.99e+02 0.7 0.00e+00 - 0.00e+00 3.85e-07R 5\n", + " 21r 1.9291305e-01 4.59e+00 9.99e+02 0.7 6.87e+02 - 2.67e-03 6.04e-05f 1\n", + " 22r 2.1019282e-01 4.12e+00 9.96e+02 0.7 3.90e+02 - 5.73e-03 2.11e-03f 1\n", + " 23 2.0769986e-01 4.12e+00 1.71e+00 -1.0 2.03e+01 - 4.74e-05 1.29e-04h 1\n", + " 24 2.0615392e-01 4.12e+00 3.91e+00 -1.0 3.41e+01 - 4.15e-04 9.59e-05h 1\n", + " 25r 2.0615392e-01 4.12e+00 9.99e+02 0.6 0.00e+00 - 0.00e+00 3.34e-07R 3\n", + " 26r 2.0779159e-01 4.11e+00 9.99e+02 0.6 4.52e+02 - 2.14e-03 1.41e-04f 1\n", + " 27r 2.0653116e-01 3.45e+00 9.96e+02 0.6 2.29e+02 - 7.47e-03 3.09e-03f 1\n", + " 28 2.0024100e-01 3.45e+00 3.24e+00 -1.0 2.11e+01 - 1.95e-03 4.80e-04h 1\n", + " 29 1.9990707e-01 3.45e+00 3.21e+02 -1.0 3.06e+01 - 2.24e-03 3.50e-05h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.1825242e-01 1.57e+00 1.68e+03 -1.0 2.83e+01 - 3.57e-03 1.49e-05h 1\n", - " 31r 2.1825242e-01 1.57e+00 9.99e+02 0.2 0.00e+00 - 0.00e+00 2.67e-07R 5\n", - " 32r 2.1119068e-01 1.38e+00 1.15e+03 0.2 4.56e+02 - 3.54e-03 4.31e-04f 1\n", - " 33r 2.1119068e-01 1.38e+00 9.99e+02 0.1 0.00e+00 - 0.00e+00 2.75e-07R 6\n", - " 34r 1.7966216e-01 5.70e-01 9.96e+02 0.1 4.53e+02 - 4.53e-03 2.15e-03f 1\n", - " 35 1.7583159e-01 5.68e-01 9.97e-01 -1.0 1.54e+01 - 1.88e-03 2.76e-03f 1\n", - " 36 1.9672055e-01 5.66e-01 1.99e+00 -1.0 2.24e+01 - 5.90e-03 4.67e-03f 1\n", - " 37 1.9664423e-01 5.66e-01 4.78e+02 -1.0 1.40e+01 - 1.37e-02 9.86e-05h 1\n", - " 38 1.9498479e-01 5.66e-01 3.41e+04 -1.0 2.82e+01 - 1.72e-02 2.62e-04h 1\n", - " 39r 1.9498479e-01 5.66e-01 9.99e+02 -0.2 0.00e+00 - 0.00e+00 3.41e-07R 4\n", + " 30r 1.9990707e-01 3.45e+00 9.99e+02 0.5 0.00e+00 - 0.00e+00 3.50e-07R 2\n", + " 31r 1.9836742e-01 3.39e+00 9.98e+02 0.5 3.43e+02 - 5.27e-03 1.64e-04f 1\n", + " 32r 1.4575203e-01 2.27e+00 9.90e+02 0.5 1.51e+02 - 1.34e-02 7.48e-03f 1\n", + " 33 1.4477427e-01 2.27e+00 1.02e+01 -1.0 1.70e+01 - 1.69e-03 1.80e-04h 1\n", + " 34 1.4469234e-01 2.27e+00 7.63e+02 -1.0 2.99e+01 - 2.18e-03 3.04e-05h 1\n", + " 35r 1.4469234e-01 2.27e+00 9.99e+02 0.4 0.00e+00 - 0.00e+00 4.15e-07R 2\n", + " 36r 1.4286779e-01 2.21e+00 9.98e+02 0.4 3.79e+02 - 5.15e-03 1.48e-04f 1\n", + " 37r 5.1000476e-02 1.04e+00 9.90e+02 0.4 1.79e+02 - 1.92e-02 6.58e-03f 1\n", + " 38 5.0625345e-02 1.04e+00 4.13e+01 -1.0 1.64e+01 - 3.12e-03 1.19e-04h 1\n", + " 39 5.0530511e-02 1.04e+00 1.08e+04 -1.0 3.40e+01 - 3.48e-03 1.57e-05h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40r 1.7485883e-01 5.73e-01 9.98e+02 -0.2 4.52e+02 - 7.90e-04 1.18e-03f 1\n", - " 41r 1.7592054e-01 5.78e-01 9.98e+02 -0.2 2.74e+02 - 9.60e-04 7.48e-04f 1\n", - " 42r 1.8064153e-01 6.01e-01 9.95e+02 -0.2 2.69e+02 - 1.58e-03 3.14e-03f 1\n", - " 43r 1.9004527e-01 6.03e-01 1.06e+03 -0.2 2.60e+02 - 4.96e-03 7.93e-04f 1\n", - " 44r 2.1134247e-01 6.12e-01 1.07e+03 -0.2 1.48e+02 - 3.25e-03 2.92e-03f 1\n", - " 45r 1.8528658e-01 6.15e-01 1.06e+03 -0.2 2.24e+02 - 2.02e-03 2.06e-03f 1\n", - " 46r 1.7546634e-01 6.19e-01 9.89e+02 -0.2 7.88e+01 - 1.65e-03 2.13e-03f 1\n", - " 47r 1.7392989e-01 6.22e-01 1.44e+03 -0.2 9.77e+01 - 5.32e-03 2.26e-03f 1\n", - " 48r 2.2157404e-01 6.27e-01 1.12e+03 -0.2 7.22e+01 - 2.14e-03 4.24e-03f 1\n", - " 49r 2.1888584e-01 6.26e-01 1.12e+03 -0.2 5.59e+02 - 3.86e-04 3.52e-04f 1\n", + " 40r 5.0530511e-02 1.04e+00 9.99e+02 0.0 0.00e+00 - 0.00e+00 1.02e-07R 2\n", + " 41r 3.8919654e-02 7.46e-01 1.04e+03 0.0 4.98e+02 - 3.35e-03 6.19e-04f 1\n", + " 42r 3.8919654e-02 7.46e-01 9.99e+02 -0.1 0.00e+00 - 0.00e+00 4.58e-07R 4\n", + " 43r 4.3279805e-03 6.24e-01 9.97e+02 -0.1 4.24e+02 - 2.56e-03 1.77e-03f 1\n", + " 44 1.5721501e-04 6.22e-01 9.97e-01 -1.0 1.92e+01 - 3.52e-03 2.94e-03h 1\n", + " 45 3.9615166e-05 6.22e-01 5.60e+01 -1.0 2.50e+01 - 1.03e-02 6.92e-04h 1\n", + " 46 -5.4603067e-06 6.22e-01 3.19e+04 -1.0 1.98e+01 - 7.63e-03 1.53e-05h 1\n", + " 47 -1.3336510e-04 6.22e-01 1.48e+07 -1.0 3.46e+01 - 1.13e-02 2.42e-05h 1\n", + " 48r-1.3336510e-04 6.22e-01 9.99e+02 -0.2 0.00e+00 - 0.00e+00 1.21e-07R 2\n", + " 49r-6.8416215e-03 6.20e-01 1.00e+03 -0.2 2.28e+02 - 7.72e-04 4.29e-04f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50r 2.1863287e-01 6.25e-01 1.12e+03 -0.2 6.74e+02 - 2.15e-04 3.70e-04f 1\n", - " 51r 2.2202853e-01 6.23e-01 1.11e+03 -0.2 1.84e+02 - 1.99e-03 1.28e-03f 1\n", - " 52r 2.1402863e-01 6.25e-01 1.26e+03 -0.2 1.17e+02 - 2.08e-03 1.16e-03f 1\n", - " 53r 2.1748257e-01 6.38e-01 1.26e+03 -0.2 1.79e+02 0.0 1.39e-03 1.28e-03f 1\n", - " 54r 2.2588891e-01 6.38e-01 1.26e+03 -0.2 7.68e+01 0.4 3.79e-03 5.75e-03f 1\n", - " 55r 2.8664270e-01 6.41e-01 1.57e+03 -0.2 1.93e+02 -0.1 1.11e-03 3.89e-03f 1\n", - " 56r 4.3533119e-01 6.41e-01 2.31e+03 -0.2 5.37e+02 -0.5 1.05e-04 2.11e-03f 1\n", - " 57r 4.6550343e-01 6.40e-01 2.69e+03 -0.2 1.12e+03 - 1.50e-04 7.58e-04f 1\n", - " 58r 4.8529071e-01 6.39e-01 3.24e+03 -0.2 2.06e+02 -0.1 5.96e-04 2.20e-03f 1\n", - " 59r 4.9417879e-01 6.41e-01 2.69e+03 -0.2 7.91e+01 0.3 1.79e-02 5.86e-03f 1\n", + " 50r-2.1457919e-02 6.14e-01 9.97e+02 -0.2 2.64e+02 - 1.14e-03 1.52e-03f 1\n", + " 51r-2.4674731e-02 5.98e-01 9.95e+02 -0.2 2.60e+02 - 2.38e-03 2.36e-03f 1\n", + " 52r-1.0027863e-02 5.88e-01 1.12e+03 -0.2 2.84e+02 - 5.06e-03 2.58e-03f 1\n", + " 53r 8.8990076e-03 5.95e-01 1.38e+03 -0.2 2.58e+02 - 3.39e-03 1.55e-03f 1\n", + " 54r 2.0354606e-02 6.06e-01 1.03e+03 -0.2 3.07e+02 - 1.37e-03 3.15e-03f 1\n", + " 55r 2.9933282e-02 6.10e-01 1.11e+03 -0.2 1.48e+02 - 1.53e-03 9.77e-04f 1\n", + " 56r 5.9781463e-02 6.19e-01 1.34e+03 -0.2 1.34e+02 - 3.38e-03 2.51e-03f 1\n", + " 57r 1.2716349e-01 6.25e-01 1.37e+03 -0.2 2.69e+02 - 2.34e-03 2.08e-03f 1\n", + " 58r 2.0055619e-01 6.31e-01 1.37e+03 -0.2 2.19e+02 - 3.26e-03 2.46e-03f 1\n", + " 59r 2.5292029e-01 6.36e-01 1.37e+03 -0.2 1.43e+02 - 3.66e-03 2.61e-03f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60r 5.1084602e-01 6.40e-01 2.68e+03 -0.2 3.96e+02 - 1.88e-03 7.21e-04f 1\n", - " 61r 5.7471461e-01 6.37e-01 2.67e+03 -0.2 2.49e+02 - 8.68e-04 3.75e-03f 1\n", - " 62r 5.7594033e-01 6.37e-01 2.67e+03 -0.2 8.36e+01 - 9.82e-03 1.14e-03f 1\n", - " 63r 5.8645972e-01 6.36e-01 2.66e+03 -0.2 5.51e+01 - 8.04e-03 3.06e-03f 1\n", - " 64r 7.7921672e-01 6.29e-01 2.66e+03 -0.2 8.58e+02 - 1.37e-04 1.31e-03f 1\n", - " 65r 7.9637018e-01 6.28e-01 2.66e+03 -0.2 1.29e+03 - 6.20e-04 1.28e-04f 1\n", - " 66r 8.4782708e-01 6.23e-01 2.66e+03 -0.2 3.17e+02 - 2.79e-03 1.88e-03f 1\n", - " 67r 8.8718420e-01 6.20e-01 2.65e+03 -0.2 9.65e+01 - 6.14e-04 3.79e-03f 1\n", - " 68r 8.9921916e-01 6.20e-01 2.64e+03 -0.2 5.78e+01 - 1.46e-02 2.85e-03f 1\n", - " 69r 9.1242994e-01 6.17e-01 2.64e+03 -0.2 7.37e+02 - 1.47e-04 3.77e-04f 1\n", + " 60r 3.3947915e-01 6.37e-01 1.36e+03 -0.2 3.61e+02 - 8.07e-04 1.71e-03f 1\n", + " 61r 3.7477628e-01 6.38e-01 1.36e+03 -0.2 1.42e+02 - 3.44e-03 1.26e-03f 1\n", + " 62r 4.2790672e-01 6.42e-01 1.36e+03 -0.2 1.24e+02 - 1.98e-03 3.84e-03f 1\n", + " 63r 4.4861908e-01 6.44e-01 1.35e+03 -0.2 1.95e+02 - 1.80e-03 1.41e-03f 1\n", + " 64r 5.2915872e-01 6.43e-01 1.35e+03 -0.2 6.36e+03 - 5.42e-05 1.20e-04f 1\n", + " 65r 5.7491918e-01 6.43e-01 1.35e+03 -0.2 8.32e+02 - 2.67e-04 5.99e-04f 1\n", + " 66r 5.8136208e-01 6.44e-01 1.35e+03 -0.2 2.28e+02 - 3.28e-03 8.03e-04f 1\n", + " 67r 6.0893637e-01 6.44e-01 1.35e+03 -0.2 1.48e+02 0.0 1.62e-03 6.73e-03f 1\n", + " 68r 6.1721890e-01 6.44e-01 1.33e+03 -0.2 5.50e+01 0.4 9.76e-03 7.75e-03f 1\n", + " 69r 5.9280222e-01 6.42e-01 1.33e+03 -0.2 2.32e+02 -0.1 2.79e-04 2.09e-03f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70r 9.2698038e-01 6.11e-01 2.64e+03 -0.2 7.17e+02 - 8.84e-04 8.13e-04f 1\n", - " 71r 9.2840737e-01 6.02e-01 2.63e+03 -0.2 4.20e+01 - 5.03e-03 3.63e-03f 1\n", - " 72r 9.7437638e-01 5.79e-01 2.48e+03 -0.2 1.91e+01 0.7 1.15e-02 5.35e-02f 1\n", - " 73r 9.8557735e-01 5.75e-01 2.46e+03 -0.2 5.42e+01 0.3 1.38e-02 8.79e-03f 1\n", - " 74r 1.1086975e+00 5.70e-01 2.45e+03 -0.2 1.84e+02 -0.2 6.63e-04 4.98e-03f 1\n", - " 75r 1.1308053e+00 5.69e-01 2.45e+03 -0.2 8.15e+02 - 9.11e-04 2.80e-04f 1\n", - " 76r 1.1531653e+00 5.67e-01 2.44e+03 -0.2 1.56e+02 - 1.10e-03 2.48e-03f 1\n", - " 77r 1.1844494e+00 5.66e-01 2.44e+03 -0.2 7.88e+02 - 1.85e-04 4.85e-04f 1\n", - " 78r 1.1912200e+00 5.65e-01 2.44e+03 -0.2 3.31e+02 - 4.04e-03 4.93e-04f 1\n", - " 79r 1.2177672e+00 5.59e-01 2.44e+03 -0.2 5.69e+02 -0.7 3.99e-04 1.27e-03f 1\n", + " 70r 5.6890773e-01 6.40e-01 1.33e+03 -0.2 9.62e+02 - 6.75e-04 2.96e-04f 1\n", + " 71r 6.0587761e-01 6.40e-01 1.33e+03 -0.2 1.26e+02 - 3.26e-03 3.19e-03f 1\n", + " 72r 6.1282044e-01 6.37e-01 1.35e+03 -0.2 1.26e+02 - 3.33e-04 3.55e-03f 1\n", + " 73r 6.2591560e-01 6.36e-01 1.32e+03 -0.2 7.04e+01 - 7.50e-03 3.17e-03f 1\n", + " 74r 6.0988842e-01 6.25e-01 1.32e+03 -0.2 9.57e+02 - 2.01e-04 9.43e-04f 1\n", + " 75r 5.8604058e-01 6.21e-01 1.31e+03 -0.2 6.80e+02 - 1.86e-03 5.50e-04f 1\n", + " 76r 5.7477530e-01 6.19e-01 1.31e+03 -0.2 3.05e+02 - 1.49e-03 4.66e-04f 1\n", + " 77r 5.3145906e-01 6.12e-01 1.31e+03 -0.2 2.26e+02 - 1.99e-03 2.35e-03f 1\n", + " 78r 5.4201911e-01 6.10e-01 1.35e+03 -0.2 5.42e+01 - 1.76e-04 4.13e-03f 1\n", + " 79r 5.6713031e-01 6.08e-01 1.30e+03 -0.2 1.59e+02 - 7.69e-03 1.56e-03f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80r 1.2225816e+00 5.58e-01 2.44e+03 -0.2 8.85e+02 -0.3 1.17e-03 2.08e-04f 1\n", - " 81r 1.2296611e+00 5.54e-01 2.43e+03 -0.2 2.03e+02 - 4.83e-03 1.26e-03f 1\n", - " 82r 1.2816362e+00 5.47e-01 2.42e+03 -0.2 1.58e+02 - 2.73e-03 5.46e-03f 1\n", - " 83r 1.2825466e+00 5.38e-01 2.41e+03 -0.2 3.54e+01 - 8.42e-03 5.34e-03f 1\n", - " 84r 1.2995573e+00 1.20e-01 2.39e+03 -0.2 1.72e+02 - 2.89e-04 5.09e-03f 1\n", - " 85 1.2996415e+00 1.20e-01 1.15e+01 -1.0 5.58e+00 - 1.01e-03 1.80e-03f 1\n", - " 86 1.2914684e+00 1.16e-01 1.40e+03 -1.0 2.07e+00 - 3.99e-01 3.58e-02f 1\n", - " 87 1.1085614e+00 4.83e-02 3.22e+04 -1.0 1.57e+00 - 1.85e-02 8.46e-01f 1\n", - " 88 1.0059332e+00 4.80e-04 2.32e+05 -1.0 1.04e-01 - 1.35e-01 9.90e-01h 1\n", - " 89 1.0042278e+00 1.72e-06 4.45e+03 -1.0 3.92e-03 - 9.93e-01 9.97e-01h 1\n", + " 80r 6.3557574e-01 6.02e-01 1.30e+03 -0.2 3.48e+02 - 7.04e-05 1.35e-03f 1\n", + " 81r 6.6149225e-01 5.99e-01 1.29e+03 -0.2 4.12e+02 - 1.35e-03 1.02e-03f 1\n", + " 82r 7.0330515e-01 5.94e-01 1.29e+03 -0.2 4.06e+02 - 5.21e-04 1.36e-03f 1\n", + " 83r 7.3806437e-01 5.90e-01 1.29e+03 -0.2 3.33e+02 - 8.82e-04 1.12e-03f 1\n", + " 84r 7.8312861e-01 5.85e-01 1.29e+03 -0.2 1.77e+02 - 1.05e-03 2.56e-03f 1\n", + " 85r 8.1278418e-01 5.82e-01 1.28e+03 -0.2 9.98e+01 - 6.67e-03 2.84e-03f 1\n", + " 86r 8.6191480e-01 5.70e-01 1.28e+03 -0.2 8.96e+01 - 2.90e-03 6.00e-03f 1\n", + " 87r 9.2113171e-01 5.43e-01 1.36e+03 -0.2 3.55e+02 - 5.07e-04 1.53e-03f 1\n", + " 88 9.2258112e-01 5.40e-01 5.10e+03 -1.0 3.51e+00 - 9.38e-02 5.06e-03f 1\n", + " 89 9.2441270e-01 5.34e-01 1.11e+04 -1.0 3.08e+00 - 5.31e-03 1.13e-02f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 9.9736943e-01 3.15e-05 5.97e+06 -1.0 1.32e+00 - 8.55e-01 2.94e-02f 6\n", - " 91 9.9687170e-01 3.14e-05 7.35e+06 -1.0 3.54e-01 - 1.00e+00 7.81e-03h 8\n", - " 92 9.9607259e-01 3.13e-05 7.88e+06 -1.0 2.83e-01 - 1.00e+00 1.56e-02h 7\n", - " 93 9.9574644e-01 3.12e-05 7.94e+06 -1.0 4.62e-01 - 1.00e+00 3.91e-03h 9\n", - " 94 9.9524013e-01 3.11e-05 7.95e+06 -1.0 3.58e-01 - 1.00e+00 7.81e-03h 8\n", - " 95 9.9469718e-01 3.10e-05 7.89e+06 -1.0 3.83e-01 - 1.00e+00 7.81e-03h 8\n", - " 96 9.9413722e-01 3.10e-05 7.82e+06 -1.0 3.95e-01 - 1.00e+00 7.81e-03h 8\n", - " 97 9.9358867e-01 3.09e-05 7.76e+06 -1.0 3.86e-01 - 1.00e+00 7.81e-03h 8\n", - " 98 9.9302845e-01 3.08e-05 7.70e+06 -1.0 3.93e-01 - 1.00e+00 7.81e-03h 8\n", - " 99 9.9246500e-01 3.08e-05 7.63e+06 -1.0 3.95e-01 - 1.00e+00 7.81e-03h 8\n", + " 90 9.2434422e-01 5.33e-01 1.10e+04 -1.0 2.28e+00 - 4.35e-04 1.02e-03h 1\n", + " 91 8.6368151e-01 2.51e-01 6.92e+04 -1.0 2.12e+00 - 1.71e-02 5.29e-01f 1\n", + " 92 9.2391326e-01 2.46e-03 1.91e+05 -1.0 1.37e+00 - 2.22e-01 9.90e-01h 1\n", + " 93 9.0831043e-01 6.29e-05 1.42e+05 -1.0 5.07e-02 0.0 8.33e-01 9.92e-01h 1\n", + " 94 9.0105069e-01 8.19e-05 7.63e+06 -1.0 5.30e-01 - 1.00e+00 6.25e-02h 5\n", + " 95 8.3789577e-01 1.61e-03 6.79e+06 -1.0 1.28e+00 - 1.00e+00 2.21e-01f 3\n", + " 96 7.7240813e-01 2.16e-03 5.18e+06 -1.0 1.03e+00 - 1.00e+00 2.50e-01f 3\n", + " 97 6.4093759e-01 3.95e-03 2.59e+06 -1.0 9.40e-01 - 1.00e+00 5.00e-01f 2\n", + " 98 5.5439882e-01 4.86e-03 6.51e+06 -1.0 2.02e+00 - 9.74e-01 1.37e-01f 3\n", + " 99 4.2151393e-01 5.94e-03 2.08e+06 -1.0 7.85e-01 - 1.00e+00 5.00e-01f 2\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 9.1991779e-01 2.44e-03 2.33e-02 -1.0 3.97e-01 - 1.00e+00 1.00e+00w 1\n", - " 101 6.5379354e-01 2.21e-02 4.13e+05 -3.8 4.50e+00 -2.0 2.35e-01 2.68e-01f 1\n", - " 102 2.7190241e-01 3.80e-02 4.14e+06 -3.8 1.27e+00 - 4.55e-01 9.15e-01f 1\n", - " 103 -1.8426036e-01 4.39e-02 1.72e+06 -3.8 1.29e+00 - 5.02e-01 1.00e+00f 1\n", - " 104 -3.2009488e-01 3.48e-02 1.14e+06 -3.8 1.37e+00 - 4.49e-01 2.57e-01h 1\n", - " 105 -6.6442110e-01 2.18e-02 3.71e+05 -3.8 1.39e+00 - 5.32e-01 6.75e-01f 1\n", - " 106 -6.6493220e-01 2.17e-02 2.70e+06 -3.8 1.40e+00 - 1.17e-02 1.53e-03h 1\n", - " 107 -7.6891167e-01 1.62e-02 9.64e+05 -3.8 1.38e+00 - 7.03e-01 3.17e-01f 1\n", - " 108 -7.7161709e-01 1.59e-02 1.19e+06 -3.8 1.20e+00 - 3.12e-03 1.38e-02h 1\n", - " 109 -9.6461087e-01 4.35e-02 7.65e+06 -3.8 1.19e+00 - 1.71e-01 1.00e+00f 1\n", + " 100 3.2204724e-01 6.90e-03 3.12e+06 -1.0 1.35e+00 - 7.43e-01 2.12e-01f 3\n", + " 101 2.2429491e-01 7.96e-03 5.15e+06 -1.0 1.56e+00 - 1.00e+00 1.77e-01f 3\n", + " 102 1.5370840e-01 7.16e-03 5.17e+05 -1.0 7.71e-01 - 1.00e+00 2.50e-01f 3\n", + " 103 -5.6325943e-02 1.49e-02 1.24e+06 -1.0 1.30e+00 - 1.00e+00 4.41e-01f 2\n", + " 104 -4.9483630e-01 3.55e-02 1.06e-01 -1.0 1.17e+00 - 1.00e+00 1.00e+00w 1\n", + " 105 -8.8191026e-01 2.25e-02 7.20e+06 -2.5 1.18e+00 - 3.36e-01 1.00e+00f 1\n", + " 106 -8.6457261e-01 6.67e-03 6.13e+06 -2.5 4.34e-01 - 1.30e-01 1.00e+00h 1\n", + " 107 -8.5476376e-01 1.91e-04 3.51e+05 -2.5 7.34e-02 - 9.40e-01 1.00e+00h 1\n", + " 108 -8.8359862e-01 4.69e-03 2.16e-03 -2.5 3.62e-01 - 1.00e+00 1.00e+00h 1\n", + " 109 -8.7384947e-01 3.44e-04 2.49e+04 -3.8 1.04e-01 - 9.07e-01 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 110 -8.5881600e-01 2.45e-02 5.08e+04 -3.8 1.07e+00 - 1.32e-01 1.00e+00h 1\n", - " 111 -8.8154024e-01 9.03e-03 9.88e+04 -3.8 7.53e-01 - 3.24e-01 1.00e+00h 1\n", - " 112 -8.5590759e-01 1.66e-03 2.90e+03 -3.8 2.78e-01 - 9.08e-01 1.00e+00h 1\n", - " 113 -8.5076492e-01 5.92e-07 9.34e-07 -3.8 5.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 114 -8.5076553e-01 3.85e-07 6.23e-07 -5.7 3.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 115 -8.5076439e-01 6.55e-11 9.57e-11 -8.6 5.16e-05 - 1.00e+00 1.00e+00h 1\n", + " 110 -8.7297456e-01 4.91e-08 5.97e-07 -3.8 1.35e-03 - 1.00e+00 1.00e+00h 1\n", + " 111 -8.7297555e-01 2.16e-07 3.90e-07 -5.7 2.61e-03 - 1.00e+00 1.00e+00h 1\n", + " 112 -8.7297500e-01 3.68e-11 5.83e-11 -8.6 3.41e-05 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 115\n", + "Number of Iterations....: 112\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -8.5076438974713231e-01 -8.5076438974713231e-01\n", - "Dual infeasibility......: 9.5702272627672775e-11 9.5702272627672775e-11\n", - "Constraint violation....: 6.5491889689184291e-11 6.5491889689184291e-11\n", + "Objective...............: -8.7297499690442715e-01 -8.7297499690442715e-01\n", + "Dual infeasibility......: 5.8297584736706334e-11 5.8297584736706334e-11\n", + "Constraint violation....: 3.6792457969170300e-11 3.6792457969170300e-11\n", "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 2.5968883763341154e-09 2.5968883763341154e-09\n", - "Overall NLP error.......: 2.5968883763341154e-09 2.5968883763341154e-09\n", + "Complementarity.........: 2.5595344838331209e-09 2.5595344838331209e-09\n", + "Overall NLP error.......: 2.5595344838331209e-09 2.5595344838331209e-09\n", "\n", "\n", - "Number of objective function evaluations = 250\n", - "Number of objective gradient evaluations = 65\n", - "Number of equality constraint evaluations = 250\n", + "Number of objective function evaluations = 196\n", + "Number of objective gradient evaluations = 67\n", + "Number of equality constraint evaluations = 196\n", "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 124\n", + "Number of equality constraint Jacobian evaluations = 123\n", "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 115\n", - "Total seconds in IPOPT = 0.224\n", + "Number of Lagrangian Hessian evaluations = 112\n", + "Total seconds in IPOPT = 0.212\n", "\n", "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + "\b" ] } ], @@ -1486,8 +1472,7 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "c271f16c", + "execution_count": 12, "metadata": { "pycharm": { "name": "#%%\n" @@ -1501,9 +1486,9 @@ "Full Space Solution:\n", "# of variables: 209\n", "# of constraints: 208\n", - "x = -0.2738104505167032\n", - "y = -0.8507643897471323\n", - "Solve Time: 0.24873971939086914\n" + "x = -0.27612966130338\n", + "y = -0.8729749969044271\n", + "Solve Time: 0.23176932334899902\n" ] } ], @@ -1535,8 +1520,7 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "b367e41c", + "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" @@ -1547,7 +1531,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.14.6: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -1555,7 +1539,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.14.6, running with linear solver MUMPS 5.2.1.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 1215\n", "Number of nonzeros in inequality constraint Jacobian.: 180\n", @@ -1572,74 +1556,114 @@ " inequality constraints with only upper bounds: 60\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.38e+00 1.21e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -8.3795831e-04 1.33e+00 3.81e+00 -1.0 1.02e+00 - 2.19e-02 4.21e-02f 1\n", - " 2 5.5695937e-02 1.16e+00 3.54e+00 -1.0 6.88e-01 - 4.29e-02 1.25e-01f 1\n", - " 3 6.7566418e-02 8.07e-01 3.20e+00 -1.0 8.13e-01 - 1.64e-01 3.04e-01f 1\n", - " 4 -1.9155684e-01 6.07e-01 2.59e+00 -1.0 1.34e+00 - 2.98e-01 2.48e-01h 1\n", - " 5 -3.4572260e-01 5.20e-01 1.57e+02 -1.0 1.22e+00 - 9.75e-01 1.43e-01h 1\n", - " 6 -4.2624424e-01 3.29e-01 1.67e+02 -1.0 5.36e-01 - 6.35e-01 3.68e-01h 1\n", - " 7 -5.8382570e-01 2.05e-01 8.00e+02 -1.0 5.41e-01 - 1.00e+00 3.77e-01h 1\n", - " 8 -7.1562078e-01 8.80e-02 8.44e+02 -1.0 3.16e-01 - 1.00e+00 5.70e-01h 1\n", - " 9 -7.7877716e-01 4.37e-02 2.98e+03 -1.0 1.55e-01 - 1.00e+00 5.03e-01h 1\n", + " 0 0.0000000e+00 1.38e+00 1.11e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 2.1523013e-02 1.34e+00 1.12e+00 -1.0 6.53e-01 - 2.86e-02 3.30e-02f 1\n", + " 2 1.2939043e-02 1.31e+00 1.27e+00 -1.0 1.25e+00 - 3.04e-02 2.20e-02f 1\n", + " 3 -1.6755924e-02 9.74e-01 1.37e+01 -1.0 1.21e+00 - 3.98e-02 2.56e-01f 1\n", + " 4 -1.6839056e-01 7.79e-01 1.12e+01 -1.0 1.26e+00 - 2.34e-01 2.00e-01f 1\n", + " 5 -2.9388224e-01 5.82e-01 8.36e+00 -1.0 1.12e+00 - 2.05e-01 2.53e-01h 1\n", + " 6 -3.1578455e-01 4.60e-01 5.54e+01 -1.0 1.33e+00 - 4.98e-01 2.10e-01h 1\n", + " 7 -2.6605668e-01 2.89e-01 2.44e+01 -1.0 5.27e-01 - 3.20e-01 3.72e-01h 1\n", + " 8 -4.5440899e-01 2.88e-01 2.44e+01 -1.0 7.34e+01 -2.0 2.63e-03 2.56e-03h 1\n", + " 9 -5.3336662e-01 2.56e-01 6.61e+01 -1.0 1.04e+00 - 1.77e-01 1.12e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -5.5095381e-01 1.71e-01 3.42e+02 -1.0 4.65e-01 - 7.66e-01 3.30e-01h 1\n", + " 11 -6.7686979e-01 7.60e-02 6.01e+02 -1.0 2.88e-01 - 1.00e+00 5.56e-01h 1\n", + " 12 -6.7984217e-01 7.46e-02 5.90e+02 -1.0 2.71e+00 -0.7 1.89e-02 1.89e-02h 1\n", + " 13 -6.9284406e-01 4.15e-02 3.91e+03 -1.0 1.89e-01 - 8.56e-01 4.43e-01h 1\n", + " 14 -6.4107811e-01 1.71e-02 1.21e+03 -1.0 9.64e-02 - 7.35e-01 5.88e-01h 1\n", + " 15 -6.2662979e-01 7.85e-03 4.11e+03 -1.0 5.40e-02 - 8.61e-01 5.41e-01h 1\n", + " 16 -6.2672162e-01 2.80e-03 1.02e+04 -1.0 6.76e-03 - 1.00e+00 6.43e-01h 1\n", + " 17 -6.2562987e-01 1.22e-03 3.43e+04 -1.0 6.08e-03 - 1.00e+00 5.66e-01h 1\n", + " 18 -6.3154247e-01 4.84e-04 7.62e+04 -1.0 9.82e-03 - 1.00e+00 6.02e-01h 1\n", + " 19 -6.3308981e-01 1.98e-04 1.88e+05 -1.0 2.62e-03 - 1.00e+00 5.90e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -8.2254920e-01 1.76e-02 4.91e+03 -1.0 8.49e-02 - 1.00e+00 5.97e-01h 1\n", - " 11 -8.4307279e-01 7.64e-03 1.34e+04 -1.0 3.91e-02 - 1.00e+00 5.66e-01h 1\n", - " 12 -8.5413771e-01 3.13e-03 2.91e+04 -1.0 1.91e-02 - 1.00e+00 5.91e-01h 1\n", - " 13 -8.5939203e-01 1.30e-03 7.19e+04 -1.0 8.98e-03 - 1.00e+00 5.85e-01h 1\n", - " 14 -8.6204712e-01 5.23e-04 1.64e+05 -1.0 4.45e-03 - 1.00e+00 5.97e-01h 1\n", - " 15 -8.6335595e-01 2.04e-04 3.70e+05 -1.0 2.15e-03 - 1.00e+00 6.09e-01h 1\n", - " 16 -8.6405100e-01 7.23e-05 7.30e+05 -1.0 1.08e-03 - 1.00e+00 6.46e-01h 1\n", - " 17 -8.6444621e-01 1.88e-05 1.02e+06 -1.0 5.61e-04 - 1.00e+00 7.39e-01h 1\n", - " 18 -8.6466931e-01 2.79e-06 7.69e+05 -1.0 3.34e-04 - 1.00e+00 8.52e-01h 1\n", - " 19 -8.6467463e-01 2.65e-06 6.95e+06 -1.0 1.61e-04 - 1.00e+00 4.90e-02f 4\n", + " 20 -6.4297177e-01 7.91e-05 4.23e+05 -1.0 1.66e-02 - 1.00e+00 6.01e-01h 1\n", + " 21 -6.5224443e-01 3.10e-05 8.88e+05 -1.0 1.53e-02 - 1.00e+00 6.08e-01h 1\n", + " 22 -6.6363610e-01 1.53e-05 2.01e+06 -1.0 2.27e-02 - 1.00e+00 5.07e-01h 1\n", + " 23 -6.7033577e-01 4.83e-06 1.72e+06 -1.0 9.88e-03 - 1.00e+00 6.84e-01h 1\n", + " 24 -6.7656797e-01 1.18e-06 1.92e+06 -1.0 8.33e-03 - 1.00e+00 7.56e-01h 1\n", + " 25 -6.7898126e-01 6.66e-16 1.46e+04 -1.0 2.44e-03 - 1.00e+00 1.00e+00h 1\n", + " 26 -6.7952651e-01 6.66e-16 7.32e+03 -1.7 5.51e-04 - 1.00e+00 1.00e+00f 1\n", + " 27 -6.8102195e-01 6.66e-16 6.40e+05 -1.7 5.78e-03 1.6 5.86e-01 2.60e-01f 2\n", + " 28 -6.8122013e-01 8.88e-16 9.76e+06 -1.7 3.77e-03 2.9 1.00e+00 5.25e-02f 4\n", + " 29 -6.8126778e-01 6.66e-16 1.73e+01 -1.7 4.77e-05 - 1.00e+00 1.00e+00f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 -8.6479011e-01 2.58e-07 1.03e+06 -1.0 2.09e-04 - 1.00e+00 9.03e-01h 1\n", - " 21 -8.6479095e-01 2.05e-07 7.39e+06 -1.0 4.73e-06 - 1.00e+00 2.07e-01f 3\n", - " 22 -8.6482203e-01 7.00e-13 2.85e+02 -1.0 4.98e-05 - 1.00e+00 1.00e+00h 1\n", - " 23 -8.6482674e-01 1.32e-12 5.43e+01 -3.8 7.75e-06 - 1.00e+00 1.00e+00h 1\n", - " 24 -8.6482694e-01 2.22e-16 8.73e-01 -3.8 3.32e-07 6.0 1.00e+00 1.00e+00h 1\n", - " 25 -8.6482811e-01 2.22e-16 6.10e-01 -3.8 1.82e-06 5.5 1.00e+00 1.00e+00f 1\n", - " 26 -8.6483019e-01 1.67e-16 3.73e-01 -3.8 3.24e-06 5.0 1.00e+00 1.00e+00f 1\n", - " 27 -8.6483264e-01 4.44e-16 1.53e-01 -3.8 3.79e-06 4.6 1.00e+00 1.00e+00f 1\n", - " 28 -8.6483289e-01 2.22e-16 6.03e+02 -3.8 4.61e-04 - 3.23e-01 1.97e-02h 5\n", - " 29 -8.6483447e-01 6.66e-16 3.66e-02 -3.8 2.69e-06 4.1 1.00e+00 1.00e+00h 1\n", + " 30 -6.8184006e-01 4.44e-16 1.13e+06 -3.8 5.72e-04 - 7.05e-01 1.00e+00f 1\n", + " 31 -6.8197616e-01 4.44e-16 4.51e-01 -3.8 1.36e-04 - 1.00e+00 1.00e+00f 1\n", + " 32 -6.8239575e-01 4.44e-16 1.54e+03 -3.8 1.47e-03 - 3.93e-01 2.86e-01f 2\n", + " 33 -6.8277018e-01 6.66e-16 4.68e-01 -3.8 3.74e-04 2.4 1.00e+00 1.00e+00f 1\n", + " 34 -6.8377585e-01 6.66e-16 5.32e+04 -3.8 1.03e-03 1.9 4.23e-01 1.00e+00F 1\n", + " 35 -6.8420962e-01 6.66e-16 6.88e+04 -3.8 3.99e-03 1.5 3.88e-01 1.09e-01f 2\n", + " 36 -6.8620010e-01 6.66e-16 5.35e+04 -3.8 7.24e-03 - 3.46e-01 2.75e-01f 1\n", + " 37 -6.8668666e-01 4.44e-16 1.14e+06 -3.8 8.92e-03 1.0 1.00e+00 5.45e-02f 1\n", + " 38 -6.9721019e-01 4.44e-16 2.73e+05 -3.8 1.41e-02 - 2.89e-01 7.45e-01f 1\n", + " 39 -7.1283625e-01 8.88e-16 3.78e+05 -3.8 1.50e+01 - 2.22e-03 1.04e-03f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 -8.6483648e-01 2.22e-16 1.79e+03 -5.7 3.95e-06 - 9.40e-01 1.00e+00h 1\n", - " 31 -8.6487687e-01 2.22e-16 1.33e+03 -5.7 1.70e-04 - 1.00e+00 3.70e-01f 1\n", - " 32 -8.6487662e-01 3.33e-16 3.51e-03 -5.7 4.55e-06 - 1.00e+00 1.00e+00f 1\n", - " 33 -8.6487631e-01 2.78e-16 9.27e-05 -5.7 4.35e-06 - 1.00e+00 1.00e+00h 1\n", - " 34 -8.6487629e-01 4.44e-16 2.50e-09 -5.7 2.26e-08 - 1.00e+00 1.00e+00h 1\n", - " 35 -8.6488017e-01 5.55e-16 4.75e+01 -8.6 5.67e-06 - 8.68e-01 1.00e+00f 1\n", - " 36 -8.6488125e-01 3.33e-16 1.35e+01 -8.6 1.08e-06 - 7.10e-01 1.00e+00h 1\n", - " 37 -8.6488243e-01 4.44e-16 3.21e+00 -8.6 1.17e-06 - 7.54e-01 1.00e+00f 1\n", - " 38 -8.6488330e-01 2.22e-16 4.23e-01 -8.6 8.70e-07 - 8.65e-01 1.00e+00f 1\n", - " 39 -8.6488345e-01 4.44e-16 1.91e-08 -8.6 1.56e-07 - 1.00e+00 1.00e+00h 1\n", + " 40 -7.4236216e-01 6.66e-16 4.49e+03 -3.8 2.95e-02 0.5 1.00e+00 1.00e+00f 1\n", + " 41 -7.6210060e-01 4.44e-16 9.73e+03 -3.8 8.90e-02 0.0 2.31e-01 2.22e-01f 1\n", + " 42 -7.6083045e-01 4.64e-08 6.47e+05 -3.8 1.02e-02 - 9.23e-01 1.25e-01f 4\n", + " 43 -7.6090712e-01 4.03e-08 3.36e+05 -3.8 4.94e-04 - 1.00e+00 1.55e-01f 2\n", + " 44 -7.6164755e-01 4.77e-09 1.01e+02 -3.8 7.40e-04 - 1.00e+00 1.00e+00f 1\n", + " 45 -7.6209913e-01 3.33e-16 1.39e+03 -3.8 4.52e-04 - 8.79e-01 1.00e+00f 1\n", + " 46 -7.6213859e-01 6.66e-16 8.23e-01 -3.8 7.33e-05 3.2 1.00e+00 1.00e+00f 1\n", + " 47 -7.6229913e-01 1.00e-09 2.91e+03 -3.8 2.24e-04 - 6.87e-01 1.00e+00F 1\n", + " 48 -7.6235349e-01 5.00e-16 1.21e+00 -3.8 1.10e-04 2.7 1.00e+00 1.00e+00f 1\n", + " 49 -7.6254478e-01 6.66e-16 2.05e+00 -3.8 2.97e-04 2.2 1.00e+00 1.00e+00F 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 -8.6488353e-01 8.88e-16 3.93e-09 -9.0 7.99e-08 - 1.00e+00 1.00e+00h 1\n", + " 50 -7.6307778e-01 4.44e-16 7.51e+00 -3.8 8.65e-04 1.7 1.00e+00 1.00e+00f 1\n", + " 51 -7.6433608e-01 2.97e-10 9.89e+02 -3.8 1.08e-02 - 1.44e-01 1.92e-01F 1\n", + " 52 -7.6715888e-01 2.97e-10 1.02e+03 -3.8 1.11e+02 - 3.55e-05 4.17e-05f 1\n", + " 53 -8.0984247e-01 2.97e-10 1.05e+03 -3.8 3.77e+02 - 1.84e-04 1.86e-04f 1\n", + " 54 -8.3901822e-01 2.97e-10 8.65e+02 -3.8 1.40e+02 - 3.81e-04 3.42e-04f 1\n", + " 55 -8.3696468e-01 3.50e-07 7.66e+03 -3.8 1.29e-02 - 1.00e+00 2.50e-01f 3\n", + " 56 -8.3733455e-01 2.36e-07 2.57e+04 -3.8 1.62e-03 - 1.00e+00 3.60e-01f 2\n", + " 57 -8.3826460e-01 5.41e-08 1.13e+01 -3.8 1.48e-03 - 1.00e+00 1.00e+00f 1\n", + " 58 -8.3882684e-01 4.21e-09 1.26e+00 -3.8 9.13e-04 - 1.00e+00 1.00e+00f 1\n", + " 59 -8.3892768e-01 6.66e-16 2.27e+03 -3.8 4.87e-04 - 6.41e-01 3.76e-01f 2\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 60 -8.3893258e-01 6.66e-16 6.43e-01 -3.8 2.59e-05 3.1 1.00e+00 1.00e+00h 1\n", + " 61 -8.3898079e-01 4.44e-16 2.47e+03 -3.8 9.92e-04 - 2.17e-01 1.07e-01f 2\n", + " 62 -8.3899317e-01 6.66e-16 1.19e+04 -3.8 1.95e-04 2.6 1.00e+00 2.50e-01h 3\n", + " 63 -8.3900197e-01 6.66e-16 6.18e-02 -3.8 4.46e-05 - 1.00e+00 1.00e+00h 1\n", + " 64 -8.3904044e-01 4.44e-16 5.51e+03 -5.7 4.05e-04 - 3.23e-01 5.11e-01f 1\n", + " 65 -8.3910952e-01 4.44e-16 5.53e+03 -5.7 3.41e+00 - 1.44e-04 3.45e-04f 1\n", + " 66 -8.4550348e-01 6.66e-16 5.23e+03 -5.7 3.85e+00 - 3.22e-02 2.83e-02f 1\n", + " 67 -8.4548968e-01 4.44e-16 5.79e+03 -5.7 9.31e-04 - 5.85e-01 2.50e-01f 3\n", + " 68 -8.4550291e-01 4.44e-16 2.49e+03 -5.7 3.48e-04 - 8.62e-01 6.77e-01h 1\n", + " 69 -8.4550207e-01 4.44e-16 2.01e+03 -5.7 2.50e-05 - 1.00e+00 3.69e-01f 2\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 70 -8.4550066e-01 4.44e-16 1.99e-02 -5.7 1.33e-05 - 1.00e+00 1.00e+00h 1\n", + " 71 -8.4550066e-01 4.44e-16 7.93e-08 -5.7 6.03e-08 - 1.00e+00 1.00e+00h 1\n", + " 72 -8.4550569e-01 8.88e-16 5.08e+01 -8.6 1.56e-05 - 8.56e-01 1.00e+00f 1\n", + " 73 -8.4550785e-01 4.44e-16 1.48e+01 -8.6 2.16e-06 - 6.94e-01 1.00e+00h 1\n", + " 74 -8.4550945e-01 6.66e-16 3.49e+00 -8.6 1.60e-06 - 7.59e-01 1.00e+00f 1\n", + " 75 -8.4551007e-01 6.66e-16 5.18e-01 -8.6 6.29e-07 - 8.48e-01 1.00e+00f 1\n", + " 76 -8.4551025e-01 6.66e-16 1.41e-08 -8.6 1.74e-07 - 1.00e+00 1.00e+00h 1\n", + " 77 -8.4551033e-01 1.11e-15 3.53e-09 -9.0 8.62e-08 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 40\n", + "Number of Iterations....: 77\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -8.6488353274767948e-01 -8.6488353274767948e-01\n", - "Dual infeasibility......: 3.9296848969305742e-09 3.9296848969305742e-09\n", - "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "Variable bound violation: 9.7966697640228784e-09 9.7966697640228784e-09\n", - "Complementarity.........: 1.2129665095977629e-09 1.2129665095977629e-09\n", - "Overall NLP error.......: 3.9296848969305742e-09 3.9296848969305742e-09\n", + "Objective...............: -8.4551033463177583e-01 -8.4551033463177583e-01\n", + "Dual infeasibility......: 3.5349462246259122e-09 3.5349462246259122e-09\n", + "Constraint violation....: 1.1102230246251565e-15 1.1102230246251565e-15\n", + "Variable bound violation: 9.9381632800225759e-09 9.9381632800225759e-09\n", + "Complementarity.........: 1.2114999317118539e-09 1.2114999317118539e-09\n", + "Overall NLP error.......: 3.5349462246259122e-09 3.5349462246259122e-09\n", "\n", "\n", - "Number of objective function evaluations = 53\n", - "Number of objective gradient evaluations = 41\n", - "Number of equality constraint evaluations = 53\n", - "Number of inequality constraint evaluations = 53\n", - "Number of equality constraint Jacobian evaluations = 41\n", - "Number of inequality constraint Jacobian evaluations = 41\n", - "Number of Lagrangian Hessian evaluations = 40\n", - "Total seconds in IPOPT = 0.106\n", + "Number of objective function evaluations = 120\n", + "Number of objective gradient evaluations = 78\n", + "Number of equality constraint evaluations = 120\n", + "Number of inequality constraint evaluations = 120\n", + "Number of equality constraint Jacobian evaluations = 78\n", + "Number of inequality constraint Jacobian evaluations = 78\n", + "Number of Lagrangian Hessian evaluations = 77\n", + "Total seconds in IPOPT = 0.127\n", "\n", "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + "\b" ] } ], @@ -1669,8 +1693,7 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "5acbd4ed", + "execution_count": 14, "metadata": { "pycharm": { "name": "#%%\n" @@ -1684,9 +1707,9 @@ "ReLU Complementarity Solution:\n", "# of variables: 189\n", "# of constraints: 248\n", - "x = -0.29030340810362865\n", - "y = -0.8648835327476795\n", - "Solve Time: 0.1293041706085205\n" + "x = -0.30985268358479867\n", + "y = -0.8455103346317758\n", + "Solve Time: 0.13968920707702637\n" ] } ], @@ -1717,8 +1740,7 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "e0b03cc2", + "execution_count": 15, "metadata": { "pycharm": { "name": "#%%\n" @@ -1751,8 +1773,7 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "b444a91f", + "execution_count": 16, "metadata": { "pycharm": { "name": "#%%\n" @@ -1766,9 +1787,9 @@ "ReLU BigM Solution:\n", "# of variables: 189\n", "# of constraints: 308\n", - "x = -0.29030388\n", - "y = -0.86488116\n", - "Solve Time: 4.609236478805542\n" + "x = -0.30985269\n", + "y = -0.84550685\n", + "Solve Time: 1.8677217960357666\n" ] } ], @@ -1800,8 +1821,7 @@ }, { "cell_type": "code", - "execution_count": 19, - "id": "3e41469f", + "execution_count": 17, "metadata": { "pycharm": { "name": "#%%\n" @@ -1975,8 +1995,7 @@ }, { "cell_type": "code", - "execution_count": 24, - "id": "eaae1680", + "execution_count": 18, "metadata": { "pycharm": { "name": "#%%\n" @@ -1990,9 +2009,9 @@ "ReLU Partition Solution:\n", "# of variables: 249\n", "# of constraints: 428\n", - "x = -0.29756316\n", - "y = -0.86441965\n", - "Solve Time: 4.128497362136841\n" + "x = -0.30985269\n", + "y = -0.84550685\n", + "Solve Time: 5.177385568618774\n" ] } ], @@ -2021,8 +2040,7 @@ }, { "cell_type": "code", - "execution_count": 30, - "id": "a9c0fb03", + "execution_count": 19, "metadata": { "pycharm": { "name": "#%%\n" @@ -2033,7 +2051,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ipopt 3.14.6: \n", + "Ipopt 3.14.16: \n", "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", @@ -2041,7 +2059,7 @@ " For more information visit https://github.com/coin-or/Ipopt\n", "******************************************************************************\n", "\n", - "This is Ipopt version 3.14.6, running with linear solver MUMPS 5.2.1.\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.1.\n", "\n", "Number of nonzeros in equality constraint Jacobian...: 2965\n", "Number of nonzeros in inequality constraint Jacobian.: 150\n", @@ -2058,143 +2076,99 @@ " inequality constraints with only upper bounds: 50\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.06e+00 9.65e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -3.1412143e-02 3.05e+00 9.65e-01 -1.0 1.41e+01 - 2.18e-03 2.23e-03h 1\n", - " 2 -3.2379957e-02 3.02e+00 1.95e+00 -1.0 9.70e+00 - 2.59e-03 1.10e-02f 1\n", - " 3 -4.2549114e-03 2.96e+00 1.96e+00 -1.0 9.21e+00 - 1.36e-02 1.84e-02f 1\n", - " 4 -7.6742803e-02 2.85e+00 5.23e+01 -1.0 8.48e+00 - 8.26e-03 3.76e-02f 1\n", - " 5 -1.0080211e-01 2.77e+00 5.23e+01 -1.0 7.37e+00 - 2.66e-02 2.87e-02f 1\n", - " 6 -2.1323460e-01 2.10e+00 2.87e+02 -1.0 7.57e+00 - 1.29e-02 2.43e-01f 1\n", - " 7 -2.3853097e-01 1.89e+00 2.39e+02 -1.0 4.92e+00 - 3.60e-01 9.87e-02f 1\n", - " 8 -3.7863929e-01 1.30e+00 1.64e+02 -1.0 4.67e+00 - 1.90e-01 3.12e-01h 1\n", - " 9 -4.3514467e-01 1.02e+00 1.16e+02 -1.0 4.04e+00 - 6.56e-01 2.14e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -4.0138536e-01 9.34e-01 1.07e+02 -1.0 3.73e+00 - 9.55e-02 8.55e-02h 1\n", - " 11 -2.5143331e-01 7.88e-01 9.47e+01 -1.0 3.62e+00 - 2.70e-01 1.56e-01h 1\n", - " 12 1.4037611e-02 6.51e-01 9.72e+01 -1.0 3.43e+00 - 2.20e-01 1.74e-01h 1\n", - " 13 3.0589464e-01 5.36e-01 1.05e+02 -1.0 3.20e+00 - 2.19e-01 1.76e-01h 1\n", - " 14 9.4617441e-01 3.40e-01 5.97e+02 -1.0 3.00e+00 - 8.91e-01 3.66e-01h 1\n", - " 15 1.3571317e+00 2.39e-01 1.65e+02 -1.0 2.15e+00 - 1.99e-01 2.99e-01h 1\n", - " 16 1.2207669e+00 1.12e-01 1.31e+03 -1.0 5.19e-01 - 9.95e-01 5.29e-01h 1\n", - " 17 1.1727284e+00 6.22e-02 1.77e+03 -1.0 2.14e-01 0.0 6.34e-01 4.47e-01h 1\n", - " 18 1.0710680e+00 3.58e-02 4.32e+03 -1.0 4.46e-01 - 7.43e-01 4.24e-01h 1\n", - " 19 9.9771930e-01 1.88e-02 1.16e+04 -1.0 2.85e-01 -0.5 1.00e+00 4.75e-01h 1\n", + " 0 0.0000000e+00 1.38e+00 6.80e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -4.2213234e-03 1.38e+00 7.02e-01 -1.0 1.09e+01 - 1.81e-03 1.85e-03f 1\n", + " 2 -7.1514143e-03 1.36e+00 1.51e+00 -1.0 1.46e+01 - 4.11e-03 1.39e-02f 1\n", + " 3 1.1925103e-01 1.26e+00 2.92e+00 -1.0 1.28e+01 - 1.56e-02 7.18e-02f 1\n", + " 4 6.0819010e-01 7.46e-01 6.89e+00 -1.0 1.18e+01 - 1.02e-01 4.10e-01f 1\n", + " 5 6.9742648e-01 5.78e-01 8.74e+00 -1.0 6.14e+00 - 6.22e-01 2.26e-01h 1\n", + " 6 9.7915102e-01 2.98e-01 1.86e+01 -1.0 4.83e+00 - 8.22e-01 4.84e-01h 1\n", + " 7 1.0151316e+00 1.41e-01 5.42e+01 -1.0 2.35e+00 - 9.82e-01 5.27e-01h 1\n", + " 8 9.2586119e-01 1.19e-01 7.81e+01 -1.0 1.84e+00 - 2.32e-01 1.59e-01h 1\n", + " 9 6.6692297e-01 9.12e-02 9.92e+01 -1.0 2.95e+00 - 1.93e-01 2.31e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.2909150e-01 9.63e-03 6.86e+03 -1.0 9.83e-01 - 4.98e-01 4.88e-01h 1\n", - " 21 5.3483581e-01 5.67e-03 4.04e+04 -1.0 7.69e-01 -1.0 1.00e+00 4.11e-01h 1\n", - " 22 -1.7308427e-01 3.81e-03 3.23e+04 -1.0 2.64e+00 - 4.49e-01 4.06e-01H 1\n", - " 23 -5.6460207e-01 5.27e-03 5.51e+04 -1.0 2.33e+00 - 4.41e-01 2.22e-01h 1\n", - " 24 -5.2011887e-01 2.22e-03 1.02e+05 -1.0 1.40e-01 - 1.00e+00 5.87e-01h 1\n", - " 25 -4.7926432e-01 1.57e-03 8.00e+04 -1.0 1.90e-01 0.4 3.30e-01 3.07e-01h 1\n", - " 26 -5.8621716e-01 1.64e-03 9.63e+04 -1.0 2.29e+00 - 9.68e-02 5.90e-02h 1\n", - " 27 -5.8745019e-01 1.63e-03 9.49e+04 -1.0 2.60e-01 0.8 4.61e-03 5.81e-03h 1\n", - " 28 -5.8726902e-01 1.63e-03 9.48e+04 -1.0 8.36e-01 1.2 2.78e-04 3.66e-04h 1\n", - " 29 -5.8735569e-01 1.63e-03 9.48e+04 -1.0 1.36e+00 1.7 6.77e-05 8.96e-05h 1\n", + " 10 2.4412105e-01 8.98e-02 3.62e+01 -1.0 5.59e+01 - 1.89e-02 1.58e-02f 1\n", + " 11 -2.2316706e-01 7.11e-02 1.24e+03 -1.0 4.65e+00 - 6.83e-01 2.08e-01h 1\n", + " 12 -4.7732641e-01 5.77e-02 5.09e+03 -1.0 2.73e+00 - 1.00e+00 1.89e-01h 1\n", + " 13 -4.9330881e-01 3.35e-02 6.06e+03 -1.0 3.35e-01 - 1.00e+00 4.19e-01h 1\n", + " 14 -4.9910360e-01 1.91e-02 7.04e+03 -1.0 2.40e-01 - 8.17e-01 4.29e-01h 1\n", + " 15 -5.2133966e-01 1.40e-02 1.77e+04 -1.0 2.32e-01 - 1.00e+00 2.66e-01h 1\n", + " 16 -5.2834468e-01 1.04e-02 8.58e+04 -1.0 1.07e-01 - 1.00e+00 2.58e-01h 1\n", + " 17 -5.3496075e-01 4.22e-03 1.06e+05 -1.0 6.47e-02 - 1.00e+00 5.95e-01h 1\n", + " 18 -5.3637181e-01 1.69e-03 1.06e+05 -1.0 2.90e-02 4.0 1.00e+00 5.98e-01h 1\n", + " 19 -5.3760651e-01 1.18e-03 1.13e+06 -1.0 1.51e-02 - 1.00e+00 3.06e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 -5.8733905e-01 1.63e-03 9.48e+04 -1.0 1.36e+01 1.2 1.81e-06 2.11e-06f 2\n", - " 31 -5.8654058e-01 1.63e-03 2.79e+07 -1.0 2.41e+00 2.5 1.64e-01 3.50e-04F 1\n", - " 32 -5.9307167e-01 2.68e-04 7.00e+05 -1.0 1.08e-02 - 1.00e+00 8.35e-01h 1\n", - " 33 -5.9365341e-01 1.50e-04 3.61e+06 -1.0 1.80e-03 - 1.00e+00 4.41e-01h 1\n", - " 34 -5.9431019e-01 4.92e-05 2.65e+06 -1.0 1.30e-03 - 1.00e+00 6.73e-01h 1\n", - " 35 -5.9454664e-01 1.72e-05 2.50e+06 -1.0 4.75e-04 - 1.00e+00 6.50e-01h 1\n", - " 36 -5.9465151e-01 5.11e-06 1.98e+06 -1.0 1.91e-04 - 1.00e+00 7.04e-01h 1\n", - " 37 -5.9465220e-01 5.07e-06 6.97e+06 -1.0 1.14e-04 - 1.00e+00 7.47e-03f 8\n", - " 38 -5.9473316e-01 4.90e-11 2.53e+02 -1.0 9.96e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 -5.9527886e-01 4.37e-09 8.58e+06 -3.8 6.91e-04 - 5.71e-01 1.00e+00f 1\n", + " 20 -5.3955151e-01 1.45e-04 1.98e+05 -1.0 8.67e-03 - 1.00e+00 8.77e-01h 1\n", + " 21 -5.3949283e-01 9.23e-05 2.38e+06 -1.0 1.15e-03 - 1.00e+00 3.63e-01h 1\n", + " 22 -5.3956061e-01 3.50e-05 2.40e+06 -1.0 5.94e-04 - 1.00e+00 6.21e-01h 1\n", + " 23 -5.3956541e-01 1.43e-05 3.04e+06 -1.0 2.91e-04 - 1.00e+00 5.91e-01h 1\n", + " 24 -5.3957103e-01 5.60e-06 2.52e+06 -1.0 1.35e-04 - 1.00e+00 6.09e-01h 1\n", + " 25 -5.3957167e-01 2.01e-06 1.47e+06 -1.0 5.05e-05 - 1.00e+00 6.41e-01h 1\n", + " 26 -5.3957541e-01 5.50e-07 1.72e+06 -1.0 1.46e-05 - 1.00e+00 7.26e-01h 1\n", + " 27 -5.3957544e-01 5.49e-07 7.97e+06 -1.0 4.13e-05 - 1.00e+00 1.88e-03f 10\n", + " 28 -5.3958752e-01 2.67e-12 7.88e+01 -1.0 3.44e-05 - 1.00e+00 1.00e+00h 1\n", + " 29 -5.3959089e-01 2.74e-13 2.79e+05 -3.8 1.12e-05 3.5 9.86e-01 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 -5.9534387e-01 1.24e-10 4.03e+00 -3.8 1.16e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 -5.9548511e-01 4.73e-10 9.21e+03 -3.8 6.26e-04 2.0 5.20e-01 3.30e-01f 2\n", - " 42 -5.9556236e-01 1.60e-10 1.32e+00 -3.8 1.32e-04 2.5 1.00e+00 1.00e+00f 1\n", - " 43 -5.9572540e-01 8.06e-10 6.64e+02 -3.8 1.23e-03 - 3.67e-01 2.22e-01f 2\n", - " 44 -5.9589353e-01 8.36e-10 2.26e-01 -3.8 3.02e-04 2.0 1.00e+00 1.00e+00f 1\n", - " 45 -5.9617439e-01 3.02e-09 4.25e+01 -3.8 7.19e-03 - 1.32e-01 6.89e-02f 2\n", - " 46 -5.9665221e-01 6.73e-09 2.59e-01 -3.8 8.57e-04 1.5 1.00e+00 1.00e+00f 1\n", - " 47 -5.9794264e-01 5.52e-08 1.08e+00 -3.8 2.88e-02 - 7.72e-02 8.04e-02f 1\n", - " 48 -5.9926693e-01 5.21e-08 6.90e-01 -3.8 2.38e-03 1.0 1.00e+00 1.00e+00f 1\n", - " 49 -6.0318316e-01 5.05e-07 2.88e+00 -3.8 4.80e+00 - 1.45e-03 1.46e-03f 1\n", + " 30 -5.3962685e-01 3.55e-11 1.89e+00 -3.8 1.28e-04 - 1.00e+00 1.00e+00f 1\n", + " 31 -5.3963813e-01 2.38e-12 1.77e-01 -3.8 3.30e-05 3.0 1.00e+00 1.00e+00f 1\n", + " 32 -5.3976973e-01 4.48e-10 8.87e+02 -3.8 7.33e-03 - 1.17e-01 6.17e-02f 2\n", + " 33 -5.3979375e-01 2.00e-11 3.55e-02 -3.8 9.59e-05 2.6 1.00e+00 1.00e+00h 1\n", + " 34 -5.4016606e-01 4.02e-09 4.09e+02 -5.7 1.20e-02 - 9.91e-02 1.13e-01f 1\n", + " 35 -5.4023618e-01 1.53e-10 2.44e+04 -5.7 2.65e-04 2.1 5.19e-01 1.00e+00f 1\n", + " 36 -5.4045325e-01 1.48e-09 9.08e+03 -5.7 8.24e-04 1.6 2.69e-01 1.00e+00f 1\n", + " 37 -5.4108669e-01 1.24e-08 3.27e-02 -5.7 2.38e-03 1.1 1.00e+00 1.00e+00f 1\n", + " 38 -5.4661515e-01 9.58e-07 2.53e+01 -5.7 1.21e+01 - 4.96e-04 1.72e-03f 1\n", + " 39 -5.4851901e-01 1.12e-07 3.20e-01 -5.7 7.18e-03 0.7 1.00e+00 1.00e+00f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 -6.0717575e-01 4.70e-07 7.57e-01 -3.8 7.16e-03 0.5 1.00e+00 1.00e+00f 1\n", - " 51 -6.1609852e-01 2.46e-06 3.32e+00 -3.8 2.15e-02 0.1 7.37e-01 7.43e-01f 1\n", - " 52 -6.5243390e-01 3.86e-05 2.96e+01 -3.8 6.49e-02 -0.4 1.00e+00 1.00e+00f 1\n", - " 53 -6.9689632e-01 8.00e-05 8.66e+01 -3.8 1.97e-01 -0.9 3.88e-01 3.97e-01f 1\n", - " 54 -8.1273755e-01 4.29e-04 5.24e+02 -3.8 6.18e-01 -1.4 3.67e-01 3.26e-01f 1\n", - " 55 -8.1275533e-01 4.29e-04 5.24e+02 -3.8 2.31e+00 -0.9 1.22e-05 1.30e-05h 1\n", - " 56 -8.1275531e-01 4.29e-04 5.24e+02 -3.8 6.12e-01 0.4 5.21e-07 2.71e-07f 2\n", - " 57 -8.1036563e-01 4.27e-04 1.11e+05 -3.8 7.08e-01 2.6 6.65e-01 5.56e-03f 6\n", - " 58 -8.1088040e-01 2.63e-04 2.27e+05 -3.8 2.83e-03 - 1.00e+00 3.85e-01h 1\n", - " 59 -8.1256055e-01 2.79e-08 8.81e+01 -3.8 3.20e-03 - 1.00e+00 1.00e+00f 1\n", + " 40 -5.5364118e-01 8.19e-07 7.94e+00 -5.7 2.15e-02 0.2 1.00e+00 8.96e-01f 1\n", + " 41 -5.7086614e-01 9.09e-06 1.36e+00 -5.7 6.49e-02 -0.3 1.00e+00 1.00e+00f 1\n", + " 42 -5.9830981e-01 2.71e-05 9.22e-01 -5.7 1.97e-01 -0.8 5.18e-01 5.23e-01f 1\n", + " 43 -7.6056123e-01 7.68e-04 8.89e+00 -5.7 6.10e-01 -1.2 1.00e+00 1.00e+00f 1\n", + " 44 -7.9944754e-01 7.51e-04 8.07e+00 -5.7 1.98e+00 -1.7 1.04e-01 7.37e-02f 1\n", + " 45 -7.8973071e-01 7.77e-04 1.18e+00 -5.7 5.92e-02 - 1.00e+00 1.00e+00h 1\n", + " 46 -8.0680051e-01 1.29e-04 3.58e-01 -5.7 4.41e-02 - 1.00e+00 1.00e+00h 1\n", + " 47 -8.1840701e-01 1.74e-05 4.40e-01 -5.7 2.49e-01 - 3.69e-01 3.69e-01f 1\n", + " 48 -8.7645813e-01 7.65e-04 1.38e+01 -5.7 2.41e+00 -2.2 2.67e-01 2.72e-01f 1\n", + " 49 -8.6821723e-01 5.52e-04 1.00e+03 -5.7 3.14e-01 - 1.00e+00 2.99e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 -8.1318764e-01 1.04e-08 4.82e+01 -3.8 1.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 -8.1327615e-01 1.99e-10 1.25e+01 -3.8 1.45e-04 2.1 1.00e+00 1.00e+00h 1\n", - " 62 -8.1361727e-01 3.14e-09 7.95e+00 -3.8 5.75e-04 1.7 1.00e+00 1.00e+00f 1\n", - " 63 -8.1385769e-01 4.32e-09 4.95e+03 -3.8 2.85e-03 1.2 2.95e-01 1.46e-01f 2\n", - " 64 -8.1390494e-01 8.18e-11 1.15e-01 -3.8 9.29e-05 2.5 1.00e+00 1.00e+00h 1\n", - " 65 -8.1401958e-01 4.29e-10 8.74e-01 -3.8 2.13e-04 2.0 1.00e+00 1.00e+00f 1\n", - " 66 -8.1406021e-01 5.04e-10 4.74e+02 -3.8 1.52e-03 - 1.40e-01 6.92e-02f 2\n", - " 67 -8.1405889e-01 9.25e-11 2.60e-01 -3.8 9.88e-05 2.5 1.00e+00 1.00e+00f 1\n", - " 68 -8.1408278e-01 4.83e-11 5.88e-01 -3.8 1.47e-04 - 1.00e+00 1.00e+00H 1\n", - " 69 -8.1408297e-01 3.05e-11 2.63e-01 -3.8 5.67e-05 2.0 1.00e+00 1.00e+00h 1\n", + " 50 -8.7755204e-01 4.70e-05 1.12e+02 -5.7 1.07e-01 - 8.70e-01 9.46e-01f 1\n", + " 51 -8.7775200e-01 4.56e-05 3.87e+04 -5.7 6.55e-03 - 1.00e+00 3.05e-02f 1\n", + " 52 -8.7832336e-01 6.60e-06 6.85e+03 -5.7 3.98e-03 - 4.52e-01 8.56e-01f 1\n", + " 53 -8.7872676e-01 5.14e-06 2.23e+06 -5.7 8.27e-03 - 2.07e-03 2.21e-01h 1\n", + " 54 -8.7874167e-01 1.59e-12 7.35e+04 -5.7 5.09e-05 5.6 1.01e-02 1.00e+00f 1\n", + " 55 -8.7874339e-01 1.78e-15 2.51e-01 -5.7 1.72e-06 5.2 1.00e+00 1.00e+00h 1\n", + " 56 -8.7875323e-01 9.79e-13 6.23e+00 -5.7 1.75e-04 - 2.28e-01 1.33e-01f 2\n", + " 57 -8.7880211e-01 5.03e-10 4.29e+03 -5.7 2.83e-04 - 1.00e+00 1.73e-01f 1\n", + " 58 -8.7879876e-01 4.89e-13 7.98e-03 -5.7 1.65e-05 - 1.00e+00 1.00e+00f 1\n", + " 59 -8.7879858e-01 1.78e-15 3.66e-07 -5.7 4.35e-07 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 -8.1410434e-01 1.12e-10 1.18e+00 -3.8 2.93e-04 - 1.00e+00 1.00e+00H 1\n", - " 71 -8.1410426e-01 6.30e-11 3.79e-01 -3.8 8.15e-05 1.5 1.00e+00 1.00e+00h 1\n", - " 72 -8.1410814e-01 1.36e-10 8.53e+02 -3.8 1.06e-03 - 6.72e-01 8.55e-02h 4\n", - " 73 -8.1411633e-01 7.79e-11 3.23e-01 -3.8 2.04e-04 1.0 1.00e+00 1.00e+00H 1\n", - " 74 -8.1415037e-01 1.53e-09 3.42e+03 -3.8 1.04e-03 - 7.96e-01 1.00e+00H 1\n", - " 75 -8.1416201e-01 1.81e-11 3.74e+00 -3.8 4.57e-04 0.6 1.00e+00 1.00e+00H 1\n", - " 76 -8.1417086e-01 9.22e-10 9.47e+02 -3.8 5.25e-02 - 4.92e-02 6.00e-03f 4\n", - " 77 -8.1421208e-01 5.34e-09 2.92e+00 -3.8 1.29e-03 0.1 1.00e+00 1.00e+00H 1\n", - " 78 -8.1427103e-01 4.86e-08 4.51e+02 -3.8 8.16e-03 - 4.57e-01 2.66e-01h 2\n", - " 79 -8.1438431e-01 1.68e-07 3.83e-01 -3.8 4.21e-03 -0.4 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 -8.1453881e-01 4.43e-07 1.30e+02 -3.8 3.04e-02 - 3.12e-01 1.88e-01h 2\n", - " 81 -8.1483616e-01 1.10e-06 2.77e+00 -3.8 1.08e-02 -0.9 1.00e+00 1.00e+00h 1\n", - " 82 -8.1522844e-01 2.91e-06 2.15e+02 -3.8 3.19e-01 - 8.30e-02 4.40e-02h 2\n", - " 83 -8.1618636e-01 1.02e-05 5.79e+00 -3.8 3.31e-02 -1.3 1.00e+00 1.00e+00h 1\n", - " 84 -8.1891490e-01 7.43e-05 9.25e+02 -3.8 1.04e-01 -1.8 5.47e-01 8.58e-01h 1\n", - " 85 -8.4134966e-01 3.52e-03 4.98e+03 -3.8 6.39e-01 -2.3 8.33e-01 1.00e+00f 1\n", - " 86 -8.6710254e-01 6.34e-04 1.12e+03 -3.8 2.99e-01 -1.9 9.36e-01 9.91e-01h 1\n", - " 87 -8.6797686e-01 6.32e-04 1.61e+03 -3.8 3.21e+00 - 1.48e-02 4.10e-03h 1\n", - " 88 -8.6536136e-01 2.42e-05 1.00e+02 -3.8 2.97e-02 - 1.00e+00 1.00e+00f 1\n", - " 89 -8.6731488e-01 6.04e-06 2.47e+01 -3.8 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 -8.6829361e-01 1.50e-06 5.85e+00 -3.8 8.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 -8.6878400e-01 3.69e-07 1.18e+00 -3.8 4.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 -8.6902615e-01 8.55e-08 1.11e-01 -3.8 2.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 -8.6914299e-01 1.56e-08 8.77e-02 -3.8 8.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 94 -8.6919654e-01 9.97e-10 3.10e-01 -3.8 3.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 -8.6921385e-01 1.09e-10 2.06e-01 -3.8 1.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 96 -8.6921570e-01 1.35e-12 9.49e-03 -3.8 1.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 97 -8.6921858e-01 3.79e-12 2.11e+03 -5.7 2.27e-05 - 9.29e-01 1.00e+00h 1\n", - " 98 -8.6926736e-01 8.25e-10 1.40e+03 -5.7 7.96e-04 - 1.00e+00 4.20e-01f 1\n", - " 99 -8.6926594e-01 2.00e-13 5.33e-03 -5.7 5.21e-06 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 -8.6926475e-01 1.43e-13 1.18e-04 -5.7 4.41e-06 - 1.00e+00 1.00e+00h 1\n", - " 101 -8.6926476e-01 4.44e-15 3.35e-10 -5.7 4.21e-08 - 1.00e+00 1.00e+00h 1\n", - " 102 -8.6926842e-01 4.88e-12 9.79e-01 -8.6 2.57e-05 - 9.97e-01 1.00e+00f 1\n", - " 103 -8.6926853e-01 3.11e-15 6.29e-08 -8.6 1.11e-07 - 1.00e+00 1.00e+00h 1\n", - " 104 -8.6926858e-01 2.66e-15 7.42e-10 -8.6 5.35e-08 - 1.00e+00 1.00e+00h 1\n", + " 60 -8.7880397e-01 1.16e-12 1.06e+01 -8.6 2.55e-05 - 9.69e-01 9.99e-01f 1\n", + " 61 -8.7880412e-01 3.55e-15 3.30e+00 -8.6 1.47e-07 - 7.00e-01 1.00e+00f 1\n", + " 62 -8.7880423e-01 1.78e-15 4.52e-01 -8.6 1.05e-07 - 8.63e-01 1.00e+00h 1\n", + " 63 -8.7880431e-01 3.55e-15 4.53e-09 -8.6 8.62e-08 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 104\n", + "Number of Iterations....: 63\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -8.6926858225279213e-01 -8.6926858225279213e-01\n", - "Dual infeasibility......: 7.4234947822662174e-10 7.4234947822662174e-10\n", - "Constraint violation....: 2.6645352591003757e-15 2.6645352591003757e-15\n", - "Variable bound violation: 8.6381841957933814e-09 8.6381841957933814e-09\n", - "Complementarity.........: 2.8640452781782628e-09 2.8640452781782628e-09\n", - "Overall NLP error.......: 2.8640452781782628e-09 2.8640452781782628e-09\n", + "Objective...............: -8.7880431160674222e-01 -8.7880431160674222e-01\n", + "Dual infeasibility......: 4.5283724343658262e-09 4.5283724343658262e-09\n", + "Constraint violation....: 3.5527136788005009e-15 3.5527136788005009e-15\n", + "Variable bound violation: 7.3203456619894392e-09 7.3203456619894392e-09\n", + "Complementarity.........: 3.0363333719947935e-09 3.0363333719947935e-09\n", + "Overall NLP error.......: 4.5283724343658262e-09 4.5283724343658262e-09\n", "\n", "\n", - "Number of objective function evaluations = 161\n", - "Number of objective gradient evaluations = 105\n", - "Number of equality constraint evaluations = 161\n", - "Number of inequality constraint evaluations = 161\n", - "Number of equality constraint Jacobian evaluations = 105\n", - "Number of inequality constraint Jacobian evaluations = 105\n", - "Number of Lagrangian Hessian evaluations = 104\n", - "Total seconds in IPOPT = 0.331\n", + "Number of objective function evaluations = 78\n", + "Number of objective gradient evaluations = 64\n", + "Number of equality constraint evaluations = 78\n", + "Number of inequality constraint evaluations = 78\n", + "Number of equality constraint Jacobian evaluations = 64\n", + "Number of inequality constraint Jacobian evaluations = 64\n", + "Number of Lagrangian Hessian evaluations = 63\n", + "Total seconds in IPOPT = 0.184\n", "\n", - "EXIT: Optimal Solution Found.\n" + "EXIT: Optimal Solution Found.\n", + "\b" ] } ], @@ -2226,8 +2200,7 @@ }, { "cell_type": "code", - "execution_count": 31, - "id": "756661de", + "execution_count": 20, "metadata": { "pycharm": { "name": "#%%\n" @@ -2241,9 +2214,9 @@ "Mixed NN Solution:\n", "# of variables: 259\n", "# of constraints: 308\n", - "x = -0.3980767070401039\n", - "y = -0.8692685822527921\n", - "Solve Time: 0.3547825813293457\n" + "x = -0.2978469190009904\n", + "y = -0.8788043116067422\n", + "Solve Time: 0.20247483253479004\n" ] } ], @@ -2279,8 +2252,7 @@ }, { "cell_type": "code", - "execution_count": 32, - "id": "027a827b", + "execution_count": 21, "metadata": { "pycharm": { "name": "#%%\n" @@ -2289,7 +2261,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB5IAAALJCAYAAAB2lm8QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhU1f8H8PfAAMMOgqICAirgLpq7KWBuaaaGSy4lbqllmZYtWomWmplm2jc0N7JcU7NN01TIfV9SUVRERUQFRGDYYe7vD35cZ2SYGdY7wPv1PPN478y553zuDA6H87nnXJkgCAKIiIiIiIiIiIiIiIiIiIj+n4nUARARERERERERERERERERkXFhIpmIiIiIiIiIiIiIiIiIiDQwkUxERERERERERERERERERBqYSCYiIiIiIiIiIiIiIiIiIg1MJBMRERERERERERERERERkQYmkomIiIiIiIiIiIiIiIiISAMTyUREREREREREREREREREpIGJZCIiIiIiIiIiIiIiIiIi0sBEMhERERERERERERERERERaWAimYiMWkhICGQyGWQyGUJCQqQOp0qLiIgQ38uAgIByq7ewTplMVm51EhEREdV0YWFhYh8rODhY6nCIiIiIqJzVxHFPjiMSVT1MJBMRERERERERERERERERkQYmkomIiIiIiIiIiIiIiIiISAMTyUREREREREREREREREREpEEmCIIgdRBERFR1qd/ThL9SiIiIiMpHWFgYxo4dCwAYM2YMwsLCpA2IiIiIiKiMOI5IVPVwRjIREREREREREREREREREWlgIpmIiIiIiIiIiIiIiIiIiDQwkUxEFS42NhZz585F9+7d4eLiAgsLC9ja2sLLywsdOnTA2LFjsXnzZiQmJhY5NiQkBDKZDDKZDCEhIXrbunPnDt5//300a9YMNjY2cHR0RKtWrTB79mzcvXsXABARESHWGRAQoLWe4srs2rULAwcOhIeHBywsLFC7dm0MGjQIR44cKVJHdnY2fvzxRwQGBsLV1RUKhQKenp6YNGkS7ty5Y9B7V+jKlSuYOXMm2rRpA2dnZ1hYWKB+/foICAjAokWLkJSUpLcOQ85bXWZmJpYuXYrOnTvDyckJ1tbW8PHxwbhx43Dq1KkSxU9ERERUlRT2mdSX3rt48SKmTZuGFi1aoFatWpDJZBg0aJDW45OSkrBkyRL06tUL7u7uUCgUcHBwQLNmzfDWW2/hzJkz5RJnWFiYGGdwcLDe8rdv3xbLe3p6lksMRERERFWVtj7f2bNnMXHiRPj4+MDa2hp2dnbo1q0bNmzYoHUp5gMHDiAoKAiNGjWCQqFA3bp1MXjwYBw+fFhv+/rGPRcvXiy+bm9vj5iYGJ31JSUlwc3NTTzm3XffLbasIAj49ddfMWbMGPj4+MDe3h4KhQLu7u4YNGgQfvzxR+Tl5ek9h0IcRySqxgQiogq0cuVKwdLSUgCg99G1a9cix8+ZM0d8fc6cOTrb2rBhg2BtbV1s/XZ2dsKuXbuE8PBw8Tl/f3+tdT1bRqlUCkFBQcXWLZPJhNWrV4vHX79+XfD19S22vI2NjXD48GG9719ubq7w9ttvC6ampjrfOwcHByEsLExnXYacd6FLly4JjRs31nm+n376qSAIgsbzRERERNXBs/2bOXPmaO2PDRw4sMix3333nWBvb6+z7yaTyYRx48YJ2dnZxcawfv16sfyYMWNKXUZdTEyMWN7Dw8OAd4KIiIio+nq2zzd//nydY3Cvv/66oFKpBEEQBKVSKQwYMEBnf2/p0qU629c37qlSqYSePXuKZbp06SLk5eUVW9/gwYPFsi1bthSysrK0lrt48aLg5+end6zW19dXuHLlit73keOIRNWbXGt2mYioHOzatQuTJ08W9+3s7NC5c2e4ublBLpcjJSUF169fx+XLl5GTk1Omtn755RcEBwdDpVIBAORyObp3746GDRsiNTUV//77Lx4+fIhhw4ZhwYIFJa5//Pjx2LFjB8zNzdGtWzd4eXkhJSUFBw4cwOPHjyEIAiZNmgRfX1/4+PggMDAQcXFxcHBwgL+/P+rUqYO4uDgcOHAA2dnZUCqVeOWVVxAVFQVHR0etbapUKgQFBeH3338Xn6tVqxYCAgJQq1YtxMbGIjw8HDk5OXjy5AmCg4ORnJys82pDQ9y6dQs9e/bEw4cPxedatWqFNm3aID8/H6dOncL169fx+eefw8nJqUxtERERERm7xYsXY+7cuQCARo0aoUOHDrCyssLt27dhZmamUXb69OlYtmyZuO/k5IROnTqhfv36yMrKwvnz53H58mUIgoB169bh/v37+Ouvv2BiwsXCiIiIiKQUGhqK2bNnAwCee+45tGzZEoIg4PDhw7h16xYAYMOGDfD19cVHH32EoKAg7N27F+bm5nj++efFMcgDBw4gKSkJgiBgxowZaN++PZ5//vlSxSSTyfDjjz+iVatWSEpKwrFjx/D5559rnb38ww8/4NdffwUAKBQKbNq0CRYWFkXKHTp0CAMGDEBqaiqAgjHUdu3awdfXF2ZmZrh9+zaOHDmCrKwsREVFoUuXLjh+/DiaNm2qNUaOIxLVANLmsYmoOmvdurV4hdnUqVOF9PR0reXS0tKEbdu2CR9++GGR1wyZkfzgwQPB0dFRLNexY0fh1q1bGmVyc3OFuXPnCgAECwuLEs1INjc3FwAI3bt3F+7cuaNR7smTJ0JgYKBYNjAwUBg4cKAAQHj77bcFpVKpUf7q1atC/fr1xfIhISHFvHuCsGjRIo2r9D744IMiVxLGx8cLvXv3FsvI5XLhxIkTes9J14xk9fOpVauWsHfv3iJlNm/eLFhaWorvDXglIREREVUj6v0buVwu2NvbC7/++muRcup9s7Vr12qsPhMaGqp1xvHBgwcFV1dXseyiRYu0xsAZyUREREQVS73PZ25uLri6ugpHjx7VKJOXlye8//77GqsChoSECACEgIAAvWOFAQEBxbZv6EqMu3btEsuZmpoWifHq1auClZWVWGb58uVa64mPjxdcXFzEciNGjBDu3btXpNyDBw+KzG4ubiY0xxGJqj/+byWiCpGWliZ2Ctzd3cVlX0rKkA6VemeuQYMGQnJycrH1zZw5U6PDYkgiGYDQtGlTISMjQ2vZu3fvCnK5XKP8+PHji41h06ZNYrkmTZpoLZOSkiLY2NiI5WbMmFFsfVlZWUL79u01ktn6zqm48967d6/GsjOHDh0qtt0tW7YUWaqGiIiIqDpQ79/IZDLh33//1Vk+NTVVcHBwEAf39JWPjIwUFAqFAEBwcnLSesElE8lEREREFUu9z2dpaSlERkZqLZefny80bdpUo3zz5s2FzMxMreXVxwplMplw//59reVKcku/SZMmiWW9vLyElJQUQRAEITs7W2jTpo34Wr9+/YqtY9y4cWK5CRMm6GwvLy9PI0m8ZcuWImU4jkhUM3D9LCKqEIXLowAFS/rJZLIKaUelUuHHH38U90NCQuDg4FBs+Tlz5uh8vThffvklLC0ttb7m7u6OLl26iPsWFhZYuHBhsXUNHjxYXFomKioKaWlpRcps2rQJSqUSAODi4oIvvvii2PosLCzw3Xffifvh4eGIiorSfULFWLNmjbg9fPhwdOvWrdiy+l4nIiIiqg6GDh2K7t276yyzbt06PHnyBAAQHByst3zTpk0xZswYAEBSUhL+/vvvcomViIiIiEpn8uTJxS7fbGJigqFDh2o8t3DhQigUCq3l1ccKBUHA2bNnyxzf0qVLxfhiYmLw5ptvAgBmzZqF8+fPAwDq1KmD9evXaz0+ISEBGzduBADY29vjm2++0dmeqampxu0BC49Vx3FEopqBiWQiqhC1a9cWE6+XLl3CoUOHKqSdyMhIJCQkAADMzMwwZMgQneWtra0xaNCgErVhaWmJF198UWeZFi1aiNvdu3dH7dq1iy2rUCjQqFEjAAWdydu3bxcpc/DgQXH71VdfLTaJXahDhw5o2bKluB8eHq6zfHEiIiLE7ddee01v+ddff71U7RARERFVFa+++qreMrt37y5ReQDo0aOHuH3kyJGSB0ZERERE5SYoKEjn6+pjfyUdK4yJiSlbcACsrKywadMmmJubAyhI7L755ptYunSpWGb9+vWoU6eO1uP379+P7OxsAMBLL70EGxsbvW127NgRVlZWALT3VzmOSFQzyKUOgIiqJzMzMwwePBibNm1Cfn4+evbsiSFDhmDIkCHw9/eHk5NTubRz4cIFcbtp06awtbXVe0z79u0RFhZmcBs+Pj4wMzPTWcbR0VHcbtasmd461curz94uVHglIQB07drVkDDRtWtXXLp0CQBw7tw5g45RFxcXJyblgYLOoj6dOnUqcTtEREREVclzzz2nt8zx48fF7Q0bNmDXrl16j7l37564HRsbW6rYiIiIiKh8NG/eXOfr6mN5Pj4+kMt1p1b0jf2Vhp+fHxYuXIj33nsPABAaGiq+NnXqVPTr16/YY9X7q9evX8fUqVMNarNwlcnk5GSkp6fD2toaAMcRiWoSJpKJqMJ88803OHfuHK5du4bc3Fxs3rwZmzdvhkwmQ5MmTdCtWzf07t0b/fv3L3YpGH0SExPFbTc3N4OOcXV1LVEb9vb2esuodx5LWj43N7fI6+odMQ8PD731AYCnp6e4rf6+GEq9TSsrK4OS/e7u7iVuh4iIiKgq0bXSDAAolUqNW5X89NNPJW4jOTm5xMcQERERUfnRN55X3mN/pTV9+nT8/fff+Oeff8TnmjdvjsWLF+s87v79++L26dOncfr06RK3nZycLCaSOY5IVHNwaWsiqjB16tTB6dOnERISgvr164vPC4KAq1ev4ocffsCQIUNQv359fPnll8jPzy9xG4X3EQYgLrWiT2GHx1Alvb9zedwPWv28DI1XvZy2+y6XpM2Kei+JiIiIqhp9txhJSUkpcxt5eXllroOIiIiISq8k43nlMfZXWjKZrMjy1X379tU7Sae8+6wcRySqOZhIJqIKZWNjgzlz5iA2NhanT5/GkiVLMGjQIDg7O4tlkpOT8fHHHyMoKAiCIJSofvUOSEZGhkHHpKenl6gNKajfp8TQeNXLGbLEt642q9N7SURERFSRnh0Qe/LkCQRBKNFD/f5yFUmlUlVKO0RERERUMTZt2oSNGzdqPLds2TIcO3ZM53HqfdZly5aVuL8qCILGaogcRySqOZhIJqJKYWJignbt2mHGjBn49ddf8fDhQxw5cgSDBg0Sy/z222/YsWNHiepVT0ir32dOl7i4uBK1IQX1JRTv3r1r0DF37twRt9Xfl9K0mZGRgaSkJL3H8H5+REREVNM5ODjAwsJC3L9x40altW1mZiZuGzKruTxmohARERGRNO7cuYM333xT3G/SpAkAID8/H6NHj9Z5L2YXFxdxuzz6qxxHJKo5mEgmIkmYmJiga9eu2LlzJ/r06SM+//vvv5eoHj8/P3H76tWrGsuqFKc09wCpbG3atBG39V1RWOjo0aPidtu2bUvcpqurq0Yn8MSJE3qPMaQMERERUXXXoUMHcXvv3r2V1q76KjSGDN5dunSpIsMhIiIiogpSmCwuvDCwV69eOH36NHx8fAAAMTExeOutt4o9vmPHjuJ2efRXOY5IVHMwkUxEkpLJZOjfv7+4//DhwxId37x5c7HTkpubi19++UVn+fT0dOzatavEcVa2Hj16iNtbtmxBVlaWzvLnzp3Df//9J+4HBgaWqt2AgABx++eff9Zb/scffyxVO0RERETVyUsvvSRur1y5Um/frbx4eXmJ2xcvXtR7m5ht27ZVdEhEREREVAEWLFiAI0eOAACcnJwQFhYGGxsbbNq0SVyl5ueff8bmzZu1Ht+nTx/I5XIAwM2bN/Hnn3+WOSaOIxLVDEwkE1GFSEtLQ05OjkFl1ZduVr+SzRAmJiZ4/fXXxf2QkBA8efKk2PJz587V+bqxGDlypDjDJD4+HnPnzi22bE5ODt5++21xPzAwEL6+vqVqd/z48eL21q1bcfjw4WLLbt26VezAEhEREdVkkyZNgoODA4CC2628+eabepO6hRITE5Gfn1+qdps2barRZ9y3b1+xZf/66y/89ddfpWqHiIiIiKRz8uRJzJs3T9xfvXo16tevDwB47rnnNF6bMmWKxu3vCrm6umL06NHi/uTJkw2+/Z9KpUJCQkKR5zmOSFQzMJFMRBXi7Nmz8PDwwJw5c3DlyhWtZfLz87Fx40asWLFCfK5fv34lbuu9994TB+7u3r2Lvn37IiYmRqNMXl4ePv/8cyxevFjjHnbGys7ODp988om4/+WXX+LTTz8tkpx/+PAhBg8eLC5/LZfLsXDhwlK327t3b/j7+wMABEHAoEGDtA5IbtmyBWPHjoW5uXmp2yIiIiKqLuzt7fHNN9+I++vXr8eAAQNw7do1reUFQcDx48cxdepUeHh4IDMzs1TtyuVyDB06VNyfOHEiIiMji7T1008/YdiwYVWiH0xERERETymVSowaNQp5eXkAgAkTJmDw4MEaZT744ANxdnBKSgpGjx6t9ULFBQsWoF69egCAuLg4tG/fHtu3b4dKpdLadlxcHL799ls0adIEW7duLfI6xxGJaga51AEQUfX14MEDzJs3D/PmzYOLiwvatGmDunXrQi6X48GDBzh79izi4+PF8t26dcOrr75a4nbq1auHlStXYsSIERAEASdPnoSPjw+6d++Ohg0bIjU1Ff/++y8ePnwIMzMzfPHFF5g5cyaAghnNxur999/HkSNH8McffwAAvvjiC4SGhiIwMBCOjo6IjY1FeHg4srOzxWMWL16scc+TkpLJZFi7di06d+6MhIQEPH78GH369IGfnx/8/PyQn5+PU6dOISoqCgCwbNkyvPvuu2U6TyIiIqLqIDg4GLdu3cLnn38OoGAG8O7du9GiRQu0aNECdnZ2SE9PR1xcHM6fP19uq+R8+umn2Lp1K9LT0xEbGws/Pz/4+/uL/eBjx47h7t27MDU1xapVqzBhwoRyaZeIiIiIKt7UqVMRHR0NAPD29sayZcuKlDExMcFPP/2EVq1aITk5GUeOHMHChQs1JqkABWOov/32G/r164fExETEx8dj6NChqFOnDjp27AgXFxeoVCokJSXh8uXLuHXrls5VdjiOSFQzMJFMRBXC0tIScrlcvFru4cOH+Pvvv4stP2TIEKxbt67Uid3hw4cjKysLb775JjIyMpCXl4eDBw/i4MGDYhk7Ozts2LABVlZW4nOFSwEaIxMTE+zcuRPTp09HaGgo8vPzkZSUhO3btxcpa29vj2XLliE4OLjM7TZq1Aj79+/H4MGDcevWLQDAhQsXcOHCBbGMTCbDxx9/jGnTprEDSERERPT/5s2bhxYtWmD69Om4f/8+BEHApUuXcOnSpWKP6dChg3hfu9Lw9PTE9u3bERQUhIyMDOTm5mL//v0aZezs7LB+/Xq0bdu21O0QERERUeXatm2beF9huVyOjRs3wtraWmtZNzc3rFq1CsOGDQNQcHu/3r17o0OHDhrl2rdvjzNnzmD8+PE4cOAAAODRo0fiRBZtXFxc4O3trfU1jiMSVX9MJBNRhejYsSMePXqE/fv348iRIzh//jyio6ORlJSE/Px82NnZoVGjRujUqRNGjx5dpFNTGmPGjIG/vz+WL1+O3bt3IzY2FmZmZnB3d8eAAQMwefJkNGjQQGMplsIlsY2VXC7HihUrMHnyZKxbtw4HDhxAbGws0tLSUKtWLfj4+KBfv36YOHEinJycyq3dVq1a4dKlSwgNDcW2bdtw/fp1ZGdno379+ujatSsmTZqELl26lFt7RERERNXFsGHDMHDgQGzZsgV79+7F6dOnkZCQAKVSCWtra7i6uqJp06bo1q0b+vXrBx8fnzK32bdvX1y7dg1ff/019u7di9jYWJiamqJBgwYYMGAApkyZggYNGuD27dtlP0EiIiIiqnCxsbGYNGmSuD937ly0b99e5zFDhw5FcHAwwsLCkJeXh1GjRuH8+fOwsbHRKOfh4YH9+/fj+PHj+OWXX3Do0CHExsYiOTkZcrkcTk5O8Pb2Rrt27dC7d28EBARALi8+lcRxRKLqTSboWpuAiKgamj17NhYsWAAAWLhwIT766COJIyIiIiIiIiIiIiIiIjIuxntzUCKiCiAIgsbS0Pqu5CMiIiIiIiIiIiIiIqqJmEgmohpl+fLluH79OgCgXr168Pf3lzgiIiIiIiIiIiIiIiIi48NEMhFVC8eOHcMbb7yBixcvan1dqVQiJCQEM2bMEJ+bPn26zvt7EBERERERERERERER1VS8RzIRVQsREREIDAwEAHh4eMDPzw916tRBfn4+YmNjcezYMaSnp4vlu3fvjoMHD8LU1FSqkImIiIiIiIiIiIiIiIwWp+IRUbVz584d3Llzp9jXX331Vaxdu5ZJZCIiIiIiIiIiIiIiomJwRjIRVQsqlQr//vsvdu/ejVOnTiE+Ph6JiYlIS0uDvb093Nzc0L17d7z22mto37691OESEREREREREREREREZNSaSn6FSqXD//n3Y2tpCJpNJHQ4RERHVMIIgIC0tDfXr14eJiYnU4ZAB2H8kIiIiKbH/WDWxD0lERERSMrQPyaWtn3H//n24u7tLHQYRERHVcLGxsXBzc5M6DDIA+49ERERkDNh/rFrYhyQiIiJjoK8PyUTyM2xtbQEUvHF2dnYSR0NEREQ1TWpqKtzd3cU+CRk/9h+JiIhISuw/Vk3sQxIREZGUDO1DMpH8jMKlZOzs7NiJIyIiIslwebuqg/1HIiIiMgbsP1Yt7EMSERGRMdDXh+SNU4iIiIiIiIiIiIiIiIiISAMTyUREREREREREREREREREpIGJZCIiIiIiIiIiIiIiIiIi0sBEMhERERERERERERERERERaWAimYiIiIiIiIiIiIiIiIiINDCRTEREREREREREREREREREGphIJiIiIiIiIiIiIiIiIiIiDUwkExERERERERERERERERGRBiaSiYiIiIiIiIiIiIiIiIhIAxPJRERERERERERERERERESkgYlkIiIiIiIiIiIiIiIiIiLSwEQyERERERERERERERERERFpYCKZiIiIiIiIiIiIiIiIiIg0yKUOgOhZKpUKeXl5UKlUUodCRFQjmZiYQC6Xw8SE15sRUcVgf4+IiPRhn5SIiIiISHpMJJNRUKlUUCqVSE1NhVKphCAIUodERFSjyWQy2NjYwM7ODjY2NhzAI6IyY3+PiIhKin1SIiIiIiJpMZFMklOpVLh37x7S09OhUChQu3ZtKBQKmJiYQCaTSR0eEVGNIggCVCoVsrKykJqairi4OFhbW8PNzY0Dd0RUauzvERFRSbBPSkRERERkHJhIJkkVDipmZGSgQYMGsLa2ljokIiICYG1tDScnJ6SnpyM2Nhb37t3jwB0RlQr7e0REVFrskxIRERERSYs9b5KUUqlEeno63N3dOahIRGSErK2t4e7ujvT0dCiVSqnDIaIqiP09IiIqK/ZJiYiIiIikwUQySSo1NRUKhYKDikRERsza2hoKhQKpqalSh0JEVRD7e0REVB7YJyUiIiIiqnxMJJNkVCoVlEol7OzspA6FiIj0sLOzg1KphEqlkjoUIqpC2N8jIqLyxD4pEREREVHlYiKZJJOXlwdBEKBQKKQOhYiI9FAoFBAEAXl5eVKHQkRVCPt7RERUntgnJSIiIiKqXEwkk2QKryA2MeGPIRGRsSv8rubsDyIqCfb3iIioPLFPSkRERERUuTiiQ5KTyWRSh0BERHrwu5qIyoLfIUREVB74+4SIiIiIqHIxkUxERERERERERERERERERBqYSJaSIEgdARERERFVIYIgQCVwOU8iIiIiKgEuB09ERESlJJc6gBol9QZwcyWQdqPgIZMD/S9JHRURERERGbGVZ1biZNxJRCVG4VriNawesBpBzYKkDouIiIiIjNWVK8D69cC1a0BUFODkBJw4IXVUREREVAUxkVyZcpKAa0uf7svkgCoPMOHHQERERETabbuyDeG3w8X9qKQoCaMhIiIiIqN3/z6wZMnT/QcPClZG5H3GiYiIqIS4tHVlsvXW3BfygPTbkoRCVNOEhYVBJpNBJpMhODhY6nCqpIiICPE9DAgIkDocIqIao4lzE439a4nXJIqEiCoK+6pUUUJCQsSfrZCQEKnDIaLK4uurua9UAvHx0sRCREREVRoTyZXJwgkwr6X5XNoNaWIhIiIioirB10lzIJAzkomIiIhIJzc3wMpK87ko9iGJiIio5LimcmXznlzwr603YOsDOLSSNh4iIiIiMmqd3TvjjbZvwNfZF75Ovmhau6nUIRER1SjBwcH48ccfAQDr16+vdrPGIyIiEBgYCADw9/dHRESEtAERUdmZmABvvglYWBTMTvb1BVq0kDoqIiIiqoKYSK5sredLHQERERERVSEdXDugg2sHqcMgIiIioqpk8WKpIyAiIqJqgIlkIiIiIiIiIqJqKCQkhPdGJiIiIiKiUmMimaiElEolbt68iezsbFhYWKBx48awsbGROiwiIiIiKifs7xERERERERERMZFMZJDIyEisXLkSu3fvxq1btyAIgviaTCZDw4YN0a9fP0yePBnNmjWTMFIiIiIiKg3294iIiIiIiIiINJlIHQCRMYuJiUHv3r3RvHlzhIaGIjo6WmNQEQAEQUB0dDRCQ0PRvHlz9O7dGzExMRJFXDlkMpn4KHTx4kVMmzYNLVq0QK1atSCTyTBo0CCtxyclJWHJkiXo1asX3N3doVAo4ODggGbNmuGtt97CmTNnShTP1atXMXXqVHh7e8PKygrOzs5o164dFi5ciMTERIPrCQkJEc/LkOXfIiIixPIBAQEGtXHr1i2EhISge/fucHV1hUKhgJWVFRo2bIhBgwZhxYoVePTokd560tPTERoaigEDBsDDwwNWVlawtbWFt7c3xo0bh4MHDxoUT6F79+7hww8/RPPmzWFjYwNHR0e0atUKs2fPxt27d0tUV0nk5ubi559/xiuvvIKGDRvCxsYGFhYWqF+/Plq1aoX+/ftjyZIluHz5stbji/sMdu3ahYEDB8LT0xMKhQJ169ZFr169EBYWBpVKZVBsd+7cQWhoKEaMGIEWLVrA3t4eZmZmcHJyQqtWrTBlyhScOHGiVOe9Z88eTJo0CS1atICTkxPMzMzg4OCAtm3bYtKkSfj999+Rl5ent56rV69i1qxZ6NChA1xcXGBubo7atWujY8eO+Oyzz3D//v1SxUdEVJOwv2eY1NRUrFixAgMGDICnp6fG7+wXXngBc+fOxZUrV3TWkZiYiC+//BL+/v6oV68eLCws4OzsjDZt2mDmzJmIjIzUG8ft27fF3/2enp7i8+Hh4RgxYgQaNmwIhUIBR0dH9O7dG3/88UeROvLz8/Hrr7/ixRdfhIeHBxQKBdzc3DB69GhcunRJbwwBAQFiDBEREQAK+lKfffYZ/Pz8UKtWLVhbW6NJkyaYNm0arl+/rrfO0iiPfoC2c4mLi8Onn36K1q1bw9HREQqFAi1atMC8efOQnp6uNY4pU6Zo9CO7d++OsLCwIv+X9Dl9+jSmT58OPz8/1K5dG+bm5qhbty78/f2xaNEiJCcn663D09NTPKfbt28DKPh8Cs/JwcFB/Hzefvtt3LlzR29dP/74o/jc2LFjNf4e0vX3Q0pKCjZv3oxJkyahY8eOcHZ2hrm5Oezs7NC4cWOMHDkSv/zyi0H907CwMLGt4OBgAAU/y1u2bMHAgQPRsGFDWFpaQiaTYdeuXeJxuv7GKXwtMDBQfO7ff//Ven6F/9/Onz8vPufo6IjMzEy9sRe+F1ZWVuKxFfX/goiIiIiIyplAGlJSUgQAQkpKSuU0qMoXhLysymnLyGRmZgqRkZFCZmam1KFotXr1akGhUAhyuVwAYPBDLpcLCoVCWL16tdSnUGHUz1cQBGHOnDmCqalpkfdi4MCBRY797rvvBHt7e53voUwmE8aNGydkZ2frjeXbb78VzM3Ni62rXr16wpEjR4T169eLz40ZM0ZrXXPmzBHLzJkzR2/b4eHhYnl/f3+dZbOysoS33nrLoJ8nMzMzITU1tdi6tm3bJtStW1dvPS+99JLw5MkTveexdetWwc7Orth67OzshF9//bVE52uIqKgooWnTpgb/37px40aROp6NKTU1VRg0aJDOetq3by/ExcXpjO39998XZDKZQXGNGDFCSE9PN+icL1++LLRr186geocPH15sPVlZWcLkyZO1/r9Tf1haWgorVqwwKDZ9jP07uzqp9L4IlZkUn1lKVtX4+TD27w729wwTGhoqODo6GvTe7NmzR2sda9eu1dsHNDU1Fd59910hLy+v2FhiYmLE8h4eHkJeXp4wdepUnfV+8skn4vEPHz4UOnXqpLMf9ssvv+h8P/z9/cXy4eHhwu+//y44ODgUW6eFhYXe38eG9FULlWc/4Nlz2b17t87PunXr1sLjx4/F40NCQgQTE5NiywcFBen8PAs9fvxYCAoK0vvz5eDgoPfz8fDwEMvHxMQIv/76q86fPUtLS+HPP//UW5e+x7N/P+zYsUOwsLAw6Fg/Pz8hJiZG53k9+zMSFxcndOvWTWt9v/76q3icrr9x1F/T9/Dw8BCPe+6558Tnf/75Z51xFwoNDRWP6datm0HHaGPsv1ekwv5j1VTpn1turiAY+LcrERERVX+G9kW4tLUUbqwE4vcCaTcAZTTQ6gug6XtSR0Vq5s+fj08++aRUx+bl5SEvLw8TJ07Ew4cPMXv27HKOzrgsXrwYc+fOBQA0atQIHTp0gJWVFW7fvg0zMzONstOnT8eyZcvEfScnJ3Tq1An169dHVlYWzp8/j8uXL0MQBKxbtw7379/HX3/9BRMT7Ysn/O9//8O0adPEfQsLCwQGBsLNzQ0JCQk4ePAg4uPj8dJLL+Hdd98t93M3lFKpRO/evXH8+HHxOSsrKzz//PNwc3ODIAiIi4vD2bNnkZSUhNzcXOTn52ut65tvvsF7770nzu6wtbVF586d4e7ujvz8fERGRuL06dMQBAF//vkn/P39cezYMVhZWWmt7/fff8fIkSPF9kxNTdGtWzc0atQIKSkpiIiIQGJiIoYNG4YFCxaU23uSlpaGnj17IjY2FgBgYmKCNm3aoGnTprCxsUFGRgbi4uJw8eLFEs0qHzt2rDgDo0OHDmjevDmys7Nx4sQJ3Lp1C0DBTJcePXrg2LFjqFWrltZ6YmNjIQgCZDIZfH194evrK84cTkpKwvnz5xEdHQ0A2Lx5M1JSUvDnn39qzNJ/VkREBF5++WWkpaWJzzVo0AAdOnRArVq1kJ6ejqioKFy8eBG5ubnIysrSWk96ejr69OmDo0ePis95eXmhXbt2cHR0RHJyMo4dO4a4uDhkZmbi7bffRmpqKmbNmmXw+0hExudR+iN8cvATXEu8hqikKCRlJCF9Vjos5BZSh1Zlsb9nmHfeeQcrVqwQ901NTdG+fXt4e3tDoVAgISEBFy5cEGd+avv99fXXX2PmzJnivoWFBfz9/dGgQQMkJycjPDwcjx8/Rn5+PpYtW4Y7d+5gx44dOn+vFpo1axa+++47mJiYoHPnzvD19UVWVhbCw8MRHx8PAPjiiy/QtGlTDBo0CL169cJ///0HKysr+Pv7i/3G/fv3Q6lUIjc3F6NHj0abNm3QqFEjve2fOXMGs2fPRk5ODmrVqoWAgADUqlULd+/eRUREBHJycpCdnY23334bJiYmePPNN/XWqUtF9gPOnz+PWbNmISsrC56enujcuTOsrKxw5coVcRWWixcvYvjw4di3bx/mz58vznBt27YtWrZsCZlMhiNHjuDmzZsAgB07duDLL7/U+X/kwYMH6NGjB65evSo+17RpU/j5+cHW1haPHj3CkSNHkJiYiCdPnmDYsGH46aefMGrUKL3ndODAAUyaNAn5+flo0KABOnfuDDs7O8TExCAiIgJ5eXnIzMzEsGHDcPnyZXh5eWkcP2bMGCQlJeHAgQO4du0aAOCFF15AkyZNirTVoUMHjf1Hjx4hOzsbAODm5oZmzZqhbt26sLKyglKpxNWrV3Hu3DkIgoALFy6gW7duuHDhApycnPSeV3Z2Nl5++WWcPXsWcrkcXbp0QePGjZGVlYVz587pPV495rfeegtxcXFiH7p+/foYPHhwkbLqcb3xxhuYNGkSAGDt2rUGfRZr164Vt8ePH29wjERURmvXAn/+CURFATdvAiEhAP82JCIiopKo8JR2FVMpVwMeDxaEjXj6ODmp4toyYsZ6JfHq1asNvirbkMeaNWukPqVyp35+crlcsLe317jqvVBW1tPZ9mvXrhWPsbGxEUJDQ7XOOD548KDg6uoqll20aJHWGK5du6ZxhX/Pnj2F+Ph4jTKpqanCa6+9JgDQmLVc2TOShw8fLpYzNTUV5s6dKyiVyiLl8vPzhYMHDwoDBw7UOpN4//794owPMzMz4YsvvtBaz/nz54VmzZqJbU6ZMkVrXAkJCYKzs7NYrk2bNsL169c1ymRnZwsffPBBkfewrDOSv/nmG7GuZs2aCdeuXdNaTqVSCadOnRKmTJki3L17t8jr6p9BYXxeXl7CyZMni5T98ccfNX5mXn/99WLj++qrr4T169cLCQkJxZY5dOiQ0LhxY7G+n376qdiyd+/e1Xivvby8hL///ltr2cePHwsrV64U3n//fa2vv/7662I9jRo1Ev75558iZfLy8oTvv/9ePF9TU1Ph2LFjxcZnCGP9zq6OOKOk6qmMzywlK0VACDQeVx5dqbD2youxfnewv2cY9RmEAIRhw4YJsbGxWsteunRJeOedd4S9e/dqPH/s2DGNmbN9+/Yt0mfLysoSZs6cqdHWkiVLtLajPiPZzMxMkMlkQvPmzYXLly9rlMvMzBRGjBghlvX29hZnLg8bNkxITEzUKH///n2hefPmYvng4OBi3xf1WbyF/Y8ZM2Zo9H0FQRDi4uKEHj16iGUtLCyEq1evaq3T0BnJ5d0PePZczM3NhdWrVwsqlUqj3I4dOzRm7i9dulQwMTER3N3dhaNHj2qUzc/P1/g8bWxstPZZC8sGBgaKZdu2bSucPn26SLnMzEwhJCREXDHG2tpauHXrltY61WcRW1hYCNbW1sJPP/1U5JwuX76s8XfH2LFjtdYnCIIwZswYsdz69euLLafu999/FxYuXKh1VZ1Ct27dEvr06SPWPX78+GLLqv+MFH4W/v7+Wmcyq/8sGvI3TklXHkpLSxNsbGwEoGA1qZs3b+os/99//4n129nZGbyajzbG+ntFauw/Vk2V8rlNmSIIwNOHjr+DiYiIqGYxtC/CRPIzKqUTd3mBZiJ5f4+Ka8uIGeMfgLdu3RIUCkW5DiwqFIpiBzmqKvXzk8lkwr///quzfGpqqrjcn6mpqd7ykZGR4ufg5OSkdaBBfWCwZcuWQkZGhta68vPzhX79+mnEXJmJ5H/++Uej7c2bN+utt7jz8Pb2FuvRt4RcfHy8UKdOHXGQVdug78cffyzWV7duXZ1J08mTJ2ucR1kTyepLF2obADWU+mdQOKioayDr559/1ih/5UrZkjAxMTHiz2qHDh2KLTdq1CixTQ8PD+HBgwelau/QoUNiPW5ubkUG4p+1bt06jYH7sjDG7+zqigOBVU9lfWZ1v66rkUjeGbmzQtsrD8b43cH+nmEeP34s2Nraiuc4efLkUtXTvXt3sY5OnTrpvHXJO++8o5Fs0narD/VEMgChTp06wsOHD7XWl5aWJjg5OWmU79Wrl5Cfn6+1/LFjxzSSn7m5uVrLqSdf9b03GRkZQqtWrcSyQ4cO1VrOkERyRfQDnj2XsLCwYuubNGmSRlkrK6tiLwbMz8/XuIXJli1btJbbsGGDWMbPz09IS0vTeU6fffaZ3vddPZEsk8mKXW5dEAThzz//NOgzL00i2VA5OTniz4hCodBYOlyd+s+Ivr+B1FVEIlkQBGHChAniMbNnz9ZZdtq0aWLZSZPKdiG9Mf5eMQbsP1ZNlfK5LVummUju2LHi2iIiIqIqxdC+iPb1Yqli2Xpr7qfdkCYOKmLSpEnIy8sr1zrz8vLEZb+qo6FDh6J79+46y6xbtw5PnjwBAAQHB+st37RpU4wZMwYAkJSUhL///lvj9eTkZOzcuVPcX7x4MSwtLbXWZWJigm+//dagpRErwpIlS8Tt4cOH49VXXy1VPX/88Qdu3Cj4rnjhhRf0Lh9Xt25dTJ8+HQCQm5uLbdu2abyuUqmwfv16cT8kJATOzs7F1vfll1/CxsamVLFrk5qaKm7Xrl273Op97733dC5DOWrUKHTt2lXcX716dZna8/T0RGBgIICCJbPVz6tQXFwctm7dKu6vXLkSLi4upWpv6dKl4vbChQtRt25dneWDg4PFpRf37t1bomXCicj4+Dr5auxfS7wmUSRVG/t7hvnhhx/E2zF4eHho3J7EUFevXsWhQ4fE/f/9738wNzcvtvyCBQvE/khqaio2bdqkt43Zs2ejTp06Wl+zsbFB//79NZ77+uuvi71tSufOndGgQQMABbcmKVzKWBdbW1ssWrSo2NctLS01+oO7du0q9e/jiu4HtGnTRuyDazN8+HCN/cmTJ8PX11drWRMTEwwdOlTcP336tNZy6ue0YsUKvf3Njz/+GA4ODgAKbi+iUql0ln/ppZfQt2/fYl/v16+f+D4a+pmXNzMzM7Fvn5WVhSNHjhh03KJFi4r9G6gyvPHGG+J2WFhYsbfmycnJwc8//yzuT5gwocJjIyI1z35PR0UVpJSJiIiIDMREshRqPQc0+xDouAboeQjoc0rqiAhAZGQk/vnnnwoZWPznn3807vlVnRiSGN29e3eJygNAjx49xO1nB1OOHTsm3m/MxcUFvXr10llX48aN0aVLF4PaLU/Z2dmIiIgQ999+++1S11Xe7+HVq1fx4MEDAIBcLtdbp729PQYOHGhouHoVDtICwPfff19u9b7++ut6y6gPkIaHh+stf/fuXWzfvh0LFizABx98gLfffhtTp04VHzExMQAAQRBw8eLFIsfv379f/F7x9vbWOZipS+F3CVDwmQUFBek9RiaTiYluQRBw7NixUrVNRMZhXJtxWNRzEXYN34XINyPxXpf3pA6pymF/z3DqF/JNnDgRFhYlvx+3+u/Z1q1bo23btjrLW1tbY8SIEVqPL46+34ctWrQQt729vdGqVSuDyxf+jtdl4MCBsLOz01nmhRdegJubG4CCC/wMTRSqq4x+QEney5KW1/ZexsfH48KFCwAAV1dXPP/88zrrAwCFQoHOnTsDAFJSUnD58mWd5dWT2drIZDK0bt1a3C+813d5e/LkCf7++28sWbIEs2bNwjvvvKPRn9y3b59YtvA90cXR0RF9+vSpkFgN1b59e/j5+QEouHBy7969Wsv99ttvSEpKAgC0atUK7dq1q6wQiQgAWrUCPvwQWLcOOHIEuHEDkOhCeyIiIqqa5FIHUCPZeAF+X0odBT1j5cqVkMvl5T6wCBQM9oSGhmL58uXlXrfUnnvuOb1ljh8/Lm5v2LABu3bt0nvMvXv3xO3Y2FiN19QHV9q3b1/srBJ1nTp1wtGjR/WWK08XLlxAVlYWAMDKygodO3YsdV3q7+Fff/1l0ABTSkqKuK3rPWzSpAns7e311tepUyds3LhRf7AGGD58ONauXQugYMbT6dOnMWbMGPTp00ecOVNSzs7OOmcjFyocfASAy5cvIzc3F2ZmZkXKHT9+HB999BEOHz4MwcArtrXN9Dlx4oS4HRAQYFA92vz3339IT08HUDCIOnPmTIOOU58B9OzPARFVLa+31n+xDOnG/p7hTp48KW4XJiNL6vz58+K2+oogunTt2hUrVqwAAJw7d05nWXt7e7i6uuos4+joKG43a9ZMb/vq5bWtNPKsTp066S0jk8nQsWNHsX97/vx5DBo0SO9x6iqjH9C8eXOdr6u/N4D+91Pfe6nevxUEAVOnTtVZX6Ho6GhxOzY2VufFAS1bttRbn5OTk7it3n8uD/fu3cNHH32E7du3ixfC6mPIjHU/Pz+D/gaqaBMnTsRbb70FAFi7di369etXpExhnx/gbGQiSdSvD3zJMUgiIiIqPSaSif7f7t27K2RQESiYQbBnz54KqVtq+pYlViqV4rKIAPDTTz+VuI3k5GSN/YSEBHFbfWarLu7u7iVut6wePnyo0b5cXvqv3Pv374vbhiTin2Vs72GvXr0wffp0fPPNNwAKBlQLB5udnZ3RtWtXBAQEICgoyOB2S3Me+fn5SE5OLrIk5rp16zBhwgSDE8iF1H/WC6n/HDRs2LBE9alT/xlQKpX43//+V+I6nv05ICKqadjfM0xqaioyMzPF/dL+/lLvb3h4eBh0jKenp7itL6FmyIVw6v2vkpbPzc3VW740/Q/198VQldEP0Pf+PNuXLUl5be+l+jndv39fknMCoHFBoSGfuaHOnz+PF154ocT9L239yWeV561hymL06NGYOXMmMjIy8McffyAhIUEjtnv37okz6S0sLPTenoeIiIiIiIyP9JewEhmBtLQ03Lp1q0LbiI6OhlKprNA2pKDvvlzlcVX/swO+6u+jlZWVQXVYW1uXOY6SUh8EKuv9hcv6Phrje7h06VL8/vvvRZYdT0xMxG+//Ybp06fDw8MDQUFBuHPnjt76Snsezw7WXb16FZMmTRKTyK1atcLy5ctx+vRpPHr0CJmZmRAEQXyoL5Wt7T595fVzUBH/l4iIahL29wz37O/G0v7+Un8vDO1HqJfTl1CTlXBpzpKWN0Rp+h+GJAqfVRn9gMp+P43xnMpLdnY2goKCxCSyi4sL5syZg4iICMTGxiI9PR0qlUrsT65fv148Vt99nwH9f4NVFjs7O/He2bm5uUUuGl6/fr14Pq+88gpq1apV6TESEREREVHZcEYyEQoG/Uo687CkBEHAzZs3xftI1RTPDho+efLEoJkBuqgPZmZkZBh0TOFSgOVJ3yCPra2tuF3WQWVra2txsO3ChQsa93IrDWN5DwcMGIABAwYgLi4OEREROHz4MA4fPozIyEgABf9vdu7ciX///RfHjh2Dj49PsXWV9jzUPycA+Oabb8RByX79+mHXrl1al74upG8wuLx+DtT/L/n5+WksF0pERPqxv2e4Z383KpXKUiWT1Y8xtB+hXu7ZOIxRafofpTmv6tgPUD+nQYMG4ddff5UwmvK1Y8cO8b7Qbm5uOHPmDFxcXIotX5qLC4zFG2+8ISbC165dixkzZgBAkQT5+PHjJYmPiIiIiIjKhjOSiQCD71dVVdoxJg4ODrCwsBD3b9y4UeY61ZdLu3v3rkHHGHJvWPVkoSEzN/XNolAfLIqNjS3TbFD1uoz5PSwtV1dXjBo1CitXrsSVK1cQGxuLzz//XBxgTEpKEgelimPoeaiXMzU1LXK/vwMHDojbn3/+uc4kMgC9s6XVP7vCAcXSUK/n1q1bBs1WISKip9jfM5ydnZ3GjMfS/v4qTX9D/feqs7NzqdqtTKXpf5TmvKpjP6C8+7fGRL0/OX36dJ1JZEB/f9KYderUSbwXdWRkJE6cOAEACA8PF787vLy80KNHD8liJCIiIiKi0mMi2RgIApAZL3UUNZp6orM6tGNsOnToIG7v3bu3zPWpz/I5ffq0QQNphQMauqjPDklKStJb/tKlSzpf9/Pzg0KhAFAwW+XkyZN66yxOx44dxe3yfg+vXbtm0NKChryH5cXNzQ2ffPIJVq9eLT63b98+nYPziYmJuHnzpt661c+jRYsWRRLF6vfra968uc66UlJS8N9//+ks06lTJ3E7PDxcb3zF8fPzE79DUlNTcfz48VLXRUTVgzJHifg09iENxf5eyaj3PQ4ePFiqOtq0aSNuHzt2zKBjjh49Km63bdu2VO1WJkN+HwuCoNEPLM15Vcd+gHof6cqVK7h3756E0ehW0iWyS9KfBIBDhw6VOKbyVNYlwCdOnChur127VuNfABg3bpxky4wT0TPy84GYGIC3PSIiIiIDMZEslaxE4PAQYHdrYJsN8Gt9ILfqLmdV1TVu3LjC/7CVyWRo3LhxhbZhrF566SVxe+XKlcjKyipTfV26dIG5uTkA4OHDh/jnn390lr9586ZBg5deXl7i9oULF/SW37Ztm87XLSwsEBgYKO5/9913eussjvp7uGnTJjx69KjUdQFA06ZNxZkReXl52LJli87yKSkp+O2338rUZmmon3dubi4eP36ss/yz92XT5scffxS31T+fQiYmT3816luucs2aNcjNzdVZplevXpDLC+4kcePGjVJfCGBpaakxk+Obb74pVT1EVLXturYLL2x4AW5L3WC70BZv7X5L6pCqDPb3SubFF18Ut1evXl2qmdbqv7fOnz+Pixcv6iyfmZmp0SepCjMYf//9d70X5O3fvx9xcXEAClbA6dq1a4nbqY79AC8vLzRt2lTcX7ZsmXTB6FF4cSgAvX0/oGT9ybNnz+L06dOlD64clPT8nvXaa6+Jqxhs3boVcXFx4lLlpqamCA4OLpc4iaiUcnOBoUOBli0Ba2ugYUMgOlrqqIiIiKiKYCJZKmY2QOxO4Ml/QP7//2GZpn8mHVUMGxsbNGzYsELbaNSoUanuLVcdTJo0CQ4ODgCAe/fu4c033zT4HoWJiYnIz8/XeM7R0RGvvPKKuD9z5kxkZmZqPV4QBEybNs2g9tq3by8OMJ88eRJXr14ttuz333+PK1eu6K1TfTnmLVu26E3YFicoKEgcmM7IyMDo0aMNHuRRKpVF7ktoYmKCsWPHivtz585FYmJisXV89NFHZb7PszpdbalTXwbSxMQEtWrV0ll+yZIliNbxB/HGjRs1ZjpNmDChSBn17wJdyfMbN25g7ty5OuMBgPr162P48OHi/qRJk/Dw4UO9x2nz4Ycfits7duxAWFiYwcc+ePCgVG0SkXF5nPkYB2MOIi6tICkVlRQlcURVB/t7JTNx4kTxXO7cuYN33323xHU0adIE3bt3F/fffvttnf2XTz/9VLxYzs7ODiNHjixxm5UtLS0NH330UbGvZ2Zm4v333xf3Bw4cqLHkd0lUx36A+jl9++232L9/v8HHVuY5OTk5iduFFwXoYmh/MiMjA2+88UbZgisHJT2/Zzk4OGDIkCEACv5PDB06VPz7rE+fPnBzcyufQImodMzMgH//BS5fBgovDItiH5KIiIgMw0SyVEwVgHUDzefSqtd9oaqafv36ibMGy5tcLteY1VHT2Nvba8yaWL9+PQYMGIBr165pLS8IAo4fP46pU6fCw8NDa5L4s88+E5f3u3TpEgYOHFhkMCktLQ1jxozB7t27xRnMutStW1ecoSoIAkaMGFFkib28vDwsWbIE77zzjkFLV/bs2RNDhw4V90ePHo158+ZpnZmgUqkQHh6OwYMHF5nZYmpqitDQUJiamgIA/vnnH3Tv3l3n7IX//vsPH3/8MRo0aKD13oYzZswQB43i4+PRu3fvIktD5+Tk4KOPPsLKlSsNeg8N1blzZ4wYMQK7d+9GTk6O1jJXr17F66+/Lu6/8MILOt9zc3NzpKeno1evXlrfl59++gnjx48X90ePHq11qUH1WdAzZszQOoP4wIEDCAgIQFpamngfZ10WLlwovtd37txB586di52Z/OTJE/zwww/44IMPirzm7++PMWPGiPvjxo3DzJkzi12KPTs7G7/99hsGDx6Ml19+WW+cRGT8fJ18NfZvPr6JfFV+MaXpWezvGc7R0RGLFi0S91euXInhw4cXu/zwlStXMG3aNOzbt0/j+S+//FLsvxw+fBhBQUFFVlbJycnB7NmzsWTJEvG5OXPmVImkvLm5OVauXIn333+/yKzt+Ph4DBgwQLwNhrm5uUEXoRWnOvYDRo8eLc60zsvLQ//+/bFo0aIiF0EWUiqV2Lx5M3r06IG333670uIsvAcwAOzatavY/msh9f7khg0bsGTJkiIXx968eRO9e/fGuXPnDOpPVqSGDRuKMdy5cwenTp0qcR3qCXH1pdfV+99EJCFfzT4kE8lERERkqIoZRSHD2HoD6Xee7is5I1lKkydPxooVKyqk7ry8PEyZMqVC6q4qgoODcevWLXz++ecAgL/++gu7d+9GixYt0KJFC9jZ2SE9PR1xcXE4f/48njx5orO+pk2b4quvvsK0adMAFCRWPT090aNHD7i5uSEhIQEHDx5EamoqHBwcMG3aNIMG7hYsWIAuXbpApVLh4sWL8PHxwQsvvID69evj8ePHOHToEB49egQbGxssXLjQoAGsNWvWiAMy+fn5mDNnDr766it07doV7u7uEAQBcXFxOHPmjDgQqG0Gdc+ePREaGoopU6YgPz8fJ06cQIcOHeDt7Y02bdrA0dERmZmZePDgAS5cuKB3+evatWtj9erVGDp0KPLz83H+/Hk0adIE/v7+aNiwIVJTUxEeHo6EhASYmZnhiy++0JrcLI3c3FxxhralpSVatWqFhg0bws7ODsnJyYiOjsbZs2fF8paWlvj666911tm5c2c4OTlh586d6NixIzp06IDmzZsjJycHx48f15ip7O3tXezyidOnT8fatWuRkJCA5ORk9O3bF23btkWzZs0gk8lw7tw5cTZ6nz59UKdOHb1Laru7u2Pr1q0YNGgQlEolYmJi0LdvX3h4eKBDhw6oVasWlEolrl+/jgsXLiA3NxcDBw7UWteqVasQHx+Pffv2QRAEfP3111i+fDnat2+PRo0awdLSEikpKYiOjsalS5fEpeSfe+45nTESUdXg66w5CJibn4t7qffg4eAhUURVC/t7JfPmm2/i8uXLCA0NBVBwW48dO3agffv28PHxgUKhQEJCAs6fP4/bt28DKHrbiM6dO+PLL7/EzJkzAQB//PEHGjRogMDAQLi7uyM5ORkREREaq5UMHjwY06dPr5yTLKP58+eLSfD169ejR48ecHR0xN27dxEREaGRXF68eDGaNWtWpvaqWz/A1NQU27ZtQ69evXD+/HnxIsZ58+ahU6dOaNCgAczNzZGcnIzr168jMjJSnNUeFBRUaXG++OKLsLKyQkZGBi5evIimTZsiICAADg4O4opGvXv3Ru/evQEU9BH9/f3x77//QhAEvP/++/jf//6Htm3bwt7eHjdu3MCxY8eQn58PV1dXTJs2rdz62aVhYmKCQYMGYePGjQAK/h/37dsXDRo0EC8EqVWrFmbNmlVsHc8//zyaNWuGyMhI8bk6depgwIABFRs8ERnG1xc4cuTpvpaLzYmIiIi0EkhDSkqKAEBISUmp+Mbu7hCEG6sE4cFBQUiPFQRVfsW3aUQyMzOFyMhIITMzU+pQRL169RLkcrkAoNwecrlc6NWrl9SnVq7Uz6+ktm7dKtSvX9/g969Dhw5CVlZWsfUtWbJEMDc3L/Z4FxcX4fDhw8L69evF58aMGaMzxrVr1wqmpqbF1lmvXj3h0KFDQnh4uPicv7+/zjozMjKEiRMn6qy38KFQKITU1NRi6zp48KDg7e1t8HvYvHlzIS4urtj6Nm3aJNjY2BR7vK2trbBjx44Sna8+LVq0MDh+Ly8v4ejRo1rreTam1NRU4eWXX9ZZ33PPPSfcu3dPZ3zHjh0TnJ2dddYzaNAg4cmTJ8KYMWPE59avX6+z3gsXLgitW7c26LxHjRpVbD15eXnCp59+KlhZWRlUl5mZmfDWW2/p/Vx0Mcbv7OqqUvsiVC4q+zNbfHSxsP3KduHSw0tCZq5x/580xu8O9vdKbtmyZYKdnZ3e90Emkwl79+7VWseaNWv01mFqaipMmzZNyMvLKzaWmJgYsbyHh4fe2EvSBxQEwaDf6/7+/mKZ8PBw4bfffhPs7e2LPS9zc3Nh2bJl5RZnefYDnj0XfdTr1aekfeXJkycb/H/T0tJSWLBggda6PDw8xHIxMTF64zS0L/fDDz8IJiYmxcY0Z84cjfIPHjwQ2rZtq/M8mjVrJly5csWgz7+kP8uF5syZU2yM6u7evavz7zRD/r998803Gse8//77BsdpKGP8vWIM2H+smir1cwsPF4RVqwQhIkIQ4uMFQaWq+DaJiIjIqBnaF+GMZCm5v6K/DFWqVatWoVmzZsjLyyu3OuVyOVatWlVu9VV1w4YNw8CBA7Flyxbs3bsXp0+fRkJCApRKJaytreHq6oqmTZuiW7du6NevH3x8fHTWN2PGDPTt2xffffcd9u3bh7i4OFhZWcHDwwODBw/GpEmTUKdOnSJLNusybtw4dOrUCUuXLsXBgwcRHx8PhUIBLy8vBAUFYdKkSXB2dkZERITBdVpaWuKHH37AjBkzsGHDBhw4cAC3b9/G48ePYW5ujnr16qFVq1bo1asXhg8fDltb22LrCgwMxLVr1/Drr7/ir7/+wokTJ/DgwQOkpqbCysoKLi4uaNKkCbp06YIXX3wRfn5+OmMbMWIEnn/+eSxfvhx//fUX7t69C7lcDnd3d/Tr1w+TJ0+Gl5dXic5XnwsXLuDEiRMIDw/HqVOnEBUVhfv37yMjIwNWVlaoW7cu/Pz88PLLL2PYsGEGLSMOALa2tti1axd27NiBH3/8ERcvXsTDhw9hb2+Pli1bYtSoURgzZow4s6I4nTt3xpUrV7Bs2TL88ccfuHXrFgCgXr16eO655zB69OhSza5o3bo1zp8/j127dmHXrl04fvw4Hj58iPT0dNjZ2aFhw4bo0KEDBgwYgD59+hRbj6mpKebNm4e3334bGzZswP79+xEZGYnExETk5ubCzs4OHh4eaNmyJQIDA9GvX79S34+RiIzP+13e11+IisX+XslNmzYNo0ePRlhYGPbu3Sv+zgEAZ2dnNG3aFP7+/hg+fDi8vb211jF+/HgMHDgQq1evxp49e3D9+nU8fvwYtra2cHd3R8+ePTFu3Lgyz9iVwssvv4z//vsPK1euxJ9//onY2FhkZ2fDzc0Nffr0wdSpU+H77JKiZVAd+wGWlpYIDQ3Fhx9+iJ9//hkHDx7E9evXkZSUBJVKBXt7ezRs2BCtW7fGCy+8gL59+8LOzq5SY5w4cSJatGiBlStX4sSJE4iLi0NGRobWlYQAwMXFBceOHcOaNWuwZcsWXL58GRkZGahTpw58fX0xfPhwjBo1ClZWVqVaSrq8ubu74+LFi1ixYgX27duHqKgopKWllei7MigoSGM1AS5rTWREAgIKHkREREQlJBOK+6unhkpNTYW9vT1SUlIq/Q/TmiYrKwsxMTHw8vKCQqGQOhzRmjVrMHHixHKtj39AE1WMiIgIcQlNf3//ck12kyZj/c6ujtgXqXr4mRXPWL872N+jsggICMC///4LAAgPD0cAB+aJAABhYWEYO3YsAKBr1644or6Mbjkx1t8rUmNfpGri50ZERERSMrQvYlKJMRFVCRMmTMAXX3xRLnXNnz+fg4pERERERob9PSKi8rdmzRpxe8KECRJGQkRERERE5YWJZCItZs+ejdWrV0OhUEAuL9kK8HK5HAqFAmvWrMGsWbMqKEIiIiIiKgv294iIys/Zs2dx9OhRAICjoyOGDx8ucURERERERFQemEgmKsaECRMQGRkpLpurb4Cx8PXAwEBERkZyZgoRERGRkWN/j4io7LKysvDOO++I+5MnT4alpaWEERERERERUXkp2aX3VHEEAchOAFS5gJWr1NHQ//Py8sK+ffsQGRmJlStXYs+ePYiOjob6rcVlMhkaNWqEF198EVOmTEHTpk0ljJiIiIhqkszcTNx4fANudm6oZVlL6nCqJPb3iIhKLjQ0FNHR0Xjy5An++ecf3L17FwDg7OyM999/X+LoiEgnQQDi4oDkZKBlS6mjISIiIiPHRLLUbq4GbnwPpN0E8pSA1xigc5jUUdEzmjVrhuXLlwMAlEolbt68iezsbFhYWKBx48awsbGROEIiIiKqScb+NhYHYw4iNiUWAgRsemUTRrQcIXVYVRr7e0REhtu6dSv+/fdfjedMTU2xdu1a1KrFC5uIjFJ4OPDee8D160B6OtC8OXD5stRRERERkZFjIllquWlA8oWn+8poyUIhw9jY2MDPz0/qMIiIiKgGi0+Lx92Uu+J+VFKUhNFUP+zvEREZRiaTwcHBAZ07d8asWbPQtWtXqUMiouLI5cD580/3b94E8vMBU1PpYiIiIiKjx0Sy1Gwba+6n3ZQmDiKiKiggIEBj6VEioprC18kXe6P3ivtMJBNVnoiICKlDIJIc/x8QVUG+vpr72dnAnTtAw4bSxENERERVgonUAdR4No0093OSgbxMaWIhIiIioirB11lzIPBJ1hNpAiEiIiKiqqF2bcDB4em+lVXBvZKJiIiIdOCMZKnZNgLaryyYmWzbGLB0A0y4pAwRERERFa9v477YErQFvs6+8K7lDWtza6lDIiIiIiJjJpMBq1cDjo4Fs5NdXQueIyIiItKBiWSpmSoA70lSR0FEREREVUhDx4Zo6MhlCImIiIioBIYMkToCIiIiqmK4tDUREREREREREREREREREWlgIpmIiIiIiIiIiIiIiIiIiDQwkUxERERERERERERERERERBqYSCYiIiIiIiIiIiIiIiIiIg1MJBsTQQCyEoHEk4AqV+poiIiIiKgKyM7LRmRCJP6++bfUoRARERFRVSAIwIMHwL//AjdvSh0NERERGTG51AEQgPxs4J+uQNpNIDel4Ln+VwH7JtLGRURERERG6+bjm+j7c1/EPImBSlDBRGaCjFkZsJBbSB0aERERERmradOAsDAgNbVgf84cICREyoiIiIjIiHFGsjEwtQDS7z5NIgOAMlq6eIiIiIjI6NWxroPo5GioBBUAQCWocPMxZ5QQERERVZTp06dDJpOJD09PT6lDKp3CJDIAREVJFwcREREZPSaSjYVtY839NA4CEhEREVHx7CzsUM+mnsZz15OuSxQNERERUfV26tQpLF++XOowys7XV3OfiWQiIiLSgYlkY2GjlkiWyYGcZOliISIiIqIqwdf56UBgXZu6SM9NlzAaIiIiouopNzcXEyZMgEqlkjqUslNPJCsUBQ8iIiKiYvAeycbC9x3A67WCmclW7oAJPxoiIiKiijR9+nQsW7ZM3Pfw8MDt27cli6c0FvVcBBlk8HHygb3CXupwiIiIiKqlRYsW4dKlSwCAkSNHYtOmTRJHVAbt2gF//12QUG7QADDhPCMiIiIqXrXpKVT5e5Q4tQPq9QJsvJhEJiIiIqpg1WVpwg6uHdDetT2TyEREREQV5Nq1a/jiiy8AAKNGjUKvXr0kjqiM7O2BPn0AT08mkYmIiEivatFbqC4DgURERERU8arV0oREREREVGEEQcCECROQnZ0NR0dHLF26VOqQiIiIiCpVlU8kcyCQiIiIiEri2aUJiYiIiIi0CQ0NxdGjRwEAixcvRp06dSSOiIiIiKhyVflEMgcCiaTz+PFjzJs3Dx07doSjoyNMTU3F5eXDwsIqtG31peyLExAQIJaJiIio0HiIiKhqqHZLExJVEEP6WiUVHBxcaX1FIiKisrp37x4++ugjAEC3bt0wbtw4iSMiIiIiqnxVOpHMgUAi6dy+fRt+fn6YM2cOTp06hSdPnnBlACIiMmpcmpCIiIiIDDVlyhSkpaXB3Nwcq1atKteLq4iIiIiqCrnUAZSWtoHA3bt3Sx1W+ch+DKTdBEzMgFptpI6GSKtJkyYhNjYWAGBpaYmePXvC1dUVpqamAICmTZtKGR4REVER1Xlpwtz8XMQ8iUFUYhQcFA7o5tFN6pCIiIiIqqwtW7bgzz//BAB8+OGH1XeMIzERuH4diIoCRowAFAqpIyIiIiIjU2UTydVyIPD6/4D/PgVykgv23QYC3XdJGhKRNg8ePMC+ffsAABYWFrh48SK8vb0ljoqIiKh41XlpwsVHF2PWwVnIU+UBAAY1GcREMhEREVEpJSUlYdq0aQAAb29vzJ49W+KIKkBWFuDmBiQlPX2uXTugZUvpYiIiIiKjVCUTydV2INDU8mkSGSiYlUxGR6kEbt4EsrMBCwugcWPAxkbqqCrXuXPnxO1u3boxiUxEREavOi9N6GTlJCaRASAqMUrCaKoH9vcqRlhYGO+NTERERm/69Ol49OgRAGDVqlWwsLAol3qzs7ORnZ0t7qemppZLvaWiUBSdfRwVxUQyERERFVEl75FcbQcCbRtr7itvAQLvOWsMIiOBd94pGES0swPatAE6dSr4186u4Pl33ikoVxMkJz+94KFevXoSRkJERKRfdV+a0MfJR2P/5uObGollMgz7e0RERLRv3z789NNPAIAxY8YgMDCw3OpeuHAh7O3txYe7u3u51V0qvr6a+1G8GJGIiIiKqnKJ5Go9EGijlkiWmQKW9TRnKFOli4kBevcGmjcHQkOB6GhAEDTLCELB86GhBeV69y44rjrLzc0Vt01MqtzXCBER1SA1YWlCX6eng4DOVs5o79oeT7KeSBdQFcP+HhEREQFAeno6Jk2aBABwcnLC119/Xa71f/zxx0hJSREfsbGx5Vp/iRUmks3MgKZNufwKERERaVWlMkDVfiDQsh4QsAcYcAMYngm8HA1YOEkdVY21Zg3QrBkQHl6wn6dnYk/h6+HhBcetWVOx8VW2iIgIyGQyyGQyjB07Vnz+xx9/FJ8vfISEhIivh4WFic8HBwfrbef27dtieU9Pz/I/kTKKjY3F3Llz0b17d7i4uMDCwgK2trbw8vJChw4dMHbsWGzevBmJiYlajw8ODhbPr3Bpx8ePH+Orr75Chw4dULt2bVhaWqJhw4aYMGECzp49a1BcKpUKhw8fxmeffYbevXujQYMGsLKygkKhQP369dGjRw8sWLCg2Lh0SU1NxYoVKzBgwAB4enrCxsYGFhYWqF+/Pl544QXMnTsXV65c0VuPIAj49ddfMWbMGPj4+MDe3h4KhQLu7u4YNGgQfvzxR+Tp+49GRFRCFbE0YXZ2NlJTUzUeUnK2csbx8ceR9EESEmYm4Oi4o3C2cpY0pqqC/b2SOXv2LN544w34+vrCxsYGjo6OaNeuHebPn4+UlBS9x2vrB+ly+fJlTJkyBd7e3rCysoKzszPatWuHhQsXin0aQ/qa2srk5+djw4YN6NWrF1xdXWFubo769etj1KhRuHTpUpE60tLSsGLFCnTp0gUuLi6wtLSEj48P3nvvvVL1r4iIyPjMnj0bt2/fBgAsWbIEzs7l25+ysLCAnZ2dxkNSH3wA3LgBZGQULLny/2OuREREROqq1D2SK2og0GjuTyKTAfX7Stc+iebPBz75pHTH5uUVPCZOBB4+BKrb9Q412apVqzB9+nRkZmZqPJ+TkwOlUonbt2/j9OnTCAsLQ9euXXHkyBG9dZ44cQJDhgxBXFycxvMxMTFYu3Yt1q9fjw8//BALFiwoto7c3Fx4eXkVqaNQfHw84uPjER4ejgULFmDlypUYPXq0AWcMrFy5ErNmzdJYzvzZeg8ePIiQkBDs2bMHfftq/w7777//MGbMGFy4cKHIa/fu3cO9e/fw22+/YeHChdi5cyeaNWtmUHxERLpU1NKECxcuxNy5c8ulrvIgk8nQya2T1GFUOezvlcy8efMwd+5cqFSat945e/Yszp49i//973/YsmULunfvXi7tffXVV/jkk080VsLJzMxEUlISzp49ixUrVmD79u2lqvvRo0cYOnQoDh06pPF8fHw8Nm3ahO3bt2PXrl148cUXART014KCgnD//n2N8jdu3MDSpUuxadMmREREwPfZJUKJiKjKOHfuHFasWAEACAwMxJgxYySOqBIY4cX7REREZHyqTCK5pgwEkvTWrCn9oOKzPvkEqFsXGD++fOqTkqurK9566y0AwLVr13DgwAEAQJMmTfDCCy9olO3QoUOlx1fRdu3ahcmTJ4v7dnZ26Ny5M9zc3CCXy5GSkoLr16/j8uXLyMnJMajOO3fuYMaMGUhOToa1tTV69OgBFxcXPHjwAOHh4UhPT4dKpcLChQuRl5eHr776Sms9+fn5YhLZxsYGzZs3R8OGDWFnZ4fc3Fzcu3cPJ06cQGpqKtLT0/Haa6/BzMwMw4cP1xnfO++8I/4hDQCmpqZo3749vL29oVAokJCQgAsXLohXbGdlZWmt59ChQxgwYIB4oY5cLke7du3g6+sLMzMz3L59G0eOHEFWVhaioqLQpUsXHD9+vHrduoCIKl1FLk348ccfY8aMGeJ+amqq9Pe4oxJhf69kli9fjjlz5gAAGjVqhI4dO8LCwgJXrlzBqVOnABQkYfv164eDBw+WuS+4dOlSfPjhh+K+QqFAYGAg3NzckJiYiPDwcMTHx+Oll17Cu+++W6K68/Ly8Morr+Do0aOwsrJCQEAAXF1d8ejRI+zfvx/p6enIycnBK6+8IvbrevfujbS0NLi4uKBbt25wdHREdHQ0IiIioFKp8ODBAwwePBgXL16EmZlZmc6diIik8d9//4kXS929exedOhV/kV5CQoK4HR8fr1H2008/Rf/+/SsuUCIiIqLKJlQBSqVS8PT0FAAITk5OQkJCgtZy69evFwAIAAQPDw+D6s7KyhJSUlLER2xsrABASElJKcczIG0yMzOFyMhIITMzU+pQRLduCYJCIQgFd8Irn4dCUVBvdaL+f23MmDHlVlYQBCEmJsag/8eFZXR9jfn7+4tlwsPD9batS+vWrcW6pk6dKqSnp2stl5aWJmzbtk348MMPtb4+ZswYsR5zc3MBgDBy5EjhyZMnGuWePHkivPrqqxrnefDgQa11ZmdnC2PHjhXCw8OFnJwcrWWysrKEr776SpDL5QIAwcHBQUhLSyv2fENDQzXaHjZsmBAbG6u17KVLl4R33nlH2Lt3b5HX4uPjBRcXF7GeESNGCPfu3StS7sGDB8LgwYPFci1bthTy8vKKjY8qnzF+Z1dXKSkp7IuUg2nTponfKWFhYcWWK03/8Vn8zIpnjN8d7O8ZRr0fYG5uLigUCuGnn34qUu7EiROCh4eHWNbX17fYz1u9H7R+/XqtZS5fviz2kQAI/fv3Fx49eqRRJj09XZg8ebIAQLCwsNDb11T/f15Yd1BQkJCYmKhRLi4uTmjevLlY9vXXXxeee+45QSaTCfPnzy/Szzp69Khga2tr0HcNEZUPY/y9YgzYFyk79d8VZXkU9/tNG35uREREJCVD+yJV4h7JFXmPEqO7PwlJatIk/ffGK6m8vIJ6qepSKpW4ePEiAMDd3R3Lly+HlZWV1rI2NjYYOnQovvzyS7315uTkoF+/fvjpp59gb2+v8Zq9vT02btyIPn36iM+pz8xRZ25ujnXr1iEgIKDYWTAWFhaYOXMmvvjiCwDAkydPxFUenpWcnIwPPvhA3J88eTK2bt0KNzc3reVbtGiBb7/9Fr179y7y2uzZs/Hw4UMAwIQJE7Bp0ya4uroWKefi4oJffvlFXG3i0qVLpV6ukoioRi5NSAZjf6/kcnJyEBYWpvXWGB07dsS+ffvEvlFUVBTWrVtX6rZCQkLE1V3atWuHnTt3onbt2hplrKysEBoaiqFDh2rcpsgQOTk56NGjB7Zt2wYnJyeN1+rXr481aje+3rBhA86ePYt58+Zh1qxZRfpZXbp0wccffyzub9mypUSxEBERERERERk7o08kcyCQKktkJPDPPxUzsPjPP8DVq+VbL1Ue9XunOzk5QSaTlUu9MpkMy5cvh4mJ9q9iExMTLF++XGzv9OnTYkK7tMaOHStu79+/X2uZH374AWlpaQAADw8PLFu2rFRtJSQkYOPGjQAKEuPffPONzvKmpqYa94IuPJaIqKS0LU1Y3OPzzz8XjytcmrDw8ddff0l1ClRB2N8rne7du+u8JYaPjw+mT58u7q9evbpU7Tx+/Bi//fabuP/VV1/B3Ny82PJLliwpth+ly9KlS4s9rlOnTvDw8BD369atW+zFfADw6quvitunT58ucSxERGQcgoODIQiCQY/169eLx3l4eGi8FhwcLN1JEBEREVUAo79Hco29R0nOE0AZDaTdBOr3A8xspY6o2lu5EpDLy39gESioNzQUWL68/Oumile7dm1YWloiMzMTly5dwqFDh9C9e/cy19u1a1c0atRIZxkfHx907twZx44dAwCEh4ejdevWxZZXqVQ4e/YsLly4gHv37iE1NRW5ublay164cEHr83///be4PXHiRFhYWOg5E+32798vzhJ66aWXYGNjo/eYjh07wsrKChkZGThy5Eip2iUiUhcdHY3o6GiDyubk5ODkyZPivnrfsirIV+XjbspdRCVFISoxCoOaDIKHg4f+A2sQ9vdK5/XXX9dbZsyYMZg/fz4A4OLFi0hOToajo2OJ2jl27JjYb6lXrx4CAgJ0lnd3d0f37t0RERFhcBuNGzfW2ZcCgObNm+POnTsAgAEDBui877GXlxesra2Rnp6OpKQkpKWlwdaWf7sREVEVkpICREUVPADgtdekjYeIiIiMitEnktXViIFAQQXscgMy458+1/s44Fx8Ap3Kx+7dFTOoCBTUu2dPxdRNFc/MzAyDBw/Gpk2bkJ+fj549e2LIkCEYMmQI/P39iyyLaChdF8aoU08knz9/XmuZvLw8rFixAkuXLsW9e/cMqjcxMVHr8+rfnYVLTZfG8ePHxe3r169j6tSpBh1XOAM7OTkZ6enpsLa2LnUMREQ1SYvQFriWeE3cr2Ndh4nkZ7C/VzqG9Fm8vb3h5OSEpKQkCIKACxculLgfoX6RW/v27Q1aBaZ9+/YlSiQ3b95cbxn1BHizZs30lndwcEB6ejqAgpVsmEgmIqIqY/NmYOTIp/s+PkwkExERkYYqlUiuEWQmgPyZWXtpN5lIrmBpacCtWxXbRnQ0oFQCBkzKJCP0zTff4Ny5c7h27Rpyc3OxefNmbN68GTKZDE2aNEG3bt3Qu3dv9O/fHwqFwqA6GzRoYFA5d3d3cVvbRTHZ2dl4+eWXsW/fPsNO5v8VLl+tLjU1FZmZmeJ+w4YNS1Snuvv374vbp0+fLtVyj8nJyUwkE1GJBQcHG7ysYFhYmLjsv4eHB27fvl1xgVUwTwdPjURyVFKUhNEYH/b3Sq8kfZakpCQApbuQV/0iNzc3N4OOcXV1LVEb9vb2esvI5U//TC5p+eJWgiEiIjJKXl6a+7duAbm5gI7VOIiIiKhmMfp7JNfIe5TYNNbcT7spTRw1SHQ0IAgV24YgADf5UVZZderUwenTpxESEoL69euLzwuCgKtXr+KHH37AkCFDUL9+fXz55ZfIz8/XW6eVlZVBbasnUrUlf+fOnSsmkU1MTDBy5Ej88ssvuHr1KlJSUpCTk6Pxfage+7Oerd+Q5aiLk5KSUupjC+VV1LQxIqJqyNfJV2OfiWRN7O+VXnn1WfRRKpVlatMQhsxyLkt5IiKiKsVXs/+IvLyKv/KOiIiIqhSjTyTXSLb/f89UmQlg7QWYGja7kUrv/2/jWm3aqcoK74lujGxsbDBnzhzExsbi9OnTWLJkCQYNGgRnZ2exTHJyMj7++GMEBQVpTdSqy8jIMKjdwqUSARRZKjE7OxsrVqwQ9zds2ICNGzdiyJAhaNKkCezs7DTu66dvUPfZ+tUHdEtKfWB32bJlBl8UpP7w9PQsdftERDVNYSLZQeGAjq4diySWazr290qvPPoshlDvO5SmTSIiIiohR0egTh3A1BTw9gb696+4+4AQERFRlcSlrY1Rk/cAn7cBa0/A1FzqaGoEC4vq1Y4xUU9iGjK7tDxmsVY0ExMTtGvXDu3atcOMGTOgUqlw/PhxfP3119i1axcA4LfffsOOHTswZMiQYuu5e/euQe2pl1NPWgPAqVOnxGRvy5YtMWrUKJ113blzR+frdnZ2sLS0FJe3jomJQd26dQ2K81kuLi7i9o0bN0pVBxERGW5EyxEIahaE2la1OYtSC/b3Su/u3bsG3Vs4NjZW3H62z2II9WPu3btn0DFxcXElboeIiKgsSnIblSrh9Gmgbl3AnGOQREREVBRnJBsjG0/AzodJ5ErUuDFQ0eOtMllBOzWN+myUwnvm6XLp0qWKDKdCmJiYoGvXrti5cyf69OkjPv/777/rPO748eMG1X/ixAlxu23bthqvqd+H2JAB3kOHDukt07FjR3H74MGDhoSot569e/eWuh4iIjKMg8IBdazrMIlcDPb3Ss+QPsuNGzfEvp5MJkObNm1K3I6fn5+4febMGb2ruwDA6dOnS9wOERERqWnQgElkIiIiKhYTyUQAbGyAhg0rto1GjQraqWm8vLzE7YsXL+odENy2bVtFh1RhZDIZ+vfvL+4/fPhQZ/ljx44hOjpaZ5nr169rDN4GBgZqvG5i8vRrXN8SkCqVCj/88IPOMgDw4osviturV69GdinX6OzTpw/k8oKFL27evIk///yzVPUQERGVB/b3Su+nn37SWyYsLEzcbt26NRwdHUvcTpcuXcTVbO7fv4+IiAid5WNjY3H48OESt0NEREREREREhmEimej/9esHyCtosXe5HFDLzdUoTZs2FWclx8fHY9++fcWW/euvv/DXX39VVmgGS0tLQ05OjkFl1Zehrl27ts6ygiDgnXfeKfa+0CqVCu+8846YfG/Xrh1at26tUaah2oj4v//+q3Np8MWLF+PixYt6z2HixImw+f9R8Dt37uDdd9/Ve4w2rq6uGD16tLg/efJkg5efVKlUSEhIKFW7REQlERwcLN6X/fbt21KHQxWM/b3SOXToELZu3Vrs6zdu3MCyZcvE/QkTJpSqHScnJ7z88svi/gcffKCzD/b+++8jPz+/VG0RERERERERkX7VKpHMgUAqi8mTAQNu4VsqeXnAlCkVU7exk8vlGDp0qLg/ceJEREZGapQRBAE//fQThg0bBgsjvLHg2bNn4eHhgTlz5uDKlStay+Tn52Pjxo1YsWKF+Fy/fv101mtubo7du3fj9ddfL5IATklJwejRozWWhF64cGGROtq0aQNXV1fxmKFDh2osdw0A2dnZ+Oyzz/DRRx/B2tpa98kCcHR0xKJFi8T9lStXYvjw4cXeq/DKlSuYNm2a1osEFixYgHr16gEouIdh+/btsX379mKT53Fxcfj222/RpEkTnQPWREREpcH+XumYm5sjODgYP//8c5HXTp06hV69eokro3h7e2P8+PGlbmvOnDnirOQzZ87glVdeKXJxWUZGBqZMmYJt27YZZd+RiIiIiIiIqLqooOvxiaqeZs2AXr2A8PDyHWCUy4HAQKBp0/Krs6r59NNPsXXrVqSnpyM2NhZ+fn7w9/dHw4YNkZqaimPHjuHu3bswNTXFqlWrSj2LpSI9ePAA8+bNw7x58+Di4oI2bdqgbt26kMvlePDgAc6ePYv4+HixfLdu3fDqq6/qrHPWrFn49ttvsXHjRvz222/o0aMHXFxc8PDhQxw8eBBKpVIsO2PGDPTs2bNIHSYmJvj8888xbtw4AMA///wDHx8fdOnSBR4eHkhKSkJERASSk5MBAD/88ANGjRql93zffPNNXL58GaGhoQAKlhzfsWMH2rdvDx8fHygUCiQkJOD8+fPihTvPLrsNAPXq1cNvv/2Gfv36ITExEfHx8Rg6dCjq1KmDjh07wsXFBSqVCklJSbh8+TJu3bpl0P0QiYiISoP9vdJZvHgxpk2bhtdeew0hISHo3LkzzM3NceXKFZw8eVIsZ2VlhQ0bNkChUJS6rZYtW2L+/Pn44IMPABSsWOPh4YHAwEC4uroiKSkJBw8exJMnT+Dg4IDp06djzpw5ADRv+UFEREREREREZcdEsjHLTQXSogFlNCC3BupX07XyjMiqVQUDjOU9sLhqVfnVVxV5enpi+/btCAoKQkZGBnJzc7F//36NMnZ2dli/fj3atm0rUZTFs7S0hFwuR97//2A8fPgQf//9d7HlhwwZgnXr1ukdzPTw8MBff/2FIUOG4P79+/j999+LlDExMcF7772nMUP4WWPHjsXNmzexYMECAEB6ejr++ecfjTIKhQLffPMNRo4caVAiGQC+//57+Pr64rPPPkNqairy8/Nx4sQJnDhxokhZmUwGKysrrfW0b98eZ86cwfjx43HgwAEAwKNHj/DHH38U27aLiwu8vb0NipOIiJ5SCSrcS72H60nXEZUYhYSMBIQEhEgdllFhf6/k3nnnHTx+/Bjz5s1DdHQ0oqOji5SpW7cuNm/ejE6dOpW5vZkzZyIvLw+fffYZ8vLykJmZid27d2uUqVevHrZv366xWkzh7VSIiIiohJRK4Pp1ICqq4NGjB9C9u9RRERERkRFgItlYXfsWOPfu0/06AUwkVwIvL2DFCmDixPKr87vvCuqt6fr27Ytr167h66+/xt69exEbGwtTU1M0aNAAAwYMwJQpU9CgQQOjXJa+Y8eOePToEfbv348jR47g/PnziI6ORlJSEvLz82FnZ4dGjRqhU6dOGD16NDp06GBw3Z07d8bFixfxww8/YOfOnbh9+zaUSiXq1auHwMBAvPnmm2jXrp3eeubPn48XX3wR3333HY4cOYKEhATY2trCzc0Nffv2xfjx40uVmJ02bRpGjx6NsLAw7N27F5GRkUhMTAQAODs7o2nTpvD398fw4cN11u/h4YH9+/fj+PHj+OWXX3Do0CHExsYiOTkZcrkcTk5O8Pb2Rrt27dC7d28EBARAXlE3sSQiqsbOxZ9D+9XtxX0TmQk+fv5jWMi5/G8h9vdKJyQkBC+++CJWrVqFw4cP4/79+zAzM0OjRo0wePBgTJ06FQ4ODuXW3scff4yXXnoJ3333Hfbv34/79+/DysoKnp6eCAoKwhtvvAFnZ2ccPnxYPKY82yciIqpRRo0C1C9uz8lhIpmIiIgAADKBa4hqSE1Nhb29PVJSUmBnZyddIHd3AEeGPN23cgMGxUoXTwXIyspCTEwMvLy8yrT8XUWYPx/45JPyqWfWrLLXQ9VHcHAwfvzxRwDA+vXrERwcLG1ARAYy5u/s6sZo+iJkMGP6zFKzU2H/pb3Gc5enXEbzOs0liceYvzvY36seRo0ahU2bNgEANm/erPfWIkRUtRnz7xUpGVNfhAxnVJ/bzJnA118/3X/lFWDHDuniISIiogpnaF+EN5EyVraNNfcz7gF5mdLEUgPNng2sXg0oFAVLFZaEXF5w3Jo1HFQkIiKiymVnYYd6NvU0notKipIoGuPG/l7Vl56errHkdfv27XWUJiIiomL5+mruR7H/SERERAWYSDZWNo3+f0MGWDUAXAKB3BRJQ6ppJkwAIiOBwMCCfX0DjIWvBwYWHDd+fMXGR0RERKSNr7MvbMxt0LZeW4xoMQJ1rOtIHZLRYn+vavvkk0/w5MkTAAVJ5EaNGuk+gIiIiLTz9QVkMsDTE+jTB+jXT+qIiIiIyEjwBpTGyswGeCkKsG4AmHK5Jql4eQH79hUMFK5cCezZA0RHA+oLwstkQKNGwIsvAlOmAE2bShcvERER0e+v/g4bcxvIZDKpQ6kS2N8zPtu3b8fJkycxadIkNG7cuMjriYmJ+OyzzxAaGio+N3PmzMoMkYiIqHrp1AlITwcsLaWOhIiIiIwME8nGzM5H6gjo/zVrBixfXrCtVAI3bwLZ2YCFBdC4MWBjI218RERERIVsLWylDqFKYn/PeCiVSnz99df4+uuv4ePjg5YtW8LJyQnZ2dmIiYnByZMnkZ2dLZYfNWoUhg4dKmHEREREVZyZWcGDiIiIgPx8IDYWuHMHyMsDrK0LLrqqoZhIJiohGxvAz0/qKIiIiIioorC/ZzyuX7+O69eva33N1NQUb731FpYuXVrJURGRMRMEAf89/A/3Uu9BIVegbb22cLR0lDosIiIiIqoK8vIAV1fg0aOnzz33HHDmjHQxSYyJZCIiIiIiIjIaI0eORO3atfH333/j3LlzePjwIRITE5GRkQFHR0d4enoiICAA48aNg6+vr9ThEpEROR9/Hm/8+QbO3H860Hfw9YMI9AqUMCoiIiIiqjLkcqBNG2Dv3qfPabnlUk3CRDIRUSUKCwtDWFiY1GEQERERGS1zc3P0798f/fv3lzoUIqpi/r75t0YSGQAUcoVE0RARERFRldS7t2Yi2du7+LL37gFbtgDvvluQhK6GTKQOgIiIiIiIiIiIqKze7/I+WtRpofGcpZmlRNEQERERkVFSqYDHj4t/vU+fgn9tbAAXF6BZs+LLfvIJMHMm8PzzQFRU+cZpJKpnerw6yVUCyuiCR9pNwGsMYOkidVRERESVRxkD3PwBMLUEFC6AQ0vA0Q+QW0kdGZHRSsxIxOVHlxGVGIWopCi0dmmNMX5jpA6LiIioQpmZmmH1gNXovLYzAKC2VW1Ym1lrLSsIApIyk+Bs5VyZIRIZr/x84MqVgkHwwkdoaMEgOhERUXWRkwMEBwO3bwP//guYmRUt06wZcP8+ULcuIJMVX9eFC8CGDQXbJ08C7doBmzcDL71UAYFLh4lkY7fLHch98nTf0Q+w7C1VNERERJUvJxmI/FLzuZYhQMs5koRDVBV8fexrLDq6SNwf1GQQE8lERFQjdHLrhN0jd6OHVw9YyC2KLbfwyEKsOLUCv7/6O9q7tq/ECImMVG4u4OcHCMLT56ZPB9q2lSwkIiKicpWVBbzyCrBnT8H+p58CX35ZtJxMBtSrp7++Dz/U/L2ZkQGYm5dPrEaES1sbO9tGmvvKaGniICIikopCy0ocri9XfhxEVYiPk4/G/vWk6xJFQkREVL7yVHk4GHNQZ5kXvV/UmUTeeXUnZh+cjQfKB+ge1h3brmwr7zCJqh6FAvD01Hyumi7RSURENZAgAK+99jSJDACLFmnul1RIiOb9kxcvLri/cjXDRLKxs3kmkZzGRDIREVUzmQ+Au78U/7pFbc19qwYFK3QQUbF8nXw19m8+vol8Vb5E0RAREZUPlUqFhPQEvPnXm5h9YHapfrddeHABr/36mriflZeFETtG4Objm+UZKlHV5KN5MSITyUREVG3IZEC3bppLVVtZASZlSJN27lywvPXo0QVJ6unTyxymMeLS1sbOtnHBv5auBdvWnpKGQ0REVK5So4CDvYDMeMDKHXDuVLSMqTnQcByQkwSk3QDq9i7+/iT5OcDZaUCzmYBNw4qNnciI+Tr7QiFXwMfJB75OvvB18kVWXhaszbXfJ5KIiMjYCYKA+8r7yMnPAQAsOLIAp++fxpYhW1DLspbB9XjYe6CzW2cciDkgPvdVz6/QuFbjco+ZqMpp0qTgPsm+vgWPTlr+PiMiIqqq3nmn4L7Hr70GWFgAe/cWJIPLwsqq4D7JeXm676dchTGRbOyafgA0/wSQW0odSYUR1NeQJyIio1Qh39VPLgMHegDZCQX7R18FXjwPmDsWLdtprXowxdcZ+SVwcyUQswF47lug0fhq24kj0sXZyhnps9JhIuMCREREVD2kZafhSdYTjediU2NhZmJWonocLR2xZ9QevL3nbaw6uwrj/MZhRucZ5RgpURW2dCmwbJnUURAREVWcYcOA2rULxhfLmkQuJJMBZjr6pCpV2WY+S6zqRl5TmNtX2ySyqakpACA/n8ssEhEZu8Lv6sLv7nJxZurTJDIApN8BLnys/7jiEsNPLgFXvijYzs8ATk0EznFQkGouJpGJiKg6sbWwRV3ruuK+jbkNdg7bCVsL2xLXZWZqhtD+odg6ZCtCXwqFjBceEhWowoPcREREBgsMBHr0qJy2lEqgf39g3brKaa8CsHdAkpHL5ZDL5VAqlVKHQkREeiiVSvF7u9x03QrUav90v1Z7oNUXpa/vvzmAKlftCRlQv1/p6yMiIiIioyGTyeBs7QwXGxfUsa6D9QPXo2ntpmWqb1jzYTA3NS+2TGZuZqnrJyIiIqIaLjEReOEF4O+/gcmTgaNHpY6oVJhIJsnIZDLY29sjJSWFs5KJiIxYfn4+UlJSYG9vX76zNSxdgJ7hgNtAwLkL8MIBQOFc+vo6/wg0nvx0v8VnQL1eZY+TiIiIiIyGQq7AnlF7MKTZkAptJzEjEa1Xtsbio4t5Sy4iIiKiqub+/YIlpaWSlgZ07QqcOlWwn5sLDBkCxMVJF1MpMZFMknJwcAAA3LlzBzk5OdIGQ0REReTk5ODOnTsAnn5nlyu5NfD8DiBwD2BW8mUJNZjZAh1Cgee3A+5BQItPyydGIiIiIjIq1ubWFVp/Tn4OgrYF4cbjG/hg/wcY//t45ORzzIKIiIioSsjOLli+OiAAuHFDmhhsbYEBAzSfS0sDIiOliacMynF9SqKSMzc3h6enJ2JjY3Hr1i1YW1vD2toaFhYWMDEx4X2KiIgqmSAIUKlUyM7ORnp6OtLT0yGXy+Hp6Qlz8+KX/SsTE1PAxK786msQVPAgIiIiIiohQRAw5c8pOHTnkPjc+gvrYW1mjRX9VkgYGREREREZZNky4Pr1gkerVsDnnwPTpwOmppUbx6JFwKVLwL59QMOGwG+/AS1aVG4M5YCJ5KogLxNQ3gTSogFlNGBmDzSeIHVU5cbCwgKenp5ISUmBUqnEo0ePuGwUEZHEZDIZLC0tUbt2bdjb25fvvZGllvUIuPsL4P0mwAuWqJo7FnsMVxOuIiopCteTrmN+j/loXqe51GERERHpJQiCZBeX+zj5QAYZBBSMTbjauuLjbh9LEgtRpXv4EDh2rGDwPSoKcHQEliyROioiIiLDPHgAzJ//dD8rC/jll4JEcmUzNQU2bwY+/LAgqVyrVuXHUA6q0ahwNXZrPXDmraf7tZ6rVolkAJDL5XBycoKTkxNUKhXy8vKgknL9eiKiGszExARyuRwmJuV4B4zH5wEhH3BqV351lkZOMnCwN/DkIqC8BbT5mslkqtZG7xyNmCcx4v6w5sOYSCYioirhWuI1yE3kqG1dG/YW9pWWVJbJZPjw+Q/h6+yLUTtHAQB+H/E76tvWr5T2iSR38CAwcuTTfU9PJpKJiKjqiIoCFIqCZaSBgnG/77+v/NnIhWrVAlavlqbtcsJEclVg21hzP+0mIAjVduDbxMSk4pZPJSKiyicIwNm3gYRjBbOAW38BmDtUfhy5SiCif0ESGQCuLQXy0oH23wOyckyaExkRX2dfjURyVGKUhNEQEREZJiM3A+m56QCAlOwUmJmYwdfZt1JjGNRkEI6MPYK4tDi0rde2UtsmkpTvM//X7twBMjMBS0tp4iEiIioJf/+C+yJ/8QXw7bfAqFHAc89JHVWVxlHTquDZRHJuCpDzWJpYiIiISur+HiDhKAABuPE/4M8mQEpk5cfx8ACQeFzzuXu/AZnxlR8LUSXxqeWjsX/98XWJIiEiIjJcYkaixr5MJoOFqUWlx9GmXhu85POSzjIqgaupUTXjo9l/hCAAN29KEwsREVFp2NsDixcDkZHAwoVSR1PlMZFcFVg1AEzMAMv6QO1uQMOxgCpH6qiIiIj0E1TAxVmaz5laAjaNtZevSG4Dgc4/AbL/X8rGsj7QMwKwcq38WIgqSUuXlmhWuxkGNxmMD7t+iJEtRuo/iIiKCAkJgUwmg0wmQ0hISLnVGxERIdYbEBBQbvUSVWWCIOBJ1hON55wsnSS7X7Iuq8+uRp+f+xSJl6hKs7EB2rYtmNH1xhsFy1o7O0sdFRERUck1bgzUrSt1FMU7fhzo1g14+FDqSHTi0tZVgYkcGJICyLmEDBERVTH5WUAdfyD16tOLoFrOBUwluoWB12hAbgWcnwkE7i266gdRNTOh7QRMaDtB6jCIiIgMJpPJ0Lx2czzOfIzEjESk56bD2cr4kljhMeF4c/ebyFPlodOaTvhz5J9oXIt9S6omzp6VOgIiIqLqKz0d+OSTgqW3BQF4+21g2zapoyoWZyRXFUwiExFRVSS3Atp9Cwy4XrCihkMrwHOUtDG5vwL0j2QSmYiohuLsYiLjZ2piitrWtdG0dlO0rNMSFvLKX9Zal+tJ1xG0LQh5qjwAQFRSFDqu6YhH6Y8kjoyIiIiIjN6sWcCyZQVJZAD45Rdg505JQ9KFiWQiIiKqeNYeQKd1QJ9TgImp1NEAEtxjj4iIiIhKztiSyACQmp0K82dW2JnYdiLqWNeRKCIiIiKiGiw2VuoISmb2bMDJSfO5776TJhYDMJFMRERElacqJHATjgPR66WOgogklKPMwYMLD3Dv5D08uPAAOcocqUMiiYWEhEAQBAiCUK6zmAMCAsR6IyIiyq1eIqpY7eq3w6mJp9DapTUAYFCTQVjwwgKJoyIiIiKqgRISAB8fwN8f2LULyM+XOiL96tQBli8v2La0BL74AtizR9qYdOA9komIiIgK3d8LHH4FyM8E5NaAxzCpIyKiSpIQmYAzK8/gxu4bSL6VDAhqL8oAx4aO8O7njXaT26F2s9qSxUlERMahgX0DHBl3BHMj5mJOwByYyDhXg4iIiKjSrVwJZGUBhw4VPJo1Ay5cAMzMpI5MtxEjgOho4PXXAQ8PqaPRiYlkIiIiIgC4sw04PhpQ5RbsHx8NmNkD9ftIGxcRVajkmGT8OelP3PrnFmRyGYQ8oWghAUiOTsbp0NM4teIUGvZqiJdWvQRHL8fKD5iIiIyGjbkNFvdeLHUYRERERDVTVlbRJaHbtTP+JDIAyGTAp59KHYVBeLlkVZJyFbj3O3DtG+D0VCAtWuqIiIiIisrPBjLipI6i5FIinyaRgYLtW2uli4eonCRmJGLDxQ2YfWA2hmwbgn4b+0kdktE4t+Ycvm/2PW6H3wYA7UlkNYWv3w6/je+bfY9za85VdIiSkclk4qPQ2bNn8cYbb8DX1xc2NjZwdHREu3btMH/+fKSkpBhUb0pKCjZv3oxJkyahY8eOcHZ2hrm5Oezs7NC4cWOMHDkSv/zyC1Qqld66wsLCxBiDg4MBAPn5+diyZQsGDhyIhg0bwtLSEjKZDLt27UJAQABkMhnmzp0r1jF37lyNc322vkIhISHia88ubV34WmBgoPjcv//+q7VeT09PjWMjIiLE1wICAgx6D/fu3Ytx48bBx8cHdnZ2sLS0hIeHBwYPHoz169cjNzdXbx3BwcFiu2FhYQCA9PR0fP/993j++efh4uICCwsLuLu7Y8SIETh69KhBsRGVRVxqHBLSE5CvqgLLERpImaNE35/74njscalDISq5Q4eAJUuAN94oWC5082apIyIiItL0339AzjO3opo+XZpYqjHOSK5KwnsDGfee7tftAdg2ki4eIiIibWJ3Fszmrf8S0PgNoF5fwMRU6qj0azkHyEkCrv//lYweI4HOYZKGRFQe7jy5gzG7xoj7JjITZOdlw0JeBe5ZXoEOzT+E8E/CS3WsKk8FVZ4Kf0z8A8qHSnSf3b2cozM+8+bNw9y5c4skeM+ePYuzZ8/if//7H7Zs2YLu3Yt/L3bu3ImRI0ciOzu7yGu5ublIS0tDdHQ0Nm/eDD8/P/z6669FEq+63L9/H6+++ioOHz5s8DFVyaNHjzBy5EgcOHCgyGt3797F3bt3sWvXLixcuBCbNm1Cu3btDK776tWrCAoKwtWrVzWev3fvHrZs2YItW7bgs88+00jCE5Wn3PxcPFA+gAABsamxcFQ4wtXOFeam5lKHVmoqQYXXfn0Ne6P3IuJ2BNYNXIeRLUdKHRaR4b79Fti58+l+hw4Fy3ASEREZiw4dgPv3ge3bgdWrC2Yi+/lJHVW1w0RyVWLTWDORnHZTuliIiIiKc/MHQFABcb8XPBoMB57fInVU+slkwHPfAtmPAYtaBdu81x1VAz5OPhr7KkGFm49vonmd5hJFJL1za86VOon8rPBPwmFT1wZtx7ctl/qM0fLlyzFnzhwAQKNGjdCxY0dYWFjgypUrOHXqFAAgPj4e/fr1w8GDB9GhQwet9Tx69EhMIru5uaFZs2aoW7curKysoFQqcfXqVZw7dw6CIODChQvo1q0bLly4ACcnJ70xZmdn4+WXX8bZs2chl8vRpUsXNG7cGFlZWTh3rmDm+ODBg9GiRQucOnUKp0+fBgC0b99ea7ydOnUy+P3p0KED3nrrLcTFxWHXrl0AgPr162Pw4MFFyhpyLto8fPgQXbt2RXT001Wp1D+LyMhInDx5EgBw48YNBAYG4u+//0bXrl311n3//n307NkT9+/fh4ODA7p164a6desiMTERBw8eFGebz5s3D82aNcPw4cNLdQ5EuiRlJkH4/5vTqwQVkrOS4W7vLnFUZTPrwCzsurYLAJCdn43M3ExpAyIqKV9fzf2oKGniICIi0sXSEnjttYJHVpbU0ZSP3Fzg6lWgVSupIwHARHLVYtsIeBTxdJ+JZCIiMjZpNzV/VwGAe9GBdKMlMwE6/wjITAsSy0TVgK2FLerb1sf9tPvic1FJUTU2kZwck4w9b+8p1zr3TN0Drx5e1faeyTNnzoRCocDq1asxevRojddOnjyJ4cOH486dO0hPT8frr7+OCxcuQKFQFKnH1dUVCxcuxJAhQ9C4cWOtbcXExGDKlCnYu3cv7t27hw8//BBr1qzRG+P27duRl5cHf39/hIWFFZnJnJ2dDQuLgln4ISEhYiK5X79+RZaqLql+/fqhX79+iIiIEBPJ3t7e+O7Ze3WVwdixY8UkspWVFVavXo2RIzVnNp45cwbDhw/HrVu3oFQqMWLECPz3339wcHDQWfe8efOQnZ2NDz74AHPmzIGVlZX42uPHjzF06FAcPHgQADBr1iwMGzZMY8lzorISBAGJGYkazzkqHCE3qbpDVrn5uTj/4Ly4/17n9zC+7XgJIyIqhSZNNPeZSCYiImOn5e/QKkUQgF27gI8+AhITgehoQM/fc5WB02yqEpvGgMIFqN0V8HodqFP9l9AjIqIqJukMYKK2BKGFE+A2SLJwSsVEziQyVTu9GvbCAJ8BeL/z+/jhpR/wXL3npA5JMn9O+hOqPP333y0JVZ4Kf076s1zrNCY5OTkICwsrkkQGgI4dO2Lfvn1i8jEqKgrr1q3TWs+AAQPw0UcfFZtEBgAvLy/88ccfaPX/V15v3LgRycnJemPMy8tDy5YtsWfPHq3LYRcmkaui8PBw7Nnz9OKHzZs3F0kiA0C7du1w4MAB2NvbAwBiY2OxfPlyvfVnZ2fj448/xqJFizSSyABQq1YtbNq0CdbW1gCAW7duibPQicqTm50bHBQOkKGgD+Zs5SxxRGVjZmqGv0b+hantp+Iln5ewqOciqUMiKrmWLYGuXYGxY4EvvwS+/lrqiIiIiKqvzEyge3fglVeA69eBx4+BhQuljgoAE8lVS7MPgVceAL2OFMyW8io6kENERCQpz1cLfld1XAO49AA8RwOmVXfwvghBAG5vBlR5UkdCVCJhg8Lw+4jfsbj3Ykx8biI8HDykDkkSCZEJuPXPrQpJJN/65xYSriaUa73Gonv37jqXM/bx8cH06dPF/dWrV5epPTMzM4waNQoAkJWVhSNHjhh03KJFi2BpaVmmto3RqlWrxO0BAwbg5ZdfLrasp6cnZs2aJe6vXLkSgiDorL927dr47LPPin3dxcUF/fv3F/cLZ3MTlReZTAYHhQMa12qMVi6t0MC+AWzMbaQOq8zkJnKs6LcCO4fthKmJqdThEJVcmzbAkSPAunXAhx8CAwZIHREREVH1ZWkJuLhoPvftt8CdO9LEo6bqrhNUE3F2FBERVQXmjkCj8QUPoXyTNZJS5QGn3wSiVxcsfe0xTOqIiKiEzqw8A5lcBiFPd2KtNEzkJjgTegYvLn+x3OuW2uuvv663zJgxYzB//nwAwMWLF5GcnAxHx+KX+n7y5AlOnDiBK1euICkpCUqlEirV098Z165dE7cvXLiAAXoGrx0dHdGnTx+9cVZF4eFP7+c9btw4veXHjh2Ljz/+GCqVCvHx8YiKikKTZ5cnVTNgwACtS5Gra9OmDbZt2wYAuH37tmGBE5WCmakZ6ljXkTqMcmVmaiZ1CERERERUFSxcCPz2G5D3/xNYWrUCUlOljQlMJBMREVFFklWTxU/yMoCjI4C43wG/RUCDoVJHRESlcGP3jQpJIgMFs5Jv7rlZIXVLrVOnTnrLeHt7w8nJCUlJSRAEARcuXEBgYGCRcvfu3cNHH32E7du3Izs726D2ExMT9Zbx8/ODiUk1+Z2jJi4uDo8ePRL3u3TpoveY2rVrw8fHR0zGnzt3TmciuWXLlnrrdHJyErdTUlL0liciIiIiIqoQDx4Aw4YBI0YAQ4cCzlX7ligavL2ByZOBv/4CFiwoOE8j+DtX+giIiIiIjF1KJPAwHOi8AWj2AVcJIaqCstOykXxL/712y+Jx9GPkKHMqtA0pNGjQwKBy7u7u4nZCQtFlvs+fP49WrVph48aNBieRASAtLU1vmdq1axtcX1Wi/j5aWlqiTh3DZmqq3ydaXyK+8J7KupiZPZ1RmZuba1AMRERERERE5W7rVuDwYeDNN4F69QoSytXJggXA1avAq68aRRIZYCKZiIiISD+ndsDAGMDrNakjIaJSSo5OBipmMvJTAvD45uMKbqTyWVlZGVTO2tpa3H42+ZudnY2goCAkJxck811cXDBnzhxEREQgNjYW6enpUKlUEAQBgiBg/fr14rHqS14XpzreGxkAlEqluK3+/uqj67N4lowXRxERERERUVWxadPT7bw8QF7NFl62tQUsLKSOQkM1e4eJiIiIKoiFk/4yRGS08rLzqlU7lSkjIwO2trZ6y6Wnp4vbz5bfsWMHYmJiAABubm44c+YMXFxciq3LkFnINYGNjY24rf7+6qPrsyAyFilZKVDIFbCQG9dAGREREREZqZs3gVOnNJ8bNUqaWGoQJpKrmqxHQNJpIO0moIwGzB2BVnOljoqIiGqy/2PvvsOjqvI/jr8nnfQQEnoLIYEA0qt0kWLvrr2hC3Zd61p+uuraVnfXXtfeewNEBVFp0qQFEgi9h3TSy/z+uJIw1JSZOVM+r+e5D/M93Mx8NAo393vPOXY7LLoWEkdAm5MgJNZ0IhE5jF82/8JPG34iIyeDjJwMzkg9g/8b/X+mY7lNUKh7fvRx1+e405YtW+jRo8cxz9u6dWvt6xYH7VP1008/1b6+5ZZbjtpEBti8eXMDU/qmA5fsLi0tZe/evYf8uz2cA//91ed8EXersdewMX8jVTVVRIdG0yK8BbFhsQTYtHCeiEcpLYVXXoGMjLpj5UqIizOdTERE/FGHDvD11/Dee9avkZEwbpzpVD7P9+5y+LqdM2H+ActqRqWokSwiImblr4D1L1mHLQhajoHhH6uhLOJhvsv8jifmPVFbd4rtZC6MAc2Tm4MN1y5vbfvzc3zM/Pnzj9lIXrduHTk5OYC1VHLfvn0dfn/Hjh21r+vTlP7ll18akbR+XLWUsyvet23btiQmJrJnzx4A5s2bx2mnnXbUr8nJySEjI6O27tevn9NziTRVQVkBVTXWCg6F5YUUlhfSM7EnYUFhhpOJiIOgILjtNmvp0P0yMmDIEHOZRETEf4WEwKmnWkdREaxd63tLW3sgPerpbSK7ONbFG6Gm2kwWERERgG1f1r22V0HROgiOMRZHRA4vtUWqQ52xN+MIZ/qmkMgQ4pJcO3umeZfmhESGuPQzTHjnnXeOec6bb75Z+7p3797EHTRTKSCg7kfPkpKSo77XkiVLWLRoUcNCNkBYWF2jqrKy0uPfd8yYMbWvD/z3fCRvvfVW7b7Sbdq0ITU19RhfIeJ+BeUFDnVkSKSayCKeKDgYkpIcxzL86xpSREQ8VFQUDBxoOoVfUCPZ20Qd1EiuqYSSrYc/V0RExB22fuFYtzsDXDTbS0QaLzXesZm0Pnd97Wwwf9H1pK7Yglzz51NAUADJk5Jd8t6m/fLLL3z00UdH/P1169bxn//8p7aePHnyIeckHXAT+quvvjrie5WUlHDNNdc0Lmg9xcfX7Xm/fft2j3/fv/71r7Wvv/jiC2bMmHHEc7du3crDDz/s8LWumoEt0hTVBz0QHxemZXJFPNbBDySpkSwiIuJX1Ej2NqEJEJkE8UOg08XQ6wEI1FO7IiJiiN0OKddDm5MhINQaa3+m2UwicljdWnRjUvIkbh58My+c9AIzLj5yM8pXDZgyAHuVa9a2rqmqYcDUAS55b9NCQkK4/PLLeffddw/5vd9//50TTzyxdpZx165dueqqqw4575RTTql9/fbbb/PUU09RXe3YSFq/fj3jx49n6dKlREREOPmfok6vXr1qX3///fcUFBQc5ez6S0pKqs29efNmfv/9d6e875gxY5g0aVJtfe655/LJJ58cct6yZcs44YQTyMvLA6B9+/bceOONTskg4mxdmnehb6u+JDdPpmVES6JDo01HEpEjmTABLrkEHn4YPvkEXPzAl4iIiHgWLR7ubWw2OC3LdAoRERGLzQbJk62jsgh2zoQWw0ynEpHDiA+PZ9pF00zHMCohLYGkE5PYNHsTNVU1TnvfgKAAOo3pREL3BKe9pyd58sknuemmm7jkkkt44IEHGDp0KCEhIaxevZqFCxfWnhceHs7bb7/tsMTzfhMmTGDUqFHMmTMHu93ObbfdxvPPP0+/fv2IiYlh3bp1zJs3j+rqatq2bctNN93EHXfc4ZJ/noEDB9KhQwe2bNnCrl276NatG+PHj6dFixa1s3cHDhzI+eef36D3DQgI4IwzzuC9994DrAbwxIkT6dChA4GBgQA0b96cv//97w3O/MYbb3D88ceTlZXFvn37OO+88+jatSuDBw8mJCSENWvWsGDBAux260GJiIgIPvjgA2JjYxv8WSLuEhgQSGxYLLFhsaajiMjRXHeddYiIiIhfUiNZREREnCM4CjqcbTqFiMhRnfLyKbyQ9oLTG8mnvHzKsU/0UjfeeCO5ubn84x//ICsri6ysQx9sbdWqFR988AFDhgw54vt89NFHnHTSSSxduhSAjRs3snHjRodz0tLS+OSTT5w2m/dwAgICePHFFznrrLMoLy9n165dvP322w7nXHbZZQ1uJAM8+uijzJ49mx07dlBSUsLnn3/u8PsdO3ZsVCO5ZcuWzJ07lwsvvJBZs2YB1pLi69atO+Tc5ORk3n//fQZqvzAREREREfEFq1ZBQgK0bGk6iV/S0tYiIiIiIuI34jrHMenZScc+sQEmPTeJuM6+vb/nAw88wPz587niiitITk4mPDycmJgY+vXrx0MPPcSaNWsYPXr0Ud+jZcuWzJs3j+eee47hw4cTGxtLSEgI7dq144QTTuCVV15h0aJFpKWlufyf56STTmLJkiVMmTKFnj17EhUV5ZS9hNu3b8/y5cu5//77GTJkCHFxcQQFOef57ZYtW/LTTz8xY8YMLr/8cpKTk4mMjCQ0NJT27dtz2mmn8b///Y/09HQ1kUVERERExHdcey20bg0jRsDTT8OOHaYT+RWbff/aVwJAYWEhMTExFBQUEB2tPXpERETEvXQt4n30PTuysrIyNm7cSOfOnQ+73LFJvzzyC7Pvnd3k9xn7yFhG/H2EExJ5lgObqvqRUUQ8hSf/vWKSrkW8k75vIiIi9bB7t9VEPvDn0q+/hlNPNZfJR9T3WkRLW4uIiIiIiN8Zec9IIltGMv2G6dRU1TRoqeuAoAACggKY9Nwk+l3Vz4UpRURERERERPzYtGmOTeSICDjxRHN5/JCWthYREZHGqa4wnUBEmshut/v1bNN+k/txbfq1dBrTCbAaxEez//c7jenEtenXqoksItJA2cXZ7C3ZS3lVuekoItIUNfV/AE9ERKRJdu2CA1eimTjRsRaX04xkb7XzByhcC/uyoCgLjnsQmutGloiIuEnxZvg2DVqOhtYTrSMqGZywv6SIuNY/f/0n6dnpZORkkJmTyaxLZ9G/TX/TsYyJ6xzHJTMvITs9m8UvLWb99PXkZuXCgf11GzTv0pzkSckMmDqAhO4JxvKKiHiznft2UvHnw4ghgSF0iulEdJiW9BXxeEuWwFtvQUaGdSQnw48/mk4lIiL+4O674eab4eefYfp0GDPGdCK/o0ayt1pyExSuqas7nKNGsoiIuM/O76G6BHZMs47QeDhzN9gCTScTkWN4belrbMzfWFtn5GT4dSN5v4S0BCY9MwmAin0V5K7Ppaq8iqDQIJonNyckMsRwQhER71ZeVV7bRAaoqK4gKFC3pUS8wqZN8OyzdXVlpbEoIiLih5o1g0mTrEPcTlfs3iqyi2MjeV+WuSwiIuJ/dsxwrFuNhwA1kUW8QWqLVIdGcmZOpsE0nikkMoRWfVqZjiEi4lOKKooc6qCAIJoFNTOURkQaJDXVsd6xA4qKICrKTB4RERFxG+2R7K2iujjWRevN5BAREf9jr4Hdsx3HWk8wk0VEGiw13vFGYEZOhqEkIiLiT0ICQ4gLiyMowJrTEBUShU3booh4hy5dDt3GKFMPI4qIiPgDzUj2VrG9IX4QRCZbTeX4IaYTiYiIv7AFwMmrYPfPsGe21VRuNc50KhGpp3FJ46iqqSI1PpXUFqn0SOhhOpJ4ILvdfuyTREQaIDo0mujQaOx2O6VVpabjiEhDNGsG118P8fHW7OTUVEhLM51KRERE3ECNZG/V5QrrEBERMSG8LXS+yDpExKucknIKp6ScYjqGiIj4KZvNRnhwuOkYItJQzzxjOoGIiIgYoEayiIiIiIiIiIiIiIiIiHiGRx+FyEiYNAmSk02n8WtqJIuIiIiIiIiIiIiIiIiIeTU18OSTkJdn1V27wjvvwODBZnP5qQDTAUREREREREREREREREREWL68rokMsG4dtGljLo+fUyNZRERERERERERERERERMz76SfHumtXaN/eTBZRI1lEREQaYM9vUJ5jOoWIONm+in0ufX+73e7S9xcREc+VU5JDxt4MdhTtoKi8iBp7TaPfS3+fiHiQigooLTWdQkREfNFxx8EFF0DLllY9dqzZPH5OeyR7s30bYcd0KFoP+9ZDSHMY+qbpVCIi4quqK2D2BKguhbjekDgG0m6HZq1NJxORBkrPTueJuU+QkZNBZk4mMaExbLhpg9M/JyDAem61pqbxTQMREfFuheWFFFUUUVRRBEBcWBxdmndp1Hvt//tk/98vIuJm//kP/PgjZGTAxo3wzDNw7bWmU4mIiK8ZP9467HZYswaCg00n8mtqJHuzvOWw+Lq6upnWiBcRERfKXQzVJdbrvD+so8ffTSYSkUYqrSzlreVv1dZ5pXmUVZURFhTm1M8JCgrCZrNRVlZGRESEU99bREQ8n91ur20g7xcVGtXo9ysrK8NmsxEUpNtZIkYsXAjffVdXZ2SYyyIiIr7PZoO0NNMp/J4e4fRmUQc9wVu6A6pKzGQRERHfl/2bYx3bC8JamMkiIk3SNb6rQ23Hzvrc9U7/nICAACIjIyksLHT6e4uIiOerqK6gorrCYSwqpPGN5MLCQiIjIzUjWcSU1FTHWo1kERERn6crb28WmXTo2D7nL0koIiICQPleCAipqxNGmMsiIk0SHRpN60jHZekzczJd81nR0ZSVlVFcXOyS9xcREc8VFBBEcvNkWka0JDw4nOCA4EavflFcXExZWRnR0dFOTiki9aZGsoiIiN/RWkDeLCgCWk+EkFiI7AJRyRDWynQqERHxVX2fgOP+ATmLYe9ciB9iOpGINMFtw27Dho2U+BRSW6TSKbaTSz4nMjKSiIgItm7dSvv27bXEtYiIHwkMCCQ2LJbYsFgAauw12Gy2Br9PcXExW7duJSIigsjISCenFJF6GzQI7rnHaih36wYpKaYTiYiIiIvZ7Ha73XQIT1JYWEhMTAwFBQV6ylVERETcTtci3kffs2Orqalh27ZtFBcXExYWRnR0NGFhYQQEBDSqoSAiIr7NbrdTU1NDWVkZhYWFlJWVERERQbt27bSs9WHoWsQ76fsmIiIiJtX3WkQzkkVERERExKUCAgJo164d+/bto7CwkOzsbPQ8q4iIHIvNZiMyMpL4+HjtjSwiIiLi6x5/HGbMgBEjYPhwGDoUoqJMp/J7aiSLiIiIiIjLBQQEEB0dTXR0NDU1NVRVVVFTU2M6loiIeKiAgACCgoLUPBa3ys3NZfHixSxatIjFixezefNm9u7dS3Z2Njabjbi4OHr27Mno0aO59NJLadu2renIIiIivuOHH+Dnn60D4NZb4amnTCYS1EgWERERERE3CwgIICQkxHQMEREREQeXXnop33333RF/v7S0lB07djBz5kweeOAB7r77bu6//3498CAiItJUlZWwYIHj2IgRZrKIAzWSRURERMQnaUaJiIiIOWVVZYQFhZmOIdJoLVu2pFu3bnTo0IGIiAhKSkpYt24dixYtoqqqioqKCh588EE2bdrEm2++aTquiIiId1u+HIqLHceOP95MFnFgs3vB5mTuvAlY382lRURE/EbOIshdDAnDIaYH2PS0vSvpWsR5TjnllKPOKDlQSEhIo2eU+Mr3LL8sn6qaKlqEtzAdRUREvJzdbqfN022IC4tjSLshDGk3hLO7n018eLzpaD7JV65FPMG//vUvYmJiGDduHJ07dz7sObt27eKmm27i448/rh379NNPOfvssxv0WT7xfauqgo0bITkZbDbTaURExJsVFcHs2fDbb/Drr1ZTecUK06l8Wn2vRbyikeyum4DgpRdxG96G/BWwLwuK1kP//0CrE0ynEhERX7H0b7D2aet1cAykXAe9HzGbyYd55bWIhzrwGvJYM0r2u+yyyxo8o8Sbv2cvLnqRD1Z9QEZOBnuK93Dn8Xfy2LjHTMcSEREvtyl/E53/69iEW3fDOpKbJxtK5Nu8+VrEW9ntdsaOHcvPf+7heOKJJzJz5swGvYfXft8KCuCyyyAjA7KyrKVId+2Cli1NJxMREV9SXQ2BgaZT+LT6Xot43dLWWlbmMDKfg9xFdXXhWjWSRUTEebLn1r2uLIAA7Wsq3mH06NGcfvrpDZpR8tZbb3Hqqac2eEaJt9pcsJlft/xaW2fkZBhMIyIivmLBNsf97eKbxdMlrouhNCLOZ7PZuPLKK2sbyUuXLjUbyJ0iI2HGDCgvrxvLyFAjWUREnEtNZI/hFY1k3QQ8hqhkx0Zy0XpzWURExLdUlULuEsexBO1PIt7htttuO+Y5rVq14sMPP2TPnj21NwJffvll/7iGBFLjUx3qjL1qJIuISNMt3LbQoR7Sbgg2LXsrPiYxMbH2dVFRkcEkbhYYCF27wqpVdWMZGTBypLlMIiIi4jJescnhbbfdxtVXX33EJjLU3QQcPXp07djLL7/shnQeIPKgp3rVSBYREWepLID2Z0J4hz8HbBA/2GgkEWfbP6NkP3+aUZLawrGRvLlgM9U11YbSiIiIr3hs3GMsnLyQ/078Lxf0vICTu55sOpKI061Zs6b2dceOHQ0mMSDV8RqSTZuMxBARERHX84oZyfXlt8vKtBgCHc6zGspRXSD2ONOJRETEVzRrBcOt1T4o3QUFqyE4ymwmERfw1xklaQlpPDHuCVJbpJISn0JSXBKBAVo+SkREmiY0KJRBbQcxqO0gbhx8o+k4Ik63Y8cO/vWvf9XW/rKaTa2rr4aTT7YayqmpEB9vOpGIiIi4iE81ksFPbwK2Pdk6REREXKlZK+sQ8UH+OqMkNiyW24+/3XQMEREREY9XWlrKxo0bmT59Ok888QR79uwBICUlhbvuustwOjebMMF0AhER8SX5+RAbazqFHIHPNZL99SagiIiIiDSO388oEREREZFD/Pbbb4wYMeKo50ycOJH33nuPmJiYY75feXk55eXltXVhYWGTM4qIiHi9vDxrZYukJBg82DquugoiIkwnkz95xR7J9aWbgCIiIiJSH6WlpaSnp/PUU0/Rt29ftm/fDvjpjBIRERERaZDY2Fjee+89pk+fTvPmzev1NY8++igxMTG1R/v27V2cUkRExAssWgR2O2Rlwfvvwx13QHCw6VRyAK+fkaxlZURERETkWJw9o0REREREfFubNm247rrrALDb7RQVFZGRkcHSpUvJz8/noosu4rXXXuOll14iJSXlmO939913c+utt9bWhYWFaiaLiIgsXOhY9+0LISFmsshheV0jWTcBRURERMSZYmNjef7557nwwgvrdb6WJRQRETm8wvJCsnKz6NWyF0EBXnfLScRBUlISzz333CHjO3bs4J577uHNN99k9uzZDBkyhNmzZ9O7d++jvl9oaCihoaGuiisiIuKdli51rAcPNpNDjsinruobehMQfPhGoN0ONpvpFCIi4s3++Lv1d0n8IIgfDM1amU4k0mjOnFHy6KOP8uCDD7ojttvtq9hHZk4maQlphAWFmY4jIiJeZtbGWZz50ZmEB4czoM0ATuh8AvePut90LBGnatOmDW+88QbR0dE888wz5OXlccEFF7By5UoCAwNNx3O/6mrYsgVKSqBHD9NpRETE23z8MaxaZc1MXrgQJkwwnUgOYrPb7XbTIRpiw4YNPP3008ChNwGrqqoAGDNmTL2XlXnggQcOeyOwoKCA6Oho54Z3pX0bYP2rUJQJReusRvLJK02nEhERb2W3w2fxUJFXNzbyS2h3urFI/qKwsJCYmBjvuxbxUgfOKAGIi4s75oySwz2I2L59e6/9ntXYa5jw7gTSs9PZUbQDgMVXL6Z/m/6Gk4mIiLe568e7eHzu47X12M5j+enSnwwm8g+6fjSjpKSE1q1b105K+eabbzjllFPq/fVe/337+mu45x5Ytw7Ky2H4cPj1V9OpREREpJ7qey0S4MZMTrF/WZnnnnuO559/nrfffpuFCxeyefNmLr/8coDaZWWWL19+zPe7++67KSgoqD22bt3q4n8CFynPgfTHYOvnkL8SCtOhusJ0KhER8VZF6x2byABxfYxEEXGl/TNKbrzxRoDaGSXV1dVH/JrQ0FCio6MdDm8WYAsgKzertokMkJGTYTCRiIh4q4XbHfe4G9J2iKEkIq4XHh7OsGHDauu5c+caTGOAzWbNINv/gGWGrh9FRER8kdc1ko+kMTcBwYduBEZ1daztNdYsZRERkcbIcbwJSFhLCO9gJouIGzz66KO114Fr1qxh+vTphhO5V2qLVIc6Y69uBIqISMPY7Xbyy/Idxoa0UyNZfFtcXFzt65ycHINJDEh1vH4kOxvy8g5/roiIiHgtn2kk7+e3NwFDYiE0wXGsaJ2RKCIi4gNie0HaXdByDARFWnsk22ymU4m4jL/PKEmNr7sRaMNGTqmf3QgVEZEms9lsLPvrMrJvz+bbC77lvpH3MbT9UNOxRFxq586dta+bN29uMIkBnTtDUFBdHRsL27YZiyMiIiKuEXTsU7zL/puAM2bMAKybgA3Zn8SrdbnSmokclQLRKVqCVEREGi+ut3UA1FRDZYHZPCJu4M8zSi7tfSkjO44kJT6F5ObJhAWFmY4kIiJeqkV4C05OOZmTU042HUXEpXJycpg/f35t3b17d4NpDAgOhrffhjZtoHt3SEjQw8ciIiI+yOcayeDHNwH7PGY6gYiI+KKAQAj1s6frxS/584ySfq370a91P9MxRERERIzJzc2t9zWg3W7n+uuvp/zP/YFDQ0P9ZyLLgS64wHQCERHxVrt3w86d0KOH9XCSeCyfW9oa/PsmoIiIiIg0nN/PKBERERHxc2+//TYDBw7k7bffprCw8IjnrVixgkmTJvHhhx/Wjt1+++3Ex8e7I6aIiIhv+Owz6NsXIiNh4EB46CHTieQIfG5Gsm4CioiIiIhmlIiIiIhIQy1evJjLLruMoKAgunXrRmpqKnFxcdhsNnJyclixYgXr1693+Jqzzz6b//u//zOUWERExEstXWr9WlEBixdDaqrZPHJEHt9I1k1AEREREWmot99+m/fee48bbriBM844g+jo6MOet2LFCu644w6+//772jHNKBERERHxP6GhobWvq6qqWLVqFatWrTri+VFRUTzwwAPcdNNNBAYGuiOiiIiI79jfSN6vn7bb8lQe30jWTUARERERaQzNKBEREXGPH7J+oLC8kCHthtA2uq3pOCKNMnXqVE444QR+/PFHFi5cyOrVq9myZQv5+fkAREdH07p1a/r06cO4ceM4++yziYyMNBtaRETEG9XUQGmp41j//mayyDF5fCMZdBOw0ex2qKmAwNBjnysiIgJQUwkz+kNMT2jeH5r3gxbD9HeJeB3NKGm8ksoS1uWso6C8gJEdR5qOIyIiXuDpBU8zY/0MANpFt+PhMQ9zWZ/LDKcSabiUlBRSUlK49tprTUfxLnY7bN8Oa9dCUpJ1iIiIHElAAKxZA3l5sGwZLFli7ZcsHsnjG8m6CdhAG96CHdOgKBOK1kHa3dDzHtOpRETEWxSkQ/5K69j8gTV2do4ayeJ1NKOk4WZtnMUVX13BloItAHSO7cyGmzYYTiUiIp6uxl7Dwm0La+tthdsIDw43mEhE3Oqvf4X33oPiYqt+7DG4806zmURExDvExcHYsdYhHsvjG8m6CdhAOQthy8d1dVGmuSwiIuJ9cpc41hGdIbS5mSwiTaQZJQ0TExpT20QG2JS/ifKqckKD9CCJiIgc2bqcdeSV5TmMDWk3xFAaEXE7m62uiQzWrGQRERHxGR7fSAbdBGyQqBTHumidmRwiIuKdcpc61s21P4mIv0iJd7yOtGNnfe56eiT2MJRIRES8QWlVKeO7jGfhtoUUlBfQJqoN7aLbmY4lIu7SrZtjvWaNmRwiIiLiEl7RSJYGiOrqWGtGsoiINETKtRDby5qZnLcUWmg2iYi/iAqNok1UG3YU7QCgfXR7cktzDacSERFP16dVH76/+Htq7DVk7M1gR9EObDab6Vgi4i4HNpIjI61DREREfIYayb4mrjd0u9VqKEelWL/a7dYyMyIiIscSk2YdIuKX3j3zXeKaxdG1eVciQiJMxxERES8SYAuge0J3uid0Nx1FRNxpyBD44Qerody2re5BioiI+Bg1kn1NeDvo95TpFCIiIiLihcZ0HmM6goiIiIh4k9hYGDfOdAoREfEWS5bApk3Qrx906qQHkLxAgOkAIiIiIiIiIiIiIiIiIuLj3ngDzjkHkpIgPh4efNB0IjkGNZJFRERERERERERERERExLWWLq17nZcHISHmski9qJEsIiIiIiIiIiIiIiIiIq5TXQ3LlzuO9etnJovUmxrJIiIiAvYaqKk0nUJEREREvITdbufyLy/niblP8MvmXyiuKDYdSUREREQ8WX4+DBoEcXF1Y336mEoj9RRkOoC4mN0OZXsgLFGblouIyJEVZsD0vhB7HDTvbx1drgSbnjkT8UflVeWsz11PZk4mXZp34biWx5mOJCIiHmZLwRbeWv5WbR1oCyTrxiw6xnY0mEpEjLHbYc8eWLvWOi69FJo1M51KREQ8SXw8zJ5t/Z2xYwesWgUtW5pOJcegRrIvqtwHv18DRZlQtA4qC+GM7RDexnQyERHxVLlLoaYcchdZR7O2kDzZdCoRMWDKt1N4demr1NhrALhj2B0cd6IaySIi4mjh9oUOdUxYDB1iOhhKIyJGlZdD69bWXpf7DRkCvXubyyQiIp7LZoO2ba1DPJ6mGfmioHDY9iXkLrGayGA1lEVERI4k/w/HOq6vkRgiYl5sWGxtExkgIyfDYBoREfFUC7YtcKgHtx2MTSuhifin0FCIinIcW7vWTBYRERFxKjWSfZEtAKK6Oo4V6uJNRESOIm+5Yx3Xx0gMETEvJT7Foc7MyTSUREREPNn4LuOZOmAqfVv1JdAWyJB2Q0xHEhGTunVzrDP0MKKIiIgv0NLWviq6G+SvqKs1I1lERI5m2LtWMznvD8hfDi1HmU4kIoakxqfWvm4V2Yr2Me2x2+2aZSYiIg4mJk9kYvJEAIoriqmsqTScSESMSk2FmTMhLMx6HRtrOpGIiIg4gRrJvqrzJZBwvNVQju4G4e1MJxIREU8WlgitT7QOEfFrfVv3ZdHVi+javCsxYTGm44iIiBeICIkwHUFETLvtNrjlFujQAQIDTacRERERJ1Ej2Ve1PcV0AhERERHxQuHB4QxoM8B0DBERERHxJh06mE4gIiKebNYsWLYMjjvOOlq2NJ1I6kmNZBERERERERERERERERFxjU8/hRdfrKuvvhpeecVcHqm3ANMBRERERERERERERERERMRHLV/uWCclmckhDaZGsoiIiIiIiIiIiIiIiIg4X00NrFzpONa7t5ks0mBqJIuIiPizmkoo2QZ2u+kkIiIiIuIFvsv8jj4v9WHKt1N48483yczJNB1JRERERDxZaSmcfz4MHAjNmlljxx1nNpPUm/ZI9gd2O5TvhfIciOlmOo2IiHiSvOXw/UAIjYfY3hDXF/o+CTab6WQiYlhldSUb8zeSsTeDjJwMpgyYQmRIpOlYIiJi2O/bf2f57uUs372cl5e8zOhOo5l92WzTsUTEU+Tmwtq11lFRAVOmmE4kIiKmRUTAq69ar6urISsL2rQxm0nqTY1kX7Z7Niy/FwrXQkUuxPWBSctMpxIREU+S94f1a3kO7J4FJVuh37+MRhIR8yqrK4l+LJqyqrLasTGdxtC/TX+DqURExBOk7013qPu26msoiYh4nK+/htNPr6vbtFEjWUREHAUGQkqK6RTSAFra2tftnWc1kQEKM8BeYzaPiIh4lvzljnVcHyMxRMSzBAcG0ybK8engjJwMQ2lERMSTpGc7NpLTEtIMJRERj5Oc7Fjv2AGFhWayiIiIiFNoRrIvi+7uWFeXWjPNIjqaySMiIp6n8KA97WJ7m8khIh4nNT6VDXkbauuMvWoki4gIPHbCY6zYvYL0vemkZ6fTK7GX6Ugi4im6dLFmmlVX141lZFh7YoqIiIhXUiPZl4W1hOAYqCyw6oAQKN6iRrKIiNQZMx2KN1l7Jecth9bjTScSEQ+REp/C9PXTSQhPICU+5ZAZyiIi4p9OTT2VU1NPNR1DRDxRaCgkJcGmTdC1K3TrBkG6/SwiIuLN9De5L7PZYMDzEBIH0akQ0QkCAk2nEhERT2ILgMgk62h/puk0IuJB/j7i79w/6n6aN2tuOoqIiIiIeIs5cyAhQQ1kERERH6G/0X1d54tMJxARERERL5QYkWg6goiIiIh4m9atTScQERFP8uuv8MknkJZmHT16QHy86VTSAGoki4iIiIiIiIiIiIiIiIhz/fwzPPtsXX3CCfDjj8biSMMFmA4gIiIiIiIiIiIiIiIiIj5m9WrHukcPMzmk0dRIFhERERERERERERERERHnSk93rNPSzOSQRtPS1iIiIv6oqgRyl0JsTwiJNZ1GRERERDxcxt4Mxr0zjh4JPUhLSCMtIY0r+15JgE1zFERERETkCC66CP74w5qZnJGhRrIXUiPZn1TkQcFaCG0B0V1NpxEREZPylsGPI6zX4e0grh+M/BJsNqOxRMSzVNdUs7lgMxl7M8jMySQwIJDrB11vOpaIiBiQnp3OtsJtbCvcxvdZ35MYkcjkfpNNxxIRT1RYCGvXWkdGBgwaBKefbjqViIiYcOedda+rqszlkEZTI9kfLL8Xsl6Dst1WnXYn9HnMbCYRETErf1Xd65JtEByjJrKIHOKj1R9x0ecX1dadYzurkSwi4qfSsx2XJUxL0GwSETmCv/0NXnutrr7ySjWSRUQEgtSS9EZaf8gf2KvqmsgAhWvNZREREc+Qv9Kxju1lJoeIeLTU+FSHelP+JsqqygylERERk9L3OjaSeyT0MJRERDxet26O9VrdixQREfFWav/7g+iDLt4KM8zkEBERz1FdDLYg62EjgJieZvOIiEdKiU9xqO3YWZ+7np6J+jNDRMTf/N+o/+O0lNNIz04nfW86IzqMMB1JRDyVGskiIiI+Q41kf3BgI9kWBAHBYK8Bmyaki4j4rSFvwMCXoSjTmp0c19t0IhHxQFGhUbSJakNJZQmp8amktkglOCDYdCwRETEgJT7lkAeMREQOq1s3CAiALl2s1926QWUlBOs6UkRExNuokewPYnvBiC8gpjtEJlmNZBERkcAQiO1pHSIiR7DmujVEhURh0z7qIiIiIlIfnTtDSQmEhppOIiIiIk2kRrI/CIqA9meYTiEiIiIiXig6NNp0BBERERHxJgEBaiKLiPi7DRvg+uuhRw9IS7OOQYNAD6l7HTWSRURERERERERERERERMQ5VqyA6dOtAyAxEXbvNptJGkWb5IqIiIiIiIiIiIiIiIiIc6xd61h3724mhzSZGskiIiIiIiIiInJEFdUVpiOIiIiIiDfJyHCsu3Uzk0OaTEtbi4iI+JOaatj0LsT2hOg0CGpmOpGIiIiIeLAaew0tnmhBYkQiaQlp9EjowU1DbqJVZCvT0URERETEU513HrRqZTWUMzKgVy/TiaSR1Ej2N1XFUJBuHa3HQ7PWphOJiIg7FW+EBZdbr20BENkFJi6B4CijsUTEs+0o2sHqPavJzMkkIyeDU1JOYXyX8aZjiYiIG2wp2EJRRRFFFUVk5WXxTeY33Dj4RtOxRMQbLFtmLW26dq3VRHjoIeja1XQqERFxh0mTrEO8nhrJ/mTmMNg7v64e/jF0ONdcHhERcb/8lXWv7TVQka8msogc03XTruPLtV/W1uHB4Woki4j4ifTsdIc6LixOs5FFpH5OPRW2b6+rzzlHjWQREREvoz2S/UlQhGOdv9pMDhERMSd/lWMdq2VlROTYUuNTHeqMnIwjnCkiIr7m4EZyWkIaNpvNUBoR8SoH74d58H6ZIiIi4vE0I9mfxPSAXT/W1QVqJIuI+J2gZtZy1vs2AHY1kkWkXg5pJO/VTUAREX8xdcBUxnQaQ3p2OunZ6bSLbmc6koh4i27d4Kef6uq1a81lERERkUZRI9mfxPT484XNaiI0a2M0joiIGND9NuuoKoaCdAiOMZ1IRLxAaotUIkMiSY1PJbVFKr0S9RCKiIi/iAiJoH+b/vRv0990FBHxNt27Q6dOVkO5WzcYOdJ0IhEREWkgNZL9SbvTofkAiO5mzUgTERH/FRQB8QNNpxARLzGk3RAK7yrUUqYiIiIiUn/XXgvXXWc6hYiIiDSBGsn+JCzROkREREREGiDAFmA6goiIiIh4Gz2EKCLin04/HYKCIDXVOiZNgkT1pryVGskiIiIiIiIiIiIiIiIi0jRVVTB9OlRW1o3NnatGshfT1AIRERERERERERERERERaZqNGx2byGDNShavpUayiIiIiIiIiIgcYve+3VRWVx77RBERERERgLVrHev4eOsQr6WlrUVERPxF+uMQ0Qlie0FUVwgINp1IRERERDzYmR+dyaIdi0iJTyEtIY1bhtzCsPbDTMcSEREREU/Vpw+8+ipkZFhHVJTpRNJEaiT7o+pyKMyAgtXW0fM+CAw1nUpERFypIh/+uKuuDgiBk1ZBdFdjkUTEu1RWV/Lblt/IyMkgMyeTjJwMPjj7A6JDo01HExERF7Db7aRnp1NVU0V6djrp2elc2edK07FExNvk58OPP1oz1NautepvvzWdSkREXKV9e5g82XQKcSI1kv1N5T74NA7sVXVjHc+3ZqeJiIjvKlh90IAdIjoaiSIi3qnGXsMJb5+AHXvtWGZOJgPaDDCYSkREXGXnvp0UlBc4jKUlpBlKIyJea+tWOPdcx7F9+yAy0kweERERaRDtkexvgiOhWSvHsYJ0M1lERMR98lc61lGpEBhiJouIeKXQoFA6xXZyGMvMyTQTRkREXO7gP+MjgiNoH9PeUBoR8Vpdu4LN5jiWkWEmi4iIiDSYZiT7o5geULKtrs5fZc1KFhER3xWaAK1OtB4eKt0OsT1NJxIRL5TaIpWN+Rtr64y9ugkoIuKrRncaTe4duazZu4b07HQKygoIsGk+gog0UFgYdO4MGzbUja1ZA/37m8skIiIi9aZGsj+K6Qk7v4fw9hB7HER3M51IRERcrcPZ1gFQUQBVxWbziIhX6tOyDzuKdpAan0pqfCrjksaZjiQiIi4U1yyOYe2HMaz9MNNRRMSbjRwJnTpB9+7WMWSI6UQiIiJSTza73W4/9mn+o7CwkJiYGAoKCoiOjjYdxzXK9kBAMITEmU4iIiIiB/GLaxEfo++ZiIiImKRrEe+k75uIiIiYVN9rEc1I9kdhiaYTiIiIiIiIiIiIiIiIiK+47z748ktIS7OOcePg+ONNp5ImUiNZRERERERERERERERERBpv2TJYtco6AMrL1Uj2AQGmA4iIiIiIiIiIiIiIiIiIF0tPd6zT0szkEKdSI1lERERERERERGptyt/EhrwN1NhrTEcREREREW9QXAybNjmOqZHsE7S0tYiIiK9LfwLs1RCTBtFpEJkEAYGmU4mIiIiIh3pi7hO8uPhFmgU1o1uLblzd72qmDpxqOpaIiIiIeKqQEJgzx5qVvP/o1s10KnECNZL9lb0GijdB3grIXwGFa2HYu2DTJHUREZ+T+RyUbK2rh30Anf5iLo+IeLXN+Zv5ccOPZORkkJGTQevI1rx0ykumY4mIiBOlZ1vLEpZWlbJs1zLyyvIMJxIRr7dyJUyfDmvWWEffvvDii6ZTiYiIswQHw4gR1iE+RY1kf1W6C77u4jjW+xGI7Gwmj4iIuEZloWMTGSC2h5ksIuIT5m2dx+RvJtfWnWN1/Sgi4mv2N5L3S0vQsoQi0kRz5sCdd9bVlZXmsoiIiEi9afqpv2rWGkLjHcfylpvJIiIirlOw1rG2BUBUipksIuITUlukOtSb8jdRVlVmKI2IiDhbYXkh1fZqhzE1kkWkybp3d6zXrIEa7cMuIiLi6TQj2V/ZbBB7HOyeXTeWvwLan2EskoiIuEBwFCRPgcJ0KFgDIbEQGGo6lYh4sa7NuzrUduxk5WbRI1GrHYiI+ILo0Gj23r6XPcV7SM9OZ3X2apLikkzHEhFvd3AjubQUtmyBTp2MxBEREZH6USPZn8UeZzWPY3tbrxOGm04kIiLOFtMdBh2w71TlPnNZRMQnRIVGMbbzWGLDYklpnkJqi1RaRbYyHUtERJzIZrPRMrIlLSNbMqbzGNNxRMQXtG4N48dDx47QrZvVWE5IMJ1KREREjkGNZH/W53Ho929rdrKIiPiH4EjTCUTEB/x06U+mI4iIiIiIN7HZ4PvvTacQERFXqKiAwEDrEJ+jPZL9WWComsgiIiIiIiIiIiIiIiLSOO+9B5GR0L8/XHYZvPGG6UTiRJqRLCIiIiIiIiIiIiIiIiINt2oVlJXB0qXWUVQEV1xhOpU4iWYki4iIiIiIiIiIiIiIiEjDrVrlWPfsaSaHuIQaySIiIiIiIiIiwvbC7czMmsm2wm3Y7XbTcURERETEG6xe7VirkexTtLS1iIiIr1r/KuQshOg0iEmDuD7QrJXpVCIiIiLioaatm8Y1314DQFRIFKemnsp7Z71nOJWI+LSaGgjQXCcREa+2ZInVTF61yjr69zedSJxIjWR/V10Oe+dB7lLrKFwLE36HgEDTyUREpKl2TINtX9bV3W+Dvk8aiyMivuWbjG+Yv20+mTmZZORkcOfxd3LxcRebjiUiIk2Qnp1e+7qooojK6kqDaUTEJ73/PsyZA2vWWMfDD8Nf/2o6lYiINEXLltYxdqzpJOICaiT7u4p8+Omg/7mL1kFMNyNxRETEiQrXONbRaWZyiIhP+t8f/+PLtV/W1it3rzQXRkREnCJ9b7pDnZag60fxP5s2beKHH35gzpw5rFy5ki1btrBv3z6ioqJo164dQ4cO5cILL2TUqFGmo3qnr76Cjz+uq9esOfK5IiIiYpwayf6uWUto1gZKd9SN5S1VI1lExNtVl0PResexGN0IFBHnSY1PdagzcjIMJREREWdpFtSMyJBI9lXsA6BHQg/DiUTcZ9myZUyZMoXff//9sL+fl5dHXl4eK1eu5JVXXmH06NG89dZbdOjQwc1JvVzaQT+Xpqcf/jwRERHxCGokC8T1c2wk5y6FTheayyMiIk1nr4I+j0HBGihIt2Ynx3Q3nUrE7TSjxHXUSBYR8T1f/uVL7HY72wq3sTp7Nf1a9zMdScRtMjIyDmkip6Sk0LNnT1q0aEF+fj7z5s1j27ZtAPz8888MHTqUX3/9laSkJBORvVP3g34u1YzkoysuhoULoWdPSEw0nUZERPyQ1zSSdRPQhRKGQtlOq6HcvC8kjDSdSEREmioowtoTeT+7HWw2c3lE3EwzSlyvT6s+nJpyKqnxqaS2SNXypyIiPsJms9E+pj3tY9qbjiJiRHJyMpMnT+biiy+mbdu2Dr9XU1PDG2+8wY033khJSQk7duzgoosuYt68edj081b99OsHl11mNZT3H3J4u3ZBnz6wezc0bw7Tp8OgQaZTiYiIn7HZ7Xa76RBHc6ybgAdr6k3AwsJCYmJiKCgoIDo6ulHvISIiItJYuhZxjg8//JALLrjAYexoM0oA2rRp06gZJfqeiYiIiEm6FnGOOXPmsHHjRi655BICAwOPeu4XX3zBWWedVVvPmDGDCRMmNOjz9H2TY/rb3+Dpp+vqDh1g+XKIjTUWSUTEQWkp5ORA27aawOKF6nstEuDGTI1ypGVlzjrrLK655hrOO+882rVrV/t7+5eV2bBhg7ujioiIiIiHSU5O5rHHHmPbtm1kZGTw2Wef8fLLL/PRRx+xefNmXnvtNcLDwwFqZ5R4+HOWIiIiIuICo0aN4vLLLz9mExngzDPPZNABM0O/++47V0YTf7VokWO9ZQu88YaZLCIihzN/PrRvD3FxcPzxcPPNphOJC3jN0tZaVkZERERE6qt169a88cYbR51REhAQwFVXXUXz5s1rZ5QsWLCAmTNnNnhGiYiIiIj4l+OPP7528sumTZvMhhHfNHu21ZwpKrLq665Tk0ZEPMvq1davBQUwbx6UlZnNIy7h8TOS998EXLt2LXfeeechTWSouwn47rvv1o7tvwkoIiIiIv5HM0rEk81YP4P7Z9/Pt5nfUlVTZTqOiIiINMKBk1eqq6sNJhGfFRgI6ekwerTVrHn2WS0dKyKeZe1axzotzUwOcSmPn5E8atQoRo0aVa9z998E3P804HfffafZJCIiIiJyTJpRIu7yzvJ3uPTLS2vr9tHtybwhk7CgMIOpRMTfFVcU89byt0hLSCMtIY3EiETTkUQ83sqVK2tft2/f3mAS8Wnt2lkzk0VEPNH69Y51t25mcohLeXwjuaF0E9BJaqrAFqin3EREvNGOGZD+OMSkWUdcX0gYZjqViEfTjBLnsNvt2lrmKHJLc7nl+1scxvq17qcmsogYl56dznXTrqutW0a0ZNut2wgK8LnbRiJOsXXrVmbNmlVbjxs3zmAaH1BQAJGR1gxcERHxHtOnW/u3r1ljzU4eOdJ0InEBn/uJQDcBG6mmEja8CblLIW8p5K+AU9dBeDvTyUREpKFyl8Cen60DoOUYOGHW0b5CxO9pRknjFJUX8eS8J8nIySAzJ5N1OevY+bedRIVGmY7mkfJK8+ga35WcbTm1Yxf1uuio58eGxao5LyIul56d7lBHh0ariSxyFLfcckvtfccOHTpw6qmnGk7kZaqr4aabrMbDmjWwc6e1dLOWRG04u10TgUTEnIAA6NTJOiZNMp1GXMTj90huKN0EbCRbECy7Hda/BDm/Q3WZ1VQWERHvU+B4I5Do7mZyiHgJzShpvJDAEB759RE+Xv0xf+z6g+LKYjJzMk3H8lhdmndh7pVzefHkF2vHzux+5hHPv+CzC+j2fDce/+1xdhbtdEdEEfFTq7NXO9RpCWrmiBzJW2+9xWeffVZbP/roo4SGhh7z68rLyyksLHQ4/FZgIHz+OcyaZTWRwWooS8Ns2QLDh8O8eaaTiIiID/OpRrJuAjaBzWYtfXqg3MVmsoiISNMUHtRIjtGNQJGjaeiMEt0ErBMaFEqn2E4OYxk5GWbCeIkAWwBTBkyh4K4C0q9NP+KMvy0FW5iZNZPMnEzu+uku2v+7PT9t+MnNaUXEXyRGJNKnVZ/apfbVSBY5vMWLFzNlypTa+vzzz+fCCy+s19c++uijxMTE1B5+PwHm4NnH6emHP8/frFgB118Pv/0GNTVHPu+nn6B/f6uJfM45sGOH+zKKiIhf8alGspaVaaL4AY51zu9mcnij8lzY9CHkqPkuIh7guEeg9z+h08UQ1w9ijzOdSMRjNWZGiW4COkqNT3WoM/aqkVwf0aHRdE848ooRb/3xFnbstXVESARD2w91RzQR8UO3DbuNZX9dxr6797HuhnVcO/Ba05FEPM7GjRs59dRTKSsrA6BXr168/PLL9f76u+++m4KCgtpj69atrorqHbofdB20dq2ZHJ7mvffg+edhxAjo2BGefPLQc375BcaPh717rXrnTjjtNCgudm9WERHxCz6z4U1TlpUpLy+vrf15Rgktx0JRFrQYDPGDoHl/04k8X84iWP1P2P4t2Ksg9ZZDG/IiIu7W9iTrEJGjauyMkrvvvptbb721ti4sLPTrZvKZ3c4kNT6V1BappMan0jOxp+lIPmHu1rkO9QU9LyA8ONxQGhHxF4EBgSQ3TzYdQ8Tj7Ny5kxNPPJFdu3YBkJSUxPfff09MTEy93yM0NLRe9yr9xumnQ2Ki1VDu3h2S9WcPdjt89FFdvW0b5OYeet7xx8MJJ8APP9SNVVdDURFERLg+p4iI+BWb3W63H/s0z7Z48WJGjBhR+0Tg+eefz4cfflivr33ggQd48MEHDxkvKCggOjraqTnFx5Rsg6+7QE1F3VircTD2hyN/zcZ3of3ZENTM9flERMQrFRYWEhMTo2sRF9u4cSPDhg2rvRnYq1cvfv311wbdDNxP3zNxBbvdzryt8/jfsv/x0eqPmHXZLAa1HWQ6loiIeCBdi7hWTk4Oo0aNYvVqay/x1q1bM3fuXDp37tyk99X3TQ6xYAEMPWgFmmXLoE+fQ8/NyYHBgyErC04+GT78ECIj3RJTRASAJUugc2do3tx0Emmk+l6LeP3S1lpWRowJbwe9DnoIIX/lkc/f+jnMvwRmDobiza7NJiIiIkfkjBklIvWxIW8DU7+dSnZxdoO/1mazcXyH43n99NfZddsuBrYZ6IKEIiIicjSFhYVMnDixtokcHx/PDz/80OQmsshhdegADz0EPXpYdWoq9O59+HPj4+G77+COO+DLL9VEFhH3qqyEIUOsP4sSE2HUKNi0yXQqcRGvbiQ7a1mZ6Ohoh0Ok3rrfBvGDrdeBYRDXB6rLDj2vPAcWTbVe56+E7wdB7jK3xRQRERFLTk4OJ554IllZWYA1o+THH3+kdevWhpOJL7rl+1t4aclLpDyXwrMLn6WqpqpR7xMZEonNZnNyOhERETma4uJiTjrpJBYvXgxAdHQ033//PT32N/lEnK1NG7j3Xli1ClauhBdegKNdA6amwuOPQ5DP7F4pIt5i/Xqo+vPn2+xsa+/22FijkcR1vPZvGd0EFI8QEARD34JtX0PXKRAcdfjzlv4NyvbU1WV7YPUjMOJT9+QUERERzSgRt5qxfgZfZ3wNQH5ZPjfOuJHiymLuGn6X4WQiIiJyLGVlZZx22mnMnTsXgPDwcKZNm0b//v0NJxO/0bOn6QQiIke2dq1j3aqVGsk+zCtnJOsmoHiU6FRIu/3ITWSAtDsguntd3Wo8DH3b9dlEREQE0IwScS+73c49s+5xGEuMSGTqgKlOe/9ZG2cx9q2xzMya6ZT3FBH/9cgvj/D60teZv3U++WX5puOIGFdZWcnZZ5/NrFmzAGs1w6+++orjjz/ecDKRBrDb4Z//tJa/FhFxtt27HVdD6N79yOeK1/O6Gcm6CehGdjsUrYeQWAhLMJ3GnF2zYM/P0OsBsDXy2YuYNBg/H345A4IiYcQn1lLYIiLOVLwVfhgG0WkQ0936syfpCggINp1MxCjNKHEvu91OSWUJESERpqMYY7PZ+PovX3PHj3fw/sr3AXjshMeICWv6PtxzNs3h77P+zryt8wCoqqlifJfxTX5fEfFPpZWl3P/z/dTYa2rHllyzhH6t+xlMJWJOdXU1F154IdOmTQMgKCiIjz/+mHHjxhlO5gdKSmDbNkhJMZ3E+9ntcOed8OSTEBICH38Mp59uOpWI+JIpU+Cqq2DjRlizBsLU6/BlXtVI1k1AN8l8AbZ/DTm/Q0UeDHgOUq4zncqMfRvgt3OhIhfyV8DQd44+8/hoQmJg9LdgC4bAEOfmFBEBKEiHkm3WsWsmBEVBl6tNpxIxSjNK3GPOpjm8svQVMnMyydibwbD2w5hx8QzTsYxqG92W9856jyn9p/DGH29wWZ/LnPK+mTmZtU1kgF+3/Movm39hZMeRTnl/EfEvmTmZDk1kgJR4NXHEP9ntdiZPnsynn1rbkAUEBPDOO+9w2mmnGU7mw9asgVtvtX7dvBmaN4e9e4++L7AcXU0NXHcdvPSSVVdUwNlnw7vvwl/+YjabiPiW4GDr4R89AOTzvKaRrJuAbrR3Aez8vq7O+R3ww0ZyVYk1g7gi16q3fQUzh8IJsxs/QzvIf2fmiIgbFKY71jFp+gFc/JpmlLjP9qLttTNvATJyMgym8SwjOo5gRMcRTnu/y/pcxj9++QfbCrfVjr24+EU1kkWkUdKzHa8fO8Z0JDIk0lAaEbNefPFF3nzzzdq6S5cu/Pbbb/z222/H/Nr4+HgefPBBF6bzUaGhMOOAhw9zcyE7GxITzWUy4bffYOBA69+HM5SWOtZ2u9XwERERaQSvaCTrJqCbtRgMm96pq3N+N5fFpO3fQP5Kx7GorhAabyaPiMixFBymkSzipzSjxL1S41Md6s35mymrKiMsSMtbOVtIYAh3Hn8nN0y/gY4xHblr+F1c3udy07FExEslRiRyTto5rN6zmnW560hL0PWj+K89e/Y41OvWrWPdunX1+tqOHTuqkdwYHTtay6GWldWNrVnjX43k3bth9GiIjrZmDF96KQwe3PiHwgMC4PXXrcbxa69Z7/PWW9asZBERkUbw+EaybgIaED/Isa7Ih+oy/9vTt+P5ENgMFl4F5XshpgcMfbvx+yQfy47pkD0Xej/smvcXEd+Xdie0OtFqKBemQ+Io04lEjNGMEvc6eBlUO3bW566nZ2JPQ4l821V9ryI6NJoLel5AcKBml4hI452QdAInJJ0AQEV1Bfll+WYDiYh/CQyE1FRYvtyqbTZriWt/8t57UF0NeXnw4otW03f3bohswuoQgYHwyisQEQFpaXDxxc7LKyIifsdmt9vtpkMczQsvvMB119Utq9y1a1fGjx9fr69tzE3AwsJCYmJiKCgoIDo6ukFf6zOqK2DFvVZDOX4QhLf376VRS3fB4uvguEcgppvz33/fRlh6i7V0NsC4XyFxuPM/R0REvIKuRZzjgQceaHQzuGPHjmzatKne5+t7Zrn7x7tpE9WG1BappMan0j6mPQGuegDPA20p2EL76PbY/Pm6WUREjNC1iHfS9+1Pn3wCVVXQvbu1z2Z4uOlE7tWnT10jHeCSS+Dtt43FERER/1HfaxGPn5GsZWUMCAyBvk+YTuE5mrWCEZ+55r2ry2HmMCjbVTe2+HqYuBgCPP5/TxEREZFaj4571HQEY/JK8+j/Sn/6tOrDfyf+V0vDioiIiNTXueeaTmBOURHExjqOXXaZ+z7/+++tWcvDNaFFRBpg2TJr7/WuXSEqynQacQP/mSIg4okCQ6HH3Y5j+cth0/tm8oiIiPiIBx54ALvd3qijIbORRQDun30/e0v28uOGHznuxeO4ZcYtVNdUm44lIiIiIp4sKgp+/hk2boR//MPaK3n0aPd89oYN1p7Mo0fD009bTSERkfq4917o39/a271VK2s/dvFpHt9I1k1A8Xldr4XYXtbrsETo9x/oeJ7RSCIiIiJSPyt3r+SFxS/U1tX2arYUbiEwINBInhp7jZHPFREREZFG6tQJ7rsPZs+29jd2tbIyOOccyM+39mf+29/g1FOhosL1ny0i3u/AFYN374awMHNZxC08vpEs4jZbP4eS7e7/3IAgq3nc+xE4NQu63QSB+sNXRERExBtkl2TTJqpNbR0WFMZT459ye46yqjJeWvwSKc+msC6nflsBiYiIiIgfeukla2naA7VsCSEhZvKIiPeorLRWUThQ165msojbqJEsAlCyA+ZdAt92h4xnwd1LEbYaCz3+DsGR7v1cEfEdNZWmE4iI+KWxncey9rq13DPiHkICQ7jz+DvpFNvJrRleWfIKXZ7pwtTvppKVl8Vjvz3m1s8XEe/05NwnufvHu3ln+Tss2bGEksoS05FERMQdbrjBmgG9X2oqPPOMuTwi4j2ys6F9e7DZ6sbUSPZ5QaYDiBcoz4W986AiDzpfYjqNa6y4F6r//KF5yY3WHsUn/gIBwWZziYjU15cdICgcotMgJg1SroOIDqZTiYifstvt7C3ZS2hQKNGh0abjuFxESAQPj32YK/pcQeuo1m7//KzcLHYU7ait317xNvePup+OsR3dnkVEvMdby99idfbq2vqVU17h6v5XG0wkIn6vvLxuydSePc1m8WWBgdaezMOHw9VXwwcfQESE6VQi4g3atLH2WC8vt37dsAGaNzedSlxMM5LlyPYugO96wGfxMOdUWHYb2O2mUzlf3h+w4U3HsdheaiKLiPco2wtlu2DfBtjxLax5AqrLTKcSET9036z7GPr6UOKfiCfxX4l8mv6p6Uhu1aV5F8KDw93+ubcOvZWwoLqtUapqqvho9UduzyEi3qOyupLMnEyHsbSENENpRMTvvfUWpKRYzcxeveDee00ncq3iYtMJLOPHW437vn1NJxERbxMaCt27w8knm04ibqBGshxZaAIUpNfVZXugaL25PK4SEgcdzqmrgyLhuH+YyyMi0lCFaxzrgBCITDKTRUT82urs1SzYtoC8sjwAMvZmGE7kH1pGtuSaftcA1lLbsy6dxe3DbjecSkQ82frc9VQetDWKGskiYozdbjU0q//cai49/ejne7OSEujYEc44A6ZNq/tnNkX7IouIyDFoaWs5ssgkCGtlzXLbL/s3iPaxNe8jOsLwjyF7Hiz9G7Q9GZq1Mp0Kaqpg6+ew6wcY9IrjvgMiIgcqOOiH7OhUCNBf8SLifinxKQ51Ro4aye5y5/A7Ob/n+QxrP8x0FBHxAhEhEdx5/J2szl5NenY65VXlxDWLMx1LRPxV2kEPsmRlQVkZhIUd/nxv9u67kJMDX31lHZ06wapVWlpaREQ8lu4yy5HZbJAwHLZ+CoHNrNdhLU2ncp2EYTB+HtirzOaoroCsV2HNU1C80RpLvgbiB5rNJSKeq/MlED/AaigXpENovOlEIuKnUuNTHeoNeRsMJXGdHzf8yB+7/uDGwTcSEug5MzjaRLWhTVQb0zFExEt0iOnAY+Meq60rqyuPcraIiIsd3Ehu2xZ27oTOnc3kcRW7Hf77X8ex7t3VRBYREY+mRrIcXffbIPVGiB8EgaGm07iezQY2w3sj2wJgzZNQvLlubN2LaiSLyJEFhUPz/tYhImLQiI4jeHr806S2SCU1PpWOsR1NR3KqiuoKrp92PRk5Gby29DWemfQM47uMNx1LRKTJggMN/xwsIv4tMhLefx+SkqzGanS06USusXEj7NrlOHbTTWayHKygAH7/HebPhwULYOJEuPFG06lERMQDqJEsR9disOkE/icgyJqBvPyeurHNH0K/p6z9nEVEREQ8VHLzZG4ZeovpGC7z7MJna5frzsjJYMK7E5hx0QwmJE8wnExERETEy11wgekErpeUBFu3Wstb//e/UFMD4z3kocT774dnnqmrAwPVSBYRR3v2wJw5kJICyclaTcGPBJgOICKHkXQl2P58ziOuH/R/BgJ8cF8YERERES9RVF7EQ7885DA2sM1ATuxyoqFE9VdRXWE6goiIiIgAhIfDNddY+yL/9JO1OqInGDrUsV6wwFqKW0Rkv/nz4bzzoE8fayWJ/loZ0V+okSz+ac2/HJeO9jTNWsGAZ2HCIpi0BJInQ1Az06lERERE/FZUaBTfX/w9A9vUbTfy7KRnCbB57o9U2wu3c8uMW+jyTBftfyoiIiLiSWw2aNPGdIo6Q4Y41nv3QlaWmSwi4pkyMx3ryEgzOcTttLS1+J/dc2DZ7fDH3ZB0GaTdDVFdTKc6VNcpphOIiIiIyAEGtxvMgskLePOPN1mTvYbB7TxzG5gaew3XT7ue15e9XjsbeenOpR6bV0REREQM69jROtq0sZrKQ4dCYqLpVCLiSdatc6y7djWTQ9xOjWTxP6v+XJLQXgVZr8OuWXDaevDg2SQiIkdUlg0hsRAQbDqJiIhfCLAFcGXfK03HOKoAWwBzNs9xWNL6l82/qJEsIgC8vvR1ZmTNoEdCD9IS0hjQZgBJcUmmY4mIiEk2mzUDOTDQdBIR8VTR0dChA2zZYtVqJPsNdc6kfuw1kLcC1v4X5pwOG94ynahxsufC7p8cx7rfpiayiHiv+ZfBR+HwbRr8eg7s+unYXyMi4ib5Zfks2bHEdAy/NLLDSId6zuY5hpKIiKeZvWk2n6Z/yoNzHuT8T8/nqXlPmY4kIlKnqspaPvWLL2D1atNpmq6sDCq9ZIsRNZFF5Gj+9S/YvBlKSmDlSrjkEtOJxE3UPZP6WTQVpveGpTfD9q9h+7emEzVOZBKk3gSBYVbdrA108ewZJSIiR1WYbq2wULgGtn4GZbtNJxIRP7dr3y5GvDGCxCcTiXs8jgGvDqCwvNB0LL8zqtMoANpGteXCXhdyfo/zDScSEU+xOtuxMZOWkGYoiYjIQaZOhYgISE2Fs86Cjz4ynajpnnkGkpPhueegtNR0GhGRpmvWDHr29Kx93sWl1EiW+okf4ljvmW3NUvY2zVpD///AaRuh29+g5/11TWVvUFVqzaoWEQGo3AfFmx3HYnQjUETMiguLY97WeWSXZNeOZeZkGkzUeLv27TIdodFO6noSWTdmsfWWrbx31ntc0ltPi4sIVNdUs3bvWocxNZJFxGOEh0NF3dYcXj8jubQUnn7aWgb2hhugUydrprWIiIgXUSNZ6qfVWMe6PAdyvXiZwmatoN+/oOtfTSc5NnsN7P4ZFlwFX7SCn8ZCRb7pVCLiCfatP2jABlGpRqKIiOwXGhRKp9hODmMZezPMhGmCVXtW0fE/Hbnuu+vILc01HafBokOjSYpLwmazmY4iIh6kqqaKZyY+w82Db2Z8l/G0i26nRrKIeI4ePRxrb28kv/oq7D5g1bA9e6B9e3N5REREGiHIdADxEhEdIToVKougzSRoPQmiu5tO5R8qC2D2BKg54InM7d9C54vNZRIRzxDXB87Jg4I11tLWpTsgqJnpVCIipMansiFvAwBBAUHsKd5jOFHD2O12bpx+IxXVFbyw+AU+XP0hT574JFf21ZYoIuLdQoNCubr/1aZjiIgc3oGN5MRE6NAB7Hbw1gfjVqxwrE88EQYMMJOlsUpKrJniIiLit9RIlvo7YQ6EJXrvxZu3ComDVuNhxwH7Um/9VI1kEbGExELCUOsQEfEQtw27jSkDppAan0pSXBLBgcGmIzXIp+mfMnvT7No6tzSXzfmbj/IVIiIiItJkxx0Hv/wC3btDixam0zTda6/BVVfBPffA7Nlw//2mEx1bTg588gksWADz50NBAezcqfvBIiJ+TI1kqb9mLU0n8F8dznFsJFfkW0te27Q6vYiIiHiesZ3HHvskD5Zdkk2zoGaUVpUC0CGmA3cOv9NwKhEREREf16wZjBhhOoVzDR0Ks2bB0qXQr5/pNMeWnw9TpzqObdwISUlG4oiIh3jqKWjXDnr1gq5dIdi7HhaXplEXSnzfqkdg92xrKRxv1e40SBwJ/f4Np2+GcT+riSwiIiLiItcOvJY1163h3LRzAXhq/FOEB/vGkn52b74mFhEREfFW3tBEBqthnJDgODZ/vpksIuIZiovh9tvhL3+xtiCIjIT0dNOpxI00I1l8W/5qWHEfYIeE46Hn/dDqRO9bjiUkDsbNMZ1CRERExG90jO3Ix+d+zOIdi+nfur/pOI1WVF7E3K1zmbNpDr9s+YUucV14+8y3TccSEREREU9ks8GQIfDNN3VjCxfCRReZyyQiZq1e7ThJr6oKOnc2l0fcTo1k8W2rHwH+/EMuey78dh6csQWCo43GEhEREfFHxRXFhAeHY/Oih/oGtBlgOkKTfLT6I67+5uraekPeBux2u1d9D0RERETEjU49FaKjrYby0KHW3tUi4r9WrnSsk5OtrQjEb6iRLE1TuA6CmkF4O9NJDlWYCVs+chxLvUlNZBHxDSXboboUIjpDQKDpNCIix7Q5fzOnfHAKZ3Y7k3+M+YfpOH5jVMdRDvWufbtYn7uervFdDSUSEVN+yPqBO3+8k7SENNIS0ujXuh8TkyeajiUi4jtWrICaGujTx3SSprn6ausQEQFrufsJE6yG8o4d1j7J4lfUSJaGK0iHzR/B1s+hYBWk3Ql9HjOd6lARHWHA87D6USjZAkFRViNZRMQXrH8ZVj0EAaEQ3Q06XWD9eSwi4oEWblvI6R+ezu7i3azas4rk5slc2vtS07H8QnLzZFpFtmLXvl21Y3M2z1EjWcQPLd+9nGW7lrFs1zIAhrUfpkayiHimmhrYssXag3P1ajj/fOjQwXSqo6upgWuugd9/h8mT4eGHITHRdCoRkaY77TTrAMjNhX37zOYRt1MjWRpu4zuQfkDjeMtn0PtRz9t3ODAUuk6BpCth49tQXQKhzU2nEhFxjoJ069eacshfDmUnmM0jInIEe0v2Mu6dceyrqPthc/LXk+kU24mRHUcaTFbn7eVvExcWxykpp/jcks82m40Tk05kQ94GRnYcyaiOozi+w/GmY4mIAenZ6Q51Wos0Q0lERI4hLQ0yMurqjh09v5H85pvWXsIAr74KH30EP/0EA7x7mxQREQfNm1uH+BU1kqXh2p/t2Ejetx4KVkNsT3OZjiYwBJInm07hXFUlsOsn2PEddL0W4rRXiYjfKXC8EUiMbgSKiGdqEd6Cx8c9znXTrqsd6xrflfbR7Q2mqrNr3y6un3Y9RRVFTEqexH8m/oeU+BTTsZzqrTPe8rkGuYg03CGN5ARdP4qIh+rY0bGRvHq1uSz1sWcP3Hab41jLltpbWEREfEKA6QDihZr3h/ADbvyFtYTizeby+JtF18Jn8fDLadbSttu+NJ1IRNytphoq8hzHorubySIiUg/XDryWmwZbW4yMSxrH3Cvn0jmus+FUlrt+vIuiiiIApq+fTq8Xe7G9cLvhVM6lJrKIAPxr/L94btJzXDvgWkZ3Gk3f1n1NRxIROby0gx50SU8//HmeIj4eHnoIoqLqxv7zHwgJMRZJRETEWTQjWRrOZoOuU6EsGzqcDfFDICDQdCr/ERAK1WV19fZvodf95vKIiPsFBMJZO60/hwvSoTDdc1eFEBH501PjnyIlPoWr+11NcGCw6TgALN+1nLeWv+UwdmGvC2kb3dZQIhER1xneYTjDOww3HUNE5Nj2N5JjYqBHD+jp4T/vBgbCddfB6adbv0ZEwEknmU7lPJWVsGIFJCVBXJzpNCIi4mY2u91uNx3CkxQWFhITE0NBQQHR0dGm44gcatdPMGuc49iZu6BZSzN5RETEqXQt4n30PfNedrud91a+xx0/3MHOfTuJCoki84ZMWkW2Mh1NRESk3nQt4p30fTuK/HwoKYHWra0JLd7EboeKCggNNZ2k6f75T5gxAxYvhtJSeP99uOAC06lERMRJ6nstohnJ4luW3wfNWkOXqyDQBy7YDidhBARFQXUJJAyHNidDgP5XFhEREWkom83GxcddzOmpp/PwLw/TNrqtmsgiIiIipsXGWoc3stl8o4kMMG8e/PprXb1ggRrJIv7mvvsgLAx69bJWh+jUCQK0Y66/UfdJfMe+jZD+GNirYPU/ocfdfzaUw0wnc67AEBg9DWJ7QIiWkxERERHf8OGqDwm0BXJuj3Pd/tlRoVE8fuLjbv9cU+x2OxvyNpAQkUB0qGZAiYiIiMhhDBkC331XV8+fby6LiLhfTY213/u+fXVj06fDxInGIokZenRAfMfqf1pNZIDS7bDsNqjINxrJZRKHq4ksIiIiPsFut/PwLw9zwWcXcMkXl7Bg2wLTkXzWuyve5cLPLqT9v9uT/Gwy09ZNMx1JRERExPssWwZLlphO4XpDhzrWpaVQXW0mi4i43+bNjk1ksGYmi99RI1l8Q1k2bHzLcSx5KjTT0oQiIiIinqqqporLv7qc+2bfB0B5dTmnf3g6m/I3mQ3moz5a/REfrPqA7UXbAZizaY7hRCLiDna7HbvdbjqGiIhvyM6GM86A4cPhnXdMp3GtgQPh3nutWcl798LKlRAYaDqViLjLqlWOdVwctGljJosYpUayOEfeclh6G0zvCzWV7v/8sAQY9xskjrbqwDBIu8P9OUREXK1sL+yYAcVbQTcERcTLBdoCaRbUzGFsT/EePlz1oUs+z263k1ua65L39gYjO4x0qH/Z8ouhJCLiTjv37STmsRiGvDaEq766iqfmPUV5VbnpWCIi3qeiAs47D7ZsgbIyuPRSuOUWqDRwL9QdoqPhoYfgpJMgPt50GhFxt3bt4LrrYORIq4ncq5e1D7z4He2RLE1TVQwzh0H+irqxHdOh3Wnuz9JiEJwwC3Z+D0WZmo0sIr4p+zf49UzrdVAkJIyAMVqaVES8k81m49lJz7IxfyMzs2Ziw8a/J/ybGwff6JLP+2zNZ0z+ejIPjn6QawdeS3BgsEs+x1ON6jTKoc4pyaG4opiIkAhDiUTEHdKz0ymqKGLh9oUs3L6Q8OBwbhl6i+lYIiJHZ7fDrl2Qnl53PPMMBBu8fnvnHfj5Z8exJUv0kLeI+Ka+feG556zXdvuhy1yL31AjWZomKAICwx3H1r1gppEM1hMxbSYCfrjhe82fe5QEaIkZEZ9WmF73umofVJeYyyIi4gTBgcF8fM7HTHxvIn8f/ndOTT3VJZ9TUlnC32b+jYLyAm7+/mZeXfoqL578IiM6jnDJ53mivq36clnvyxjWfhijOo4iJT4Fm54oF/F56dnpDnVaQhoBNi1QJyIerqDg0CVUb7wRunc3kwfgyith/Xp47DGrbtcOPvkEQkLMZRIRcQebDaKiTKcQQ9RIlqZLvgZyFtTVu36C0l2aEewO+zbCrh9g5w+wexYM/whajTOdSkRcqcDxRiAxaWZyiIg4UUxYDPOunOfSpuYTc59gS8GW2np19mp27dvlss/zRMGBwbx5xpumY4iImx2ukSwi4vFiY6F1a9i5s25s4UKzjWSbDR59FFq2hPvugy++sF6LiIj4MDWSpek6ng/L/gYBIdDlaquxrCaye/x2PuQuqqt3/ahGsoivswVCUBRUFVl1TA+zeUREnMTVM2N3FO1wqMd0GsM5aee49DNFRDzB/436P87odgbp2emkZ6czptMY05FEROqnR4+6RnK/ftC/v9k8+918M1xwgZrIIiLiF9RIlqYLCrf2Jo5Og0A3LuVSnguhzd33eZ6o9YmOjeSdP0Cfx8zlERHXG/oWDHkTSrdbs5Oju5lOJCLicmVVZWwp2EJKfEqj3+OVU1/hst6Xcf3061m5eyXPTHpGyzqLiF9oHdWa1lGtmZjsh1tAiYh369MHfvwREhKs2b8dOphOVMffmsh2O2zbBvPnQ2gonH666UQiIuIm2hRHnCOuj3ubyJWF8F0PmHshlGx33+d6moNnH+f/ARUFRqKIiBvZbBDeDlqPhwgP+kFaRMQFsouzOeHtExj95mi2FW5r0nsd3+F4Fl+9mDmXz6FnYk8nJRQRERERl7j2WmjbFj791L1N5MxMmDDBapwKfPyxtR90hw5w/vl1e0SLiIhf0Ixk8U4r/wFlu2DzB7D9a+h5H3S/HWx+9mxE/BCITIYWQyBxlHUER5tOJSIiIuIUa7LXcPL7J7MxfyMAp7x/Cr9e8StRoVGNfs/AgECO73C8syKKiIiIiKt07gzr1kGzZkc+Z9cuSEyEACfcE6ypgRdegDvugNJSOOMM+PXXo3++P4iNhR0HbBOzdCmUl1szk0XEN/3tb5CbC716Qc+eMHAgxMWZTiWG+FnXTTzNvn37+OOPP1i4cCF//PEH+/btO/YX5a+CjP/W1VXFsOdX/2siAwQ1g9PWwbB3IHkyRHe1ZiqKiIiI+IB7Zt1T20QGWL57OVd/c7XBRL6lpLKEWRtn8dLil0xHERERETm8ozVxq6pg/HgYOhSmTbOWX26KmTPhhhusJjLAkiVw1VVNf19vN3iw4/3GigpYtsxcHhFxvc8+gzfftBrKEybAd9+ZTiQGaUayuFZ1OWBzWPY6PT2dl156iWnTprFhwwbsB1yM2Ww2kpKSOOmkk5gyZQppaWmHvmf5XghtYc1IBggIgf7/ce0/h4iIiIi43eunvU56djoZORkAtI9uz99H/N1wKu+3MW8jF39xMYu2L6KyppJAWyAX9bqoSTO9RURERNzutddg5Urr9cknw/HHWzOIGzvJYsIEGD4cfvutbuyPP6xZefHxTY7rtWJiIC0NVq+2ZiQOGWI6kYi4UmEhbN7sONarl5ks4hH8cAqnuIXdDps/gm+7wbrnAdi4cSPjx4+nR48evPjii2RlZTk0ka0vs5OVlcWLL75Ijx49GD9+PBs3bnR875aj4eTV0PlSq+5+O0Qlu+EfSkRERETcKa5ZHN9e+C3xzeIZ0GYACycv5LiWx9Xra/89/9+s3rPaxQm9U8vIlrVNZIBqezXzts4znEpEXKGgrMB0BBER18jLg3vvdRxLSTlyE/nHH2H6dHjjDXj99cOfY7PBU0/V1ddfD4sW+XcTeb+XX4Y1a2DvXmv2t5rJIr5r1SrHOjAQunUzk0U8gmYki/PlLoNF10LOAqte9RDv/BbANTfcRVVVFUDtr0ey//dnz55NWloazz77LJMnT647IbQ5DH0LOl0EiSNd8o8hIuJR7HZY9yLEdIfoNAhL1FL2IuIXkpsnM+uyWSQ3TyY8OLxeX7Nw20JunXkrgbZArh90PQ+MfoDYsFjXBvUi4cHhDGw70KF5/MvmX5iQPMFgKhFxhZTnUqix15CWkEZaizTuOP4OOsd1Nh1LRKTptm2D5s0hJ6du7IILjnz+SSdBpfUQHTExcMUVh99XedAgq0E9ejSccIJTI3u14483nUBE3KVDB/j3v60VH1atsu5Jak90v6ZGsjhfTXldExmgIo/yhTdTVtbwt6qqqqKqqoqrr76a3bt3c8899zie0Hp807KKiHiLkq2w+Lq6OqQ5nJoJoXoyWkR8X31nIQPU2Gu4YfoNgDXT9r8L/8u3md+y9vq1BAXox5/9RnUcxbyt8wi0BdKvdT/aRbczHUlEnGxvyV72FO8BrIdFftn8C7cOvdVwKhERJ+nVy2pwvP8+PPmkNVN2zJgjn3/gpJaCAli3DlJTD3/uQw85N6uIiDdp1w5uvrmu9vd94kWNZHGBFkOgw/mw5aPaodBgCLBBTRP+zLn33ntp1aoVV111lRNC+rCqYihIh/iBppOIiDMVpDvW9mqrmSwiItjtdmx/rtLw/sr3WbRjkcPvTxkwRU3kg1zW+zJGdRzFsPbDtDeyiI9Kz3a8fgwNDNVsZBHxLSEhcPnlcOmlsH49BB3heq+m5tBGyKJFR24ki4hIHa2I6Pe0R7K4Rt8nqAmIYGc+nPovuPTFxjeRhx9wTXf99dcfumeyQFk2/HEXfD8UPomFH4ZDVanpVCLiTAc3kmPSdCEnIgL8kPUD498dT0llCQBndT+L+0beR2igtfRWanwqNw6+0WREj5TaIpUJyRPURBbxYZk5mQ511/iueqhGRHxTQIC1P/KRVFdDmzbQujX07g2TJlnLW4uIiMgx6ScIcY2IDtw1rRtvfPUHewurG/02U8fBC1fA8z/AjW9ZS13/9a9/ZebMmU4M6wMCQmDNk2CvsWo7kLMQWo42mUpEnCk4CuL6QuEaqC6zGskiIn7u5cUvc92066i2V3PJF5fwybmfEB4czj/G/IPL+1zOrd/fytQBUwkJDDEdVUTE7S7tfSnDOwwnY28GmTmZRIZEmo4kImJGcDBs3246hYiIiFey2e1a4PxAhYWFxMTEUFBQQHR0tOk4Xis9PZ0ePXo06T3uOAUev6Cu/mIRXPg8lFVa79+9e/cmpvQx0/tD3tK6uvcj0OPv5vKIiGvUVEPJZut1ZJLZLOISuhbxPvqemfHE3Ce488c7HcbuGHYHj5/4uKFEIiIiZuhaxDvp+yZeqbjYWhZ8wQLr1w8+sJYYFxERr1PfaxEtbS0u8dJLLxF0pH1J/hQWfOTfCw+Fa8Y6jp05EE7qA0FBQbz44otND+lrEo6ve20LgJId5rKIiOsEBFoNZDWRRcTPnZZ6GjGhjksSbirYRHVN41fDERERERGRIygqgthYGDMG7r4bPv8cli83nUpERFxMjWRxiWnTplFVVXXE3z9zAGx5Bm4/BZISD/39knI47xkor6wbu+8T+HyRtbz19OnTXZDay7U/G3r9A8b+AOfkwcDnTCcSERERcZluLbrx+fmf1+73ec+Ie/jg7A8IDAg0nExERERExAdFRUFysuPY/PlmsoiIa/zznzB6NFx7LTz7rB4WEUCNZHGBoqIiNmzYcMTf79oK3pwCCdHwxAXW1r6Bh/kvcekmuPU96/Wt78LDX9b9XlZWFvv27XNqbq/XchT0ug9ajYNgLYkkIiIivm9s57G8csorvHn6mzw89mECbPrxpqHsdjtZuVm8sewNLv/ycl5Z8orpSCIiIiLiqYYMcawXLDCTQzzf//4HY8fCHXdAZeWxzxfPMG8ezJkDL74IN94IH39sOpF4gKOvPSzSCFlZWRxp6+3wUPjsZohuVje2bhdU1xz+vV74AZZuhAXrHcftdjvr16+nT58+TsksIiIiIt7pir5XmI7g1e6ddS///O2ftfXOfTu5pv81BhOJiIiIiMcaOhTeeQd697ZeT5hgOpF4otmz4aqr6l6HhsJDD5nNJPWzZo1j3b27mRziUfTIvjhdeXn5EX+vWTBk7nQcW3OMrXwPbiLX53NEREREROTY+rXu51DP3TKXqpojb1EjIt4huzibovIi0zFERMTXXHQRFBTAkiXw3HNw6qmmE4kn6tEDnnwS+ve36ieegOJis5nk2EpLYeNGxzE1kgXNSBYXCA0NPeLv5eyDc/4LQ5LhryfAqX1hzXbnf46IiE/JeAYCwyEmDWK6Q0ic6UQiIuIjRnQc4VAXVxazdOdSBrUdZCiRiDjDvbPu5ZWlr9Amqg2p8alc3udyLu19qelYIiLi7SIiTCcQb7Bvn7Wk9f5VSysq4M034brrjMaSYwgIgM8/t2Ylp6dbv3brZjqVeAA1ksXpkpOTsdlsR1zeGqxZxvtnGgcHNvwzbDYbycnJjUwoIuJF7HZY+QBU5NWNjZ4ObSYaiyQiIr4jMSKR7i26k1Oaw6iOoxjZcSQdYjqYjiUiTZSRkwHAjqId7CjawYQuWnpURERE3CQpCU46Cb77rm7sf/9TI9nThYbCGWdYh8gB1EgWp4uMjCQpKYmsrKx6nV9Z3fDP6NKlC5GRkQ3/Qn9ht8O+LNg7H+L6QmxP04lEpLHKdjs2kQGiU8xkERERnzTn8jm0CG+BzWYzHUVEnGR/I3m/lHhdP4qIiIgb3X671Uhu3x5uvbVuz2QR8TraI1lc4qSTTiIoyDXPKQQFBTFp0iSXvLdP+OPv8HlL+KYrzL8UtnxiOpGINEVBumMd2AzCO5rJIiIiPikhIkFNZBEfsq9iH7v37XYYS22RaiiNiIiI+KWRI+GrryArC26+GaKiTCcSkUbSjGRxiSlTpvDss8+65L2rqqqYOnWqS97bJ9groTy7rt47z1wWEWm6oEjocK7VUC7KhOhuENCIPQFERERExC9EhkRS/PdisvKyyNibQWZOJl3iupiOJSIiIv7EZoPTTjOdQkScQI1kcYm0tDROPPFEZs+eTVVVldPeNygoiDFjxtC9e3envafPaTHUsd67EGqq1XgS8VYtBsHwj63XNZVQvtdsHhERERHxeM2Cm9EzsSc9E7XNkYiIuMD69fDLL7BgAcyfD9deC5r449/sdnjvPWtv5ObNTacRESfS0tbiMi+//LLTl7cOCgri5Zdfdup7+pwDG8mhCZA4AioLzOUREecJCIZmrU2nEBERERERERF/9tBD1p63r74Kq1bB3LmmE4lpy5bBJZdAq1Zw5pnw+edQXW06ldSX3W46gXgwNZLFZTp37uz05a2fe+45Onfu7NT39DnNWsPIL+H0TXDWbhj9HYTqKTARERERqT+7biSIiIiIyJEMPWhFxAULzOQQz/HOO9avlZXw5Zdw663W8taHo581PM8XX0D79jB+vLWn9fvvm04kHkSNZHGpyZMn8/DDDzvlvR555BGuuuoqp7yXz2t3OkR0PPJf1iIiIiIiByipLOGbjG+4d9a9nPjOiXT8T0eqazSDQEREREQOY8gQxzorC/bsMZNFzKuqgg8+cBy7+GIIOKj9VFEBb74JffrAxo3uSif1kZ4O27bBDz/Af/8Lr71mOpF4EO2RLC53zz330LJlS2644QaqqqoatGdyUFAQQUFBPPfcc2oii4iIiIi4SGF5Iad9eJrD2Jq9a7S/qoiIiIgcqmdPSE2FXr2s2clDh0JcnOlUYkpeHowcCV9/DeXl1tgllzie8+KL8MgjsH27VT/9NDh5NVNpgowMx7p7dzM5xCNpRrK4xeTJk0lPT2fMmDEAx9w7ef/vjxkzhvT0dDWRRURERERcqFVkKzrGdHQYW7htoaE0ItJYxRXFrNi9gtLKUtNRRETElwUFwdq18Mkn1hLGQ4dCcLDpVGJKQgJ8/DHs2mXtmz1livWgwYHWratrIgO8/jrs3evenHJkmZmOdbduZnKIR1IjWdymc+fOzJw5k9WrVzN16lSSk5OxHbT0ss1mIzk5malTp5Kens7MmTO1J7KI+K/M52HZHbDhbchdClW6ISgiIq4zuN1gh3rhdjWSRbzNgm0L6P1Sb8L/GU7H/3TkrI/OMh1JRERE/EVsLEyebM0+Ptgtt1gPIOxXWgrvvee2aHIMr75q7Yv8wANw4YUwYIDpROJBtLS1uF1aWhrPPPMMAPv27WP9+vWUl5cTGhpKcnIykZGRhhOKiHiIzR9A9ty6us/jkHaHuTwiIuLTxnQaw+59uxncdjBD2g1hSLshx/4iEfEomTl1s0m2FGwhvlm8wTQiIiIif2rf3mpQvv22tQz2HXfASSeZTiX7HXecdYgchhrJYlRkZCR9+vQxHcN3ledC7mLI+R2CYyD1BtOJRKS+7HbIX+U4FqN9KkVExHWmDJjClAFTTMcQD7d6z2qeX/Q8/zzhn8SGxZqOIwfJyHHc3y4lPsVQEhEREZGD3HcfTJ0KQ/TAqog3USNZxFdl/Q8WHrC3dEwPNZJFvEnpdqgscByLVSNZREREzKmx1/DXb//K3K1z+XzN5/x34n85r8d5h2xZJObklOY41KnxqUc4U0RERMTNkpOtQ0S8ihrJIr4qJs2xLkiHyiIIjjKTRzyH3Q7FmyE0Xv89eDJbEPT4uzUruWAVlOdAeHvTqURERMSP/W/Z/5i71dp2Y3fxbv7y2V8orizmyr5XGk4m+71z5ju8dPJLrMtdR8beDNIS0o79RSIiIs5QXQ27dkHbtqaTiLtUVTnueywiPkn/l4v4qrg+ViPKXvXngB1yl0LLUSZTiUmF6yDzGdj8IZTvhRNmQ8vRplPJkTRrBb0fqaury0GzfURERMSQyupKHpzzoMNYUlwSF/S8wFAiOZKIkAj6tOpDn1Z9TEcRERFft2kTvPYazJ8Pv/8OrVtDZqbpVOIuY8dCSAj85S9w9tkQF2c6kYi4QIDpACLiIoFhEHscBIRC/BBIuRFCW5hOJaZsfBem9YDM56wmMgB2o5GkgQJDTScQERERP1FeVX7IWHBgML9d8Rsndz25duyFk16gWXAzd0YTERERT5KbC488ArNmwb59sG4d7N177K8T77d5M/z6K/z0E1x9NbRsaT1MIN6nqurY54hf04xkEV826msIS4SAYNNJxLSEYRzy7JD9KI3kfRshvJ3+2xEREfFz2cXZhAeHExESYTqKuMk3Gd9w7bRr+eGSH+jWopvD73WM7cg3F3zD52s+57ctvzEheYKhlCIirlNdXc3q1atZtGgRixcvZtGiRaxYsYLKykoARo0axc8//2w2pIin6NULmjWD0tK6sYUL4eSTj/w14hs++sixjoyEPn0a/j67dsELL1gPJTz3nFOiSQNUV0NMDLRpAykpkJoKd90FiYmmk4kH0YxkEV8W3laNQLFEJkHanQcNHqGRXFkIs06EX86CqtLDnyMi4iWqq6tZsWIFr7/+OlOnTmXAgAGEhIRgs9mw2WyMHj3adEQRj/P60te58LML6fJMFxL/lcj09dNNRxI3efOPNznzozPZVriN8e+MZ1vhtkPOsdlsnJ12Nv+e+G8DCUVEXOvLL78kOjqa3r17M3nyZF566SWWLFlS20QWkYMEB8PAgY5jq1ebySLu9fXXjvXZZ1vLXNfXzp1w5ZXQsSM89BC89BJs2eLcjHJsmzZBSQmsXw/TpsG//w2BgaZTiYdRI1lExF+k3QVRKdDtb3BKJrQce+g5djv8PgX2ZcGOb+GX06C6wv1ZRUScQDcCRRrnk/RP+GDVB2zI2wDAwm0LDScSd/g0/VOu+OoKqu3VAGwt3Mr4d8aTV5rX4Peav3U+535yLhW6jhQRL5Ofn09JSYnpGCLe5eKL4c474YsvrObgHXeYTiTuMHMmfPIJnHUWhIbCBRc07OvDwuDjj6Hiz+vF6mp49lnn55Sjy8hwrJs3h/h4M1nEY3lVI1kzSkREmiCoGZy0Evr9C6K7gs126Dkb/gebP6ird/0ICye7L6OIiBPpRqBI4wxuO9ihXrhdjWR/MDF5IoPaDnIYG9xuMFGhUQ16n1eXvMqoN0fxafqn3DT9JmdGlKMoqyrjf8v+x7Kdy9TAF3GCli1bcsopp/Dggw8ybdo0brpJf56JHNHVV8Njj8EZZ0CrVqbTiLuEh8M558Bnn8GePTBqVMO+Pi7OmpF8oFdfdVwmXVwvM9OxTkkxk0M8mtfskfzll19y0UUX6WagiEhTBB5jiZnobhAcA5UFf54fBu3PdH0ucbT+FdgxA2J7QkxPiB8IkZ1NpxLxWi1btmTgwIG1x/fff89///tf07FEPNbgdo6N5LV711JjryHA5lXPIUsDRYZE8t2F3zHijRGs3buWO4bdwWPjHsN2uIcPj+CBnx/gwTkP1tYvLXmJfq37cXX/q10RWQ6was8qrvr6KgCCA4I5ruVxzL9qPsGB2upIpCEmTpzI5s2b6dChg8P4woV6qEpE5Iiioxv3dTfdZO2LHBwMl1wCN99s7bkt7nPVVTBsmNVQzszUwyByWF7TSNaMEhGReti3CbZ/C12nQkAj9rNIOB7G/gg/jYaAUBj1DSQMc3ZKOZbds2HbF9YB0PU6GPic2UwiXkg3AkUaZ3DbwVzZ50oGtxvM4LaD6ZHYQ01kP9EivAXfX/w932V+x9SBUxv89Wd0O4Mn5j5BaVXdTJKvMr5icr/JDWpIS8Mt3bm09nVlTSWF5YVqIos0QivdQBcRcZ8uXeC992DsWGjZ0nQa/xQVBYMGWYfIEXhNI3k/zSgRaaDqMsj7A3KXQt5SKM+FkZ+bTiWuYLfDoqmwcwZsehcGv2bNaG2o+AEw8kto1g5iujk9ptRD/irHujHfRxHRjUCRRooPj+f10183HUMM6RDToVFNZIA+rfrw+mmvc+HnFwJw29DbeHTco2oiu8Gyncsc6n6t+xlKIiIiItIADd1bWUTczmsayZpRItJI+Sth5tADBmxQWQTBDdvrTLzAlk+sJjJAzkKY3hdGfA7tTm34e7Ua59xsUn/VFVC41nEsRo1kERER8Q4X9LqANXvX0L1Fdy7opRuD7hIfHk+XuC5k5WUBaiSLiIiIiIhzeE0jWTNKRBopthfYAsFe/eeAHfKWQ+Jwo7HEyaor4I+7HMfCEiFxpJk80gQ1MOgVKFhlzUwuWAWxPUyHEhERER9RUFbA0/Of5twe59IjoYdLZgv/Y8w/nP6ecnQPj32Yh8c+TH5ZPn/s+oNOsZ1MRxIREX+1axcsWGAtV9zYvXPFMy1fDrNnw3nnQZs2ptOIiJtooysRXxcYBjEHNaHylh7+XPFeAUHQ+2GI6FQ31v8ZCIlx/mfZ7VbjWlwjMAy6XAH9noKx38OZ2yEkznQqERER8RFfZ3zNP375B71e7EWPF3rwz1//aTqSOFFsWCyjO41WI1lERNzvyiuhc2do3RrOPBPmzjWdSJzt9dfhllugXTvrQYHPtX2iiD9QI1nEH8QPhJg06HQx9Htayxb7IlsAdLoQTlkL/f4D7U6H9mc5/3NyFsOPI2Dl/c5/bxERERFxuY/TP659vWbvGuZvm+/Wz7fb7Wwr3ObWzxQRERE3yMyETZvq6gULjEURF6ipgc8+s17b7dbM5FWrXPNZS5bAxRc7/vckzldQAFVVplOIF/Capa1FpAkGvQouWLJOPFBgKHS7yTqcqXQ3LL8LNrxp1TmLoMvVENXFuZ8jIiIiHqe8qpxlu5YRYAtgUNtBpuNIE+SX5fP9+u8dxs5LO89tn19cUczkbyazaPsiMq7PIDAg0G2fLSJiWnl5OeXl5bV1YWGhwTQiLjBkiOMs5PnufVhNXGz+fNixw3HsPCdfR06fDo89Br/8YtUtW8JTTzn3M6TO9dfDRx9Bly6QmgqXXw5nnGE6lXggzUgW8QdqIktTVRbApvfq6poKWHa7uTwiIgaVl5dTWFjocIj4os/XfM7g1wYT/Vg0Q18fykO/PGQ6kjRReVU51w+6nnbR7QAICQzhtNTT3PLZG/M2Mux/w/hw1Ydk5WXx44Yf3fK5IiKe4tFHHyUmJqb2aN++velIIs41dGjd68hIiIoyl0WcLzISLryw7vvaowd06+bcz5gxo66JDNZS2vv2OfczpM7SpVBZCWvXwldfwTatGiSHp0ayiIgcW3QKpNzgOJb9G5TtMZNHRMQg3QQUf1FeVc7v23+noroCgIXbFmK32w2nkqZoGdmSpyc8zeabNzP3yrk8N+k5YsJi3PLZl355KSt2r6it3/jjDbd8roiIp7j77rspKCioPbZu3Wo6kohzjRwJL78MK1ZAfn7dMsjiG3r3hvfegz17rKbjQy54yPTGGx0nRBUUwDvvOP9zxPp/ND3dcWyQVp+Sw/P7RrJmlIiI1FPP+yC0BYQ0h96PwmkbICzRdCoREbfTTUDxF4PbDXaos0uy2Zi/0VAacaYAWwDD2g/j6v5Xu+0zz+9xvkP9xdovyC3Nddvn+6pthdv4+09/55PVn5CVm6WHPUQ8WGhoKNHR0Q6HiE9JSIBrroFevSBQ21f4rLAwOO00OPNM5793ly5wyinW6zZt4OGH4eyznf85AhkZEBpaV4eGQp8+xuKIZ/P7PZIfffRRHnzwQdMxREQaLnselO2GtqdCgBv+OA+JhVHfQkx3CNYPvC6x6QNIfxRiekJsT4gfAq3Gmk4lIgcJDQ0l9MAfuER8VOfYzrQIb8Hekr3YsNE9oTvZxdkkxSWZjiZe6MJeF/K3mX+jsrqSE5JO4Io+VxAeHG46ltebv3U+j/72aG3dtXlXMm/INJhIREREpAnuuQcuugjOOguCg02n8V2DB0NhobWCwIIFkJ0NISGmU4mH8vtG8t13382tt95aWxcWFmp5QvEPdrv2TvZ2q/4BO7+HZm0h+RpIvhqatXbtZ7YYfOxzpPFyF0P+SuvYDLQ7Q41kERExxmaz8dyk52gR3oIBbQa4bQlk8U3NmzXn3TPfZVDbQXSM7Wg6js9YunOpQ60HPURERMSrDR5sx9Ka2wAAdo5JREFUHeJ6ISEwYIB1iByF3zeSNaNE/EblPtj2BeQuhbxlULgGztgGAXqyyysVrbeayACl22Hl/0FEB0i63GgsaaL8FY517HFmcoiIiPzp/J7nH/skkXo6t8e5piP4nKW7HBvJ/Vr3M5RERERERER8kd83kkX8Rk0FzL/UcawgHeJ6m8kjTbP+Zcc6JA466EavV7PbIW+545gaySIiIuIE+WX5xITGYNOKRD5nbKex2LCxdOdSskuy6duqr+lIIiIi4ktKSiBc25GI+DM1kkX8RWhziOgIxZvrxvL+UCPZW8UPtvbPzVlg1UlXQFAzc3nsdqguhSBdWDbJyK+sWcn5y61f4/qYTiQiIiI+4MLPLmTt3rWc1+M8zutxHn1b9VVT2UfcOfxO7hx+J3a7ne1F24kJ1RL0IiLiAcrKYOlSa+/VDh3gnHNMJ5LGsNvhuOMgIQHOPRfOPhs6aosSEX+jRrKIP4nrc1AjefkRTxUP1+Ec68hdCutehOS/mslRUwVbPoE1/4LYXjD0TTM5fIHNBglDrUNERETESXJLc/lhww9U1VTx+NzHeXzu43x23mec1f0s09HEiWw2G+2i25mOISIiAv/+N9x5J1RWWvXEiWoke6tlyyAryzoWLIC//Q3S06F7d/fmqKqCr76CoCA4/XT3fraIqJEs4ldajgMCrFnIsb0hfqDpRNJUzfvB4FfNfPbeBTD3L3UPJxSshN6PQHhbM3lERERE5BBfrv2Sqpqq2josKIwTk040mMhRdnE2c7fO5YxuZ5iOIiIiIs7Qtm1dExmsBmRNDQQEmMskjfPpp451UhJ06+a+z8/NhVdfheefh61bITUVTj1V/y011fvvW/8ujzsOgoNNpxEvoEayiD9Jvd46RJwhsguU7a6rayoh81no85i5TCIiIuISNfYasnKzWLZrGdsLt3PL0FtMR5J6+nXLrw71SV1PIio0ylAaS1VNFTPWz+CNP97gm4xvqLHXsPWWrbSOam00l4gIwEknncSOHTscxnbt2lX7evHixfTp0+eQr5s2bRpt2rRxdTwRzzf0oJXW8vMhM9O9DUhxjh9/dKzPOcdaUc9d/vgD7rqrrs7IgB9+gAkT3JfB1xQVwSWXWA93NGsGAwbAO+9oyXI5KjWSRUSkccISoPPlsP6lurHt30HvR917USkichS6ESjSdMt3LWfEGyMoqigCICggiKkDpxIWFGY4mdTH/077HzcMuoFPVn/Cx+kfc27auaYjUVpZyl8+/QvFlcW1Y++seIc7jr/DYCoREUt6ejqbN28+4u8XFxezfPmhW4VVVFS4MpaI92jXDtq0gZ07oWdPGDIEAgNNp5LG+O03mDULPvkEvvzS/UuUjxkDPXrA6tV1Y888o0ZyUyxaZDWRAUpLYf58SEw0m0k8nhrJIiLSeN1uthrJiSOh63XQ7gw1kUXEo+hGoEjTJcUl1TaRwZpNumrPKga0GWAwldSXzWajX+t+9Gvdj3+e8E9q7DWmIxEVGsW5Pc7lzT/erB174483uH3Y7dh0LSkiIuLdbDaYPh06dYLoaNNppClCQqw9ridOhJdesvYodiebDW68Ef76V6sePBguvti9GXzN/PmOdZ8+1sxkkaPwqkayZpSIiF8rz4HAcAjyoL/co1PhtA0Q2dl0Eu9WXQG2QAjQE7oiIuJ5okKjSIlPITMns3Zs2c5laiR7IZvNRqDNM643ruxzZW0jOSwojH6t+1FcWUxkSKTZYF5i3tZ5/HvBv+nXynpIoG/rviRGaDaJiDNs2rTJdAQR73fccaYTiLOZ2kv3oovg99/h6qutRrI0TWQkpKRYy83DoUvRixyGVzWSNaNERPzayn/Axjehw3nQ+VJIGO4Zs3/VRG66LR/D71dDTE+I6w0JIyHpUtOpRHyCbgSKOEe/1v3IzMkkMSKRfq37qWElTTa8w3DOTTuXEzqfwPk9zyc2LNZ0JK/y25bf+DT9Uz5N/xSAwW0Hs2DyAsOpRERERJwsIgJee810Ct9x003WkZMDCxZYS9GLHINXNZJFxAUqCiAkxnQKOZaaatjyEVQWQtZr1tHncUjTPnI+IX8FVJdB7mLrKN2tRrKIiHiUR8Y+wlPjn6J1ZGstPSxOYbPZ+Pjcj03H8FpLdy51qPu26msoiYiIiIh4nfh4OPlk0ynES3hVI1kzSkScoCIf1vwL8pZD/h9QugPOLYKgcNPJ5Giyf4Wy3Y5j7U43k0WcL3+FYx3X20wOERGRI0iKSzIdQUQOcHAjuV/rfoaSiIiIiIiILwswHUBE3CwgBNIfhR3fQsk2sNdA/irTqeRY9h60TF1sb2t/YvENeQdtyxCrvYRERESk8faW7OXmGTczb+s8auw1puOIC9w9/G6uG3gdQ9sNpVlQM/q21oxkERERcYIdO+Dpp/+/vfsOk7K6+z/+nt1l6QssvUlXpAoCAhZAxAI21EjsJfb0GI3+4mNJYnySqDFRoz5qTGJi70YUQQQ7ghTp0ov0utRddnd+f4zuMiqwwM6emZ3367rm2jk3Uz56w+5353ufc2DhwtBJJCWJlJqRLKkcZNWA2h0gb27psU3ToEGfcJm0b51vglYjYOkLsf10Ww4PnWjPdq6Fxf+BjVOh3z9Cp0kNQ6fFZiVv/Dz2tX6v0IkkSVIKe3n2y/xlwl/4y4S/0Lx2cy7pfgl3Dr4zdCyVo8t6XMZlPS4DoKi4yCXnJUnJJxqF+fNj+7BOmADz5sFbb4E/s5Lbyy/D9dfHbt26wUUXwS9/GTrVt23aBOPGwZlnBg4iVX42kqV0VLf7NxrJn+/5sUoetdpApxtit2ScWbJzDUy8Fr58HYp3xY51uhHqdAqbKxVUawRNTojdJEmSDtJzs0r3Hv5yy5d8seGLgGn2X1FxEZkZmaFjpAz/X0mSktL8+XDoofHHli6FVq3C5FHZvPxy6f3PP4epU4NF+U5Tp8Lf/gb/+Q/s2AELFkCbNqFTSZWajWQpHbU8C2q2ijWU67lEckqKJOHOBNm5sPbD0iYywMInoMefwmWSJElKM2u3reXdRe/GHTu307mB0pTdxh0beWn2Szw942lyq+fy3Pee2/eTJElS8mrfHnJzYcOG0mOffGIjOZlt3Bib5bu74Um0KuKOHTBwIGzeXHrs4YfhD38IFillfPYZ/Pvf0K9f7NayZehESiFJ2ImQlHCtRkCPP0KbC6BuF8ioEjqRKoOMLGhzcfyxRf+KbyxLkqSUtnrrat6c9ya/f//3XPDSBe6/m4QikQi3HHcLhzc4HIAaVWowtMPQwKn27u0Fb9PkniZc8foVvLPoHV6b+xqbd27e9xMlSVLyikSgb9/4YxMmhMmistm2DS67DBo2jI2rVoWTTgqbaXfVq8Oll8Yfe/xx2LkzSJyUMmoU3HcfjBgBhxwCw4aFTqQU4oxkSVL5aXsZzP4TZFaDFmdBu8sg4lJ7kiRVBiu3rKTZvc3ijt0+4HY61O8QKJG+S4MaDbh94O3cNuA2Zq6dycw1M6mZXTN0rL3q3aw30Wi0ZJxflM/Lc17m0iMuDRdKkiQdvKOOis2E7Ns3dhsyJHQi7U2LFvDoo7FZvh9/DHPnQq1aoVPFu/Za+MtfYvczM2HQoNhM6qZNw+ZKdp98Ej9u2zZMDqUkG8mSpPJT53A45vnYXr/ZdUOnkSRJ5ahJrSY0rtmY1dtWlxybvHKyjeQkFYlE6NKoC10adQkdZZ/qVa/HKR1O4bW5r5Uce2n2SzaSJUlKdTfdBP/zP7HZyUodmZlwzDGxW7I57DC48MLY0ulXXgnNmu37OekuGoWJE+OPHXVUmCxKSS5tLUnJKloMU26EFW9BUX7oNGV3yDk2kcuqYBNsXRQr6CRJSnKRSISeTXvGHZuyakqgNKpszu9yPtmZ2ZzZ8UyeO+c5njnnmdCRktITU56gxyM9+MGrP+DBTx9kykr/DUqSklh2tk1klb8nn4TbbrOJXFaFhXD55XDiiVCvXuxY795hMymlOCNZkpLVhsmxZaJn/wmyakHTk6HfPyGrRuhkKi/LX4VPLoUqdSG3BzQ5ETrfFDqVJEl71LNpT95b8h7dm3SnZ5OeDGo9KHQkVRJndDyD1b9cTd1qdUNHSWoTvpzA1FVTmbpqKn+f+ndGdB5h012SJEl7VqUK3Hln7H40CgsXQps2YTMppdhIlgSF2yFvbqyRpeSx/NXS+4VbYdM0yKweLo/K38avZpDs2gSr34UqdYLGkSRpX24+5mbuGHgHmRmZoaOokqmWVY1qWdVCx0h631wF4JurBEiSJEl7FIlAu3ahUyjF2EiW0tXOdTDpR7BpKmyZF1tG+ZxNkG0jK2l8+Vr8uMUZLgdU2Wz8xlKE9byYQ5KU3Gpm1wwdQXuwausqGtZoaJO/EissLuTz1Z/HHbORLEmSDlphIWTZKpL03dwjWUpXVXJg+UuxmcjR4tixTZ/v/TmqONFiaH0+NOgHfNU8bn5G0EgHZdsSWPdp6BTJJRqFbcvij9lIliRJB+j8F8+n2b3NuO6N6xi3eBxFxUWhIykB3rrgLe498V4u6nYRnRt2pkcT60dJUoqJRqHIOiWp/PKX0L17bN/hqVNj5ygVLVwIxcWhU0iVTiQaTdXvComRl5dHnTp12Lx5Mzk5OaHjSIk1snt88/jI++GwH4XLo++2YzWsGAltLoZUmmGSvwGWPANLnoK1H0LukXDypNCpkks0CtuXxWYmb5gCHa6F6o1Dp1Jg1iKpx3MmKbRVW1fR/N7mFEdLPzh7ZcQrnNExhS9ElFRm1iKpyfOmtDJ2LLz/PkyYELv9859w6qmhUwlin021bg1Ll5Yeu/tuuP76YJH2S1ERvPEG/O1vMGpU7HbiiaFTSSmhrLWI6xVI6azu7o3kCOxYETSO9qB6Y2h3WegU+2/jZJj0w9Lxhs9iM+BzDguXKdlEIlDzkNithR/0SpKkA/PS7Jfimsi1smtxYrvU/wBt5ZaVPDvzWYZ1GEaH+h1Cx5EkSQfqN7+B8eNLxxMm2EhOFlOnxjeRAYYMCRLlgJx2Grz5Zun4b3+zkSyVMxvJUjpreyk0OjbWUK7bBbJqhE6kyqTRIKjWGHauLj22+Cnodke4TJIkSZXQtFXT4sanHXoa1atUD5Tm4D0/83ke/uxh3l30LlGirN++nt8e/9vQsSRJ0oE66qj4RvInn4TLonj//W/8uE0b6No1TJYD8c1G8uuvxxrjhxwSLlMy+eMf4dNPoXdv6NUrdqtTJ3QqpRj3SJbSWZPjof2V0KCPTWSVv4xMaPX90nF2PYik0NLckiTpOxUVF/HRso944NMHuPzVyzni4SNYtXVV6Fhp7ZHTHmHej+fx++N/zxFNjuB7nb4XOtJB+Xj5x4xdNJYosZ24nprxFO7KJUlSCuvbN348YYL7JCeLm26Cd9+FX/wC2reHM8+MraCXKi68EGrXLh3XqQMzZoTLk2xGjoQXX4yd5xNOgHvuCZ1IKcgZyZKkxGl9YWxGcqvzoelJkJkdOpEkSSoHJz55Itt2bSsZT1k5hVM6nBIwkdrntufmY2/m5mNvTvmm6/ldz+fPn/y5ZLxw40ImrphIn+Z9AqaSJEkHrG9f6N8/9rVv39gM5QznuCWFKlVg4MDY7e67Ydeu0In2T+3acPHFsVnuP/whfP/7UD11V+YpV0VF8Nln8cd69w6TRSnNRrIkJZPiQogWV56Ga/1ecPTToVNIkqRylJmRSfcm3flo2Uclx6asspGcTCKpNIvkOxzZ9Eja57Zn/ob51MquxfCOw6lZpWboWEHt2LWDqllVyYj4obskKQU1bQoffhg6hfYlEoHsFPxM8p57oGrV0CmSzxdfwNat8cd69QqTRSnNRrIkJZPVY+GDc6HZKdD8jNjXbPetqHS2zIeti6BeD6jWIHQaSZL2W88mPeMayZNXTg6YRpVNJBLhd4N+R2ZGJsM6DEvp/Z7Lyx3j7+BvE/9Gj6Y96NmkJ6ceeiqD2w4OHUuSJCk8m8jfrXFj+PvfYdIkmDgR1q+PXdQh7ScbyZKUTFaMhF2bYckzsVvDY2DI+6FTqbwtfhqm3xq7X6MltLkIut8ZNpMkSfuhd/PedF3StaSp1b9l/9CRVMmM6DIidISkMmXVFLYUbOG9Je/x3pL3qF6luo1kSZIk7VluLlx2WewGUFwcNo9Slo1kSTHFhbDlC8ibAy3PCp0mfa0YGT9uelKYHEqsjVNK729fBru27vmxkiQloYu7X8zF3S8OHUNKC9Fo9Fuz/ns27RkojSRJklKS+5LrAPk3R0p3O1bCm0fCc7Xgjc7w/tmQvyF0qvS0dTFsmRd/rJl7DVZKG7+x/GeuHwRKkqT9s2bbGn7+1s8Zs3AMBUUFoeMogb7c8iXrtq+LO2YjWZIkHZQ33oDp0yEaDZ0kcaJRKCoKnUJKeTaSpXRXtSFsngnF+aXHNk0Llyed1WoNZyyG3g9B89OgVtvYHrqVydaFMOuP8FYf2DQzdJowivKhWhPIrFZ6rLKdZ0mSlHAj543kvgn3MeTJITT4YwMue/Wy0JGUIM1rN2f5z5fz2vdf446BdzCi8wja1G0TOpYkSQdnwwZYtCh0ivRUXAw/+AF06wZt28KPfwyLF4dOVX42bYL774euXeHxx0OnkVKeS1tL6S4jC+p0jp8huXEaNB4ULlM6q9kKOlwTu0WLIVKJrvcZfwZ8+VrpeNkLULdzuDyhZFaFkz6JLSefNzf2b6/O4aFTSZKkFPPGvDdK7m8p2MLmnZsDpqk4a7etpWHNhqFjVKhIJELznOY0z2nOaYedFjqOJEkH7v334bHH4JNP4Isv4Iwz4JVXQqdKPxMnwurVsfuLF8MDD8BPfxo0Url54AG48UbYsSM2fuQRuOqqsJmkFFeJOhSSDli97qX3qzcHKvGSJqmkMjWRAWp9Y9bE0ufD5EgWGVmxRnqbiyCjSug0kiQphRQVFzF6wei4Y6ceemqgNIm3YssK/vzxn+nzaB9a/6U1Wwu2ho4kSZIOxJIl8K9/xZrIEGsoV+allZPV66/Hjzt2hPbtw2Qpb23alDaRASZPhkmTwuUJxX9XKkeVrEsh6YAc+mM4/h04ex0MXw4dfx46kSqjlufEjzfPhM2zw2SRJEnlrjhaTHG0OHSMtLB913YuPeJSejTpQYQIACe1OylwqsTIy8+jzV/a8Iu3f8HEFRPZvms7r855NXQsSZJ0IPr2jR+vXh1rLqti1akDhxxSOj6tEq14cvLJ8f9tAM+n4WSWM86AXr3gyivhwQcr19LlqnAubS0Jct2fVRWgYX+o3gyKC6DFcDjke1C7klztKElSmvrP5/9h4oqJTF45mSmrpjDqwlH0b9k/dKxKr3bV2tx38n0AbNq5iYlfTqR5TvOwoRIkp2oOx7c5nrfmv1Vy7OkZT3NBtwsCppIkSQekXTuoXx/Wr4+Nq1WDefOgdeugsdLODTfAL38J06fHZicPHRo6UfnJzIw1T++4A848E66+Go4/PnSqihWNwscfw7p18NlnsWONG/vvTAfMRrIkqWJEMmDwuNgS1xn++JEkqTL43w//lxlrZpSMJ6+cbCO5gtWtVpch7YaEjpFQ53U5L66RPGXVFPIL86maVTVgKkmStN8iEbj55lgDuW9f6NYNqrjdVxCRSOz/f7duoZOUv+uugyuugCZNQicJY8WKWBN5dz2cSKYD5yf5khTatmWwcQo0Ph6q1AqdJrFyOoROIEmSylGPJj3iGslTVk4JmEaV1Zkdz6RRzUac0v4UzutyHoPbDiYrTS5MXLxpMTWq1KBRzUaho0iSVD6uvz50AlV2ubmhE4Q15Ru/k9WuHds7WjpA6fGblyQls6XPwZRfQkY2NDoOWl8AbS8NnUqJsOxl2L4ccntBvSMgq3roRJIkHZSeTXvy5OdPlownr5ocMI0qq5yqOXz5iy/Tpnm8u5vG3MSzM5+lWe1m9Gzak6uPvJpTDz01dCxJkiQlqwED4J13YOrUWFM5KwsyMkKnUgpLv9/CJCnZrBgZ+1pcAKvGQK22NpIrqwWPlZ7vSBYccRcc/suwmSRJOgj9W/bnzI5n0rNJT3o27UmPpi6ZpsRIxyYyxJaLB1ixZQUrtqzg9ENPD5xIkiRJSa127di+0Om2N7QSJj1/E5P03aJR2LYENk2DLfNscFWEXXmw9v34Y01PCZNFiRWNwvqJu40LoXqLcHkkSSoHfZr34eURL4eOIVVKefl5zNswL+5Yz6Y9A6WRJEmSlI5sJEuK2bYURnaDXZtLj7W5BKo1DJcpHexcAw2PgTXvxxqLGVWgyeDQqSpW3hdQsAka9AmdJLG2L4X8tfHH6vcOk0WSJKWkaDTKsU8cS8cGHTmu1XEMaDWAVnVbhY6lBFm4cSE1qtRg+67tQGxWdpdGXQKnkiRJKamoKLbkcd++cNppcPTRsSWP08WCBfDoo9CxI1x6aeg0UkpJo+8UkvaqejMozo8/tunz9GtqVrTa7WHw2NjM5FVjYOtCqFI7dKrE27oYFv4Dlr0Im2dAg/5w4oehUyVWcWHs4owNE2HzbMiuF1vGXJIkqYzmbZjHh8s+5MNlH/L4lMcBmP/j+bTLbRc4mRLhiCZHkHdTHl+s/4LJKyezYssKqmZVDR1LkqTys2sXTJsG06fDZZeFTlO5ffopfPhh7HbPPVCvHsybB/Xrh06WWJ98ArfeCqNHx8adOsEll0AkEjaXlEJsJEuKyciCOl1gw6TSYxun2UiuKFVyoOVZoVNUnM2zYMYdpeN1H8H2FVCjWbhMiVa7HfT7R+z+ri2wdZFFqyRJ2i/jF4+PGzet1ZS29dLzwrT5G+bz9PSnaVyrMVcdeVXoOAmTmZHJ4Q0P5/CGh4eOIklS+Vm1Cs45Bz77DHbujB0bNgwaNQqbqzJ7/fX4cdOmlb+JDLB9e2kTGWDWrFgz/ZhjwmWSUkxG6ACSkki97rGv2fWg0UCo1jhoHFViTQbHmue7W55G+ytWqQ31uoVOIUmSUsz4JfGN5AGtBxBJswvT3l30Ln0e7UOH+ztw67hbuffje4lGo6FjSZKk/dGgAUyZUtpEBpgwIVyedDByZPz4tNPC5KhogwZBhw7xxx5+OEyWirB+PVgbq5zZSJZUqvMtcMZSOHs9nPAutLkgdCJVVplVofluBWu1JhAtDpdHkiSVm1VbV5GXnxc6RqV00zE38eeT/syZHc8kt3ouA1oNCB2pwlXNqsrEFRNLxnPXz2XqqqnhAkmSpP2XlQW9e8cfs5GcWA89BLfcAj17xsbDhoXNU1EiEbjqq9Vr6tWDn/0Mfv3roJESauDA2H/nwIHw85/DnDmhE6kScGlrSaVqtQ6dQOmkzSVQtQG0PAca9IOMzNCJJEnSAbrvk/sYvXA0U1ZOYeXWlfzrzH9xUfeLQseqdLo06kKXRl34Wd+fURwtprC4MHSkCtevRT9a123N4k2LS449PeNpejTtES6UJEnaf337wvivVls57DCoUydsnsquX7/Y7be/hZUroWHD0IkqzqWXxpZN/973oHr10GkSJz8fZs+GoqLYv63x4+Hss0OnUiXgjGRJUhhNh8CR90GjY2wiS5KU4sYtHsfIeSNZuXUlAJNXTg6cqPLLiGSQnZkdOkaFi0QifL/z9wFoWKMhP+z9Q87tfG7gVJIkab9dcgm8+WZsKd45c+CGG0InSh9Nm8ZmhaeLBg3g4osrdxMZSpvIu+vm1no6eGn03UKSksi6T2DOfdD0RGgyBGq2DJ1IkiTpgPVo0oNX575aMp6yakrANKrsrjryKga1GcTxbY4nK6NyfqwxbvE4sjOz6d64OzWza4aOI0lS+Tv88NhNUvmYMSN+3Lo15OQEiaLKpXL+xiVJye7L/8LSZ2M3gJZnw7EvhM2kxPngXKjaKLaEd8N+ULNNbI8WSZIqiZ5Ne8aN522YRzQaJeLPOyVAm3ptaFOvTegYCXXj6BuZuGIiESIc1uAw/jTkT5x66KmhY0mSJClZnX8+9O8P06fHbtnpt3qREsNGsiSFsPLt+HHt9mFyKPEKNsHS52P35z0Y+3riJ9DgqGCRJEkqb72b9+aG/jfQo0kPejbtSfvc9jaRpQO0q2gXn6/+HIAoUeasm0P1rEq+FKMkSZIOTkYGtG0bu51xRug0qkRsJEv6tp1rYdM02DgNti6A3n8LnahyyV8PGybFH2tyYpgsSrx1E+LHGdlQ74ggUSRJSpQmtZrwxyF/DB2j0tqwYwO1s2tTJbNK6CiqAHPWzSG/KD/uWI+mPQKlkSRJKW36dOjcOdZkVKloFD76CLZtgxP9XFbaG797SIq3ZQG81AjGDoEpv4R5D8GOVaFTVS4Z2XDUo3DIuZBdDzKrQ8OjQ6cKKxqFjVNh2v/AyCNgV17oROVn3cfx49wjIbNqmCySJCkl3TTmJur+oS5DnhzC7977HTPWzNj3k5SyNudvpkujLmREYh/ZtKrTitzquYFTSZKklLN4MXTrBs2awWWXwfPPw65doVOFtX493HtvrLl+zDHw85/HPpeUtEfOSJYUr1YbyKwBRdtLj22cBtWbhMtU2VSpDe1+ELsVF8HW+endWCwuhJHdIG926bEv34DW54XLVJ5aDofMarGG8rqPoEH/0IkkSVKKGb9kPNt3bWfMwjGMWTiG6lnV6dKoS+hYSSUajTJ11VQ6NuhI9SqpvQz0MYccw/Rrp7N913amr57Oxp0bQ0eSJClxolFYtgw++SR2u+ACOPLI0KkqhzffjH1dvRr+8Q/473/hrLOCRgpu2jS4/vrS8axZsb93/fqFyyQlORvJkuJFMqBuV1i/23K8m6ZBs5PCZarMMjIh57DQKcLKyIKareMbycteqDyN5HrdYzeI/XJUtDNsHkmSlFJWbV3FF+u/iDs2oPWAQGmSz7z183h6xtM8PeNp5qybw3PnPMf3On8vdKxyUaNKDY5qcVToGJIkJdbQofDWW6Xjhg1tJJeXkSPjxyefDJmZYbIki4EDoV07WLCg9Nijj9pIlvbCpa0lfVu97rEZlLm9Y7Nm3c9ViXbIOfHjFW9C4bYwWRIpEoGs1J4hI0mSKtbklZPjxrWza3NEkyPChElC17xxDbeNu4056+YA8PSMpwMnkiRJ+6V9+/jxJ5+EyVHZRKOwfHn8saFDw2RJJhkZ8IMflI7bt4cjjggWp9zMnw8bXcVGieGMZEnf1uNP0OtvsdmyUkVocQZ8ehXUaBlrKrc8O7Z3tCRJSklb8rcwbfU0mtVuRtt6bUPHSWlDOwxl7Q1reX/J+4xfMp5oNEpWhr/Kf+38LuczdtHYkvHIeSPZvHMzdarVCZhKkiSVWd++8MADpeMJE2JN0EgkXKbKIBKBKVNiDcY334zNTj7xxNCpksOll8LMmXDFFTBgQOX4u3bRRbGLMJo3h65d4aabYv9tUjmIRKPuJL67vLw86tSpw+bNm8nJyQkdR5LSR948qN2+chRv0kGwFkk9njOp1J3v3cmTnz/JF+u/IEqU2wbcxu0Dbw8dS5XYxh0baXx3Y3YV7wKgVZ1WvHjuixzZzCUxlT6sRVKT5036yoIFsVmhublw1FGxxvJNN0F2duhkUmooLoacHNi22+qOb74ZW8pc2ouy1iJexixJFaW4EIoLIKtG6CTJKadD6ASSJOkgbdixgbnr55aMv7kss1Te6lWvxyXdL6FaVjXO73o+fVv0JeKFiZIkpY62beGLL2LNZH+GS/tv8eL4JjJAt25BoqhyspEsSRVl3ccwdjA06AeNB0OTwdDw6NCplChFBRDJAJeelCSlkZ5Ne8aNbSSrIjx6+qOhI5SbhyY+RM3smvRs2pOODTq6jLkkqfKLRKCDkwukA7Z4cWwGf0FBbJybC02bBo2kysXfSCSpoqx6B4p3wZr3YrflL8MpU0KnUqIseym273PDo6HRcbGLBxr0CZ1KkqSE2r2RnBnJJLd6LtsKtlEzu2bAVFJqiEaj3DruVtZtXwdAtaxqvH7e65zQ9oTAySRJkpS0jj8etm6FefPg889hyxZn96tc2UiWpIqyemz8uPHxYXKoYqx9Dwq3wMq3Yrdmw2Dgf0OnkiQpoQ6tfygPD3uYnk170rVxV6plVQsdSUoZy/OWlzSRAXYW7qRtvbYBE0mSJKWRggJYtQoOOSR0kv1XpQp06hS7SeUsI3QASUmqKB/WfgTzHoZPr4V3T4FoNHSq1FWUDxsmxR9rPDhMllQRjcL6SbB5TugkB2bN+Phxo+PC5JAkqQJlZmRyda+r6d28t03kg5SXn8czM55h5ZaVoaOogkxZFb9aUZ2qdWhTt02gNJIkKSVt2wY//Sm8+Sbs2BE6TWqYMwd++Uto3hwuvDB0GinpOCNZ0nfb8SWM/sb+vTtWQo1mYfKkusyqcNaq2JLWq8bCmnHQ6NjQqZLTxmmw6F+w7EXYtgTaXQFHpdi+d/kbYPOs+GONBoTJIkmSUtL7S97nvBfPA6B9bntOancSDwx9IHAqJVKdqnU4s+OZTF45maWbl9KjaQ8iLksoSZL2x7vvwl//GrtVqwYnnggvvwwZzin8TmPHwuDdJvu8/z7MnQuHHRYuk5RkbCRL+m41W0NWLSjcWnps0zQbyQejSg40PzV2056tGg1z7i0dL38Fej8EGSn0I6tqLgxfFVvees17sP5TyO257+dJkiR9ZfyS0tVN5m+YT7Pa1uFlEY1GmbJqCk9Pf5pZ62bxxvlvhI5UZgNaD2BA69jFh+u3r2fDjg2BE0mSVIG2boWJE+GTT2K3Qw6B++8PnSr1jBxZen/nTti82Sby3hxzDDRsCGvXlh577DH405/CZZKSTAp9Ki+pQkUyoG43WPdR6bGN06DZKeEyKT20PBum3FA6zl8Ha9+HxoPCZToQ1RvDId+L3SRJkvbT7o1kgAGtXN1kX5ZtXsYJT57AF+u/KDk2c81MOjfqHDDVgalfoz71a9QPHUOSpIrz1FNw9dWl4zZtbCTvr2g0vpEMMHRomCypIjsbLrkE7r679NiiReHySEnIS1Ek7VnukVCnE7Q6D474X2h6UuhESge12kC9HruN28OuvHB5JEmSKlhxtJhmtZuRUzWn5NhxrY4LmCg1NM9pzraCbXHHnp7xdKA0kiRpvxx1VPx40aL4WaLat1274Kqr4OijS2ch20jetx/8ABo1ghtuiO2X/MILoROVTWEhnHce/Oc/sb2xpQSJRKPRaOgQySQvL486deqwefNmcnJy9v0EqTKLRsE9uRTCgr/H9kdueTbU7erfQ6UVa5HU4zmTvtuuol3MXjebySsn06pOKwa1SbHVRZJAUXER01ZP470l73FlzyupmV0zdKSkd/2o67n3k9JtUtrWa8v8H893r2FVatYiqcnzJn1DYSHUqQPbt5ce++9/YdiwcJlS2YYNsf2SzzrLz9XKorAQslJsAd/XX4fTT4/dr1kTzjwT/v732CxrqQzKWouk2L8MSRXKIkOhtLs8dAJJknQQfjv+t9z5/p3kF+UDcGG3C20kH4DMjEx6Nu1Jz6Y9Q0dJGed1PY97P7mX1nVbc16X8zivy3k2kSVJSgVZWdCvH+TlQZ8+sRnKvXqFTpW6cnPh7LNDp0gdqdZEhljT+GvbtsGCBTaRlRAp+K9DklLMkuegfh+o1Tp0EkmSpApRv0b9kiYywOSVkwOmUTo5sumRfHrFp/Rq1itlGsjrtq8jt3ouGRF3H5MkpbnRo53YIpXFmjWxGfu7u9yJOUoMf0uRpETasRI+HAGvtYHX2sGEK6FgU+hUSqSlz8P2L0OnkCQpqG/OoJ2zbs639q6VEiESidC7ee+UaSIDXPbqZbT8c0t+9tbP+HjZx7gDmSQpbaXQz28pqLp14ZlnYntgZ2RA9eowYkToVKqkbCRLUiKtGlt6f+vCWJMxq1a4PEqsbUvgg3PhlRbwRmeY9FPYtTV0KkmSKly3xt1KZle2rtuaMzueyeb8zYFTScln446NjJo/ihVbVvCXCX+h/9/78+zMZ0PHkiRJEkCyXuCXnR1buvyNN2Dp0lhTeS973EoHw6WtJSmRVo+NHzcaABl+6620Vo4uvb95FuxcA0f+OVweSZICqVGlBu9f9j4dG3Qkt3pu6DhS0nplzivsKt5VMs7OzOaU9qcETCRJklJScXFsZqoOXjQK48bBY4/F/r8+/XToRHvXvHnsJiWI3QxJe1ewGb58DTZOg03TYNtSOHWOS82UVZUcqNoA8tfFxk0Gh82TioqLYN2HsPRF2DQVBo9L3r9/q0bHjxsPBve6kySlqf4t+4eOkJJuHnMzdavVZUDrARzZ9EiqZFYJHUkJ9OmXn8aNT2l/CnWq1QmURpIkpaRly6BHDxgyBE46CU48EZo1C50qNU2bBuecA/Pnx8aZmXDvvdC0adhcUkA2kiXtXcFG+Pji+GPbl0PNlmHypJoj/ww974FNM2D1O9BsWOhEqWX7cnirF+xcXXps3cfQMEk/mK6SA1XqwK6vlu5sOiRsHkmSlFLyC/O5b8J97CzcCcRmdo++aLRN+YNUHC3m/SXvk1M1hx5Ne4SOE+ehUx/iJ0f9hGdnPsuzM59lRGf3tpMkKc7OnVCtWugUye3tt2H9+tjyxs88A7m5sHatM5QPRJs2sGJF6bioCP71L/jVr8JlkgLzO4mkvavZKtYY292maWGypKpIBtTrBh1/DrXbhU6TWqo3jzVnd7foyTBZyuKoR+HsdXDiJ9Dtt9D0pNCJJElSCpm4YmJJExlgx64dHN7g8ICJUtustbP45du/pNV9rRj4z4H84cM/hI70nQ5veDi3D7ydWdfNYkQXG8mSpDS3ZQs8+ihccQV06xZriubnh06V3EaNih8PHmwT+UDl5MCIb9Rj//53mCxSkvC7iaS9i0Sgbrf4YxttJKuCRCLQ5hsz4pc+B7vtI5d0MrKgwVHQ5Rao0SJ0GkmSlELGLx4fN+7WuBv1qtcLlCb1jV88nns+voflecsBeG3ua2wt2Bo41Z5FIhEy3BZFkpTuiovhqqvg8cdh+nTYsQM+/zx0quRVVARjxsQfO/nkMFkqix/8IPa1c+fYstZjx4bNs7tRo2DdutAplGb8DUXSvjUZAs1Phy7/A8e8AG0vDZ1I6aT1hbGvOR2h++/hlCmQ4V6BkiSp8jnmkGO4rtd1dG7YGYABrQYETpTazul0DpmRzJLxjsIdvDb3tYCJJEnSPtWpAx07xh+bMCFMllSQmQlTpsAjj8BZZ8X+/514YuhUqa1/f/jss9iFDD//OTRsGDpRzObNcMYZsf2aTz0VnnoqdqGFlGDukSxp37r+T+gESme1WsOwmZBzeGyGsiRJShnRaJRlecuYtGISk1ZMok7VOvzqGPcX25MBrQcwoHWsebx221p2JfMqLCmgYc2GDGk3hLfmvwVAl0ZdyM7MDpxKkiTt01FHwZw5peNPPw2XJRW0ahWbxX3VVVBYCFm2fQ5KJAI9e4ZO8W0vv1y6zPsbb8T2xj75ZKhePWwuVXp+R5EkJb86nUInkCRJB+DvU/7OFa9fUTI+rP5hNpLLqGHNJJn5kOKu7XUtPZv05Lyu59GlUZfQcSRJUlmcdFKsYXbUUdCnD/ToETpR6rCJXHk99VT8+JRTYnuISwnmdxVJSoS5D0BhHjQ8Dur3hsyqoRNJkiRVuO5NuseN566fy+adm6lTrU6gREo3px92OqcfdnroGHG+zPuSO8bfwbmdz2Vg64FkZfjRjCRJcc47L3aTFFNcHFtiu3r10uWszz8/bCalDfdIlqREmPc3mPZrGHMsPF8HFj8dOpESpagAxgyA6XfAhs8gGg2dSJKkpNG1UVeqZFSJOzZ55eRAaaTk8Pys53l08qMMeXIIze9tzk1jbgodSZIkScksIwP+8x9YvRqefDK2V/Jpp4VOpTThZa+SVN52roG82aXj4nyo1S5cHiXWmvGw5r3YbfrtUKMFnDoXsmqETiZJUnBVs6rSrXE3FmxcQK9mvejVtBfNajcLHUsK6tmZz5bcX7NtDSu3rgyYRpIkSfu0cye88kpsNvBll4XLUbs2XHhh7CZVEBvJkg5MwUbIrhc6RXJa+0H8OKsm5LqXS7kqyodlL8POVdDxZ2GzLHshfly9mU1kSZJ2M+rCUeRWzyUSiYSOkrSi0aj/f9LEkk1L+GT5J3HHRnQeESiNJElKWdEovPkmHHtsrLmoxFi8GO6+OzYbeNMmaNIELrrIvaiVVlzaWlLZFGyGGb+D94bDK4fAiw2gcFvoVMmpVls49MdQtzsQgQb94RtLOuoA7VgNU34Fr7SEj86Dz2+BXXnh8hQXwrKX4o+1PCtMFkl7VVBQwJNPPsnQoUNp1aoV1apVo2nTpvTv35+7776bdevWhY4oVVr1a9S3SboPf53wVzr/rTPX/vdanpnxDCu3OEM10QqLC4O8b83smvzhhD/Qs2lPAHKr53JC2xOCZJG0d9aPkpLarFkwbBjUrw8DB8Jdd0FBQehUlc+2bfDgg7EmMsCqVfDWW0EjSRUtEo26mePu8vLyqFOnDps3byYnJyd0HCl5FG6H52tDtLj02JAPoOHR4TKlgoJNkL8OarcPnaRy2L4cXm0V//ew90PQ4ZoweaJRWD8Rlj0PS5+HbUvg9AWxiwmkA2QtUv7mzJnD+eefz5QpU/b4mEaNGvHEE08wdOjQ/X59z5mkgzX82eG8MueVkvEPevyAx05/LFygSqo4Wsx7S97j6elP8+LsF/n4Bx/ToX6HYHnmrZ/HF+u/YNihw4JlUOVgLVL+El0/gudN2i9FRTB7NrRoAXXrhk6THO69F66/vnTcsiUsWQJewFn++vaFCRNKx8OHw0sv7fnxUoooay2ScjOSvRpQCiSrBuR0ij+2YXKYLKkku65N5PJUowU0OzX+2PxHYg3dECIRaNAHevwJTl8EQz+3iSwlmeXLlzN48OCSDwEjkQgDBgzgBz/4AaeddhrVq1cHYM2aNZx55pm88847IeNKSkNfNzd3d1yr4wKlqdz6PNqHQf8cxP9N/j/W71jP0zOeDpqnQ/0ONpGlJGT9KCWR//1fGDQo1jzu2hVGjQqdKHl88//FSSfZRE6Uyy8vvT94MIxwWxKll5RqJM+ZM4e+ffty8cUX8+abb7J06VLy8/NZtWoVH3/8MTfccAOdO3dm5MiRoaNKlVPukfHjjVODxFCaa3916f1GA+DwG4EkWFwjEoG6XUOnkPQNF1xwAStWrACgVatWTJ06lXHjxvHYY4/x2muvsXTpUgYPHgzArl27OPfcc9n09ZJVklQBZq2dxYYdG+KODWg1IFCayq1fi35x46emP4WLtEn6JutHKYm8/z6MGwdbt8bGn34aNE7SiEYhMxOq7LaV3kknhctT2X3/+3DbbbBoEYwZU7GN5McegxNPhEcegdWrK+59pd2kTCPZqwGlJNDidDj0J9D3nzB0OvR5JHQipaOmJ0GXW2HYbDhhHLQ+DyIp8+NMUgUaOXIk770Xm+WXnZ3N66+/Trdu3eIe06BBA1599VXato2tJrBhwwb++Mc/VnhWSenrsPqH8ckPPuEPJ/yBoR2G0q1xN1rVbRU6VqV0ftfz48aZGZnk5ecFSiMpGVk/SkmmT5/48e7LC6ezSARGjoT16+G11+CHP4zNlFVi5OTA7bdD69YV/97PPAOjR8M110DTpvCb31R8BqW9lNkjecCAASWFXKtWrXjttdfiCrl169bx/e9/v6SBnJuby4IFC6i7n3smuD+JJEkKyVqk/AwbNqxkpZorr7yS//u//9vjY//zn/9w4YUXArE6cvXq1WRlZZXpfTxn0r5t37WdT5Z/wmcrPmPSykms3LKS9y57b99PTEPRaJSIyxImRDQapd1f27Fu+zruGHgHP+rzI6pkVtn3E6UkZy1SfiqqfgTPm1Qmb70Fp5xSOu7YEWbNcglnpYf166Fx49ge4V974QU4++xwmVSpVKo9kr0aUJIkSftj69atcSvUXHbZZXt9/DnnnEPt2rWBWB35de0pqXws3LiQwf8azI1jbuS5mc/x/tL3WbNtTehYSckmcuJEIhH+fsbfmfujufy8388rtIk8f8N8CooKKuz9JO0/60cpCfXpA7/+Nbz6KqxcCbNn20RW+nj11fgmcvXqcPLJ4fIobaVEI/nBBx8suX/JJZfQtet370FZs2ZNfrPb1P5HHnmEwsLChOeTJABWj4P/doQJV8Gif8O2paETKVFWj4NVYyFaHDqJpD346KOPyM/PB2I1Yu/evff6+KpVq9K3b9+S8dixYxOaT0o3HRt0pEaVGnHHPlvxWaA0SmcDWw+kae2mFfqe0WiU058+ncZ3N+byVy9n1PxR7CraVaEZJO2b9aOUhHJz4Xe/g9NPhyZNQqeRKtaIEfD887GvtWrFZufXrBk6ldJQ0jeSvRpQUspYMx7y5sKCR+Hji+B9lxmptD6/BcYOhlfbwLT/8aIBKQnNnj275H7Xrl3LtMxgz549v/P5kg5eVkYWPZr0iDs2acWkQGmkijVjzQxmr5vNpp2beGLqE5z8n5P59MtPQ8eS9A3Wj5Kk/bJuXWyp9USpWRPOOSe2T/KaNfDXvybuvaS9SPpGslcDSkoZa96PHzc6LkyOdLV1IXz2CyjKT+z7bJoBaz+M3d++FGb+DjZMTux7Stpvc+fOLbnfqlWrMj3nkEMOKbk/Z86ccs8kpbv+LfvTq1kvrjnyGh477THO73p+6EhShXh25rNx4xY5LejXsl+gNJL2xPpRkrRPRUXw5pvwve9Bs2Zw3XUV877Vq0Pz5hXzXtI37PvSusAO9GrA0aNHf+v5kspZ4XbYOA1ye0Jm1dBpwioqgHUfxR+zkVwxti6ONXMX/hOihVC7PRyawCLuiwfix1UbQrOhiXs/SQdk/fr1JfcbN25cpuc02W2ptA0bNpR7Jind/XHIH0NHSCrRaJRpq6fRtVFXMjMyQ8dJe1vyt/DwpIf5Wd+flfveyUs3x69ec26nc8mIJP11/VLaSXT9mJ+fXzJZBiAvL28/E0pKe8XFcMUV0K8fDBkCrVuHTpR+Xn0Vzt5tFcrx42H+fGjfPlwmKcGS/jcXrwaUkkw0Cp/8AN7oCs/XhtH9YePU0KnCy8iCE96DHvdAizOgan1oeEzoVOnh0ythweOxJjLAzN9D0c7EvV/j4yF3t9Ux2l8FmdmJez9JB2Tr1q0l96tXr16m5+z+uN2f/035+fnk5eXF3SRpfy3atIgej/Qg94+5DHtqGH/88I/kFyZ4ZRV9SzQa5enpT9PxwY7cOOZGHpz4YLm/x7+G/4ulP1vKPSfeQ5/mfRjRZUS5v4ekg5fI+hHgrrvuok6dOiW3li1bHlhQSenr88/hiSfgqqugTRvo0AE2bQqdKr0MGwb168cf+8c/gkSRKkrSN5KdTSIlmUgE1n0Mm2dAtDh2bIP72xHJgPq94PBfwHGvwFlrY81kJV7nW+LHO76E+Y8l7v1anQsnfwonToDWF0GHaxL3XpIO2M6dpReUZGeX7WKPqlVLV9fYsWPHHh/nh4CSysP4xeMByMvPY+S8kdzz8T1ke3Fahfvxmz/m/JfOZ8WWFQDcNu42Vm1dVe7v07JOS37R7xdMuGICfZr3KffXl3TwElk/Atx8881s3ry55LZs2bIDCyqls5UrYzNCx48PnSSMr1ZhLRGNQt26QaKkrapV4cIL48f7+P4vpbqkbyQn+mpAZ5RIByC3V/x4/adhciSzSCR0gvTReAA0HhS7n1kdOl4fa/YmWoM+0P9fUKNF4t9L0n6rVq1ayf2CgoIyPWf3pQb3Vnf6IaCk8jB+SfwHoMe1Oo6INWSF++Ze3Xn5edz8zs2B0kgKKZH1I8Sazjk5OXE3SWX0+ONwyCGxPWnPPBPuuy90ojC+2Ug+4YQwOdLd5ZfDkUfC3/4Wu7jhnnvK9/WnTIG1a8v3NaWDkPSN5ERfDeiMEukA1N/tCvpIJhRuC5dFAuj2Wzjs53D6Quh5N1RrFDqRpMBq1apVcn9f9eB3PW7353+THwJKKg9fbvkybnzcIccFSpLe+rfszyXdLykZn9TuJG4+xkaylI4SWT9KOkjZ2bD7Bbyfpumklosvhu9/Hxo0iI2HDAmbJ1116waTJsG110K9euX/+pdcAo0bw9FHw//+L3z55b6fIyVQVugA+5LoqwFvvvlmfvGLX5SM8/LybCZL+9L0pNhewPX7QG5PyKoROpHSXcOjYzdJ+kr93fYsWr16dZmes2pV6VKmubm55Z5J0rdt37WdalnVyIgk/TXO5W70RaNZuWUl7y15j/FLxjOknR8EhvKHE/7A1FVTuX3g7Zxx2BnlMjO8OFqcln+vpVRm/SglsT7f2BZixQpYvhxapNkqcRdeGLsVF8O0adC+fehEKm9LlsD06bH7H30Uux1zDDRvHjaX0lrSN5ITfTVg1apV42YwSyqDnA6Q84t9P06SpEAOO+ywkvtLliwp03OWLl1acr9jx47lnklSrLn2j6n/4NMvP2XClxOYvno606+dzuENDw8dLYimtZsyossIRnQZETpKWmtcqzFTrp5SbkuLb9yxkWFPDeNXR/+KMzqeUS6vKSnxrB+lJNahA9SpA5s3Q61a0Lt37H66NZK/lpEBPXqETqFEeP31+HH9+tCvX5gs0leS/vJYrwaUlPS2LIDiwtAplCj5G+DjS2LnWVLKOPzw0qbU9OnTKSzc9/fpyZMnf+fzJZWfjEgGt427jUc+e4Spq6ZSFC1iwpcTQseSyq2JvGnnJk7894l8vPxjznn+HF6a/VK5vK6kxLN+lJJYRgY8/TTMmAGbNsHYsdC5c+hUUvnbtAlq1iwdDx0KmZnB4kiQAo1krwaUlNSiUXi7H7xQF8aeBDN+BztWhk6l3e1cBzvXHPjzP78VFv0L3ugEU26Egs3ll01SwvTv379k1Zlt27YxadKkvT4+Pz+fTz75pGR8/PHHJzSflM76NI9fmvDTL9N0jztVOlsLtnLyv09m0orYz5zC4kLOff5cXpnzSthgksrE+lFKcqecEmse21RTMivDRUh7dcstsG4dvPkmXHcdnH9++eSSDkLSN5K9GlBSUtvyBeSvhcJtsOpt+Px/oKhsy/CrAix7GUZ2hg9GHNis8dXjYd6DsfvFBTD7TzDZZd2lVFCrVi0GDx5cMv7HP/6x18e/9NJLbNmyBYB69epx3HHHJTKelNaOan5U3HjiiomBkkhls61gW5keV6NKDbo26hp3rHGtxnRp1CURsSSVM+tHSdIB2boVnngCjj0Wfvazg3+9atXg5JPhwQdjX6XAkr6R7NWAkpLamvfix9WbQc02YbKoVP4G+PA8eP+s2GzkNeNg6k37/zpz74sfZ1aDLreUR0JJFeC6664ruf/EE08wc+bM73zc9u3bufXWW0vGV199NVlZWQnPJ6WrAa0GcE6nc/jTkD8x/tLxjLtkXOhI0ndatnkZ5z5/LgP/OZCi4qJ9Pj4jksEjpz3C1UdeDUDTWk1595J3aZ/bPsFJJZUX60dJSWnXrtAJtCevvQZNmsDll8MHH8B//gM7d+77eUVFMGpU4vNJ5SDpG8leDSgluWgxbJoJC56A9Wk4m2TLF/HjRsdBOe2vpoMQLYa1H8Qfm3PPtxv/+3L0s9DlfyDy1bJJ3e+CWl4oIKWKYcOGceyxxwJQUFDAqaeeyvTp0+Mes379es4880zmz58PQG5uLr/61a8qPKuUTo5qcRTPf+95ftn/lxzX6jhqZtfc95MqkRdmvcBLs19i7ba1oaNoDwqKCrjr/bvo+GBHnp/1PJNWTOLxKY+X6bkZkQweGvYQvz7214y9ZCyH1j80wWkllSfrR0lJJxqFTp3gmGPg9tvhww9tLCeTbt1g226r12zaBK++uvfnrFoFJ54Ym238yiuJTCeVi0g0Go2GDrEvb7zxBqeeeioA2dnZTJ48mc6dO3/rcdu3b6d79+4lhdxNN93EXXfdtV/vlZeXR506ddi8eTM5OTkHH16qzKb9GubeD4Wxizc47Gdw5J+DRgpi55pY03LNe9DwWDjk7NCJBLBuAow5LrYkNUDnX0O33x5Yo3/9JJj/MPT5P4gk/TVYSnHWIuVr+fLl9OnTh5UrY/vXZ2RkMGDAANq2bcvatWsZM2YM27dvByArK4u33nor7iLGsvCcSdofXf7WhZlrYzPcOjXsxJ9P+jMntjsxcCrtrqCogO4Pd2fOujklx3Kr5/LFj76gfo36AZNJ381apHxVRP0InjdJZTR/PnToEH/s88+ha9fvfrwq3uDBMHZs6ficc+D557/7sZ9/DsOGwfLlsXG9ejB1KhxySMJjSt9U1lokJT4N92pAKUllVC1tIgOsnxAuS0jVGkHLs+DI+2wiJ5MGR0Gvr/Y37n4ndP/dgc8Wr98LjnrMJrKUglq0aMHYsWM54ogjACguLubdd9/l8ccf57XXXiv5ELBhw4a88sorB/QhoCSV1brt60qayACz1s6idnbtgIn0XbIzs7n/lPu/dXz3c7ezcCeFxYUVGUtSBbF+lJLc9u2xWbn33gs33hg6TeKNHh0/btwYunQJk0Xf7bLLICMDTj0VXnwxtrz1njz7bGkTGWDjRrjwwtjMcylJpczmHU899VTJ1YCLFy/miCOO2OvVgM899xx169YNG1qq7OofFT/eMBmKCiAzO0we6ZvaXwH1jog1gvdk9btQlA95c+Gwn7g0uVQJdezYkQkTJvDMM8/w9NNPM3PmTFavXk3dunVp27Ytw4cP5/LLL6dBgwaho0qq5N5f8n7cuEaVGvRqtpc6RcGc0PYEzul0Di/OepGrjryKO4+/s2Q28s7CnQx/djh1q9XlyeFPkpWRMh+tSCoj60cpSU2eDH36xPaXhVjz7rbboGYl3irlnXfixyec4GdXyebss2Ozkps23fdjf/tbmDMHXnopNm7RAn7/e8+pklpKLG39tTlz5nDeeecxderUPT6mYcOGPPHEEwwbNuyA3sNlZaT9ULARXsiN3a/RMtZY7v1gbIaulAp2roOXGpaOj3sVWpweLo+EtUgq8pxJKqvRC0bzp4/+xIfLPmT7ru2c0PYERl80et9PVBDLNi9j9bbVcc3+/MJ8zn7ubN6Y9wYA53Q6h6fOeooqmVVCxZSsRVKU5006ANu3Q05OaSMZ4L334KvVTCulbdvg/fdjM5PHjIHrr4eLLw6dSgdj+3YYNAiqVIntkexFSQqkrLVISl0269WAUpLJrgcD34J63aB6Ga64kpLNuo/jx1NvhGanQIYfBEqSVFGKo8V8sf4LamXXokVOi9BxEmpIuyEMaTeEXUW7mLxyMkXRon0/ScG0rNOSlnVaxh27+JWLS5rIAC/MeoFa2bV44ownKjqeJEnpp0aN2N7Au080mzChcjeSa9aEk0+O3cAlkCuDGjXgjTegVi2oVi10GmmfUqqRDJCdnc3FF1/MxV51IyWHZieFTiAduHUfxo/z5sL8R+HQ68LkkSQpjTw++XGemfkME7+cyOb8zdw24DZuH3h76FgVokpmFY5qcdS+H6ikc0WPK3ht7mvsLNwJQE7VHK7tdW3gVJIkpZE+feDzz2P7BPfpAz16hE5UsVwCuXJwMqRSSMo1kiUpKWyYAlvnQ8NjoXqT0Gl0oAo2QbXGEC2GWm2g0YDYTZIkJdzsdbMZs3BMyfjTLz8NmEYqmyHthvDG+W9w2tOnkRnJZNSFo+jTvE/oWJIkpY/f/AbuuSc2m1NKVmPGxPb0vuEGm/9KeTaSJelALHwCvrg/dr/2odDhOuj407CZtP/6PBy7SZKkCvfN5tunX35KNBol4gctSnLHtzmekeePJCsji74t+oaOI0lSemncOHQCae8++wyGDIndf/hhmD8fMjLCZpIOgn97JelArHmv9P6WL6BoW7gskiRJKeio5vFLO1fLqsaabWsCpZH2z4DWAzj6kKNDx5AkSVIy+fBDuPTS0vGiRXD++VBQECySdLCckSxJ+6tgE2z6PP5Yw+OCRJEkSUpVh9Q5hNsG3Eb3xt3p07wPzXOah44kSZIkJYePPoJGjaBdO5dGTiWrV8OMGfHHolHIshWn1OWMZEnlI38DfPlfmHoTfHJZ6DSJlb8emp4EWbVj44yqUL932EySJEkpJhKJcPvA2xl++PBK30R+Zc4rDHlyCHd/dDcz1swgGo2GjiRJkqRkdtVV0KEDtG0buz9zZuhEKotTT4Vu3UrHJ5wA//qXS1srpXkZhKSDt34ijNptj7tIBvS8D7LrBIuUULXbwaA3obgwNjN5yzzIrBo6lSRJkpLU63NfZ8zCMYxZOIYbRt/ABV0v4N9n/Tt0LEmSJCWjFStKG8eLF8Ojj8JllXziTmWRnQ3vvBNrHtepA5dc4mxkpTz/Bks6eHW7QkY2FH+110O0GNZ9As1OCpsr0TKyILdn7CZJkiR9h2g0ylsL3oo71ruZq9lIkiQdsGgUZs+GiRNjt08/haeegvbtQycrH++8Ez+uUwd6Wz+mjAYN4Be/CJ1CKjc2kiUdvMxqkNsL1n1Uemzdh5W/kSxJkiTtw8y1M1mxZUXcsZPbnxwojSRJUiVx/PGx/Wi/9umnlaeRvH07NG5c+t83aJCzWiUF48LskspHw6NjDeVGA6Dzr6HZsNCJJEmSpODa1G3DS+e+xNVHXk2rOq1oVacVh9Y/NHQsSZKk1BWJfHuG7sSJYbIkwtVXw8qVMG0a3HMPXHFF6ESS0piXsUgqH51/Dd1+B5nZoZNIkiQpBa3dtpaPln3E2u1ruaJn5fmwrGZ2TYYfPpzhhw8nGo2ybvs6IpFI6FiSJEmprU8f+O9/S8eVqZEMsWZ5t26xmyQFZCNZUvnIrhM6gSRJklLQpBWTuOClC/hi/RcA1Klah8uOuIzMjMzAycpfJBKhYc2GoWNIkiSlvt69oUWL2NfevaF//9CJJKlSspEsSWVVtBM+/D40ODq2hHduD8ioEjqVJElSSmtWu1lJExlgc/5mZq6dSbfGzr6QJEnSHpx0EixbFjqFJFV67pEsSWW1/lNY/ipMvRHePgpebACFO0KnkiRJSmnNajejdd3WccfeW/JemDCSJElKDW4VIkkVwkayJJXV6vHx41rtIKt6mCySJEmVyHGtjgOgRpUanNjuRJrXbh44kSRJkiRJcmlrSYkTLYbiAsisFjpJ+Vj7jZkxjQaEySFJklTJXN/veq7tdS1HNj2SKpmVY+uQzTs3s7VgK81zbIpLkiSpDJ5+GubMgcGDoW9fyM4OnUiSnJEsqZxtWQDzHoIPzoWXGsPse0InKj8droP210DO4bFxo+PC5pEkSaokujXuRt8WfStNExng2ZnP0uLPLej6UFd++fYveX/J+6EjSZIkKZk98QT85jcwYADUqwf33x86kSQ5I1lSOZv7V/jir6Xj1e9Cl1+Hy1OeWg6P3QB2roGsWmHzSJIkKWmNWjAKgBlrZjBjzQxWbFnBsa2ODZxKkiSpEotGobAQqqTgxYn5+fDBB6Xj7duhWbNweSTpK85IllS+Gg+KH6/7EIryw2RJpGqNIKtG6BSSJElKQruKdjFm4Zi4Yye1OylQGkmSpEps/Hi49VY4+WRo2BD+9rfQiQ7Mxx/Djh2l40gEBg3a8+MlqYI4I1lS+Wo8AIgA0di4aCds+Awa9g+ZSpIkSaowCzcuJCMSf932ie1ODJRGkiSpEvvnP2NLQn9t4sRwWQ5G06Zw/fUwdixMnQo9ekBubuhUkmQjWVI5y64HzYbFvjYeFLvVah06lSRJklRhDmtwGGtvWMvELycyasEoFm1aRNPaTUPHkiRJqnx6945vJH/6abgsB+Oww+Duu2P316+HFSvC5pGkr9hIllT+Br4eOoEkSZJSUFFxEdNWT2Pc4nGMXzKecw4/h4u6XxQ61gHJysiiX8t+9GvZL3QUSZKkyqtPn/jxvHmwcSPUqxcmT3moXz92k6QkYCNZkvaluBAy/HYpSZKUaFe9fhV/n/r3knGNKjVStpEsSZKkCtC1KwweDD17xmYn9+4NdeuGTiVJlYadEUnalw/Oga0LoeFx0Og4aHw8VGsQOpUkSVKl07dF37hG8rjF44hGo0QikYCpJEmSlLSys2HMmNApJKnSyggdQJKSWnEhrH4XNk2HeQ/ChyNg5ajQqSRJkiqlga0Hxo1XbV3FvA3zwoSRJEmSJCnNOSNZkvZmw2ewKy/+WJPjw2SRJEmq5NrntqdZ7WbUrFKTAa0GMLD1QBrXbBw6liRJkpQYxcUQicRukpSEbCRLSryCTbDqHWhwFNRoETrN/lkzLn5cpxNUbxokiiRJUmUXiUSY/cPZ5FTNCR3lgHyx/guen/k8J7c/mR5Ne5ARcREwSZIk7cULL8CNN8b2eR48GAYNgqZ+9igpefhbraTE+eJBGH0MvNggts/wspdCJ9p/Ha+Hkz6F7ndBkxOg2bDQiSRJkiq1VG0iA7wy5xVuefcWej3aiyZ3N+HG0TeGjiRJkqRkNnYsLFkCf/87XHABXH556ESSFMcZyZISZ8MkWPth6XjlKDjsJ+HyHIiMLKjfO3brfFPoNJIkSUpioxaMKrm/dvtatuRvCZhGkiQpTW3YABs3Qrt2oZPs2zvvxI8HDw6TQ5L2wBnJkhKn6cnx49XvQtHOMFkkSZKkBNpasJUPln4Qd+yk9icFSiNJkpRmPvgAzj8fOnSA+vXh2mtDJ9q3pUth/vz4YzaSJSUZG8mSEqfJCfD1vnCZ1aHpiVCwMWwmSZIkKQG279rOVT2vokNuBwCyMrI4vs3xgVNJkiSlidWr4emnSxuzkyZBNBo20760bAnTp8N998Fpp0GbNtC9e+hUkhTHpa0lJU7V+tD1N1C3a6ypnFUjdCJJkiSloI07NlK3Wl0ikUjoKHvUqGYj7h96PwCLNi5i6qqpKb3fsyRJUkrp3Tt+vHEjLFgA7duHyVMWkQh06RK7/fSnscZ3Ete7ktKTjWRJidXl16ETSJIkKcUUFRfx+hevM27xOMYvGc+0VdOY/5P5tK3XNnS0MmlTrw1t6rUJHUOSJCl9tGwJjRrBmjWxcdWqsdnJydxI/iabyJKSkI1kSfouefNiy3Dn9oQMv1VKkiRVpIxIBlf/92rWbFtTcmzc4nEp00iWJElSBYtE4P/9P6hWLTY7uUsXyM4OnUqSUp57JEvSd5n7F3j7KHixAYw/A5a9HDqRJElS2ohEIgxoNSDu2LjF48KEkSRJUmr46U/h6quhZ0+byJJUTmwkS9J3WflW7OuuzfDla5A3J2weSZKkNDOw9cC48YQvJ4QJIkmSJElSmnK9Vkn6prx5sHVB/LFmp4TJIkmSlKYGtR7ECW1PYECrAQxsPZDezXqHjvSdthVso1pWNTIzMkNHkSRJUiooKoIPPoC+fWN7OUtSErORLKnibFsCy1+N3VqeDYdeFzrRd8tfC3W7w6ZpsXG1JrGxJEmSKszhDQ9n9EWjQ8fYpz98+Ace+ewRzup4Ft/r/D2Oa3UcWRn+qi1JkqQ9mDIFBg6E6tXhmGNg8GC44QbIcAFZScnH324lVYxp/wMzf1c6Lt6VvI3khv1h6FTYvgJWvQ1FOyESCZ1KkiRJSSYajfL8rOdZs20ND3/2MA9/9jA3HX0Td51wV+hokiRJSlZjx8a+7tgBo0fD0qXwq1+FzSRJe2AjWVLFqP+NpQjXfgDbv4QazcPkKYsazaDtpaFTSJIkKUnNWjuLOevmxB07/bDTA6WRJElSiYIC+PxzWLAARowInSbeO+/Ej48/PkwOSSoD10qQVDGangRV6ux2IArLXgwWR5IkSTpY4xaPixu3yGnBUS2OChNGkiRJsHAhHHUU1K4NvXvDBRfEZv4mi2g0lmf31Q8HDw6XR5L2wRnJkipGZlVocSYsfxlaDIdW34cmFkmSJElKXT/s80NObHciL8x6gednPc9xrY4jI+L12pIkScE0agSTJkFxcWxcVARTp0K/fkFjlYhE4L33YP16GD8+Njt54MDQqSRpjyLRaDQaOkQyycvLo06dOmzevJmcnJzQcaTKZecaqJIDmdVCJ5GkpGUtkno8Z1LFKI4W88HSD3hq+lP86uhf0aZem9CRvqWwuJCsDK/XllSxrEVSk+dNSqCuXWHGjNLxfffBT38aLI4kJaOy1iL+hiup4lRrFDqBJEmSUtCd793Jw589zPK85QC0qtOKm4+9OXCqb7OJLEmSlAR69y5tJB96KGRnh80jSSnMNbck6Wtz7oMPL4Clz8OuLaHTSJIk6SvL8paVNJEBnp7xdMA0kiRJSmo/+hGMHg0bN8LcuXDttaETSVLKspEsSV9b/G9Y8hR8cC682ADmPRw6kSRJkoDzupwXN56+Zjoz1szYw6MlSZKU1nr2hBNOgLp1QyeRpJTnuluSBLBtGWz4rHRcXAA5h4XLI0mSpBLHtjqW5rWb8+WWL+nSqAvndzmfhjUaho4lSZIkSVKlZiNZUlibZ8OiJ6HrrZBZLVyO5a/Gj7PrQcNjw2SRJElSnIxIBo+e9igtclrQtXHX0HG49d1b6d+yP4PbDKZKZpXQcSRJkpTsJk6En/0MLrgAzj0XGjQInUiSysRGsqSKF43Cwr/D/Mdg/SexY/WOgFbnhst0yNmQkQXLX4HVY6H5abGxJEmSksIpHU4JHQGAL9Z/wW/f+y0A9arV44yOZ/Dnk/5M3Wp1wwaTJElS8vr3v+Gjj2K3n/4UrroKHnwwdCpJ2if3SJZU8SIRWPTv0iYyxBrLIVVvCh2ugUFvwVlrofudYfNIkiQpKT0/8/mS+xt3buTNeW9SO7t2wESSJElKaoWF8Mwz8WNnJEtKETaSJYXR7vL48cq3YduSMFm+KbsO1GgROoUkSZKS0AuzX4gbn3342WRmZAZKI0mSpD2KRmHhQnj2WbjhBlizJkyOd9759ntfcEGYLJK0n2wkSwqj5dlQJSd2v3pT6PYbyHImhyRJkpJXcbSYi7pdRN8WfUuOfa/z9wImkiRJ0neKRqFtW2jXDr7/fbj7bpgwIUyWQYPgtddgxAioVg169YJDDw2TRZL2kxuASgojqwZ0+y1UbRhrKmdmh04kSZKkFLOraBez182mW+NuFfJ+GZEMftHvF/yi3y9Yunkpr819jWMPObZC3luSJEn7IRKBVq1g8eLSY5MmwWmnVXyW7OzY+552GmzZAsuXV3wGSTpANpIlhXPYT0InkCRJUoopjhbzwdIPeHr60zw/63l2Fe9i9S9XUy2rWoXmOKTOIfyoz48q9D0lSZK0H3r1gvHjS8cTJ4bL8rXateHww0OnkKQys5EsKX1Fo/DFg3DIOVC9Seg0kiRJKoOVW1Yy8B8DiRItOfbmvDcZfvjwgKkkSZKUdHr3jn2tXz92f/DgsHkkKQW5R7Kk9LVmHHz2Y3ilJbx3Fqx4M9ZcliRJUtJqntOc41odF3fsqRlPBUojSZKkpHXKKbBoEaxdC2++CddfHzqRJKUcG8mS0tf8x2Jfo4Ww/GWY8suweSRJklQm53c9P268fvt6ol4QKEmSpN3l5EDr1rH9kiVJB8RGsqTkUlQQa/Cu+ySx75O/AZa9GH+s3ZUWlpIkSSng7MPPpmfTnvz++N+z8CcLGXvJWCIJrOO2FmxlZ+HOhL2+JEmSKqF//AOWLAmdQpIOio1kScmhaGdsv+LX28OnV8Lntyb2/aLF0OEayKoZG2dkQ+sLE/uekiRJKhf1a9Tns6s+4+Zjb6ZNvTYJf7+HJj5Eoz814oKXLuCVOa+wY9eOhL+nJEmSUtjChXDZZbEZ0cceCw8/DDu9MFFS6rGRLCk5LPwnTPoRbF8WG68aDWs/TNz7VWsAR94HZy6HI/4AHX4YOyZJkiR9w/OznmdLwRaemv4Uw58dzvVvu7+eJEmS9uI//ym9/8EHcMstkJkZLo8kHSAbyZKSQ5uLoVqT+GNTboRE73WXXRc63QhH3pvY95EkSVJKmrtuLhNXTIw7Nrzj8EBpJEmSlPSi0fhGMsC550KVKmHySNJByAodQJIAyKoOnW+Gz34aGzceDD3vLtOexVu3wvz5kJ8PVatC+/ZQq1aC80qSJCklLVuwgbEvfMG2vAJq5mRz/DmH0rJd7h4f37BmQ4Z1GMYb894AoH71+gxsPbCC0kqSJOmgbdwIkybBxIkUfvIJS48/nrX9+lG1alXat29PrfL+IHHnThgwANasib03wIVuqScpNdlIlpQ82l8Dq96J7V3c9OS9NpFnzYptLTJyZGzLkd0nLkci0LYtDB0K11wDnTpVQHZJkiQFV1RcxDMznmFElxFkZZT+uvvsA5/x39unkLs+j3ps4esqcy3w+E2j2EhtNtTP4dTbezDiR0fGvWZu9VxeO+81fv/+77n13VsZ0XkEVTKdTSJJkpQqtpx1FrXHjQNiDZFXX3+dX3z1Z5FIhLZt2zJ06FCuueYaOpXHB4nVq8Mjj8Bf/wpvvgmjRkG/fgf/upIUQCQaTfS6saklLy+POnXqsHnzZnJyckLHkfQNixbB1VfD6NGQlQWFhXt+7Nd/PmRIrHZr06bickrSgbIWST2eMyk5jF88np+89RM+X/05fxv6N67tfS2jnp3Fsxe+S6vCdRQRIZM9//r79Z8vyWrAiH8P4qQR3/4QcczCMXRv3J2GNRsm8j9FkvaLtUhq8rxJibdo0SKuvvpq+o4ezW92O/4BcOw3HpuVlUVhYSFDhgzhkUceoY0fJEqq5Mpai7hHsqSU8dhjsdnF774bG++tibz7n7/7bux5b/19JCx5DqLFiQ0qSZKkCvXrd37NwH8O5PPVnwNwy7u3cMWAx3n/+y/TonA9wF6byLv/eYvC9bz//Zf5Uf9nv/WYE9qeYBNZkiQpBTz22GN06tSJd999l4nf+LOeQOY3jhV+9UHiu+++S6dOnXjssccqIqYkJT0byZJSwp13wpVXxrYY2VcD+ZsKC6FKJI+u26+ED0fAW0fCl/+NXw9bkiRJKeuEtifEjTfs2MD0mv9HFoX7bCB/UyZRsiik4cdzuKz9P8szpiRJkirAnXfeyZVXXsnOnTspLCxkErAD+Bi4H7iGbzeSv1ZYWMjOnTu58sorufPOOysqsiQlLRvJkpLeY4/B7bftYliP/x7wa9xx9m00z10RG2ycCuNPg9Xvlk9ASZIkBTWozSDOPvzsknGj1Y04fPbhJXshl9WWWlt4e8jbFGXGrlxsvWAxPzr62zOTJUmSlJwee+wxbrnllrhj64DaQH/gJ8CTQEEZXuuWW27h8ccf3/cDo1FYtgxGjoQ//hFWr97v3JKUrGwkS0pqixbBXf/zJWP/3/H895encXafF/b7NRrUXssVA+OXo9le92RoPKi8YkqSJCmwu0+8m/pZjTjpjVO5+pGrabN4//a1y8/O5z8X/IePjv6Ip85/ivzsfKJA3Y/mM+rZWYkJLUmSpHKzaNEifvzjH3/nnxUd4Gv+6Ec/YtGiRXt+QDQKrVrBIYfAsGHwq1/BZ58d4LtJUvKxkSwpqf3fHW/zyW1HcGzHDwB48tqLOOaw9/frNdZtaUifWz9l2pJuAOwsqMp1j98Pkf2doyJJkqRk1bpua079za/pM7E3mcV7WqzwuxVmFvLsiGdZ1XQVAAvbLeSJy55ga60tZFDEsxe6ko0kSVKyu/rqq0v2Oi4vNXft4vGzztrzLONIBFq0iD82Y0a5ZpCkkGwkS0pas2bB+qWLaZizruRY9eyd/HLY3fv9WnNWHM5Rt03gr6N+zC3P/45/vtSe2bPLM60kSZJCevaBz2hTsHG/90QGWNNoDctaLos7ll81n0g0QiZRWhWu4/mHJpdXVEmSJJWzWbNmMXr06HJrJP8K+AhYXVTE76ZOZcXelrju3j1+PH16uWSQpGRgI1lS0nr4YXji/St59N0rSo7NWNaZSx/+xwG9Xv6uavz0X3/lnpG/JCsLHnqonIJKkiQpuP/ePoWiveyKPLHXRN4d+C4FVb69I16zlc245J+XUGNbDQBqbKvBhf++kFrbagFQRITX/sdGsiRJUrJ6+OGHycrKKrfXGwj0A75e52bxf/6z5wd/3UjOyYH+/eHww8sthySFVn7fWSWpnI0cCYWFEa79+0M0ylnDkW0+45Q/vsmm7fX2+JxqVXbQpeUMJi3svdfXLiyEN98s78SSJEkKJXd93h5nI2+vvp13Br/Dzuo7mdxzMsePPZ7u07qTES29trrFly34weM/4Llzn+O010+j/ob6JX+WSZTc9XkJ/2+QJEnSgRk5cuR+zUZuBVQD5u7hz98GTt5t3HD+/D2/2LnnwimnxPZJdis9SZWMjWRJSWnLFli4MHa/qDiL79//DC1yl7N8Q8vvfPz3jnqO35xzK60aLKGwKItDfrJ0rw1ngAULYOtWqFWrvNNLkiSpIi3+Yj312LLHPx8/YDw7q+8EYEvOFl4981Uar25Ms5XN4h5Xf0N9rn7k6rgG89fqsYVlCzbQsl1u+YaXJEnSQdmyZQsLv/4gcS/aAUOA24AmXx3bU9v37d3u7wCWFxTQdONGatX7js8bc3NjN0mqhFzaWlJSWrAAortNKNm5qzrzV3fY4+MPbfoFHZvNpXr2TmpX38qPTnxgn+8RjcLeLiaUJElSahj/8rw9fgi4rcY2Pjvys7hjXaZ3+VYT+Wvf1USG2IeMY1/44iBSSpIkKREWLFhANPrdK9PsbhjwEKVNZIDsPTx2JvAbYo3nXOB4YP6SJQcXVJJSkI1kSUkpP3//Ht+83pdx45+dfB81q24t9/eRJElS8tmW9+19j79Wc3tNrnz0StrNbwdAZmEmg98ZXO7vI0mSpDDyy/gB38ffcWxvVeFtwBhg536+jyRVJi5tLSkpVa26f49vVm9Fyf2i4gymLOlBw5y1bFu793Wr9/d9JEmSlHxq5mSzdi9/3nhNYy7690XMaz+PDbkbqLdp71ug7O19JEmSlFyqlvEDvonASGDoV+O1QMMEvI8kVSY2kiUlpfbtIRKJX956b/743xt56qPzWZvXkCmLe+xzf2SIvX779gcZVJKUtAoKCpg2bRqTJk1i4sSJTJw4kdmzZ1NUVATAJZdcwj/+8Y+wISWVi+PPOZTHbxq1x+Wtv9Zh/p63StmX6FfvI0mqvKwfpdTUvn17IpFImZa3PhU4lti+x5OBojK+RyQSob0fJEpKQzaSJSWlWrWgbdvYXsll8dEXR+/3e7RrF3sfSVLl88ADD3D99ddTUOAytFI6aNkul43UJpctCXuPjdSmZbvchL2+JCks60cpddWqVYu2bduyoAwfJEaB9w7gPdq1a0ctP0iUlIZSZo/kgoICJk6cyEMPPcTll19O165dycrKIhKJEIlEuPTSS0NHlFTOhg6FrARd7pKVBaeckpjXliSFt27dOj8ElNLMhvo5FO1zTvKBKSLChvo5CXltSVJysH6UUtvQoUPJStAHiVlZWZziB4mS0lRKNJIfeOABateuTZ8+fbjuuut44oknmDFjRsmyMpIqp2uugcLCxLx2YSFce21iXluSlDxatmzJWWedxV133cWYMWM455xzQkeSlCCn3t6DTMq4L8p+yiTK6b/tmZDXliQlF+tHKTVdc801FCbog8TCwkKu9YNESWkqJZa29opAKT116gRDhsC775ZvQzkrCwYNgsMPL7/XlCQll8suu4xrr72Wxo0bxx1/8sknAyWSlGgjfnQkl//8E1oUri/XhnIREZZn1ee2a20kS1JlZv0opbZOnToxZMgQ3n333XJtKGdlZTFo0CAO94NESWkqJWYkf80rAqX088gj5b+8dVZW7HUlSZVXq1atvvUhoKTKb8S/B1Fcjm3kKFBMJiP+PaicXlGSlKysH6XU98gjj5T78tZZWVk84geJktJYSjSSL7vsMlatWsXSpUt58cUXuemmmxg8eDA1a9YMHU1SgrVpA/ffX76v+cADsdeVJElS5XLSiE5s6te+3HZKjgCb+rfnpBGdyukVJUmSlCht2rTh/nL+IPGBBx6gjR8kSkpjKdFI9opAKb1dcQX87nfl81p33gk/+EH5vJYkSZKSzwMfjWBxu9YABzwz+evnLWnfmgc+HFEesSRJklQBrrjiCn5XTh8k3nnnnfzADxIlpbmUaCRL0q9/DY8+CtWq7f9S11lZsec99hj8v/+XmHySJElKHk/Mv4S1/TpSSBZF+zk/uYgIhWSxtn9H/j7vkgQllCRJUqL8+te/5tFHH6VatWr7vdR1VlYW1apV47HHHuP/+UGiJNlIlpQ6rrgCZs2CQV9tUbevOvDrPx80KPY8LyCUJElKHw98NIJjnxnO8qz6APtsKH/958uz6nPsM8OdiSxJkpTCrrjiCmbNmsWgrz5I3FdD+es/HzRoELNmzXImsiR9xUaypJTSpg28/TbMnAnXXgvt20PkG58JRiKx49deG2sgv/22eyJLkiSlo5NGdOLvu35Ix/tPZVH9Zmyg9reWu44CG6jNovrN6PS30/j7rh+6J7IkSVIl0KZNG95++21mzpzJtddeS/v27Yl844PESCRC+/btufbaa5k1axZvv/22eyJL0m72c4FYSUoOnTrBX/8au791K8yfD/n5ULVqrIlcq1bYfJKkyis/P5/8/PyScV5eXsA0kspixI+OZMSPjgRg2YINjH3hC7blFVAzJ5vjzzmUlu1yAyeUJFV21pBSOJ06deKvX32QuHXrVubPn09+fj5Vq1alffv21PKDREnaIxvJklJerVpwxBGhU0iS0sVdd93FHXfcETqGpAPUsl0ul/yqb+gYkqQ0Yw0pJYdatWpxhB8kSlKZpX0j2asBJUmSKsbDDz/MfffdV66veddddzF8+PByfc19ufnmm/nFL35RMs7Ly6Nly5YVmkGSJCkdVJb6EawhJUlSakr7RrJXA0qSJFWMdevWMXfu3HJ9zc2bN5fr65VF1apVqVq1aoW/ryRJUrqpLPUjWENKkqTUdMCN5MpyRaBXA0qSJEmSJEmSJElSvANuJFeWKwK9GlCSJKli3HLLLdxyyy2hY0iSJClFWD9KkiSFlRE6gCRJkiRJkiRJkiQpuRxwI/mWW24hGo2W6+3SSy8tx/80SZIkSZIkSZIkSdKBcEayJEmSJEmSJEmSJCmOjWRJkiRJkiRJkiRJUhwbyZIkSZIkSZIkSZKkOFmhA0iSJEmJcMQRR3zr2NKlS0vuv/baa9/5mKlTpyYulCRJkpKW9aMkSVI8G8mSJEmqlKZNm7bXP9+4cSMbN26soDSSJElKdtaPkiRJ8VKmkewVgZIkSZIkSZIkSZJUMVKmkVxRVwRGo1EA8vLyDvq1JEmS9tfXNcjXNYkOXEX9P7R+lCRJIVk/lp+K/H9oDSlJkkIqaw2ZMo3kirJlyxYAWrZsGTiJJElKZ1u2bKFOnTqhY6gMrB8lSVIysH5MLdaQkiQpGeyrhoxEvVwxTnFxMStWrKB27dpEIpGEvEdeXh4tW7Zk2bJl5OTkJOQ9lDw83+nF851+POfppSLOdzQaZcuWLTRr1oyMjIyEvIfKl/WjEsFznl483+nF851+En3OrR9TkzWkypvnO714vtOP5zy9JNNnkM5I/oaMjAxatGhRIe+Vk5PjP/g04vlOL57v9OM5Ty+JPt/OJEkt1o9KJM95evF8pxfPd/pJ5Dm3fkw91pBKFM93evF8px/PeXpJhs8gvUxRkiRJkiRJkiRJkhTHRrIkSZIkSZIkSZIkKY6N5ACqVq3KbbfdRtWqVUNHUQXwfKcXz3f68ZynF8+3QvHvXvrxnKcXz3d68XynH8+5QvHvXnrxfKcXz3f68Zynl2Q635FoNBoNHUKSJEmSJEmSJEmSlDyckSxJkiRJkiRJkiRJimMjWZIkSZIkSZIkSZIUx0ayJEmSJEmSJEmSJCmOjWRJkiRJkiRJkiRJUhwbyUlo9uzZ/PWvf+Xcc8+lU6dO1KlThypVqtCgQQN69erFT3/6U6ZMmRI6pspJQUEBEydO5KGHHuLyyy+na9euZGVlEYlEiEQiXHrppaEjah8KCgp48sknGTp0KK1ataJatWo0bdqU/v37c/fdd7Nu3brQEVVOioqK+Pzzz3n88ce59tpr6dWrF9nZ2SX/XgcOHBg6osrR4sWLefTRR7nwwgvp3r079erVo0qVKuTm5tKtWzeuvvpqxo8fHzqmBFg/phvrx9Rn/Zg+rB/Ti/WjUo01ZHqxhkx91pDpwxoyvSR9DRlV0nj77bejnTt3jgJlun3ve9+Lrl+/PnRsHYT7778/mp2dvdfzfMkll4SOqb2YPXt2tEePHns9h40aNYq+8cYboaPqIL388svRGjVq7PVcDxgwIHRMlYPJkydH+/TpU+afxwMHDowuWbIkdGylKevH9GP9mPqsH9OH9WP6sH5UqrGGTD/WkKnPGjJ9WEOmj1SpIbNQ0vjss8+YOXNmyTgSidCtWzcOPfRQ6tWrx9q1a/nggw9Yu3YtAM8//zyzZs1i/Pjx1K9fP1RsHYR169ZRUFAQOoYO0PLlyxk8eDArVqwAYv9mjzvuONq3b8+aNWsYM2YMO3bsYM2aNZx55pm8+eabDB48OHBqHahNmzaxffv20DFUAebOncunn34ad+zQQw+lS5cuNGjQgE2bNvHRRx+xfPlyAMaNG0e/fv14//33adu2bYjISmPWj+nH+jG1WT+mF+vH9GH9qFRjDZl+rCFTmzVkerGGTB+pUkPaSE5CRxxxBFdeeSUjRoz4VnFWUFDAvffeyy233EJRUREzZ87kuuuu49lnnw2UVuWhZcuW9O7du+T28MMP88ILL4SOpX244IILSgq4Vq1a8dprr9GtW7eSP1+3bh3f//73eeedd9i1axfnnnsuCxYsoG7duoESqzw0btw47t/rqFGj+Mtf/hI6lhKgffv2XHHFFVx44YU0b9487s+Ki4t54okn+MlPfsL27dtZsWIFF1xwAR999BGRSCRQYqUz68f0Y/2Ymqwf05P1Y/qwflSqsYZMP9aQqckaMj1ZQ6aPpK8hK3wOtPboxRdfjL788stleuy9994bN6V99uzZiQ2nhFi8eHF01apV3zp+ySWXuKxMknvjjTdKzlF2dnb0888//87Hbd26Ndq2bduSx958880VnFTlZeXKld+5dMhtt93msjKVzLhx46JPPPFEtLCwcJ+Pfemll+J+Hr/11lsVkFAqZf2YfqwfU5f1Y/qxfkwf1o9KNdaQ6ccaMnVZQ6Yfa8j0kSo1ZEaiGtTaf2eddRZnnnlmmR77k5/8hGbNmpWMR44cmaBUSqRWrVrRuHHj0DF0AB588MGS+5dccgldu3b9zsfVrFmT3/zmNyXjRx55hMLCwoTnU/lr0qQJhxxySOgYqgADBgzg0ksvJTMzc5+PHT58OH369CkZv/HGG4mMJn2L9WP6sX5MXdaP6cf6MX1YPyrVWEOmH2vI1GUNmX6sIdNHqtSQNpJTVGZmJkcddVTJePHixeHCSGlm69atvPPOOyXjyy67bK+PP+ecc6hduzYAGzZs4L333ktoPkkV6+ijjy65789jJTPrRykc60dJu7N+VCqxhpTCsYaUtLtQNaSN5BS2+/rnRUVFAZNI6eWjjz4iPz8fiF3t17t3770+vmrVqvTt27dkPHbs2ITmk1Sx/HmsVOLfVykM60dJu/PnsVKNf2elMKwhJe0u1M9jG8kpbPr06SX3W7ZsGTCJlF5mz55dcr9r165kZWXt8zk9e/b8zudLSn3+PFYq8e+rFIb1o6Td+fNYqca/s1IY1pCSdhfq57GN5BT10UcfMW/evJLxCSecEDCNlF7mzp1bcr9Vq1Zles7u+1rMmTOn3DNJCmPZsmVxV/j681jJzPpRCsf6UdLXrB+VaqwhpXCsISV9LWQNaSM5BRUXF/Pzn/+8ZHzUUUfRq1evgImk9LJ+/fqS+40bNy7Tc5o0aVJyf8OGDeWeSVIYP//5z0uWkjnkkEM47bTTAieSvpv1oxSW9aOkr1k/KpVYQ0phWUNK+lrIGtJGcgr67W9/y6effgpARkYGd999d+BEUnrZunVryf3q1auX6Tm7P27350tKXf/85z958cUXS8Z33XUXVatWDZhI2jPrRyks60dJYP2o1GMNKYVlDSkJwteQNpJTzOuvv84dd9xRMr7hhhs45phjAiaS0s/OnTtL7mdnZ5fpObt/Y9+xY0e5Z5JUsSZNmsQ111xTMh4xYgTnn39+wETSnlk/SuFZP0qyflSqsYaUwrOGlJQMNeS+d2cXDz/8MPfdd1+5vuZdd93F8OHD9+s5EydO5LzzziMajQIwePBgfvvb35ZrLiXP+VbyqlatWsn9goKCMj0nPz+/5H5ZryCUlJwWLVrEaaedVvILXdeuXXnkkUcCp1KySZZ6wvqxYiTL+Vbysn6U0pv1o8oqWWoKa8iKkSznW8nLGlJKb8lSQ9pILoN169bFbWxfHjZv3rxfj581axannHIK27ZtA6B379688sorVKlSpVxzKTnOt5JbrVq1Su6X9cq+3R+3+/MlpZaVK1cyZMgQVq1aBUDbtm0ZNWoUderUCZxMySYZ6gnrx4qTDOdbyc36UUpf1o/aH8lQU1hDVpxkON9KbtaQUvpKphrSpa1TwKJFixgyZAjr168HoFOnTrz55pv+IJACqV+/fsn91atXl+k5X3/DB8jNzS33TJISb/369QwZMoQFCxYA0LRpU8aMGUPTpk0DJ5O+zfpRSi7Wj1J6sn5UqrGGlJKLNaSUnpKthrSRXAa33HIL0Wi0XG+XXnppmd77yy+/ZPDgwaxYsQKAdu3aMXr06LgfIipfIc+3UsNhhx1Wcn/JkiVles7SpUtL7nfs2LHcM0lKrLy8PE4++WRmzpwJxH6ZGz16NG3atAmcTMnK+jG9WD9qX6wfpfRj/agDYQ2ZXqwhtS/WkFL6ScYa0kZyEluzZg2DBw9m0aJFALRo0YIxY8bQrFmzwMmk9Hb44YeX3J8+fTqFhYX7fM7kyZO/8/mSkt+2bdsYOnQokyZNAiAnJ4dRo0bRuXPnwMmkb7N+lJKT9aOUXqwflWqsIaXkZA0ppZdkrSFtJCep9evXc8IJJ5Tsk9GoUSPGjBlD69atwwaTRP/+/alatSoQ++b+9Tf2PcnPz+eTTz4pGR9//PEJzSep/OzcuZPTTz+dDz/8EIAaNWowcuRIjjzyyMDJpG+zfpSSl/WjlD6sH5VqrCGl5GUNKaWPZK4hbSQnoa+nrk+fPh2AevXqMXr06LilLCSFU6tWLQYPHlwy/sc//rHXx7/00kts2bIFiP17Pu644xIZT1I52bVrF2effTZjx44FoGrVqrz66qscffTRgZNJ32b9KCU360cpPVg/KtVYQ0rJzRpSSg/JXkPaSE4y27dvZ9iwYSVXF9WuXZu33nqLbt26BU4maXfXXXddyf0nnniiZM+Cb9q+fTu33npryfjqq68mKysr4fkkHZyioiLOP/98Ro4cCUBWVhbPPfccJ5xwQuBk0rdZP0qpwfpRqtysH5VqrCGl1GANKVVuqVBD2khOIvn5+Zx55pl88MEHAFSvXp3//ve/9OnTJ3AySd80bNgwjj32WAAKCgo49dRTS67g/dr69es588wzmT9/PgC5ubn86le/qvCskvZPNBrliiuu4IUXXgAgIyODJ598ktNPPz1wMunbrB+l1GH9KFVe1o9KNdaQUuqwhpQqr1SpISPRaDQaOoRibrzxRv70pz+VjHv27Em/fv3K9NwOHTrw05/+NFHRlEBHHHHEt44tXbqUjRs3ArFlSA455JBvPWbq1KkJTqZ9Wb58OX369GHlypVA7Bv9gAEDaNu2LWvXrmXMmDFs374diF1J9NZbb8UtR6PUM3ToUFasWBF3bNWqVaxevRqAmjVr0r59+289b+TIkTRr1qxCMurg/e1vf+OHP/xhybhDhw6ceOKJZXpu/fr1ueOOOxIVTfoW68f0ZP2Yuqwf04/1Y3qwflSqsYZMT9aQqcsaMv1YQ6aHVKkhbSQnkUsvvZR//vOfB/TcAQMGMG7cuPINpAoRiUQO6Hn+000Oc+bM4bzzzttrUd2wYUOeeOIJhg0bVnHBlBCtW7dmyZIl+/28RYsW0bp16/IPpIS4/fbbD7gQa9WqFYsXLy7fQNJeWD+mJ+vH1Gb9mF6sH9OD9aNSjTVkerKGTG3WkOnFGjI9pEoN6SL5knQQOnbsyIQJE3jmmWd4+umnmTlzJqtXr6Zu3bq0bduW4cOHc/nll9OgQYPQUSVJkpQErB8lSZK0v6whJYXijGRJkiRJkiRJkiRJUpyM0AEkSZIkSZIkSZIkScnFRrIkSZIkSZIkSZIkKY6NZEmSJEmSJEmSJElSHBvJkiRJkiRJkiRJkqQ4NpIlSZIkSZIkSZIkSXFsJEuSJEmSJEmSJEmS4thIliRJkiRJkiRJkiTFsZEsSZIkSZIkSZIkSYpjI1mSJEmSJEmSJEmSFMdGsiRJkiRJkiRJkiQpjo1kSZIkSZIkSZIkSVIcG8mSJEmSJEmSJEmSpDg2kiVJkiRJkiRJkiRJcWwkS5IkSZIkSZIkSZLi2EiWJEmSJEmSJEmSJMWxkSxJkiRJkiRJkiRJivP/AdKYhlDvKe0SAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB5IAAALJCAYAAAB2lm8QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhM1xsH8O8kk32XIJZIyEKCWlpiF2pXRakoSii1VlWr1iJtVbW6WWptUa2iWqpFLRX7vi9BiKgQS0RkMoksk7m/P/LLNZNMZibJJHcmvp/nmce9M+ee895JMnPc955zZIIgCCAiIiIiIiIiIiIiIiIiIvo/K6kDICIiIiIiIiIiIiIiIiIi88JEMhERERERERERERERERERaWEimYiIiIiIiIiIiIiIiIiItDCRTEREREREREREREREREREWphIJiIiIiIiIiIiIiIiIiIiLUwkExERERERERERERERERGRFiaSiYiIiIiIiIiIiIiIiIhICxPJRERERERERERERERERESkhYlkIiIiIiIiIiIiIiIiIiLSwkQyEZm12bNnQyaTQSaTYfbs2VKHY/H8/PzE9/PWrVsmqZM/IyIiIiLTW716tdjHioiIkDocIiIiIjKxffv2if29sLAwqcMpExEREeI5r169WupwiMgITCQTEREREREREREREREREZEWJpKJiIiIiIiIiIiIiIiIiEgLE8lERERERERERERERERERKRFLnUARET6zJ49m+vumpCp1kUmIiIiIiIiIiKi4gsLC4MgCFKHQUSkF0ckExERERERERERERERERGRFiaSiYiIiIiIiIiIiIiIiIhICxPJRFTq4uPjERkZiTZt2qBy5cqws7ODra0tPD090aBBAwwYMABLlizB/fv3Cxw7e/ZsyGQyyGQyo6a4vnPnDqZMmYL69evD1dUVrq6uqFu3Lt577z1cvXoVQO70znl1+vn56aynsDIHDx7Em2++iYCAADg6OsLNzQ1hYWFYt26dzqlooqKi8PrrryMwMBAODg6oVKkSunfvjh07dhj13uVRKpVYsGABOnfujOrVq8Pe3h4eHh6oV68exo0bh+PHjxtVj5+fn3hexkxzHRUVhQEDBsDX1xf29vaoUqUKWrduje+//x7p6elFOgciIiIiS5HXX5LJZOJz58+fx7vvvot69eqhQoUKkMlk6NWrl87jk5KS8NVXX6Fjx47w8fGBvb093N3dERISgrFjx+LUqVMmiXP16tVinBEREQbLG9MPJiIiInpe6OrznTt3DqNHj0bt2rXh7OwMZ2dnhIaG4vvvv4dKpSpQx6lTpxAREYHg4GA4OTnB09MT7dq1wy+//GKw/X379onth4WFFXj92LFjsLGxEcts3LjRYJ09evQQyzdu3BhZWVmFlj158iTee+89NGzYEBUrVoStrS28vb3Rtm1bzJs3D8nJyQbb07Rlyxb07NkT1apVg52dHapXr46OHTti7dq1Ot87IrIQAhFRKVq2bJng4OAgADD4aNmyZYHjZ82aJb4+a9YsvW39+uuvgouLS6H129nZCStWrBDi4uLE53x9fXXWlb+MSqUSJkyYoDf+oUOHCmq1WhAEQUhLSxN69uypt/ykSZOMeg//+usvwdvb2+D7N2DAACEtLU1vXb6+vmL5uLi4QstlZ2cLw4YN09teSEiIcPXq1SL9jIiIiIgsgWafRxBy+6TW1tYF+kM9e/YscOyiRYsENzc3vf0omUwmDBs2TMjMzCw0hlWrVonlhwwZUuwymozpBxMRERE9L/L3+ebNm6ezz5f36Ny5s5CRkSEIgiCoVCph9OjRevt8/fv3F1QqVaHtR0VFiWXbtm2rs8zHH38slnF3dxdu375daH2LFi0Syzo6OgpXrlzRWe7x48dCnz59DF5rdHd3F3777TeD72NqaqrQrVs3vXW1atVKuHfvnjBkyBDxuVWrVhmsm4ikJy+QWSYiMpEtW7Zg5MiR4r6rqyuaN2+O6tWrQy6XIyUlBTExMbh06ZLeu+OMsXnzZgwaNAg5OTkAAGtra7Rs2RKBgYFQKpU4fPgw7ty5gxEjRmDhwoVFrn/GjBn49ttvYWVlhSZNmiAkJAQqlQoHDx4UR/auWrUKgYGBmDx5Mvr27YsdO3ZALpejZcuWCAgIQHp6OqKiosSR119++SUaN26M/v37F9ruhg0bMHDgQK3zatWqFQICAqBUKnHw4EEkJCQAANatW4e4uDjs3bsX9vb2RT5HTYMHD8avv/4q7ru7u6Ndu3bw9PTE7du3sW/fPkRHR6Nbt2549dVXS9QWERERkTn78ssvERkZCQDw9/dH06ZN4ejoiFu3bsHGxkar7IQJE/Ddd9+J+15eXmjevDm8vb2RkZGBs2fP4tKlSxAEAT/++CMSEhKwbds2WFlxsjAiIiIiKS1btgyTJ08GALzwwgto2LAhrK2tcfz4cURHRwMAdu7cifHjx2PZsmUYM2YMli9fLl4rDA4OhlqtxsGDBxEXFwcAWL9+PRo0aIApU6YUO65p06Zh165dOHToEJ48eYJBgwYhKiqqQP/x8uXL+OCDD8T9r7/+GnXq1ClQ3/3799G+fXtcuXJFfK5u3bpo0KABnJ2d8fDhQxw8eBBJSUl48uQJ+vXrh7Vr12LgwIE648vOzkb37t1x4MAB8Tlvb2+0adMGLi4uuHHjBg4dOoRDhw6hd+/eqFWrVrHfCyKSiNSZbCIqvxo2bCjeYTZu3LhCR8umpqYKGzduFCZPnlzgNWNGuz58+FDw9PQUyzVq1EiIiYnRKqNWq4UFCxYI1tbWgp2dXZFGJNvY2AgymUyoU6eOcPbsWa1y2dnZWiOVPTw8hMjISPFOu5s3b2qVT09PF/r16yeWr1WrljiKOb8bN24Izs7OYtmmTZsK169f1yqTk5MjfPXVV4KVlZVY7p133tFZnyAYNyL5p59+0rpjcNy4cUJ6erpWmYSEBKF9+/YCAMHW1pYjkomIiKhc0ewLyeVywc3NTdi8eXOBcnkjUgRBEH744QfxGFdXV2HFihVCVlZWgWP27t0rVKtWTSw7b948nTFwRDIRERFR6dLs89nZ2Qne3t5CVFRUgXLz58/X6ht+/fXXAgAhODhYOHfunFbZ/LMaOjs7C0qlUmf7xoxIFgRBuHXrltaMN59++qnW6xkZGUL9+vX1zpojCLnXEdu1a6d1rfHMmTMFyj19+lSYPXu2IJPJBACCk5NTgWuceTRHTMtkMmHOnDkFRmFfu3ZNaNCgQYHriByRTGQZmEgmolKRmpoqdgp8fHwKTZYaYkwiefLkyWKZqlWrCo8ePSq0vryOXlESyQCEihUrCvfu3dNZVqVSCbVr19YqHxwcXCD5mkehUAgVKlQQyx4/flxnucGDB4tlAgIChCdPnhh1XlZWVoV27gwlknNycgQfHx+xTERERKFtpqenCy+88ILWeTORTEREROWBZv/GyspK2L9/v97yCoVCcHd3Fy+OHTt2TG/56Ohowd7eXgAgeHp66rzhkolkIiIiotKl2eezt7cXLl26VGjZDh06aJWvVKmS8ODBA51l818r3LBhg85yxiaSBSF3ST/NZLbm9cTx48eLr1WpUkVITEzUWYfm4JFmzZoVeu0yj+Z12VGjRhV4/cmTJ4Kjo6NYZvbs2YXW9fDhQ6FKlSpa7yETyUSWgfNnEVGpUCgU4ranpydkMlmptKNWq7Fq1Spxf/bs2fD09Cy0/Pjx4xEQEFDkdqZNmwZvb2+dr1lbW6Nfv35az82dOxcODg46y7u4uKB79+7i/okTJwqUefLkCTZs2CDuf/HFF3Bzcys0vnfffRd169YFkPueLF++vPCT0WPnzp2Ij48HADg4OGD+/PmFljX0OhEREVF50LdvX7Rp00ZvmR9//BFPnjwBAIwZMwahoaF6ywcHB2PIkCEAgKSkJPzzzz8miZWIiIiIimfkyJHitTVd3njjDa39adOmoVKlSjrL5r9WqOvaX1H1798fgwcPBgCoVCoMHDgQSqUSO3bsEJfxk8lkWLNmDby8vHTW8fXXX4vbS5cuLfTaZZ4pU6bA3d0dAPDrr79CrVZrvb5u3Tqkp6cDAKpXr46pU6cWWlfFihXF5WKIyLIwkUxEpcLLy0tcp/fSpUs4fPhwqbRz5coVPHz4EAAgl8sRHh6ut7y1tXWBjp8x+vbtq/f1+vXri9sODg7o1q2b3vL16tUTt/PWTdF05MgRZGZmAsh9L3v06KG3PisrKwwbNkzcj4qK0lu+MJrHdevWTW9SHgA6dOiAatWqFastIiIiIkvQv39/g2W2b98ubg8YMMCoetu3by9uHzp0qOiBEREREZHJFOXanzHlDV37K45FixbB398fAHDjxg0MHToUQ4cOhSAIAID33nsPHTt21HnsvXv3cO7cOQBASEgIGjRoYLA9e3t7NG/eHACQkpKCS5cuab2ueR0xPDwctra2euvr37+/wTJEZH7kUgdAROWTra0tevXqhfXr10OlUqF9+/YIDw8XR3Tk3c1WUnkdICB3ZIerq6vBYwyNEMnPzc0N1atX11vGw8ND3A4KCoKNjY3e8hUqVBC3NUdv5zl79qy43bRpU8jlhj+uW7ZsqXW8IAhFHgmu2W5eR1EfmUyG0NBQ/PHHH0Vqh4iIiMhSvPjiiwbLHD16VNxevnw51qxZY/CYO3fuiNt5M8IQERERkTQ0E7+6aF77c3NzMziwwtC1v+JwcXHBL7/8glatWkGlUmHTpk3iaw0aNMDcuXMLPVazv/r06VOMGzfOqDZjY2PF7fj4eLzwwgviflGvI7q4uKBevXo4c+aMUW0TkXlgIpmISs0333yD06dP4/r168jKysLatWuxdu1aWFlZoW7dumjdujU6duyIrl27ws7OrlhtJCYmits+Pj5GHWMoKZyfviml82gmeotaPjs7u8Drmufl6+trsD4A8PPzE7ezsrKQmppqVGK9sHZr1Khh1DHGliMiIiKyRBUrVtT7ulKpRGpqqri/cuXKIreRnJxc5GOIiIiIyHQMXc8z9bW/4goNDcXs2bMxY8YM8TkHBwesW7dO72jfhIQEcTsuLg6LFy8uctv5+6zFvY7IRDKRZeHU1kRUary9vXHq1CnMmDEDlStXFp9Xq9W4ePEivv/+e/Tu3RtVqlTB559/jpycnCK3oVQqxW1HR0ejjnF2di5SG0Ud1WuK9aA1z8vJycmoY/KX07ygWZx2jX0/jY2PiIiIyBIZWjsuJSWlxG2oVKoS10FERERExVeU63mmuPZXEprXWYHcWRrr1Kmj95jS6LPyOiLR84GJZCIqVa6urvjkk09w9+5dHDt2DF9++SV69eoFLy8vsUxycjKmTp2KPn36iGt6GEszKZyenm7UMWlpaUVqQwqa52VsvPnLubi4lKjd8vR+EhEREZWW/BfDHj9+DEEQivTYt29fmcSqVqvLpB0iIiIiKh0xMTGYMGGC1nNnzpzRO601oN1nffXVV4vcXxUEAREREVp18joi0fOBiWQiKhPW1tYIDQ3FBx98gM2bN+PBgwc4ePAgXn31VbHMn3/+id9//71I9WompDXXmdPH2HJS0pxC8fbt20Ydc+vWLXHb1ta2WInk4rTLNf2IiIjoeebu7q61TMv9+/fLrG0bGxtx25hRzaYYiUJERERE0sjOzsbAgQPFZGzt2rXF12bPno2TJ08WeqzmKGZT9Vd5HZHo+cBEMhFJwsrKCq1atcKWLVvQsWNH8fmtW7cWqZ6GDRuK21euXDFqOucTJ04UqQ0pNGrUSNw+ceKEUdN+HzlyROv44kyzo9nusWPHDJYXBAHHjx8vcjtERERE5UnTpk3F7cOHD5dZu66uruJ2UlKSwfIXL14szXCIiIiIqBTNnDkTp06dApCbGD5w4ACGDBkCIPemwgEDBmhNN60pNDRU3D537pxJRgYX9TqiUqnEpUuXStwuEZUtJpKJSFIymQw9evQQ9x88eFCk40NCQlCpUiUAuXflbdy4UW95tVqNX3/9teiBlrEWLVqII1sSExOxbds2veXVajVWrVol7rdv375Y7bZr107c3r59Ox4/fqy3/N69ey1ihDcRERFRaXrllVfE7SVLlhR5uZbi8vPzE7fPnz9vsF1DfWUiIiIiMk/79+/HF198Ie6vWrUKlSpVwsKFC1GrVi0AwI0bNzB+/Hidx9eqVQvBwcEAgKysLPzwww8ljknzOuKGDRuQnZ2tt/yGDRuQmZlZ4naJqGwxkUxEpSI1NRVZWVlGldWc0iQvKWwsKysr8c47IHcaF33Jz0WLFiEmJqZIbUjB3d0d4eHh4v6kSZP0jrZetGiROMLEysoKb7/9drHa7dSpE3x8fADkrm3y4YcfFlo2IyMD77//frHaISIiIipPRo4cCXd3dwC5a9RFRkYafeyjR4+Mmn1Gl+DgYHE5k3v37mHXrl2Flt22bZvBmxOJiIiIyPwkJyfjzTffhFqtBgCMGzcOXbt2BQC4uLjgl19+gVwuB5CbYN60aZPOeiZPnixuz5gxo0iz1eiaDnvAgAFwdHQEkHt9d968eYUen5SUhJkzZxrdHhGZDyaSiahUnD59Gn5+fpg9ezaio6N1lsnJycGGDRuwcOFC8bm8TlBRvP/++6hQoQKA3PWPO3fujBs3bmiVEQQB33//PSZOnKi1hp05mzlzJpydnQEAMTEx6Ny5M27evKlVRq1W47vvvsPEiRPF58aOHas1OqUorK2t8cknn4j7P/zwAyZMmICMjAytcvfv30ePHj1w/vx52NraFqstIiIiovLCzc0N33zzjbgfGRmJIUOGFLpWnCAIOHz4MMaMGYMaNWrg6dOnxWpXLpejX79+4v6IESMK9L0FQcDatWvRr18/i+kHExEREdEzo0aNEgfi1K1bF19++aXW682aNcNHH30k7o8cOVLnDIKDBg0SZzFMTU1Fq1atsGzZskIHAykUCvzyyy8ICwvDO++8U+B1Nzc3rUEoM2fOxLx58wrcJHn9+nV07NgRCQkJvI5IZIHkUgdAROXXvXv3EBkZicjISHh7e6Nhw4bw9vaGXC7HgwcPcPr0aSQkJIjlW7dujf79+xe5ncqVK2PZsmUIDw+HWq3GqVOnUKdOHbRu3RoBAQFIS0vDoUOHxA7Xt99+K3Z+rKzM934af39/rFy5EgMHDkROTg6OHj2K2rVro3Xr1vD394dSqcTBgwdx9+5d8ZhmzZppTXNTHEOGDMH27dvFqQ+/++47/PTTT2jXrh08PT0RHx+PqKgoZGZmombNmujZsye+/fbbErVJREREZOkiIiJw8+ZN8aa8n376Cb/88gsaNmyIOnXqwNnZGUqlEnfu3MG5c+eQkpJiknZnzJiB9evXIy0tDfHx8WjYsCHatm2LWrVqQaFQ4MiRI7h9+zbkcjmWLl2K4cOHm6RdIiIiIip9q1evFq/R2dnZYd26dbC3ty9Qbvr06di1axcOHz6Mx48fY8iQIdizZw9kMplYxtraGhs3bkTHjh1x9uxZKBQKjBo1Ch9++CGaN2+OatWqwdraGsnJybh27RquXLkClUoFAOjTp4/O+KZOnYrdu3fj8OHDEAQBU6ZMwXfffYe2bdvC2dkZN27cwMGDB5GTk4PQ0FD4+/tj3bp1pfBOEVFpYSKZiEqFg4MD5HK52Nm4f/8+/vnnn0LL9+3bFz/++GOxE7t9+/bF2rVrMXLkSCiVSuTk5GDfvn3Yt2+fWMbOzg4LFy5EWFiY+Jyrq2ux2isr4eHhcHJywvDhw/HgwQOoVCpERUUhKiqqQNk33ngDK1eu1NmZLKqff/4ZDg4OWLNmDYDcKXT++OMPrTJ16tTB5s2bsX79+hK3R0RERFQefPzxx6hXrx7ee+89JCQkICcnB6dPn8bp06cLPaZp06awsbEpdpt+fn7YtGkT+vTpg/T0dGRnZ2PPnj1aZVxdXbFq1So0bty42O0QERERUdmKjY3VGgk8d+5cvPDCCzrLWltb4+eff0aDBg2gUCiwd+9efPnllwWWrfP09MThw4cxceJErFy5EiqVCgqFAjt37iw0DgcHB7z44os6X7O1tcX27dsRHh4uXvu9d+9egeuFLVq0wKZNmzB16lSjzp2IzAcTyURUKkJDQ/Hw4UPs2bMHhw4dwtmzZxEbG4ukpCTk5OTA1dUV/v7+aNasGQYNGoSmTZuWuM0BAwagdevWWLhwIbZt24bbt29DJpOhevXq6NSpE0aNGoU6derg+PHj4jF5a9mZs1deeQU3btzAjz/+iL///huXL1/Go0eP4ODggKpVq6Jdu3YYPHgwQkNDTdamjY0NVq9ejcGDB2P58uU4fPgwHj58CA8PDwQEBKBfv34YNmyYOPU2EREREeXq168fevbsifXr12Pnzp04efIkEhMToVQq4eTkhGrVqiE4OBitW7dGt27dEBQUVOI2u3TpgqtXr2L+/PnYuXMn4uPjYW1tjRo1aqBHjx4YPXo0atSogVu3bpX8BImIiIio1KlUKgwcOBBKpRIA0KlTJ0yYMEHvMX5+fvj+++8xaNAgAMBHH32EDh06FLiZ0MHBAUuWLMHkyZPx888/Y+/evYiJiUFSUhLUajXc3NxQq1YtNGjQAC+//DK6dOmidzCOq6srduzYgT/++AOrV6/GyZMn8fjxY3h5eSE4OBgDBw7EoEGDSnTzJBFJRyYIgiB1EEREZWnFihV4++23AeSuMbJkyRKJIyIiIiIiIiIiIiIiIjIv5rs4KBFRKdmwYYO43aRJEwkjISIiIiIiIiIiIiIiMk8ckUxEz5U//vgDffr0AQDY29sjISEBHh4eEkdFRERERERERERERERkXjgimYjKhSNHjmDEiBE4d+6cztczMzPx7bff4o033hCfe/vtt5lEJiIiIiIiIiIiIiIi0oEjkomoXNi3bx/atWsHAPDx8UHDhg1RuXJlCIKAu3fv4ujRo0hJSRHLh4SE4MSJE3BycpIqZCIiIiIiIiIiIiIiIrMllzoAIiJTi4+PR3x8fKGvd+7cGevWrWMSmYiIiIiIiIiIiIiIqBAckUxE5YJarcb+/fuxfft2nDx5Evfu3cOjR4+gUCjg6uqKqlWrolWrVujfvz/atm0rdbhERERERERERERERERmjYnkfNRqNRISEuDi4gKZTCZ1OERERPScEQQBqampqFq1KqysrKQOh4zA/iMRERFJjX1Iy8M+JBEREUnJ2P4jp7bOJyEhAT4+PlKHQURERM+5+Ph4VK9eXeowyAjsPxIREZG5YB/ScrAPSURERObAUP+RieR8XFxcAOS+ca6urhJHQ0RERM8bhUIBHx8fsU9C5o/9RyIiIpIa+5CWh31IIiIikpKx/UcmkvPJm0rG1dWVnTgiIiKSDKe3sxzsPxIREZG5YB/ScrAPSURERObAUP+Ri6YQEREREREREREREREREZEWJpKJiIiIiIiIiIiIiIiIiEgLE8lERERERERERERERERERKSFiWQiIiIiIiIiIiIiIiIiItLCRDIREREREREREREREREREWlhIpmIiIiIiIiIiIiIiIiIiLQwkUxERERERERERERERERERFqYSCYiIiIiIiIiIiIiIiIiIi1MJBMRERERERERERERERERkRYmkomIiIiIiIiIiIiIiIiISAsTyUREREREREREREREREREpIWJZCIiIiIiIiIiIiIiIiIi0sJEMhERERERERERERERERERaZFLHQBRfmq1GiqVCmq1WupQiIieS1ZWVpDL5bCy4v1mRFQ62N8jIiJD2CclIiIiIpIeE8lkFtRqNZRKJRQKBZRKJQRBkDokIqLnmkwmg7OzM1xdXeHs7MwLeERUYuzvERFRUbFPSkREREQkLSaSSXJqtRp37txBWloa7O3tUbFiRdjb28PKygoymUzq8IiIniuCIECtViMjIwMKhQJ3796Fk5MTqlevzgt3RFRs7O8REVFRsE9KRERERGQemEgmSeVdVExPT0eNGjXg5OQkdUhERATAyckJnp6eSEtLQ3x8PO7cucMLd0RULOzvERFRcbFPSkREREQkLfa8SVJKpRJpaWnw8fHhRUUiIjPk5OQEHx8fpKWlQalUSh0OEVkg9veIiKik2CclIiIiIpIGE8kkKYVCAXt7e15UJCIyY05OTrC3t4dCoZA6FCKyQOzvERGRKbBPSkRERERU9phIJsmo1WoolUq4urpKHQoRERng6uoKpVIJtVotdShEZEHY3yMiIlNin5SIiIiIqGwxkUySUalUEAQB9vb2UodCREQG2NvbQxAEqFQqqUMhIgvC/h4REZkS+6RERERERGWLiWSSTN4dxFZW/DUkIjJ3eZ/VHP1BREXB/h4REZkS+6RERERERGWLV3RIcjKZTOoQiIjIAH5WE1FJ8DOEiIhMgd8nRERERERli4lkIiIiIiIiIiIiIiIiIiLSwkSylNQ5UkdARERERBZGEASpQyAiIiIiS8L+IxERERWTXOoAnisZj4CYBUBKNKC4AqTFA30fA1b8MRARERGRbusvrce/N/9FzOMYxCTFYFKLSZjYfKLUYRERERGRuYqPBxYvBq5dA2JigJQU4M4dqaMiIiIiC8QMZlm79In2vjIOcA2UJhYiIiIiMnu7Yndh1blV4n5MUoyE0RARERGR2Xv6FJg3T/u5x4+BChWkiYeIiIgsFqe2Lkv2XoCdl/ZziivSxEL0nNm3bx9kMhlkMhnCwsKkDsdi5b2HMplM6lCIiJ4bgRW0bzpkIpmo/Ll165bYx/Lz85M6HCpn2Icneg7VrAnI840funZNmliIiIjIojGRXNZcg7X3mUgmIiIiIj2CPIO09plIJiIiIiK9bGwAf3/t52LYhyQiIqKi49TWZa1GP8CzSW5C2S0YcKsndUREREREZMYaeDfA8EbDEeQZhEDPwAKJZSIiKl23bt1CzZo1AQC+vr64deuWtAGVgrCwMOzfvx8AEBUVxVmciMqDIUNy10auXRsICgLq15c6IiIiIrJATCSXtdrjpI6AiIiIiCxIQIUArHh1hdRhEBEREZElmTpV6giIiIioHGAimYiIiIiIiIionBIEQeoQiIiIiIjIQjGRTFRESqUSN27cQGZmJuzs7BAQEABnZ2epwyIiIiIiE2F/j4iIiIiIiIiIiWQio0RHR2Pp0qXYvn07bt68qXVHt0wmQ61atdCtWzeMGjUKISEhEkZKRERERMXB/h4RERERERERkTYrqQMgMmdxcXHo1KkT6tatiyVLliA2NrbAtGCCICA2NhZLlixB3bp10alTJ8TFxUkUcdmQyWTiI8/58+fx7rvvol69eqhQoQJkMhl69eql8/ikpCR89dVX6NixI3x8fGBvbw93d3eEhIRg7NixOHXqVJHiuX79OiZMmIA6derAyckJFSpUQMOGDTFz5kzcuXPH6HpWr14tnldERITB8rdu3RLL+/n5GdXGgwcP8MUXX6Bjx46oUaMGHBwc4ODggBo1aqBr16744osvcOvWLYP1ZGdnY+3atejXrx9q1aoFFxcXODk5oWbNmnjjjTewefPmIk1hl5KSgrlz56JJkybw8PCAs7MzateujREjRuD06dNG11Mce/fuxVtvvYX69evD3d0dcrkcjo6OqF69Olq3bo0JEybg77//RlZWls7jdf0+njx5EsOHD0dQUJD4O9G0aVPMnTsXCoXCqLhSUlLw66+/YuTIkQgNDYWXlxdsbW3h6uoKf39/vPHGG9i4cSPUanWRz/nChQuYMmUKQkND4e3tDVtbW/E9Dw8Pxw8//ICUlBSD9Zj6b4mI6HnE/p5xFAoFFi5ciB49esDPzw/Ozs6ws7ND1apV8fLLLyMyMhKXL1/WW8ejR4/w+eefo23btqhSpQrs7Ozg5eWFRo0aYdKkSYiOjjYYR2H9r4MHD+LNN99EQEAAHB0d4ebmhrCwMKxbt05nnygqKgqvv/46AgMD4eDggEqVKqF79+7YsWOHwRhmz54txjB79mwAQFpaGhYvXozWrVvD29sb9vb28PX1xcCBA7F//36DdRaHKfoBus4lIyMDy5YtQ1hYGKpUqQJbW1tUr14dgwcP1vkzUiqVWLx4MVq1aoUqVarA3t4e/v7+GDt2bJH64kDu+7hkyRL06NEDvr6+cHR0hIuLCwIDAzFs2DDs3bvXYB2F9ek3b96MHj16oEaNGrCzs0OlSpXQqVMn/Pzzz4X2m/Pqqlmzpvjcf//9p9X/1NUX1XT69GnMnTsXr7zyCmrVqgVnZ2fY2tqicuXKaNGiBaZPn47bt28b9f74+fmJbeX9nyE2NhbTp09Ho0aNULFiRVhZWaFhw4Zax+mLMe95zd/Tdu3a6Ty/1atXAwB69uwpPjd37lyjYgeAWbNmice99tprRh9HREREREQSEkhLSkqKAEBISUkpmwbVOYKQ+bhs2jIzT58+FaKjo4WnT59KHYpOK1asEOzt7QW5XC4AMPohl8sFe3t7YcWKFVKfQqnRPF9BEIRZs2YJ1tbWBd6Lnj17Fjh20aJFgpubm973UCaTCcOGDRMyMzMNxrJ48WLB3t6+0Lrc3d2FrVu3ClFRUeJzbdu21VnXqlWrxDJDhgwx2HZcXJxY3tfXV2/ZnJwcITIyUnB0dDT4O2RlZSVcvny50LqioqIEf39/g/U0a9ZMuHPnjsHzOHjwoFC1alW98URGRgqCUPBnXxJKpVJ49dVXjf7bKuxvStfvo5WVVaH1VKtWTThy5Ije2H7//XfBzs7OqLgaNGgg3Lx506hzTk5OFsLDwwWZTGaw3sqVK+uty9R/S4aY+2d2eVLmfREqMSl+ZmlZaWXWVkmY+2cH+3vGWbJkieDh4WHUe7Njxw6ddfzwww8Gv7esra2FCRMmCCqVqtBY8ve/VCqVMGHCBL31Dh06VFCr1YIgCEJaWprQs2dPveUnTZqk9/2YNWuWWHbWrFnC1atXheDgYL11jhgxokjnZYip+gH5zyU2NlZo0KBBoXXa2dkJ//zzj3j8iRMnhGrVqhVa3tXVVTh69KjB8xEEQdi4caPg7e1t8HfslVdeEZ48eVJoPfn79E+ePDHY5+zSpYuQnp6uty5jHvk1adLEqONsbGyEefPmGXyPfH19xWPi4uKEZcuW6fy/UIMGDbSO0xdjUc5v1apVgiAIwl9//SU+FxgYaDBuQcj9/1CNGjXE47Zt22bUcfmZ+/eKlNiHtDxl/jPLyRGENMvoQxIREVHpM7YvwqmtpZB4GIhZDCiuAIprgGco0CFK6qhIw5w5czBjxoxiHatSqaBSqTBixAg8ePAA06dPN3F05uXLL79EZGQkAMDf3x9NmzaFo6Mjbt26BRsbG62yEyZMwHfffSfue3l5oXnz5vD29kZGRgbOnj2LS5cuQRAE/Pjjj0hISMC2bdtgZaV78oRly5Zh7Nix4r6NjQ3CwsLg6+uLx48fY9++fXj8+DH69u2Lzz77rBTO3jg5OTl4/fXXsXnzZvE5W1tbNG/eHH5+frCxscH9+/dx+vRp3Lt3D2q1utDRt7/99hsGDhyI7OxsAICDgwOaNWsGPz8/WFlZISYmBkePHoVKpcKxY8fQvHlznDx5EpUrV9ZZ3+nTp9G1a1colUrxuZdeegn169dHVlYWjh07htjYWMyaNQseHh4mfFeAQYMGYevWreJ+QEAAGjVqhAoVKiA7OxuJiYm4ePGiUSO08yxYsED8fQwICEBoaChsbW1x8eJFcVTO3bt30aVLF+zfv7/AaI08Dx8+RGZmJgCgevXqCAkJgbe3NxwdHaFUKnHlyhWcOXMGgiDg/PnzaNOmDc6dOwdPT89CY0tISED79u1x7do18Tl3d3e0bNkSVapUQXZ2Nm7fvo3Tp09DoVAgIyOj0LpM/bdEROZPkanAh7s/xPXH1xGTFIM7ijt4NOkRPB0L/9wh/djfM8748eOxcOFCcd/a2hpNmjRBYGAg7O3tkZiYiHPnzonf17q+v+bPn49JkyaJ+3Z2dmjbti1q1KiB5ORkREVF4fHjx8jJycG3336L27dvY9OmTYWO8NQ0Y8YMfPvtt7CyskKTJk0QEhIClUqFgwcPijGtWrUKgYGBmDx5Mvr27YsdO3ZALpejZcuWCAgIQHp6OqKionD//n0Auf3bxo0bo3///gbbT0lJQdeuXREXFwc7OzuEhYXBx8cHSUlJiIqKwpMnTwAAK1asQEZGBn766SeDdRpSWv0AhUKBrl27IiYmBq6urmjbti28vb1x//59/Pvvv0hPT0dmZiZ69+6NixcvIjs7Gx06dIBCoYCXlxfatGkDT09P3L59G3v37kV2djYUCgV69eqFa9euwc3NrdC2v/nmG7z//vviyGBXV1c0b94c1atXR05ODi5fvoxTp05BEAT8/fffCAsLw+HDh+Ho6Kj3nFQqFfr06YN///0Xtra2aNGiBfz9/ZGRkYGDBw+KI4H/+ecfTJw4EUuWLNE6Pjg4GGPHjkVqaqr4s3NxccHgwYP1tpsnr347OzvUrVsXAQEBcHNzgyAIuHfvHo4fP45Hjx4hOzsbkydPBgB8+OGHRtX922+/iWWrVq2Kli1bws3NDQkJCXj8+LFRdQAQ/z+1efNmJCQkAAB69eqFatWqFSgbHBwMAOjatSt8fHwQHx+P69ev48CBA2jTpo3ednbv3i2+H9WrV0eXLl2MjpGISuD334H164GYGOD6dWDYMGDRIqmjIiIiIktS2hltS1MmdwPe/kMQfsGzx+/6R52VV+Z6J/GKFSuKdFe2ocfKlSulPiWT0zw/uVwuuLm5CZs3by5QLiMjQ9z+4YcftEYmrFixQsjKyipwzN69e7VGNRR2Z35MTIzW3fdt27YV4uPjC7SfN0LF1tZWq6wupTUiefLkyVrv2bhx44RHjx7pLHv8+HFh8ODBwqVLlwq8dunSJcHBwUEcYfLBBx8IycnJBcrFxsYKrVq1Etvr2rWrzrYyMzO1Rs/4+PjoHKm7Zs0awc7OTus9LOnXx7lz58R6nJ2dhe3btxdaNjY2Vvj000+FrVu36nxdMyZbW1vB3t5e+PnnnwuUO3TokNbvVv369XX+DgqCIGzdulWYO3eucP369ULjunnzptC5c2exvrfeeqvQstnZ2ULLli3Fsg4ODsKiRYt0tp+ZmSls3bpV6NWrl866TP23ZCxz/cwujziaxPKUxc8sOydbkH8sFzAb4uNovHGj/KRkrp8d7O8ZZ8mSJVrn2a9fP+H27ds6y168eFEYP368sHPnTq3nDx8+rDVzTdeuXYX79+9rlcnIyBAmTZqk1dZXX32lsx3N/peNjY0gk8mEOnXqCGfPntUql52drTVS2cPDQ4iMjBQACK1atSowm0h6errQr18/sXytWrXEUcz5aY7izesfdezYUbh3716BOseMGaN1XuvWrTN4Xvr6labuB2ieS95sLCNGjBAUCoVWufj4eKFOnTpafeUXX3xRkMlkwuzZswuMer506ZLW6OK82W102bNnjzibjK2trfD5558LaTpGzJ09e1YICQkR6xw9erTO+jT79Hnn1LVr1wIz9WRnZwsffPCBWFYmkwlxcXE66yzqiPE8o0ePFrZt26ZztLMgCIJKpRJWrVolODk5ib/T+ma60RyRLJfLBVtbW2H58uUFflc1/x8mCMbNKtS2bVuxTFRUlMFz0/zdGTx4sMHyr7/+ulj+o48+Mli+MOb6vWIO2Ie0PGXyM/vkE0EAnj06dCi9toiIiMiiGNsXYSI5nzLpxD25op1I/gXP5fTW5vgfwJs3b+qdJrk4D3t7e6OnvbUUmudnZWUl7N+/X295hUIhuLu7ixeHjh07prd8dHS0+HPw9PTUeSFpwIABYgx169bVWSbP8OHDtWIuy0TytWvXtKZZnjt3rsF6C9O+fXuxnq+//lpvWaVSqXWhTdd7vnz5cq3f0ytXrhRa388//1zgd7skFi5cKNYzffr0EtWVP67169cXWvbSpUtaU1b/8MMPJWo7KytLeOGFF8T38PFj3Z/lmgkLGxsb4cCBA8VqrzT+loxljp/Z5RUvAlqesvqZBS0M0kokrzm3plTbMwVz/Oxgf884jx8/FlxcXMRzHDVqVLHqadOmjVhHixYt9E6zPH78eK0kaf5kpiBo978ACBUrViyQwM2jUqmE2rVra5UPDg4uNKmnUCiEChUqiGWPHz+us5xmAg2A0LBhQ72/44MGDRLL+vn5CTk5OXrPq7B+ZWn0A/Kfy6BBgwqt79ChQwV+92fNmlVoec3+Y3BwsM4yOTk5QmBgoFjujz/+0HtO9+7dEypXriz2qfLfSCoIBaejbt26tZCdna2zPrVarTX99Oeff66zXHETycZav369WP+HH35YaDnNRDIAnTdP6mJMH76oieTbt2+L/89xdHTU+x346NEj8aYLfQl7Y5jj94q5YB/S8pTJz2zDBu1Eso9P6bVFREREFsXYvgjnuJSCiz8gyzereMpVaWIhLSNHjoRKpTJpnSqVCiNHjjRpneakb9++Bqcx+/HHH8Vp/caMGYPQ0FC95YODgzFkyBAAQFJSEv755x+t1588eYLff/9d3P/iiy/0Tmv3xRdfwMnJSW+bpeWbb76BWq0GADRr1kycsq6ozp8/j7179wIAGjVqhAkTJugt7+TkhI8++kjc/+WXXwqUWblypbj9zjvvoE6dOoXWN3DgQLRo0aKIURdOoVCI2xUrVjRZva1bt0Z4eHihr9etW1drOvQVK1aUqD0bGxsMHDgQQO5UnocOHdJZ7quvvhK3J06ciNatWxerPVP/LRGRZQnyDNLaj0mKkSgSy8b+nnGWL1+O1NRUAICvry++/fbbItdx5coVHDhwQNxftGgRbG1tCy3/2WefwcvLC0BuX2HdunUG25g2bRq8vb11vmZtbY1+/fppPTd37lw4ODjoLO/i4oLu3buL+ydOnDDYPpD7PW9vb1/o619//TXs7OwAALdu3cLu3buNqje/0u4H2NraYv78+YW+3rJlS9SoUUPcr1y5MqZNm1Zo+ddee038eV+9elX8fdL0119/4fr16wByp1Pu3bu33hi9vb3FfnB2djY2btyotzwAfPvtt5DLda/qJZPJMHToUHHf2J+5qfXt2xfOzs4AgD179hh1TNOmTcV+qBR8fHzE6anT09Px66+/Flp27dq14tI9HTp0gJ+fX1mESEQAULu29n58PJCeLk0sREREZJGYSJaClQ1Qbybw0mLg5b1A73uAVzOpo3ruRUdHY/fu3aVyYXH37t24cuWKSes1F8asHbd9+3Zxe8CAAUbV2759e3E7f3LuyJEj4vq1lSpVMri+loeHB1599VWj2jU1zQt248aNM2qtP10038M33njDqHr0vYepqanimsEAjFrnLe9CpCn4+PiI2z/99BPSTfQf2aKex8mTJ5GWlqa3/JMnT/DPP//gq6++wrRp0zB+/HiMGzdOfOzatUsse+7cuQLH//fff7h69dnNQuPGjTPiTHQz9d8SEVmWgfUHYk77Ofjt9d9wftR5TGtdeAKHdGN/z3iafZgRI0aIidCiiIqKErcbNmyIRo0a6S3v5OSEN954Q+fxhenbt6/e1+vXry9uOzg4oFu3bnrL16tXT9yOi4sz2H716tXRrl07vWUqVqyo1a4x56VLafcDWrdujcqVK+sto/n+9OjRQ++NAQ4ODvD39wcACIIgrlmtqbTPqVatWmjcuLHeMpq/l7piNJULFy5gzZo1iIyMxPvvv6/Vn3z33XfF/v3FixfFG1H1Meb/YaXt7bffFrd/+OGHQstpvjZ8+PBSjYmI8gkMBN5/H1i+HNi3D7h3DyjkhioiIiIiXXTflkulr/5HhstQmVq6dCnkcrnJLywCgFwux5IlS7BgwQKT1y21F1980WCZo0ePitvLly/HmjVrDB5z584dcTs+Pl7rtbNnz4rbTZs2hZWV4Xtimjdvrvcu+dLw4MEDrYtRhi4y6qP5HkZFReG///4zeIwgCOJ2/vfwwoUL4gUqFxcX1K1b12B9zZs3NzZcg7p16wYnJyekpaXhzJkzqFOnDt566y10794djRo1grW1dbHqNSbG+vXrw9nZGUqlEjk5Obhw4YLO4+7cuYMpU6Zg06ZN4o0Lhjx69KjAc8eOHRO3AwMDUb16daPq0sXUf0tEZFn615M+aWDp2N8z3vHjx8Xt4vZhNPtsxs5s0rJlSyxcuBAAcObMGb1l3dzcDH6venh4iNtBQUGwsbHRW75ChQrituYMKoVp1qyZUTf4NW/eHJs3bwag/b4URWn3AzSTxIXRfD+N6T8aej81z+n333/H/v37DdaZkpIibhs6J80bCQrj6empN8aSWrNmDT777DPExBg3i0R2djZSUlK03mtdjPl/WGl75ZVXULVqVSQkJODkyZO4ePFigff8xIkTuHTpEgDAy8sLvXr1kiBSoueYoyOgZ7YJIiIiIkOYSCb6v+3bt5fKRUUgd5TKjh07SqVuqRmallipVGpNY6c5nbKxkpOTtfYTExPFbc3p9fQxtpwpPXjwQNy2s7ND1apVi11XQkKCuF2c3yV976GPj49RF0BN+R56enpi5cqVGDx4MLKzsxEfH4/Zs2dj9uzZcHZ2RmhoKNq2bYsePXqgYcOGRtdrTIwymQzVq1cXRwlrvhd5zp49i5dffrnA+2aIrikbNX8PatWqVaT6NJXG3xIR0fOG/T3jKBQKPH36VNwv7veX5nesr6+vUcdoTnmr6wYtTW5ubgbr05zSuKjls7OzDZYvTl9UV9/DkLLoB0jxfmr2cTds2GCwvvxMcU6aNxcY8zM3liAIeOutt7Bq1aoiH5uammowkWzK5WGKy9raGsOGDcOnn34KIHfkcf5p8DVHI7/55pt6R7ETEREREZH54dTWRMj9j/rNmzdLtY3Y2FgolcpSbUMKha0xl0dzxEBx5b/gq/k+6lsbWZMUayRrXuzLW/OsuEr6Pubk5Gjtm8N72L9/f5w4cQK9e/fWuoCnVCrx77//YubMmWjUqBFeeuklHDx40Kg6i3Mu+ZO/mZmZ6NOnj3hhsmLFipgxYwaioqIQHx+PtLQ0qNVqCIIAQRC0Lg7qmobQVL8HpfG3RET0PGF/z3j5vxuL+/2l+V4Y24/Q9x2dX1GXDCnuEiP6mKLvYYyy6AdI8X6W9LxMfU6mtGLFCq1+YpcuXbBmzRpcvHgRycnJyMzMFPuTgiBo3WxhzNTWhv4fVlaGDx8uzhD1888/i2shA7lrJ69fv16rLBERERERWRaOSCZC7kU/zWmAS4MgCLhx40aRRleWB/kvGj5+/Njg3fWGaF7MNHZtXUPr4BaHoQs8Li4u4nZJLyprvo9//PEHevfuXaL6zOU9bNiwIf744w88efIEBw4cwKFDh3Do0CGcOnVKHBFy+vRptGvXDr/++itef/11vfWlp6drve+F0TyX/OV///13cU3EatWq4eTJk6hSpUqhdRm6GGyq34PS+FsiInqesL9nvPzfjUqlsljJZM1jjO1H6PuONkfF6UcV57zKaz/AyclJTCafOXPG4DralmS+xlSykZGRmDlzpt7yxbnBwBz4+vqiY8eO2LlzJ5KSkrBlyxb069cPAPDbb7+J04U3b94cISEhUoZKRERERETFwBHJRIDR659aSjvmxN3dHXZ2duL+/fv3S1yn5jRut2/fNuoYY9aG1RwVa8zITUMjKCpXrixuZ2Zm4t69ewbrNKYuU7+Hd+7cMerCemmur+vu7o5XX30VX3zxBY4cOYJHjx5h1apV4jSQOTk5GDNmjNY0m7oY8/sgCALu3r0r7nt5eWm9/u+//4rbEyZM0JtEBmBwvWrNn11egro4SuNviYjoecL+nvFcXV21RjsW9/urOH22W7duidv5v6PNUXH6osU5r/LaDzB1H9dcxMfH4/r16wByf3ZTp07VW16hUFj0EiRvv/22uK05lbXmNkcjExERERFZJiaSzYEgAOl3gacPDJelUqF5UaY8tGNumjZtKm4fPny4xPVpjlQ4efKkUVO/HT161GAZV1dXcTspKclg+YsXL+p9vXLlylrr/O3du9dgnYUJDQ0Vt03xHr7wwgviFHQKhQLR0dEGjzHmPTQVV1dXREREYO/eveLfzaNHjwzGcOzYMYN1X7p0SRzxYW1tjQYNGmi9rrlWX/369Q3Wd+DAAb2vN2vWTNyOiYnBnTt3DNZZGFP/LRGRZctQZeBh2kOpw7AY7O8VjWbfo7h9GM0+25EjR4w6RrNc48aNi9VuWTp+/LhR5TT7MMU9r/LYDzB1H7e0FHWKbM3+ZJ06dbRuWNXl0KFDpT5jgiElmQb81Vdfhbe3NwBgz549uH37NmJiYsTlaZydncVRykQkMUEAEhKAcnDjGxEREZUNJpKldPUbYGco8JsbsKU6ELNI6oieWwEBAaW+fpZMJkNAQECptmGuXnnlFXF7yZIlJb5I0qJFC/Ei7YMHD7Br1y695VNSUrB161aD9Womfc+fP28wzo0bNxqss2vXruL24sWLi33umu/hH3/8gQcPSnbjiYuLC1566SVxf+3atQaP+emnn0rUZnH4+/ujbt264r6h8/75558N1ql5Hk2aNCkwVWRegh0wPF3l6dOncfLkSb1lfH19ERwcLO4vXrzYYIyFMfXfEhFZnr9j/kbnnzuj5nc14TjHEcO3coSXsdjfKxrNPsyKFSuKNdK6ffv24vbZs2dx4cIFveXzr6eqeby5io+Px759+/SWefToEbZv3y7ut2vXrlhtlcd+gOY5/fjjj8jIyJAwmsLZ29uL23nLr+hTlP4kkPvzlFpRz1GTXC7H0KFDAeQu/7Nq1Sr8+OOP4uv9+/cv9lrrRGQiw4YBL74IuLoC1aoBJ05IHRERERFZCCaSpZQWDySdAFT/XwtJcUXaeJ5jzs7OqFWrVqm24e/v/9z+53nkyJFwd3cHkLv2WWRkpNHHPnr0CDk5OVrPubu7o0+fPuL+hx9+qHfK48mTJxu1Nm1wcLC4Zt29e/f0Jqi3bduGbdu2GaxzwoQJ4oWko0ePYt68eQaP0aVp06YICwsDADx9+hRvvvkmsrKyjDo2KytL51R5mtPLLViwADExMYXWsX79ehw6dKhoQevx6NEjo8rl5ORoTQleqVIlveX37duHTZs2Ffr6lStXsGjRs5t2dE2xp/lZoO8GhPT0dK1p/PSZOHGiuP3VV1+JozOKytR/S0RkeR4/fYxdsbtw68ktCBAQk1T4ZzdpY3+vaEaMGCGey3///YcJEyYUuY46deqgTZs24v64ceP0JqhmzJiBhw9zR9m7urpiwIABRW5TCh988IHeRPsHH3wgJkjz1pMtjvLYD+jTp49488W9e/cwZswYoxPkSqXS6LW3S8rd3V3s0ycmJhpMtNasWVO8ceXSpUu4efNmoWU3bNiAv//+23TBFpOnp6e4rbkMjLGGDx8unvOqVauwZs0ardeISGInTwJnzgB510auXZM2HiIiIrIYTCRLyS1Ye1/BTpyUunXrBrlcXip1y+VyrVEdzxs3Nzd888034n5kZCSGDBlS6JpygiDg8OHDGDNmDGrUqKEzSTxz5kxxVPLFixfRvXv3Ahc8MjMz8cEHH2DZsmWwtbU1GKdcLteacm3EiBEFpnwWBAFr165Fv379jJq6MigoCO+//764P3XqVLzzzjt4/PixzvInTpxAREQELl++XOC1hQsXihd0d+/ejTZt2uidTjEmJgaffPIJ/Pz8dE4VOHjwYNSuXRtAbnK6Y8eOOuv75ZdfMHToUKPeQ2NNmjQJbdq0wU8//YQnT57oLJOUlIQRI0aIiWRXV1e0aNFCb722trYYPHgwfv311wKvHT16FJ07dxYv5NatWxdvvvlmgXI9evQQt9esWYOvvvqqwIXXGzduoFOnTjhz5kyBEc26REREiLFnZ2ejS5cu+P7773VehMzKysJff/2F3r17F3itNP6WiMiyBFYI1NqPTY6FSq2SKBrLw/6e8Tw8PLRugFu6dCnCw8MLXaLh8uXLePfddwvciDd37lxYW1sDAA4ePIg+ffqIyeI8WVlZmDp1qtZ33KxZsywiKW9ra4vTp0+jV69eBWZOycjIwPjx47USanPmzNEarVoU5bEfYG1tjSVLloi/I6tWrUL37t1x5UrhN1mfO3cOkydPho+PT7HX7y4qOzs7BAbmfv5mZ2djy5Ytest7eXmJy5uo1Wr07dsX1/IlbdRqNRYvXow333wT1tbWWiOCpVCvXj1xe9OmTUUe8V6rVi28/PLLAHJvPslb87p+/fpaU5gTkUSCgrT3mUgmIiIiI5XOVRQyjmtt7f2ndwFBDciY35fCqFGjsHDhwlKpW6VSYfTo0aVSt6WIiIjAzZs38cknnwDInV74l19+QcOGDVGnTh04OztDqVTizp07OHfuHFJSUvTWV7t2bXz99dcYO3YsACAqKgq1atVCWFgYfH19kZycjKioKCQlJcHW1hZz5szBpEmTDMY5Y8YMrF+/HmlpaYiPj0fDhg3Rtm1b1KpVCwqFAkeOHMHt27chl8uxdOlSo+6u/+yzz3D16lX89ddfAIBFixZh+fLlaN68OWrWrAm5XI779+/j9OnTYtJU16ifevXq4ddff0V4eDjS09Nx/PhxNGvWDP7+/mjcuDEqVKiAjIwMPHz4EBcuXDA4ksDOzg5r165Fu3btkJaWhtu3b6NZs2Zo2rQp6tWrh6ysLBw7dgw3btwAkDtqefz48QbP1xiCIODgwYM4ePAgrK2tUadOHQQHB8PDwwNPnz7F3bt3cfjwYa1R1/Pnz4eDg4Peer/44gtMmDABAwYMwKxZsxAaGgobGxtcunRJawpqZ2dnrFmzRmdyvFOnTmjTpg0OHDgAQRDwwQcfYPHixWjcuDHc3Nxw/fp1HDlyBDk5OahWrRreffddfPjhh3rjksvl2LBhA9q3b4/r168jPT0dY8eOxfTp09GyZUtUqVIFKpUK//33H06fPg2FQgE3NzeddZn6b4mILEuQp/ZFQJVahdspt1HLo3RH2pYX7O8VzZgxY3Dp0iVx2t2NGzfi999/R5MmTRAUFAR7e3skJibi7NmzuHXrFoCC0za3aNECn3/+udgP++uvv1CjRg20a9cOPj4+Wn22PL1798Z7771XNidZQqNHj8aff/6Jf/75B35+fggLC4OPjw+SkpIQFRWlNSvMgAEDMHDgwBK1Vx77AR06dMCSJUswevRo5OTkYMeOHfjnn38QEhKCF154Aa6urkhPT8e9e/dw/vx5JCYmShJnnz598NlnnwEABg4ciNWrVyMgIEBr/eP58+eL25988gk6deoEtVqNs2fPon79+mjZsiVq1aoFpVKJgwcPin3/OXPmYPny5fjvv//K9qQ0vPbaa5g2bRoEQcC2bdvwwgsvoEWLFuKMTUDuFNWay+Pk9/bbb2PPnj1az7311lulFjMRFUHtfNcg9cyUQERERKRFIC0pKSkCACElJaX0G8t8LAhXFwpCwi5BUP4nCOqc0m/TjDx9+lSIjo4Wnj59KnUooo4dOwpyuVwAYLKHXC4XOnbsKPWpmZTm+RXVhg0bhKpVqxr9/jVt2lTIyMgotL4FCxYIdnZ2hR7v5uYm/Pnnn0JUVJT4XNu2bfXGuGPHDsHR0bHQOl1dXYXff/9diIuLE5/z9fXVW2dOTo4wbdo0vbHmPaytrYUrV64UWte5c+eEF1980ej30M/PTzh79myh9e3fv1/w9vYu9HgrKyth1qxZgiCU7Gevady4cUbH7+LiIixfvrzQuvLH9NFHHwkymazQ+qpWrSocOnRIb3z3798XGjdurDeukJAQ4fLly8KqVavE54YMGaK33qSkJKF3795GnXe1atX01mXqvyVDzPEzu7wq074ImURZ/8zmHpwrrL+4XjiTcEZQZCjKpM3iMsfPDvb3iu7bb78VXF1dDb4PMplM2Llzp846Vq5cabAOa2tr4d133xVUKlWhsRSl/yUIQpH6gIIgGPW9PmvWLLHMrFmzhCtXrgi1a9fWe27Dhg0TsrOzTXZepuoH5D8XQ4YMGSKWX7VqlcHybdu2FctHRUXpLbt3714hMDDQ6HOqW7eucPfu3QL1FKVvJgjGv/dPnjwR6tSpozem/JYsWaL388bKykqYOXOmoFarBV9fX/H5uLg4nTEYU0YXfTFqmjp1qt7zM/Qzz8rKEipVqiSWt7OzE5KSkoyO0xjm+L1iLtiHtDxl+jM7flwQvv9eEPbsEYT4eEHIeb6uQRIREVFBxvZFOCJZSrYeQO1xUkdBGpYtW4aQkBCoVKabIlIul2PZsmUmq8/S9evXDz179sT69euxc+dOnDx5EomJiVAqlXByckK1atUQHByM1q1bo1u3bgjKP/1SPu+88w46d+6MRYsW4Z9//sGdO3dgZ2cHHx8fvPLKKxg1ahRq1KiBffv2GR1jly5dcPXqVcyfPx87d+5EfHw8rK2tUaNGDfTo0QOjR49GjRo1xJE3xrCyssKcOXMwatQorF69Grt378aNGzfw6NEjyOVyVKpUCXXr1sXLL7+M8PBwVKtWrdC6GjRogFOnTmHXrl3YsmULDh8+jISEBDx58gR2dnaoWLEiateujdDQUHTu3BnNmzcX1yvTpU2bNrhy5QoWL16MP/74A7GxscjOzkbVqlXRpk0bjBw5Ek2bNjX6XI2xcOFCjBkzBnv27MGxY8dw+fJl3L59G6mpqZDL5fD09ETdunXRqVMnvPnmmwbXRtb08ccfo1u3bli+fDkOHjyIhIQE2NjYICAgAK+99hrGjh1b6GjfPJUrV8aRI0ewcuVKrF+/HpcuXUJ6ejoqVaqE2rVrIzw8HAMHDoSjoyNOnDhhdGwVKlTAH3/8gZMnT2LdunXYt28f7ty5g+TkZDg4OKB69epo2LAhunTpgr59++qty9R/S0RkOaa0miJ1CBaN/b2ie/fddzFo0CCsXr0aO3fuRHR0NB49egQgdwrf4OBgtG3bFuHh4eL0v/m99dZb6NmzJ1asWIEdO3YgJiYGjx8/houLC3x8fNChQwcMGzYMISEhZXlqJlGnTh2cPHkSP/74IzZu3IgbN27gyZMnqFy5Mlq2bIm33367wEjtkiqP/YB27drhypUr2LJlC7Zt24Zjx47h/v37UCgUcHR0ROXKlVGnTh20aNECXbt2RcOGDcs0Pjc3N5w8eRLff/89tm3bhitXruDJkyd610seNWoUWrZsiW+++QZRUVFISEiAg4MDqlWrhvbt22PYsGFo1KhRGZ6Ffp999hlatWqFVatW4fTp03jw4AHS09ONPt7GxgavvPIKfvzxRwC5swtUqFChtMIloqJo2jT3QURERFREMkEo4sI35VzedKIpKSlwdXWVOpxyLSMjA3FxcahZs6bk60FpWrlyJUaMGGHS+jidF1Hp0UyS8yut9JjrZ3Z5xL6I5eHPrHDm+tnB/h6VxOzZsxEZGQkgdy3n2bNnSxsQkZkQBAH+/v7i2tV79uwR1002FXP9XjEH7I+UnYkTJ2qtWe/r61ukG83z8GdGREREUjK2L8LFeInyGT58OD799FOT1DVnzhxeVCQiIiIyM+zvERGZXlRUlJhErlWrFtq3by9xRESmd+LECXz33XdSh0FERERUZphIJtJh+vTpWLFiBezt7SGXF20GeLlcDnt7e6xcuRLTpk0rpQiJiIiIqCTY3yMiMq0FCxaI2yNHjtS7vA6RJcrOzsbw4cOhVqulDoWIiIiozDCRTFSI4cOHIzo6WlzPzNAFxrzX27Vrh+joaI5MISIiIjJz7O8REZnG1q1b8eeffwIAXFxcMHz4cIkjIjK9efPm4eLFiwCAAQMGSBwNERERUdlgItlcCAKQkQg8PATkZEgdDf1fzZo1sWvXLly+fBmjR49GQEBAgbuqZTIZAgICMHr0aERHR2PXrl2oWbOmRBETERHR8yQrJwtXH11FSkaK1KFYLPb3iIiK7saNG5gwYQLeeecddO7cGb169RJfmzRpEipUqCBdcESl4OrVq+KyGAMHDkTHjh0ljqgEBAF4+BC4cEHqSIiIiMgCFG0ONzI9dQ6wpzWguApkJec+1+UMUKGRtHGRlpCQEHGaLqVSiRs3biAzMxN2dnYICAiAs7OzxBESERHR8yRiSwQO3T6EuCdxUAtq/N7vd7wW/JrUYVk09veIiIx3584dnevEtmzZEpMnT5YgIqLSIwgChg8fjszMTHh4eODrr7/G9u3bpQ6r6E6fBsaMAa5dA1JSgCpVgIQEqaMiIiIiM8dEstSsrIH0u8+SyACQGsNEshlzdnZGw4YNpQ6DiIiInmO3U24jNjlW3I9JipEwmvKH/T0iIuPZ2tqiZs2aCA8Px5QpU2Brayt1SEQmtWTJEhw+fBgA8OWXX6JSpUoSR1RMDg7AiRPP9u/dA1JTARcX6WIiIiIis8dEsjlwrQ2k3362r7gmXSxERBZGEASpQyAiKnOBFQIRdStK3GcimajszJ49G7Nnz5Y6DCJJhYWFsR9Oz4X4+HhMmTIFANC6dWsMGzZM4ohKwN8fsLIC1Opnz8XEAC++KF1MREREZPa4RrI5cK39bNvKFlClShcLEREREZm9IM8grf2HaQ8lioSIiIio/BozZgxSU1Nha2uLZcuWQSaTSR1S8dnZAX5+2vv37kkWDhEREVkGjkg2B/5vAVW65iaUnXwBK/5YiIiIiKhw3YO6o4pLFQR5BiGwQiDc7N2kDomIiIioXFm/fj3+/vtvAMDkyZMRHBwscUQm8PXXgL09ULs24OMDWFtLHRERERGZOWYszYFHw9wHEREREZER6njVQR2vOlKHQURERFQuJSUlYfz48QCAoKAgTJ8+XeKITKRnT6kjICIiIgvDRDIRERERERERERHR/7333ntITEwEACxduhR2dnYlrjMzMxOZmZnivkKhKHGdRERERKWNayQTERERERERERERAdi1axfWrl0LABgyZAjatWtnknrnzp0LNzc38eHj42OSeomIiIhKU7lJJE+cOBEymUx8+Pn5SR0SERERERERERERWYi0tDSMHDkSAODp6Yn58+ebrO6pU6ciJSVFfMTHx5usbiIiIqLSUi6mtj5x4gS+++47qcMgIiIiIiIiIiIiCzV9+nTcunULAPDVV1/By8vLZHXb2dmZZIpsIiIiorJk8SOSs7OzMXz4cKjVaqlDMY2sZODRceD+v1JHQkREREQWQKVW4cbjGzh0+5DUoRARERFZrDNnzmDhwoUAgHbt2mHIkCESR1TKkpKAw4eB6GipIyEiIiIzZvEjkufNm4eLFy8CAAYMGIB169ZJHFExJewEjr4JZCbm7jv7A6/ekDYmIiIiIjJb5+6fQ/imcNxMvgmVWgUXWxekTEmBTCaTOjQiIiIii3PhwgVxoMrt27fRrFmzQssmJiaK2/fu3dMq+9FHH6F79+6lF2hJffwxsGgRkHcO48YB/0+gExEREeVn0Ynkq1ev4tNPPwUADBw4EB06dLDcRLJdhWdJZABIiwNyMgFrTnlDREREVBomTpyIb775Rtz39fUVpzK0BB72HohJihH3U7NS8SDtAbydvSWMioiIiMjyxcbGIjY21qiyWVlZOH78uLivmWQ2SzLZsyQyAFy9Kl0sREREZPYsdmprQRAwfPhwZGZmwsPDA19//bXUIZWMS5D2vqAGlDeliYWIiIionDtx4gS+++47qcMoER83H9jlu+lQM7FMRERERFRAnTra+0wkExERkR4Wm0hesmQJDh8+DAD48ssvUalSJYkjKiFbN8C+cu62zBpwCQSynkgaEhEREVF5lJ2djeHDh4tTF1oqK5kVAj0DxX0Pew88fvpYwoiIiIiILFdERAQEQTDqsWrVKvE4X19frdciIiKkOwljBAc/27axAdzcgKws6eIhIiIis2aRU1vHx8djypQpAIDWrVtj2LBhEkdkIq02AfYVAaeagLWt1NEQERERlUvz5s3DxYsXAQADBgyw3KVRACzosgAONg4IrBAIT0dPqcMhIiIiInMXGAhs3Zo7MrlmTUBukZeHiYiIqIxYZE9hzJgxSE1Nha2tLZYtWwaZTCZ1SKZRqZXUERARERGVa1evXsWnn34KABg4cCA6dOhg0YnkdjXbSR0CEREREVkSOzugRw+poyAiIiILYXFTW69fvx5///03AGDy5MkI1pyOhYiIiIioEIIgYPjw4cjMzISHhwe+/vprqUMiIiIiIiIiIiIyWxaVSE5KSsL48eMBAEFBQZg+fbrEERERERGRpViyZAkOHz4MAPjyyy9RqVIliSMiIiIiIiIiIiIyXxaVSH7vvfeQmJgIAFi6dCns7OxKXGdmZiYUCoXWg4iMk5SUhMjISISGhsLDwwPW1taQyWSQyWRYvXp1qbad146+qe3DwsLEMvv27SvVeIiIyLzFx8djypQpAIDWrVtj2LBhEkdEZN6M6WsVVURERJn1FYmIiIiIiIio5CxmjeRdu3Zh7dq1AIAhQ4agXTvTrAc3d+5cREZGmqQuoufJzZs30aZNG9y9e1fqUIiIiAwaM2YMUlNTYWtri2XLlpk0OUZEREREz5eIiAhERERIHQYRERFRqbOIRHJaWhpGjhwJAPD09MT8+fNNVvfUqVMxceJEcV+hUMDHx8dk9RdLtgJIvQ4orgPu9XIfRGZm5MiRYhLZwcEBHTp0QLVq1WBtbQ0AXL+ciIjMxvr16/H3338DACZPnlwuv6Ny1DmIV8QjJikG3s7eeKHyC1KHRERERETmTqEArl0DrlwBunQBuPQLERER5WMRieTp06fj1q1bAICvvvoKXl5eJqvbzs7OJFNkm8yhfsDt357t1/+YiWQyO/fu3cOePXsA5P4NnT9/HoGBgRJHRUREVFBSUhLGjx8PAAgKCsL06dMljsj0Ptz9IRYcX4DMnEwAwDtN38GCrgskjoqIiIiIzFqDBsCFC8/2t24FevSQLh4iIiIyS2afSD5z5gwWLlwIAGjXrh2GDBkicUSlzK6i9n7qdWnioEIplcCNG0BmJmBnBwQEAM7OUkdVts6ePStut27dmklkIiIyW++99x4SExMBAEuXLjXJDYSZmZnIzMwU9xUKRYnrLAknGycxiQwAMUkxEkZTPrC/VzpWr17NtZGJiIjMhaur9v7Vq0wkExERUQFmn0i+cOEC1Go1AOD27dto1qxZoWXzLhICuSMmNct+9NFH6N69e+kFaiou+RJyTCSbhehoYOlSYPt24OZNQBCevSaTAbVqAd26AaNGASEh0sVZVpKTk8XtKlWqSBgJERFR4Xbt2oW1a9cCAIYMGYJ27dqZpN65c+ciMjLSJHWZQpBnkNY+E8nFw/4eERERPVfq1AEOHXq2f/WqdLEQERGR2TL7RLKm2NhYxMbGGlU2KysLx48fF/c1k8xmLS+RLLMCHGsATjWkjec5FxcHjBwJ7N4NyOWASlWwjCAAsbHAkiXAwoVAx47AsmVAzZplH29Zyc7OFretrKwkjISIiEi3tLQ0jBw5EgDg6emJ+fPnm6zuqVOnYuLEieK+QqGAj4+PyeovqkDPZzciutq5opJTJagFNaxk/I42Bvt7RERE9FwKDs7918oK8PcHTLiUIBEREZUfvLpkbiq1AbpHA/3SgZ5xQKsNUkf03Fq5Mne0SVRU7r6ui4qa8l6Piso9buXK0o2vrO3btw8ymQwymQxDhw4Vn1+zZo34fN4jIiJCfH316tU6ny/MrVu3xPJ+fn6mP5ESio+PR2RkJNq0aYPKlSvDzs4Otra28PT0RIMGDTBgwAAsWbIE9+/f13l8RESEeH55UzsmJSVh3rx5aNq0KSpWrAgHBwf4+/vj7bff1ppGXB+1Wo2DBw9i5syZ6NSpE2rUqAFHR0fY2dmhSpUqaN++PebMmYNHjx4V+ZwVCgUWLlyIHj16wM/PD87OzrCzs0PVqlXx8ssvIzIyEpcvXzZYjyAI2Lx5M4YMGYKgoCC4ubnB3t4ePj4+6NWrF9asWQOVoT80IiIjTZ8+Hbdu3QIAfPXVV/Ay4YUxOzs7uLq6aj2kVLdiXRwcehAPPniAJ5Of4NjwY0wiG4n9vaI5efIkhg8fjqCgIDg5OaFChQpo2rQp5s6da9QU77r6QfpcvXoV48ePR+3atcX2GjZsiI8++gjx8fEAtPuoYWFhOusprMzff/+N1157DX5+frC3t4enpye6du2K7du3F6hDrVbjzz//xCuvvIKaNWvC3t4eVapUweuvv45jx44ZPBciIiKz88YbwKVLQHo6EBMDzJsndURERERkjoRyZNWqVQIAAYDg6+tbrDpSUlIEAEJKSoppg6MCnj59KkRHRwtPnz6VOpQCPv1UEHLHnpTs8emnUp+J6URFRYl/X4YeQ4YMEY/T/LvUfL4wcXFxRv0da7ZXmLZt24ploqKijD/ZQixbtkxwcHAw6j1o2bKlzjqGDBkillm1apVw5MgRoWrVqoXWY21tLcyaNUtvXFlZWUK1atWMisvJyUlYu3at0ee8ZMkSwcPDw6i6d+zYUWg958+fFxo2bGiwjtq1awuXL182Oj4qO+b8mV3esC9ScqdPnxasrKwEAEK7du30lmX/sXSZ82cH+3v65e9rzZo1S/y70vWoVq2acOTIEb115u8H6fPNN98Itra2hbbn5uYmbN26VauP2rZtW5115S+TlpYm9O/fX2+fRLP/9fDhQ6FFixaFlpXJZMLChQuL8vYSUTGZ8/eK1NgfsTz8mREREZGUjO2LWNTU1kRlYeVKYMYM09Q1Ywbg7Q289ZZp6pNStWrVMHbsWAC5o0P+/fdfAECdOnXw8ssva5XVt5a5pdqyZYs4RSoAuLq6onnz5qhevTrkcjlSUlIQExODS5cuISsry6g6//vvP0ycOBHJyclwdnZG+/btUblyZSQkJCAqKgrp6enIyclBZGQk1Go1Pv74Y5315OTk4O7duwAAZ2dn1K1bF7Vq1YKrqyuys7Nx584dHDt2DAqFAmlpaXjzzTdhY2OD8PBwvfGNHz8eCxcuFPetra3RpEkTBAYGwt7eHomJiTh37pw44i8jI0NnPQcOHECPHj3EkUo2NjZiPTY2Nrh16xYOHTqEjIwMXLt2DS1atMDRo0cRnDfNFhFREV24cAFqtRoAcPv2bb3fS5rLn9y7d0+r7EcffYTu3buXXqAkGfb3imbBggXiuuABAQEIDQ2Fra0tLl68iFOnTgEA7t69iy5dumD//v1o2LBhidt77733xH07Ozu0bdsWNWrUQHJyMvbv349Hjx6hb9++mDt3bpHrf+utt7B+/XrI5XK0bNkSAQEBSE9Px969e/HgwQMAQGRkJGrXro1evXqhU6dOOHfuHOzt7dGmTRvUqFEDT548wb///ovk5GQIgoDx48fjxRdfRPPmzUt07kRERERERETmhIlkIg1xccA775i2znHjgPbtLX8NvcDAQCxatAhA7nTVeYnk0NBQ8fnyLO/iKQCMGzcO8+bNg6OjY4FySqUSO3bswOnTpw3W+dlnnyErKwsDBw7E999/rzU1anJyMoYPH44//vgDADBnzhx06dIFLVq0KFCPlZUVhg4disGDB6Nly5awsbEpUCYzMxMLFizAtGnToFKpMGrUKHTv3h3Ozs46Y1u6dKlWErlfv36YP3++zjVAL126hBUrVuh8P+7fv4/XX39dTCIPHjwYn3/+OapUqaJV7sGDBxg9ejQ2b96MlJQUhIeH4+zZs7C2ttYZHxGRsWJjYxEbG2tU2aysLBw/flzc10wyU/nB/l7RTZo0Cfb29li5ciUGDhyo9drhw4cRHh6Ou3fvQqFQYPDgwTh9+rTO/ogxrly5gkmTJon7HTt2xJo1a7T6DtnZ2Zg1axbmzp2LadOmFan+Y8eOITMzEy1atMDatWtRq1Yt8bWnT59iyJAh+O233wAAs2bNwtGjR3Hu3Dn07t0bS5cuRaVKlcTyycnJ6NWrFw4cOABBEDB9+nTs3bu3WOdNREREREREZI64eBqRhpEjDa+NV1QqVW69ZLmUSiXOnTsHAPDx8cGCBQt0Jk2B3BHBr7/+Oj7//HOD9WZlZaFbt2746aefCqyv6eHhgQ0bNojr+KnVakyZMkVnPba2tvjxxx8RFhZW6EVbOzs7TJo0CZ9++ikA4MmTJ1i7dq3OssnJyfjwww/F/VGjRmHDhg06k8gAUK9ePXz33Xfo1KlTgdemT5+Ohw8fAsgd4Zz/QnCeypUr47fffkP79u0BABcvXsSmTZt0tkdERFQS7O8VXVZWFlavXl0giQwALVu2xM6dO2FnZwcg9zu8sD6GMSIjI8XZXRo0aICtW7cW6DvY2Njgs88+w/jx45GZmVmk+jMzM1G7dm3s2rVLK4kMAA4ODvjhhx9QoUIFAMD169excOFCtG/fHps2bdJKIgO5/bWffvpJvPFt3759uH//fpHiISIiIiIiIjJnTCQT/V90NLB7d+lcWNy9G7hyxbT1UtnJG00LAJ6enpDJZCapVyaTYcGCBbCy0v1RLJfLsWDBAnH/4MGDuHbtWonaHDp0qLi9Z88enWWWL1+O1NRUAICvry++/fbbYrWVmJiIn3/+GQDg7e2NefPm6S1vbW2NOXPmiPu//PJLsdolIoqIiIAgCEY9Vq1aJR7n6+ur9VpERIR0J0Glgv294mndurXeJTHq1q0rLoECACtWrChWO8nJydi8ebO4/+WXX8Le3r7Q8p9++mmBm/GM8fnnn8PJyUnnay4uLgWmtP/6668L7a/5+vqKM8YIgiBO9U1ERERERERUHnBqa3OVrQSUN4DU64DyFhAyyeAhVDJLlwJyuekvLAK59S5ZAmjkBMmCeHl5wd7eHhkZGbh06RIOHz6Mli1blrjeFi1awN/fX2+Z+vXro1GjRjh79iwAICoqCrVr1y60vFqtxunTp3Hu3DncuXMHCoUC2dnZOsvmjbLO759//hG3R4wYIY4wKqo9e/aII4pee+01vReC84SGhsLJyQlpaWk4dOhQsdolInpeqQU17iruIiYpBjFJMRjcYDCcbHUny55X7O8Vz+DBgw2WGTJkCL7++msAwMmTJ5GWllZosrYwR44cEfsO3t7eePnll/WWd3FxQc+ePYs0AtrBwcHg2uf169cXtwMCAtCgQQO95evVq4eDBw8CAOLi4oyOhYiIyCykpQExMcDVq0BCAvD++1JHRERERGakXCWSIyIiysfIEeUtYGu+Bdb8hwF2npKE87zYvr10LioCufXu2FE6dVPps7W1Ra9evbB+/XqoVCq0b98e4eHh6Nu3L9q0aQN3d/di1du8eXOjy+UlkvP+zU+lUmHBggX45ptvcOfOHaPqffTokc7nNdcHbdeunVF16XL06FFx+8KFCxg3blyRjk9OTi7WRWgioudRdk42KnxRAcospfhcaPVQNK7SWMKozA/7e8VjTJ+lfv36cHZ2hlKpRE5ODi5cuGB0XyeP5k1uTZo0KXQUsKbQ0NAiJZKDgoIMrt/s4eEhbtetW9dgnXlTYQPaM9kQERGZvYsXgRdeeLYvkwGjRwOFLOdFREREz59ylUguNxyrAzI5IGhc5Uq9zkRyKUpNBW7eLN02YmMBpRJwdi7ddqh0fPPNNzh9+jSuX7+OrKwsrF27FmvXroWVlRXq1q2L1q1bo2PHjujatavRI3hr1KhR5HKJiYkFXs/MzMSrr76KXbt2GXcy/5c3fbUmhUKBp0+fivv51w4sioSEBHH70KFDxRphnJyczEQyEZERbKxt4OXopZVIjkmKYSJZA/t7xWdMn0Umk6F69eq4evUqAN19FkM0j/Hx8THqmOrVqxepDTc3N4Nl5PJn/00uavnCZoIhIiIyS/n/zy8IwPXrgIHZOIiIiOj5wTWSzZGVHHDO15FLvS5NLM+J2NjcvnJpEgTgxo3SbYNKj7e3N06dOoUZM2agcuXK4vNqtRoXL17E999/j969e6NKlSr4/PPPkZOTY7BORyPv8NVMpOpK/kZGRopJZJlMhvDwcGzcuBFXrlxBSkoKsrKytNb8zCPo+KXPX79zCa6Ep6SkFPvYPKrSGjZGRFQOBXkGae3HJMVIFIl5Yn+v+EzVZzFEqXx2I4SxbRa1ryKTyUq1PBERkUVxcgLy3zD2/5vCiIiIiAAmks2XSyAAGeBYA6jcHrBxlzqici0zs3y1Y8nUarXUIRTK1dUVn3zyCe7evYtjx47hyy+/RK9eveDl5SWWSU5OxtSpU9GnTx+diVpN6enpRrWblpYmbru4uGi9lpmZiYULF4r7q1evxvr16/H666+jTp06cHV11Zq+0dBF3fz1a17QLSrNi8lff/21VjLb2Iefn1+x2yciet4EVggEADjbOqNxlcao4FDBwBHPF/b3is8UfRZjaCaFi9MmERERFUOdOrlTWvv5AV26AEbMxkFERETPD05tba6a/QjIXQC5g9SRPBeMnInYYtoxJ5pJTGNGl5piFGtps7a2RmhoKEJDQ/HBBx9ArVbjyJEj+PLLL7F161YAwJ9//onff/8dffv2LbSe27dvG9VefHy8uK2ZtAaAEydOiMneunXrYvDgwXrr+u+///S+7urqCgcHB3F667i4OHh7exsVZ36aI7fv379frDqIiEpbREQEIiIipA7DJKa1nobprafD29mboyh1YH+v+G7fvm1wrWBBEHD37l1xP3+fxRiax9y5c8eoY4wtR0RERIVYvTo3ecx1kYmIiEgHjkg2V/aVmEQuQwEBuTdfliaZLLed542rq6u4nZSUZLD8xYsXSzOcUmFlZYVWrVphy5Yt6Nixo/h8XlK5MMeOHTOq/qNHj4rbjRtrr3WpuQ5x/fr1DdZ14MABg2VCQ0PF7b179xoTosF6Dh8+XOx6iIjIOFVdqqKKSxUmkQvB/l7xGdNnuXTpkjjzibW1NRoUY23Fhg0bitsnT540OLsLkHtTHREREZVAlSpMIhMREVGhmEgmAuDsDNSqZbhcSfj757bzvNGcmvj8+fMGLwhu3LixlCMqPTKZDD169BD3Hzx4oLf84cOHERcXp7fM5cuXcebMGXE/LCxM63Urq2cf44amgFSr1Vi+fLneMgDQtWtXcXvFihXILOYcnZ07d4ZcnjvxxZEjR3D+/Pli1UNERGQK7O8V388//2ywzE8//SRuN2nSRGuJC2O1aNECtra2AIB79+4ZvKFNqVRiy5YtRW6HiIiIiIiIiIzDRDLR/3XrBshLabJ3uRzQyM09V4KDg8U18u7du4ddu3YVWnbbtm3Ytm1bWYVmtNTUVGRlZRlVVnMa6kqVKuktKwgC3n333UKT6zk5ORg/fry436pVK9SpU0erTC2NK+L79+/XOzX4l19+aVQyd8SIEeIahf/99x8mTJhg8BhdqlWrhkGDBgHIPdfBgwdDoVAYdaxarUZiYmKx2iUiIioM+3vFs2/fPmzatKnQ169cuYJFixaJ+8OHDy9WOxUqVEDPnj3F/Q8//FDvDW0zZ860iGVRiIiIiIiIyEJFRwPffw9s2AAcOAAkJ0sdUZljIpno/0aNAoxYwrdYVCpg9OjSqdvcyeVy9OvXT9wfMWIEoqOjtcoIgoC1a9eiX79+sDPDhQVPnz4NPz8/zJ49u0DseXJycrBhwwYsXLhQfK6rgavJtra2+OuvvxARESFOBZknOTkZb7zxhjgSRyaTYe7cuQXqaNSoEapVqwYgd33p119/XWu6awDIzMzEzJkzMWXKFKNGB3l4eGDevHni/tKlSxEeHl7oGoSXL1/Gu+++q/MmgTlz5qBKlSoAgAsXLqBp06Z6bya4c+cOvvnmG9SuXRsbNmwwGCsREVFRsL9XPLa2thg8eDB+/fXXAq8dPXoUnTt3RkZGBgCgbt26ePPNN4vd1qxZs8RRyWfOnEHPnj0LzPKSnZ2Njz76CN98841Z9h2JiIiIiIionDhxAhg7FujfH2jbFqhQAdAYTPY8KKX78YksT0gI0LEjEBVl2guMcjnQrh0QHGy6Oi3NjBkzsH79eqSlpSE+Ph4NGzZE27ZtUatWLSgUChw5cgS3b9+GXC7H0qVLiz2KpTTdu3cPkZGRiIyMhLe3Nxo2bAhvb2/I5XI8ePAAp0+f1krgtm7dGv3799db59SpU/Hdd9/hp59+wubNm9G+fXtUqlQJ9+/fx969e5GWlqZVtlWrVgXqsLKywieffIJhw4YBAHbv3o2goCC0aNECvr6+SEpKwr59+5D8/zulli9fjoEDBxo83zFjxuDSpUtYsmQJgNwpx3///Xc0adIEQUFBsLe3R2JiIs6ePYtbt24BANq1a1egnqpVq+LPP/9Et27d8OjRI1y7dg2dO3dGtWrV0LRpU1SsWBHZ2dl49OgRLl26ZHCqbyIiopJgf694vvjiC0yYMAEDBgzArFmzEBoaChsbG1y6dAknT54Uyzk7O2PNmjViIrg46tati88//xwTJ04EAOzcuRO+vr4ICwtDjRo1kJycjP379yMxMRG2trb47LPP8P777wPQXvKDiIiIiIiISC9BAHbuBOrVA6pX110m/83Lnp6Fly2nmEg2Z6p0QBkLpF7PfbgEAT69pY6qXFu2LPcCo6kvLC5bZrr6LJGfnx82bdqEPn36ID09HdnZ2dizZ49WGVdXV6xatQqNGzeWKMrCOTg4QC6XQ/X/X4z79+/jn3/+KbR837598eOPPxq8mOnn54dt27ahb9++uHfvHv78888CZaytrTFlyhR8+umnhdYzdOhQ3LhxA5999hkAIC0tDbt379YqY29vj2+//RYDBgwwKpEMAN9//z1q166NmTNnQqFQICcnB8eOHcOxY8cKlJXJZHB0dNRZT5MmTXDq1Cm89dZb+PfffwEAd+/exebNmwttu3LlyggMDDQqTiIiekYQBNxT3sP1pOuISYqBndwOgxsMljoss8L+XtG9++67SEpKwqefforr16/j+vXrBcpUrVoVGzduxIsvvlji9t577z3k5ORg2rRpyM7ORmZmJnbu3KlVxs3NDWvXroW9vb34nKura4nbJiIiei5lZgLXrwNXr+Y+qlYF/n/DOhERUbl07RowZgywd2/ud94PP+gup/F/TgBA06aATFZ4vYKg/3ULxESyObvwEXD162f7NV5nIrmU1awJLFwIjBhhujoXLcqt93nXpUsXXL16FfPnz8fOnTsRHx8Pa2tr1KhRAz169MDo0aNRo0YNcXSrOQkNDcXDhw+xZ88eHDp0CGfPnkVsbCySkpKQk5MDV1dX+Pv7o1mzZhg0aBCaNm1qdN0tWrTA+fPnsXz5cmzevBm3bt2CUqlE1apV0b59e4wZM8ao5PqcOXPQtWtXLFq0CIcOHUJiYiJcXFxQvXp1dOnSBW+99VaxErPvvvsuBg0ahNWrV2Pnzp2Ijo7Go0ePAABeXl4IDg5G27ZtER4errd+X19f7NmzB0ePHsVvv/2GAwcOID4+HsnJyZDL5fD09ERgYCBeeukldOrUCWFhYZCX1iKWRETl2I9nf8Twv57N7FG/Un0mkvNhf694Pv74Y3Tr1g3Lly/HwYMHkZCQABsbGwQEBOC1117D2LFj4ebmZrL2PvjgA3Tv3h2LFy/Grl27cOfOHdjZ2Yl9x5EjR8LHx0drKQx3d3eTtU9E5cuIrSOgyFJgROMR6FCrg9ThEJmfb78Fpkx5tt+mDRPJRERUfq1fDwwdCvx/iSasXg1MnAjUrVuwbJUqQMuWQGIicOsW0KRJ4fWeOweMH5+blC5Hg6RkgiAIUgdhThQKBdzc3JCSkiL9He3XlwInNRZa82gIdD0rWTimlpGRgbi4ONSsWVNrJIE5mDMHmDHDNPVMm1byeqj8iIiIwJo1awAAq1atQkREhLQBERnJnD+zyxuz6ouQUczpZ7b/1n6ErQkT9+3l9kiblgYrmTRT/przZwf7e+XD9OnTxVlZPv/8c0yePFniiIioNBX3e6XRskY4d/8cAOCjNh9hdthsyb4bS4s59UfIOGb1M/vzT6BXr2f7Xl65F8yJiIjKo/PncxPC2dnPnnv11dzvQ32ysnKTz7q+twUB6NAhd4SzgwPwxRe5ayub8ehkY/si5avXXN645LtjIfVG7i8jlbrp04EVK3JnLSjqoEi5PPe4lSt5UZGIiIjKVpBnkNZ+hioDdxR3JIrGvLG/Z/kEQcBvv/0m7jfRd2c4ET3XsnKyxO1PDnyCoX8OlTAaIjMUHKy9/+gRE8lERFR+NWgAzJr1bL96daB3b8P5N1tb3UlkANi2LTeJDABPnwLvvJN74aEcYCLZnLkE5P7rUBWo1Bbw7Q+oM6WN6TkyfDgQHQ20a5e7b+gCY97r7drlHvfWW6UbHxEREVF+3s7ecLZ1hoPcAfUr1Uef4D7Izsk2fOBziv09y/bNN9+I6zVXq1YNbdu2lTgiIpKKSq3C0+ynOl8TBEErkSyDDH2C+5RVaESWoVat3IvjVavmjqYaPx7IyZE6KiIiotIzeTLQrFnud961a0BERMlGDy9Zor3v4ZF70aEc4AKU5szRB+inBOROUkfy3KpZE9i1K/dC4dKlwI4dQGys9o0pMhng7w907QqMHl3wJk4iIjKRnKzcD10rG6kjITJbMpkM19+5jkpOlcrdlJ2lhf0987Np0yYcO3YMb7/9NoKCggq8rlAo8MUXX4hTWgPA+++/D2tr67IMk4jMgCAI2H59OybtnoQeQT0wr+M8neXa1GiD2MexECDgs5c/w6u1Xy3jSInMnFyeOwrZxUXqSIiIiMqGXA7s2wfY2Zmmvo0bc5PTixcDVlbAhg25N2qVA0wkmzOZFZPIZiIkBFiwIHdbqQRu3AAyM3M/YwICAGdnaeMjInou3NkCHBkIuNcDPEOBaj0A746Ata3UkRGZFW9nb6lDsEjs75kPpVKJr776Cl999RUCAgLwwgsvwMvLC9nZ2fjvv/9w7NgxpKeni+Xbt2+Pd999V8KIiUgKMUkxGLNtDP6N+xcAEJsci9FNRsPP3U+rnEwmww89f8Ab9d/AlqtbMLkl11In0olJZCIiKm/S0nL/U1/Y9GOmSiIDgJMTsGgR0L177t3pHTuarm6JMZFMVETOzkDDhlJHQURUzqjSgKvfAv5vAQ6FJMEyEwFBBSSfy33E/gC89gCwrlCGgRLR84D9PfNx48YN3LhxQ+drMpkMAwcOxIoVK2BlxRH4RM8bGWTY/99+cT8rJwvT/p2GdX3W6SzfoVYHdKjVoazCIyIiIiIpqVTA66/njg5ev77s7g7v2rVs2ilD/N82ERERSevBPmD7C8CFGcCV+YWXy3ykvV85DLBjEpmIqLwZMGAA/v77b4wbNw4tWrSAv78/3NzcYGNjAy8vLzRu3BgTJkzA6dOnsXbtWtjb20sdMhFJINAzEGNeGqP13LWka4WulWzItUfXMOD3AVBkKkwRHhERERFJadKk3LWrtm0DWrcG7t6VOqJcV68CR45IHUWRcEQyEVEZWr16NVavXi11GETm49oC4PQEAP9fjPT6EiBkMmBfsWDZ/Ink6r1LOzoiIpKAra0tunfvju7du0sdChGZuZltZ2LN+TVwtnXGZy9/hkEvDIKVrOhjJpKfJqPHrz1w/fF1nH9wHlv7b4V/Bf9SiJiIiIiISt3mzcC33z7bP3cOeOUV4MwZQCaTKirgwgWgQwcgIwP491+gSRPpYikCjkgmIiIi6VjZQkwiA0BOOnD1a91lX/gY6LAfaDgPqNgSqN6z8HrjtwCxqwBBKLwMEREREVk0T0dP/DPoH8S8E4PBDQYXK4msUqvQb1M/XH98HQAQnRiNpiub4vz986YOl4iIiIjKgkqlPZW1nR2weLG0SeTTp4F27YDERCA1NXct5Zs3pYunCDgi2dwJaiAlGki9AShjcx8NPgNs3aWOjIiIqOQCRwGKa8C1b3P3K7YCfPvrLmvrAVRqk/sI+bDwOrOeACdHARkPgFtrgWZrACcfU0dOZNYS0xIRkxQjPvqE9MFLVV+SOiwiIiKTa1a9WYmOv5l8E+fun9N6zs/dD4GegSWql8gi/fcfcP48cOUKEB0N9OkDvPqq1FEREREVzeuvAy+8APTrlzsKeMECoEULaWP69lvg8eNn+4mJwDvv5E69beaYSDZ3Qg6wo2Huv3lqDQU8LWPIOxERkUGN5ufeMOXZFKg3HSjGSBIt56bmJpEB4EFU7vrLnQ4DbiElj5XIQvTa0AtH4p+tuVPRqSITyUREZLHUgrpYo42NEeQZhJMjTqLHrz1w6eEleDt748/+f8LRxrFU2iMya++/D/z++7N9Ly8mkomIyDLVrg0cOwasWwcMGyZ1NMDKlcCDB8Du3bn7LVoAFrIEJqe2NndWNoCTr/ZzqTekiYWIiKg0WFkDbbYA9T8qeRJZEQPcWKb9nMcLgEvtktVLZGGCPIO09mOSYiSKhIiIqGQEQcC1R9dwM/kmslRZpdKGn7sfjgw7gn51+2FL+BZUd61eKu0Qmb2QfDffRkdLEwcREZEpODgAb70l7ZTWeezsgE2bgPr1c0dK//svULGi1FEZhSOSLYFzAKDUmCtdGStdLERERKXByto09bgGAWHbgBOjgPTbgI0b0Hyt6eonshBBFbQTyXnrPhIREVma5IxkpGWnIS07Dcmpych8monKWZVhb29v0nZc7Fywoe8Gk9ZJZHGYSCYiIio9rq7Avn2AuztgZTnjfJlItgQuAUDKRcDZP3fb/QWpIyIiIiq6J5cA93ql307VrkC388DJ0UD1XoBTjdJvk8jMBHoGwtbaFgEVAhDkGYTQaqFSh0RERFRkakGNu4q74r4AAemqdNhY20gSz6yoWWju0xxdArpI0j5RqQsJATw9c/8NCQHq1gUEwTxGchEREZUHFSpIHUGRMZFsCV5aCDRZLHUUpUYQBKlDICIiA0r8WX33b2B/D8B/eO6ayLZupgmsMLbuQMtf9ZfJOydeFKFyqGftnkiflg5rjsYnIiIL9jT7KbLV2VrPedh7SJJI/vHsj/j4wMewklnhq05f4d3QdyFjP5LKm/r1gcRE/h+JiIgsT2Zm7vTRZHKWM3b6eVbS9SLNlLV17oXNnJwciSMhIiJD8j6r8z67i3ZwBnBqXO527EpgWwiQsMOE0RXTxVnAiRFAvouTROWBjbUNk8hERGTxnGydUL9SfVRyqgQZZHCQO8DRxrHM4zh0+xBG/T0KQO4o6fd2voex28eWeRxEpU4mYxKZiIgsz+XLQOXKwMiRwJEjzwaPWJrffweGDTO7+MtnhpIsglwuh1wuh1KplDoUIiIyQKlUip/bRXbtOyDtv2f7TxOAp/dNF1xx3PwJuPQJEPsDENUVyHoibTxEREREpJONtQ1quNVA3Up1Uc2lmiQxrLu4rsDI6KbVmkoSCxERERHls2YNkJICLF8OtGwJtGsndURFk5YGDB8O9O0LrFoFrFghdURamEgmychkMri5uSElJYWjkomIzFhOTg5SUlLg5uZWvOn7crIAK9tn+5XaALUiTBZfkT3YD5wYrrH/L7CnjcGRyUqlEufOncPx48dx7tw53ghFREREVIbs5fawt7GXpO3F3Rbj47CPxf2JzSYiomGEJLEQERERkQaVCvj5Z+3nmlrQDX+CAHTpAvzww7PnJkwArl6VLKT8mEgmSbm7uwMA/vvvP2RlZUkbDBERFZCVlYX//ssdTZz3mV1k9T8CXrkK1AgHIAMafSXtdGlZyYAs35S/gaMBq4Jr7UVHR2P8+PEICAiAq6srGjVqhGbNmqFRo0ZwdXVFQEAAxo8fj+jo6DIKnoiIiIjKmkwmw0dtP8Km1zehb0hffNHxC6lDIiIiIiIAOHMGuJ9v5sMhQ6SJpThkMmDyZO3nnj4F1q2TJh4dZIJgZpNtS0yhUIijZF1dXaUO57mQmZmJ+Ph4qFQqODk5wcnJCXZ2drCysireyDciIio2QRCgVquRmZmJtLQ0pKWlQS6Xw8fHB3Z2diVvIDUWcPEveT0l9egEcOBVIOMBUPs94MWvtV6Oi4vDyJEjsXv3bsjlcqhUqkKrynu9Y8eOWLZsGWrWrFmi0NgXsTz8mRUuIyMDcXFxqFmzJuztpRlFRkRE5Qe/VwrH/ojl4c+MiIjIROLjgbVrc6e4dnEBTp2SOqKiGzcOWLwYcHYGFi0CBg8u9YE4xvZFirHQIUki/Q7w+AygjM29CO9aB6g9TuqoTMLOzg5+fn5ISUmBUqnEw4cPwfsbiIikJZPJ4ODggIoVK8LNza14ayPrYg5JZADwagp0Pg5cWwg0nKf10sqVK/HOO++IyWN9SWTN16OiohASEoKFCxdi+PDheo8hKgsZqgycu38OMUkxiEmKwd3Uu1jVc5XUYREREemVmpkKZ1tni7yx/I7iDr44/AXmdZgHBxsHqcMhKr7du4FLl4Do6NzH0qVA/fpSR0VERKSbjw8wbRowdSrw6JHU0RTPl18CCgUwcyYQECB1NFqYSLYUcT8B56c/2/fuUG4SyUDuaC5PT094enpCrVZDpVJBrVZLHRYR0XPJysoKcrkcVlblfAUMJ1+g8Xytp+bMmYMZM2YUqzqVSgWVSoURI0bgwYMHmD59uuGDiEpRfEo8mv/QXOu5+R3nw9PRU6KIiIiI9EvNTMW1pGtwsnFCddfqcLFzkToko6VlpaHn+p44c+8Mjt89ji3hW1DFpYrUYREVz9tvA7duPdu/cIGJZCIiMn8yGVCxotRRFI+DA/DTT1JHoRMTyZbCOd8IrtRYaeIoA1ZWVrC1tZU6DCIies6sXLlSK4ns4QQMbAks2lX0umbMmAFvb2+89dZbJoyQqGj83P0gt5JDpX42qv764+tMJBMRkdlKSE0AAKRlp+Fa0jV4OXrBz91P2qCMoBbUiPgzAmfunQEAnLh7Ak1WNMHOQTtRt1JdiaMjKoaQEO1EcnS0ZKEQERGRtMr5UKNyxCXfUPb0/4CcLGliISIi0kdQA0/vSx1FkcTFxeGdd94R9x1sgb8+ABYOAZYMA6yKMbPiuHHjEBcXZ8IoiYrGxtoGNd211+y+nnRdomiIiIj0S89OR2pWqtZzDnLLmB76etJ17LyxU+s5RxtHVHWpKlFERCUUEqK9z0QyERHRc4uJZEvh7A/YVwK8WgB+bwL1ZgFqJpKJiMgM3f8X2OIDHAoHHuwHLGDd+5EjR4prHcutgY3jgZZBua+Nehn4eUzu80WhUqkwcuRIE0dKVDR1K9VFbc/a6BHUA+83fx91vOpIHRKRRZo9ezZkMhlkMhlmz55tsnr37dsn1hsWFmayeokskTJLqbUvt5KjopNlTE1Y26s2jr51VLyBy83ODX+98Rc8HDwkjoyomBo3Bpo2BYYOzV2z8b33pI6IiIiIJMKprS2FrTvw2gOpoyAiIjLs+mJAUAG3N+Y+fPoCrX+TOqpCRUdHY/fu3eJ+q9pA1wbaZcKCgSruQHyS8fWqVCrs3r0bV65cQXBwsGmCJSqiP/r9AZmsGEPqiYiIylglp0qoYF8BKZkpeJLxBI42jrCSWc74h7qV6uLEiBPov6k/Pmz5IWp71ZY6JKLie+ON3AcREZG5+vprIDgY6NABsLGROppyzXJ65ERERGT+0u8Ad//Sfs67vTSxGGnp0qWQy5/dW7cvGnj9OyAzO3f/sRLoNK9oSeQ8crkcS5YsMVGkREXHJDJRQRxdTGS+5NZyeDp6wr+CP6q4VJE6nCLzcvTC7jd3o5N/J6lDISIiIiq/Hj8GJk8GunUDvL2Bt98G7t2TOqpyi4lkIiIiMp3EIwA0EldyZ8BvkGThGGP79u3itNZ5Np8Cun8J3H8CdP0CuBRfvLpVKhV27NhR8iCJiIiIyCLwJi4iIiKiUrZ5M5B3Le/xY2DtWsDZWdqYyjFObU1ERESm49sPqNQWuL0BiFsLeDQAbFykjqpQqampuHnzps7X/r0M1HoPeJpVsjZiY2OhVCrhzA4tkcXIUmbh8Y3HUGWqILeTo0JABdg620odFklo9uzZJh29nCcsLAyCIJi8XiIiIiIionLrt3xL6HXrBriY7/VHS8dEMhEREZmWQ2Wg9vjcR04Js7ClLDY2Vu8F/JImkQFAEATcuHEDDRs2LHllRFRqEqMTcWrpKVzffh3JN5MBzY8GGeBRywOB3QLx0qiXUDGkomRxEhERERERET3XXn4ZSEoCTp3K3e/XT9p4yjkmkomIiKj0WJv3CL7MzMxy1Q4RFV1yXDL+Hvk3bu6+CZlcBkGl4+YSAUiOTcbJJSdxYuEJ1OpYC68sewUeNT3KPmAiIiIiIiKi59mkSbmP+Hhg69bcEclUarhGsiVR5wB3twFXvwNOjQf2dQfSE6SOioiIyGLZ2dmVq3aIdLmedB2/XPgFs/fNxoDfB2DB8QVSh2Q2zqw8g+9DvsetqFsAoDuJrCHv9VtRt/B9yPc4s/JMaYcoGZlMJj7ynDx5EsOHD0dQUBCcnJxQoUIFNG3aFHPnzoVCoTCq3pSUFPz6668YOXIkQkND4eXlBVtbW7i6usLf3x9vvPEGNm7cCLVabbCu1atXizFGREQAAHJycrB+/Xr07NkTtWrVgoODA2QyGbZs2YKwsDDIZDJERkaKdURGRmqda/768syePVt8Lf8U13mvtWvXTnxu//79Ouv18/PTOnbfvn3ia2FhYUa9hzt37sSwYcMQFBQEV1dXODg4wNfXF71798bq1auRnZ1tsI6IiAix3dWrVwMA0tPT8f3336NVq1aoXLky7Ozs4OPjgzfeeAOHDx82Kjai4rivvI9H6Y+QnWP4d5eIylBKCrB4MTBuHNC+PeDjAxjxHUNERFRmfHyAsWM5rXUp44hkSyKzAg6HA6q0Z8+lxgCOVaWLiYiIyIIFBARAJpOV6vqUMpkMAQEBpVY/kSGrz63GZ4c+E/eVWUqMDx0vYUTm4cCcA4iaEVWsY9UqNdQqNf4a8ReUD5RoM72NiaMzP7Nnz8Ynn3yileBNT0/HyZMncfLkSSxevBi//fYbmjdvXmgdf/zxBwYMGKBzlobs7Gxx3fr169ejQYMG2Lx5M2rWrGl0jAkJCQgPD8ehQ4eKdnIW4uHDhxgwYAD+/fffAq/dvn0bt2/fxpYtW/DZZ59h3bp1eOmll4yuOzo6Gn379sWVK1e0nr9z5w7Wr1+P9evXY+bMmVpJeCJTUAtqJKQmQC3kfrY42zrD180XDjYOEkdGRFCrc5PImq5fB0JCpImHiIiIJMFEsiWRyQBnf+DJhWfPpd4AKodJFhIREZElc3Z2Rq1atRAbG1tqbfj7+8PZ2bnU6icyJMgzSGv/+uPrEkViPs6sPFPsJHJ+UTOi4OztjMZvNTZJfeZowYIFYgIxICAAoaGhsLW1xcWLF3Hq/2tS3b17F126dMH+/fsLXRP+4cOHYhK5evXqCAkJgbe3NxwdHaFUKnHlyhWcOXMGgiDg/PnzaNOmDc6dOwdPT0+DMWZmZuLVV1/F6dOnIZfL0aJFC/j7+yMzMxNnzuSOHO/duzfq1auHEydO4OTJkwCAJk2aoGnTpgXqa9asmdHvT9OmTTF27FjcvXsXW7ZsAQBUrVoVvXv3LlDWmHPR5cGDB2jZsqXW95W/vz9CQ0NhZ2eH6OhoHD9+HABw/fp1tGvXDv/88w9atmxpsO6EhAR06NAB9+7dg7u7O1q3bg1vb288evQIe/fuRUpKCgDg448/RkhICMLDw4t1DkS6pGamiklkIPdmJ7kVL1URmQUPD6BKFeDevWfPXb7MRDIREdFzhr1zS5M/kay8IV0sREREACAIwOnxQOX2QJXOgNxR6oiKpFu3bliyZAlUKpXJ65bL5ejatavJ6yUqikDPQK392MexUKlVz+2F+uS4ZOx4Z4dJ69wxbgdqtq9ZbtdMnjRpEuzt7bFy5UoMHDhQ67XDhw8jPDwcd+/ehUKhwODBg3H69GnY2NgUqKdatWqYO3cu+vbtW+hMDXFxcRg9ejR27tyJO3fuYPLkyVi5cqXBGDdt2gSVSoW2bdti9erVBaaQzszMFJcZmD17tphI7tatW4GpqouqW7du6NatG/bt2ycmkgMDA7Fo0aIS1atp6NChYhLZyckJK1euRP/+/bXKnDp1CuHh4bh58yaUSiXeeOMNXLhwAe7u7nrr/vjjj5GZmYnJkydj5syZcHR89j3++PFjvP7669i7dy8AYNq0aejXr5/WlOdEJfEk44nWvrOtM2ysC35+EJFE6tUrmEh+/XXp4iEiIqIyxzWSLU2FxoBnM8BvEFBvFlCVi4gTEZHEHp8GYhYBB18DfvcCDrwGZCuljspoo0aNKpUkMgCoVCqMHj26VOomMlaQZxD8PfzRNaArxjcdj286fwOVunR+5y3B3yP/hlpleP3dolCr1Ph75N8mrdOcZGVlYfXq1QWSyADQsmVL7Ny5U0zSXrx4EWvXrtVZT48ePTBlyhS90/3XrFkTf/31F1544QUAwC+//ILk5GSDMapUKtSvXx87duwokEQGLHut+qioKOzY8ezmhw0bNhRIIgPASy+9hH///Rdubm4AgPj4eCxYYHhN9MzMTEydOhWff/65VhIZACpUqIB169bByckJAHDz5k2cOHGiJKdDpMXFzgXu9u6wkuVennK3d5c2ICLS1rkz0L8/8OmnwJYtwIgRUkdERETPK7UaKKXrd6QfE8mWpt4MoPNRoMVa4IXZQKXyvx4bERGZufg/nm3nPAWeXATkTtLFU0QhISHo2LEj5HLTjs6Uy+Xo2LEjgoODTVovUVF5OXrhxvgb2D5wO77r+h3GNh0Le7m91GFJIjE6ETd33yyVRPLN3TeReCXRpPWai9atW+udzrhu3boYO3asuL9ixYoStWdjYyMmrTP+x959h0dVpm8c/86khxTSCC1AIISS0KWroDRFQV1YC/aya+9tLWv7rcuuZddedxVURLGvIioWQHoLhNBC7xAI6Y0kM78/jiYMNUAy75T7c13n4jwnZ865IUqGec77vuXldV7z+J///CdhYb63ruqbb75Zsz969GjOO++8o57bpk0bHn744Zr6jTfewOl0HvP6CQkJPPbYY0f9emJioss91UiW+hQbFktKbArdE7uTEptCbGis6UgicrB774XJk+GRR+CCC6BFC9OJRETEXy1cCImJcPXV8MUXUFJiOpHf8M/57ERERKT+bP/ctU76A3jZlJdvvvkmnTt3rteRyYGBgS4f/ouIeYvfWIwt0Iaz6tiNtZNhD7Sz+PXFnPuS701nf9VVVx33nKuvvpp//etfACxatIiSkpKaUaxHkp+fz/z581m5ciW5ubkUFxfjcNQ2+NesWVOzv2zZMkaNGnXM+8fExDB8+PDj5vRGv/xSu573ddddd9zzr732Wh566CEcDge7du1i7dq1dOzY8ajnjxo1itDQYz9c0qNHD6ZMmQLA5s2b6xZc5ATY7XaNRhYRERGRo/v6a9i/H957z9p69IClS02n8gtqJIuIiMjJc1RB8jWwaxrsnQvOKquR7GWSk5N5+eWX+VM9TtX2yiuvkJycXG/XE5FTt+7bdQ3SRAZrVPL6aesb5Nqm9e/f/7jndOnShYiICIqLi6muriYzM/OIr9u+fTt/+ctf+PTTT6moqKjT/fft23fcc7p3705AQECdrudNduzYQU5OTk09YMCA474mISGB1NTUmmb80qVLj9lI7tKly3GvGRcXV7NfWFh43PNFRERERETq1bffutY++iCxJ9LU1iIiInLy7IGQ9hcYOhPG7IMzv4S43qZTnZQbbriBv/3tb/Vyraeffprrr7++Xq4lIvWjoqiCvI3HX2v3VOzfsJ8DxQca9B4mtGrV6rjn2Gw2WrZsWVPv3Xv4NN8ZGRl07dqVSZMm1bmJDFBUVHTccxISEup8PW9y8J9jWFhYnX+fB68TfbxG/O9rKh9LUFBQzX5lZWWdMoiIiIiIiNSL3bth2TLXYyNHGonij9RIFhERkfoRHA0tLwCb9769eOSRR3j77bcJDQ094TWTAwMDCQ0N5T//+Y/L+pQi4hnyNuRBwwxGruWE/ev3N/BN3C88PLxO5x08lfWhzd+KigrGjBlDXp7VzE9ISODRRx/ll19+Ydu2bZSUlOBwOHA6nTidTt59992a1x485fXR+OLayADFxcU1+8eaKvxQx/peHMrmZctRiIiIiIiIn2naFLKz4cUXYcQIa63kOsycJfVDU1uLiIiIHOSGG25gyJAh3HjjjUyfPp3AwMBjrp38+9fPOuss3nzzTU1nLeKhqirqbw10T7iPO5WWlhIZGXnc80pKSmr2Dz3/s88+Y9OmTQC0aNGCRYsW0axZs6Neqy6jkP1BREREzf7Bf77Hc6zvhYgncDqdeohBxFuVlYGPPsAlIiIerH17a7vjDqiqghMcACInT3/S3ih/Jez5GYo3QNEGaJwO3cebTiUiIuIzkpOT+eGHH1i1ahVvvPEG06ZNY8OGDTidtcMZbTYb7dq149xzz+Xmm2+mU6dOBhOLHJvT6WTKyilk52azbv86snOzmXDhBDrGH33dVF8TGOKef/q46z7utHXrVtLS0o55jtPpZMeOHTV1fHy8y9d/+umnmv277rrrmE1kgC1btpxEUt9z8FTWZWVl7Nu377A/2yPZvHlzzX5dzhdxJ6fTyYqcFYQFhhEZEklUSBRhgWFqLIt4qo0b4fXXISvL2gIC4KCfMyIiIm6nJrJb6U/bG+3+EZbeVVtXHHvNKxERETk5nTt35qWXXgKs6UXXr19PRUUFISEhpKSkuIwUE/FkNpuNe364h51FO2uOrd672q8aybEpsWCjYae3tv12Hx8zf/784zaSs7KyakYRBwQE0K1bN5ev79xZ+99ely5djnvPWbNmnUTSummoZlVDXLdFixY0adKEnJwcAObOncvo0aOP+Zp9+/aRnZ1dU/fs2bPec4mcitLKUg5UH+BA9QEKKgoA6NKkCyGBIYaTicgRFRXBc8+5HisshKgoM3lERETErbx3EUN/FpniWhdvMJNDRET8m8P3pm89loiICLp3707fvn3p3r27msjidVLjUl3q7Nzso5zpm4IjgolpG9Og94htF0twRHCD3sOEDz744LjnvPfeezX7vXv3Pmw9X7u99p+epaWlx7zWkiVLWLRo0QmmrLvQ0NCa/crKSo+/7llnnVWzP2HChOOeP2HChJp1pZs3b06HDh3qLYtIfSisKHSpQwND1UQW8WQdOlijkA+2apWZLCIiIuJ2aiR7o4h2rnXFXqgsPPK5IiIiDaF4M3wWD7+OhQ3/hdIdx32JiJjVPra9S+1vjWSA9iPbYwtsmNGo9kA7KeemHP9ELzRjxgw+/fTTo3599erVvPLKKzX1DTfccNg5bdu2rdn/3//+d9RrlZaW8uc///kkk9ZNXFxczf7B03F76nVvvPHGmv0vvviC77///qjnbtmyhaefftrltZouWDxN0QHXNdAjg7WOt4hHCw211qQ8WFaWmSwiIiLidmoke6OIZIjrC63HQfpfod9EsAUc/3UiIiL1Zc/PUFkA2z6DBTfAtB7gdJhOJSLH0LdFX4a1HcatvW/lxXNe5E+9/mQ6ktuddtNpOKsaZm5rR5WD024+rUGubVpwcDBXXXUVkydPPuxr8+bNY8SIEZSXlwOQlpbGlVdeedh5o0aNqtmfOHEizz//PNXV1S7nrF+/nuHDh7N06dLDRjTXp/T09Jr9H374gYKCgnq5bnJyMuHh4YDV0K2vUdVnnXUW5557bk09duxYPvnkk8POW7JkCUOHDiU/Px+ApKQk7rjjjnrJIFKfkhsn0zamLfHh8QQHBBMVoulxRTzeddfBo4/CRx9ZTeSrrjKdSERE/MHevfD99/DbvzfFDK2R7I0CQmDEfNMpRETEn+35xbVOHAw2PZ8m4smu73k91/e83nQMoxI6J9B2WFs2/7IZR1X9PfxiD7TT5qw2JHRKqLdrepJnnnmGu+66i3HjxvH444/Tt29fgoKCyMrKcmmWRkREMHHiRIKDD5/ee/jw4Zx55pnMmjULp9PJfffdx6uvvkrPnj2Jjo5m3bp1zJ07l+rqalq0aMGdd97JAw880CC/nz59+pCUlMS2bdvYtWsXHTt2ZPjw4cTHx9eM3u3duzeXXHLJCV03ICCACy+8kA8//BCAwYMHc84559CqVSsCfpsSNDY2locffviEM7/77rsMHDiQDRs2UFxczMUXX0z79u3p27cvwcHBrFq1igULFuB0Wg9KNGrUiMmTJ9O4ceMTvpdIQwsKCCI2LJbYMGtN+d//uxURD3b//aYTiIiIP/rf/+CGGyAsDM46Cy6+GK6+2nQqv6NGsoiIiJwYp/MIjeSzjnyuiIiHOf/N83mt82v13kg+/83z6+16nubOO+8kNzeXv/3tb6xbt45169Yddk7z5s2ZMmUKvXr1Oup1pkyZwsiRI1m6dCkAmzZtYtOmTS7ndO7cmU8++YSFCxfW72/iIHa7nddee40xY8Zw4MABdu/e7bLGM8DVV199wo1kgL///e/8/PPP7N69m9LSUj7//HOXr7du3fqkGsmJiYnMmTOHcePG8fPPPwMc9XuRkpLChx9+SO/evU/4PiImaPp1ERERETmiH3+0fi0rg2+/hYgINZIN0NAhEREROXFDZ0Kft61lFsKaQRM1kkXEO8Qkx3Duy+ce/8QTcO4r5xKTHFOv1/Q0Tz31FHPnzuXaa68lJSWF8PBwoqOj6dWrF08//TSrVq1i4MCBx7xGYmIic+fO5ZVXXuH000+ncePGBAcH07JlS4YMGcJbb73FokWL6Ny5c4P/fs4//3wWL17MjTfeSFpaGpGRkfXSzGrdujXLly/nr3/9K3379iUmJobAwPp5fjsxMZGffvqJadOmcc0115CSkkJERAQhISEkJSUxevRo3nnnHVatWqUmsoiIiIiIeDeHA376yfXY0KFmsvg5m1NzCLkoLCwkOjqagoICoqK0To+IiMhx/f5WQqNJ6oXei3gffc+Orry8nE2bNpGcnExoaKjpOC5mPT2LXx795fgnHsfZT5/NGQ+fUQ+JPMvBTVX9k1FEPIUn/1wxTe9HvI++ZyIiIsewZw+MHAkZGbWfPW7cCMnJZnP5kLq+F9HU1iIiInJq1EAWES905iNnEpEYwbTbp+GocpzQVNf2QDv2QDvnvnIuPa/v2YApRURERERERPxQYiIsWQK5ufDLL9a+mshGaGprERERERHxSz1v6Mktq26hzVltAKtBfCy/f73NWW24ZdUtaiKLiJyAkgMlVFZXmo4hIvWhtBS2bTOdQkRE/EFcHIwdC+PHm07itzQi2Vs5nbDudShaD8UbrO2MzyCqg+lkIiIiIuKhNuzfwJSVU8jen012bjYRwRF8f8X3pmMZFZMcw5U/XMneVXtZ/MZi1k9bz/4N++Hg2ZxtENsulpRzUzjt5tNI6JRgLK+IiLfamLeRiuoKwgLDiAqJIqFRAqGBmp5axGvMmgX//jdkZcGGDTBwIPz6q+lUIiIi0sDUSPZWNhtkPQXle2qPFWarkSwiIiIiR7UxbyMP//xwTR0VEoXT6XRZD9dfJXRO4NyXzgXgQPEB9q/fT1VFFYEhgcSmxBIcEWw4oYiI96qoqqCiugKAsqoyyqrKiAuPM5xKRE5IYSF8+WVtnZVlDXTR+0gRERGfpkayN4to59pILl5vLouIiPiHovUQ3hICNHpExBulxqW61IUVheSU5JAYkWgokWcKjgimafempmOIiPiMwopClzrQHkhYYJihNCJyUtLTXev8fNi5E1q0MBJHRERE3EONZG8WmQL75tbWRRvMZREREf/wywgo3Q6xvSB+ALS/GSLbmU4lInWUFJ1ESEBIzagwgOzcbDWSRUSkQVU7q7Hb7DicDsCaEUOzYYin2rdvH3PmzGHhwoWsWLGCDRs2sHPnToqLiwkKCiImJob09HQGDx7MVVddRQt/aaS2agUREVBcbNU2G6xbp0ayiIiIj1Mj2Zs1OROqK6yGckQ7iDvNdCIREfFlZbuheKO1v2+etSVfaTaTiJwQu83O5V0uJzggmNS4VFLjUklvkn78F4rfcTqdxz9JRKSOmkY0pUmjJpQeKKXwQCHhQeGmI4kc1TXXXMPUqVOP+LWqqirKysrYuXMnP/zwA08++SQPPfQQf/3rX7Hb7W5O6mZ2O/ztb9C4sTU6uVMnCNf/yyIiUs8KC+HOO2HoUBgyBJpqtjDT1Ej2Zu2utzYRERF3OHgWDIDASIhWA0rE2/z3gv+ajiAiIn7IbrMTERJBREiE6SgidRYfH0+nTp1o3bo1ERERlJaWsn79ehYuXEhVVRUVFRU88cQTbNy4kYkTJ5qO2/DuvNN0AhER8XWzZsGECdYG0KsXLFxoPdAkRqiRLCIiInVTtAGwAb+NUovvB/YAk4lERERERETq1eDBgxk1ahRDhgwhJSXliOfs2bOHu+++m8mTJwPw3nvvMWrUKMaOHevOqCIiIr5n5kzXulEjNZENUyNZRERE6qbz/ZDyZ8hdAHvnWksriIiIiIiI+JD77rvvuOckJiYyadIk9uzZw88//wzAm2++qUayiIjIqZo1y7UeNMhMDqmhNr6IiIjUXXA0NBsOXZ+A5CtMpxERERERETHCZrNx7bXX1tQZGRkG04iIiPiISy+F886D6GirViPZOI1IFhERERERERERETlBCQkJNftFRUUGk4iIiPiIu++2tupqyMyEjh1NJ/J7aiSLiIiIiPg5p9OJzWZr0OuLiIj/KT5QTGllKRHBEYQFhp3yzxr9PBFPs2rVqpr9Nm3amAtiwoEDsHYtOJ3QtavpNCIi4msCAqBHD9MpBDWSvd++hbDtEyhab22Nu8DAD02nEhEREREP9kHmB8zYPIPs3Gyyc7N59MxHua3PbfV+H7vdWknH4XDU+7VFRMTz7S/bT05JDgB2m53ERom0iGpx0tf7/efJ7z9fREzauXMnzz33XE3tN+sjf/gh/POfsHo1VFbChRfCF1+YTiUiIiINRI1kb1eQBaufO+iAns4VERERkWObtn4aH66offhwXe66BrlPYGAgNpuN8vJyGjVq1CD3EBERz1V8oLhm3+F0YLedWgO4vLwcm81GYKA+zhIzSktL2bx5M9OmTeOZZ54hJ8d6UKJTp0785S9/MZzOTSorralGf3fwvoiIiPgcvfP2dpEprnXxRnA64BT/cSYiIlKjfB/s+Rni+kCj1tCA09+KiHu0j23vUmfvz26Q+9jtdiIiIigsLCQuLq5B7iEiIp6p2lFNWWWZy7GI4IhTumZhYSEREREakSxuM3v2bM4444xjnjNy5EgmTZpEZGSkm1IZdug01hs3QlER+MvvX0RExM94TSN53759zJkzh4ULF7JixQo2bNjAzp07KS4uJigoiJiYGNLT0xk8eDBXXXUVLVqc/FRJXiXikEZydRmU7YJwP/n9i4hIw8uZCXMusfZD4qHpcBg4yWwmETklqXGpLnV2bsM0kgGioqLYsWMHJSUlGpUsIuJHHE4HMWExlBwooaK6AoDwoPCTvl5JSQnl5eV6MEk8RkxMDK+99hqXXnppnc6vqKigoqKipi4sLGyoaA2rUydr3crqaqtu3Rp27ICOHc3mEhERkQbhNY3ka665hqlTpx7xa1VVVZSVlbFz505++OEHnnzySR566CH++te/+v5TqmHNoPVl1gixyBSrsRyif1SJiEg92r+odr9iH1TsNZdFROpFj6Y9uKHHDaTGpdI+rj0d4jo02L0iIiJo1KgR27ZtIykpSc1kERE/ERQQRNuYtgBUVldSVlVGgD3gpK5VUlLCtm3baNSoERERpzaqWeRENG/enFtvvRUAp9NJUVERa9euZenSpeTl5XHZZZfx1ltv8cYbb5CamnrMa40fP54nn3zSHbEbVmgoTJhgNZC7dIHGjU0nEhERX/CHP0B5OQwaBGeeCaedBkFBplMJYHM6nV6xqO75559f00iOj4+nU6dOtG7dmoiICEpLS1m/fj0LFy6kqqqq5jVXXXUVEydOPKH7FBYWEh0dTUFBAVFRUfX6exAREfFKPw2xprb+Xdoj0O1v5vL4OL0X8T76nh2fw+Fg+/btlJSUEBoaSlRUFKGhodjtdmyaLl9ERA7hdDpxOByUl5dTWFhIeXk5jRo1omXLlr4/YOAk6f2Ie+3cuZNHHnmECRMmANbo5BkzZtD10GmfD3KkEclJSUn6nomIiBw4YD2YVHbQsihffgkXXGAqkV+o6/tHrxmRPHjwYEaNGsWQIUNISUk54jl79uzh7rvvZvLkyQC89957jBo1irFjx7ozqoiIiG8JiYfgWDiw36rjepvNIyJex26307JlS4qLiyksLGTv3r14yfOsIiJikM1mIyIigri4OK2NLB6lefPmvPvuu0RFRfHSSy+Rl5fHpZdeyooVKwgIOPLI+5CQEEJCQtycVERExAssXuzaRAY44wwzWeQwXjMiua6cTidDhw7l55+tkVNDhw5l+vTpdX69nuAUERE5AqcTSjZB7iJoOlTLKDQgvRepP/v27WPOnDksXLiQFStWsGHDBnbu3ElxcTFBQUHExMSQnp7O4MGDueqqq2jRosVJ3UffsxPncDioqqrC4XCYjiIiIh7KbrcTGBio5nEd6f2IGaWlpTRr1qxmveOvv/6a888/v06v1fdMRETkN88+Cw88UFunp8OKFeby+AmfG5FcVzabjWuvvbamkZyRkWE4kYiIiA+w2SCirbWJeIlrrrmmZmmUQ1VVVVFWVsbOnTv54YcfePLJJ3nooYf461//qg+s3cButxMcHGw6hoiIiMgpCQ8PZ8CAAXz33XcAzJkzp86NZBEREfnN5ZdDixYwdy7MmwcDBphOJAfxuUYyQEJCQs1+UVGRwSQiIiIi4gni4+Pp1KkTrVu3JiIigtLSUtavX8/ChQupqqqioqKCJ554go0bNzJx4kTTcUVERETES8TExNTs5+bmGkwiIiLipZo3h3HjrA2smRHFY/hkI3nVqlU1+23atDEXxBSnE3CCTaNpRERExH8NHjyYUaNGMWTIEFJSUo54zp49e7j77ruZPHkyAO+99x6jRo1i7Nix7ozqEUorSwkPCjcdQ0REfMCfv/4zjUMb069lP/q37E+zyGamI4k0mF27dtXsx8bGGkxigMMBGzdCZibExcGgQaYTiYiIL7DZTCeQg/hcI3nnzp0899xzNbXffAi4/FEoXA1FG6B4PZz9E8T3NZ1KRERExJj77rvvuOckJiYyadIk9uzZU7M0yptvvukX7yHzyvJ46KeHyM7NZt3+dewo3EHhQ4VEBEeYjiYiIl6srLKMd5e9S5WjqubYr9f+yumtTjeYSqRh5ObmMm/evJq6U6dOBtO42fPPw+OPQ0mJVf/xj2oki4iI+CCfGLJaWlrKqlWreP755+nRowc7d+4ErDdvf/nLXwync5MtH8O2zyF/OVSVQPEG04lEREREvILNZuPaa6+tqTMyMgymcZ+woDDeWvIWv2z+he2F23HiZF3uOtOxRETEyy3eudiliWy32enetLu5QCInYP/+/XU+1+FwcNttt1FRUQFASEiIf62PHB1d20QGWL7cXBYRERFpMF7ZSJ49ezY2m61ma9SoEWlpadx3333k5OQAMHLkSObOnUtkZKThtG4Sech0jUXrzeQQERHfsWs6rBwPu3+EA/mm04g0qISEhJr9oqIig0ncJzQwlFbRrVyOZedmG0ojIiK+Yt72eS5118Sumu1CvMZ7771H7969ee+99ygsLDzqeZmZmYwcOZKPPvqo5tj9999PXFycO2J6hm7dXOt166C01EwWERERaTA+N7V1TEwMr732Gpdeemmdzq+oqKh5chA45ptEjxbRzrVWI1lERE7V1k9gw9u1dYc7odcLxuKINKRVq1bV7Ldp08ZcEDdLjUtlS8GWmlqNZBEROVVDkofw1zP/yrzt81iwfQH9W/Y3HUnkhCxevJirr76awMBAOnbsSIcOHYiJicFms5Gbm0tmZibr17t+7jZmzBgef/xxQ4kNSUsDu91aJzk+3mos798P4eGmk4mIiLc4cMB6CKlxY9NJ5Bi8spHcvHlzbr31VgCcTidFRUWsXbuWpUuXkpeXx2WXXcZbb73FG2+8QWpq6jGvNX78eJ588kl3xG5Yzc+FoAiroRzRDqI6mk4kIiLeLu+Q6X3DW5rJIdLAdu7cyXPPPVdT+8P6yL+7qttVnNXmLFLjUkmNSyUlNuX4LxIRETmGXs170at5LwCqHdWUVJYc5xUiniMkJKRmv6qqiqysLLKyso56fmRkJE888QR33nknAQEB7ojoOcLD4ZdfIDUVEhPBZjOdSEREvM2vv8KwYdC5MwwYAGeeCVdcYTqVHMLmdDqdpkPUl507d/LII48wYcIEwBqdPGPGDLp27XrU1xxpRHJSUhIFBQVERUU1dGQRERHP5KiCKRHgqP0ZydnToelQc5n8RGFhIdHR0Xov0sBKS0vZvHkz06ZN45lnnqlZHqVTp04sWLDghJZH0fdMRERETNP7kfqTnZ3Njz/+yIIFC1i5ciVbt24lPz8fgKioKJo1a0b37t0ZOnQoY8aMISLi5KZu1/dMRET83v/9Hzz2WG3dpw8sWGAuj5+p63sRrxyRfDTNmzfn3XffJSoqipdeeom8vDwuvfRSVqxYcdSnAkNCQlyeNhQRERGgqhiSr7JGJeevsBrKMT1MpxI5abNnz+aMM8445jkjR45k0qRJJ9REFhERERHfkpqaSmpqKrfccovpKCIiIr5t3jzXesAAMznkmOymAzSE8ePH13TPV69ezbRp0wwnEhER8TLBjaHvW3DOIri4GM5bBSFxplOJNIiYmBgmT57M1KlTaVyHdXkqKiooLCx02UREREREREREpI6cTsg4ZFk9NZI9kk82ksPDwxlw0H9wc+bMMZhGRETEy9kDIbqT6RQip6R58+bceuut3Hrrrdxyyy1ceeWV9OnTh8DAQPLy8rjssss4++yzyc7OPu61xo8fT3R0dM2WlJTkht+BiIiIiIiIiIiPsNlg82ZrVPLzz8PYsWokeyifmtr6YDExMTX7ubm5BpOIiIiIiGlt27bllVdeOez4zp07eeSRR5gwYQK//PIL/fr1Y8aMGXTt2vWo13rooYe45557aurCwkI1k0VExO85nU4AbDab4SQiIiIi4hVCQqBfP2sTj+WzjeRdu3bV7MfGxhpMYojTCdVlEBhuOomIiIiIx2revDnvvvsuUVFRvPTSS+Tl5XHppZeyYsUKAgICjviakJAQQkJC3JzUPcoqyyg+UExCowTTUURExMvM3jqbSz+7lP4t+9O/ZX8GJA2gf1J/07FEpKE5nbBrF2RmWlunTjBqlOlUIiIiUk98cmrr3Nxc5h20SHenTn4yHeeemTD7YpjWEz5tDDPPN51IRERExCuMHz+eqKgoAFavXs20adMMJ3KfL1Z/wfD3h9PmhTY0+nsjbvn2FtORRETEC83bPo+dRTv5bPVn3Df9Pm6eerPpSCLiDvfdBy1awLnnwoMPwqRJphOJiIhIPfKKRvL+/fvrfK7D4eC2226joqICsEaMnH++nzRUK/bC1k8gLwMqC6Fog+lEIiIiIl4hPDycAQetxTNnzhyDadxrX+k+pm+czpaCLThxkp17/HWiRUREDjV/+3yXul9LTVEo4hc6dHCtMzLM5BAREZEG4RWN5Pfee4/evXvz3nvvUVhYeNTzMjMzGTlyJB999FHNsfvvv5+4uDh3xDQvMsW1Lt0G1RVmsoiIiPfa8F9YeDOsexP2LYSqMtOJRNwiJiamZj83N9dgEvdqH9fepV6Xuw6H02EojYiIeCOn08m87fNcjvVvqWmtRfxCjx6u9bp1UFxsJouIiIjUO69ZI3nx4sVcffXVBAYG0rFjRzp06EBMTAw2m43c3FwyMzNZv369y2vGjBnD448/biixARHtDjnghOJNEN3RSBwREfFS276End/U1h3vhZ7PGYsj4i67du2q2Y+NjTWYxL1S41Jd6rKqMnYV7aJFVAtDiURExBvNuHoG87bPY962eczbPk/rI4v4i/R0CAiAkBDo1s1qLJeWQkSE6WQiIuKpVq8GhwM6drR+hohH84pGckhISM1+VVUVWVlZZGVlHfX8yMhInnjiCe68804C/Ok/wqBISP8rhLWAyHZWYzm8lelUIiLibfIOmYospseRzxPxIbm5ucybVzuSqlOnTgbTuFeziGY8ffbTpMSmkBqXSkpsChHB+uBPRETqzmaz0SG+Ax3iO3BN92tMxxERdwoLg+xsaN1azQAREambp5+GSZOsh4569YJbb4U//tF0KjkKr2gk33zzzQwZMoQff/yRBQsWsHLlSrZu3Up+fj4AUVFRNGvWjO7duzN06FDGjBlDhL8+9db1KdMJRETEm5XvhbIdrsdi1UgW77N///46jyp2OBzcdtttVFRYS4KEhIRw/vnnN2Q8j2Kz2Xj4jIdNxxARERERb9W2rekEIiLiTRYtsn4tLoaZM+GSS8zmkWPyikYyQGpqKqmpqdxyyy2mo4iIiPgumx26/9MalZyXAaU7ILKD6VQiJ+y9995j0qRJ3H777Vx44YVERUUd8bzMzEweeOABvv/++5pj999/P3Fxce6KKiIiIiIiIiLiH/LzrZksDtanj5EoUjde00gWERERNwiJg84P1NbV5WDX9GTinRYvXszVV19NYGAgHTt2pEOHDsTExGCz2cjNzSUzM5P169e7vGbMmDE8/vjjhhKLiIiIiIiIiPiwrVshKQm2bbPq4GDo0sVsJjkmNZJFRETk6AJCTScQOSkhISE1+1VVVWRlZZGVlXXU8yMjI3niiSe48847CdDabiIiIiIiIiIi9a9rV6uZvHu3NcX1jh1WM1k8lhrJIiIiIuJzbr75ZoYMGcKPP/7IggULWLlyJVu3biU/Px+AqKgomjVrRvfu3Rk6dChjxowhIiLCbGgREREvVFRRREhgCMEB+gBQREREROqoaVMYNcp0CqkDNZJ9mdMJB/ZDYCONKBMRERG/k5qaSmpqKrfccovpKF6loqqCjXkbaRnVksiQSNNxRETEwz0/73nGzx5PWkIaPZr2YHSH0VzQ8QLTsUTE3YqLYflyyMiwti5d4K67TKcSERGRU6RGsi9a8GfIy4Ci9VCZD2dPh6ZDTacSEREREQ92+eeXM3/7fDbnb8bhdPDNZd9wXup5pmOJiIiHy9idwYHqA2TsziBjdwaNQxurkSzij557Dp58srYePFiNZBERER9gNx1AGsD+JbB/sdVEBquhLCIiIiJyDJvyNrExbyMOpwOA7Nxsw4lERMQbLN211KXu0ayHoSQiYlSPQ/7fX7bMmi1RREREvJoayb4osp1rrUayiIjUxcp/wC/nQMb9sOl9KNpgOpGIuFFqXKpLrUayiIgcz/6y/Wwv3O5yrEdTNZJF/NKhjeT8fNiyxUgUERERqT+a2toXRaS41sUbzeQQERHvkjMDdn1vbQBpD0O3p41GEhH3ObSRvKdkj6EkIiLiLWLDYsl7MI9lu5eRsSuDzJxMOsR3MB1LRExISoLEREhIsJrKPXpAo0amU4mIiCeZPBmioqBnT2jWzHQaqSM1kn1RywugURJEtIPIFAhvZTqRiIh4g/wVrnXjrmZyiIgRF3S4gDaN25Aal0r72PZEh0abjiQiIl6gcWhjBrcZzOA2g01HERGTbDbYvh0C9XGziIgcxb33wq5d1n5iInz0EQwebDSSHJ9+svui+L7WJiIiUlcVuVC20/WYGskifiWtSRppTdJMxxARERERb6UmsoiIHM2uXbVNZIA9ezQq2Uvop7uIiIhAQCgM/BjyM62RyUVrIbK96VQiIiIiIiIiIiLi7TIyXOuICGivzx69gRrJIiIiAoGNoPXF1iYiIiIiIiIiIiJSXwID4YwzrIZycTF07w52u+lUUgdqJIuIiIiIiIiIiIiIiIhIwxg+3NocDtiwAYqKTCeSOlIjWURERERERERETsjGvI04nU7axrTFZrOZjiMiIiIi3sBu15TWXkbjxv1BRS4UZptOISIiIiJeospRxfr965m7ba7pKCIi4qH+/uvfSXk5hcb/bMygCYOYlDnJdCQR8QRbt8LEiXDXXTBoENx0k+lEIiIicgo0ItlX7ZkJy/4CRdlwYD9Ep8N5K0ynEhEREREPtmjHIq744go25m2kylFFfHg8e+/fazqWiIh4oIzdGQAUVhQya8ssLuhwgeFEIuIRvv0Wbr65tt6zx1wWEREROWUakeyrbDbInW81kQGK1oHTYTaTiIh4JqfTdAIR8RDRodFk52ZT5agCYF/pPvaX7TecSkREPE1ldSVZOVkux3o07WEojYh4lJ49XevsbK2DKSIi4sXUSPZVkYfMMe+ogNJtZrKIiIhnW/l3+F8KzLoIMh+DnFmmE4mIIcmNkwmwBbgcW5e7zlAaERHxVNsKtxEVEuVyrHvT7mbCiIhn6doVAg+aBNPphIwMc3lERETklGhqa18V2hQCI6Cq2KptgVCyDRq1NptLREQ8T94yKN5gbdu/hAMF0ORM06lExICggCDaxrRl3X6reRwXFkduWa7hVCIi4mnaxrQl574cdhTtIGNXBuv3rycmLMZ0LBHxBKGhMGwYBAXBaadZW/fuplOJiIhJDz4IzZtbs1Z06wZRUcd/jXgMNZJ9lc0Gvd+AkFhrdHKjNmDXt1tERI6gYIVr3biLmRwi4hFeP+91IoIjaB/XntiwWNNxRETEQ9lsNlpGtaRlVEvTUUTE03z7rekEIiLiKUpK4NlnXZfWW7oUemhZFG+hzqIvS77cdAIREfF0VaVQdMi0tY27mskiIh5hSNshpiOIiIiIiIiIiC9Yvty1iRwQAB07mssjJ0yNZBEREX9mD4ERiyB/BeRnWr82TjOdSkRERERERERERLxdRoZr3akThIWZySInRY1kERERf2YPgNie1iYiIiIiIiIiIiJSX9q3h6uugsxMWLVKU1p7ITWSRURERERERERERERERKR+DR9ubQCVlVBcbDaPnDA1kkVEREREREREpE5mbp5JeVU5PZr1oEmjJqbjiIg3cDqhsBCio00nERERk4KCICbGdAo5QWok+4sDBVC0DsKaQnhL02lERERExMNVO6rZWrCV7NxsWkS1IL1JuulIIiLiAcbPHs/3G74HoHlkc54++2mu6X6N2VAi4nm2bIF334XFi60tKgqys02nEhERkROkRrKvW3QbbPsEynOsusdz0Oles5lERERExKPd9d1dvL74dQ5UHwDgvv738ezwZw2nEhER05xOJxm7M2rqnUU7CQ8KN5hIRDxWbi48+WRtvWcPFBRoVLKIiIiXsZsOIA2surS2iQxQpCf/RETkN9Xl4KgynUJEPFB4UHhNExkge7/eQ4qICOwq3kVOSY7LsR5NexhKIyIeLT0dgoNdjy1daiaLiIiInDQ1kn1dZKprXbTOTA4REfE8m96HKY3g264w5zJY/7bpRCLiIVLjXN9DZueqkSwiIpBXlke/lv0ICwwDIDI4knax7QynEhGPFBwMXbq4HlMjuX59+inMmQP791u10wkVFWYziYiIz9HU1r4u6qAPAW12cBw4+rkiIuJfClZaPxfyV1ibsxpS/mQ6lYh4gPax7Wv2o0OiiQ+Px+l0YrPZDKYSERHT0pqkMe/6eVQ7qsnOzWZb4TbsNo1REJGjuPxyGDQITjsNevWClBTTiXxHdTVcccXhjeN774XnnjOTSUTkUOPGQZMm0LWrtXXpAiEhplPJCVIj2dclnA5nfmWNTI5oCwHBx3+NiIj4h4JVrnVUZzM5RMTjdG/andnXziY1LpX48Hg1kEVExEWAPYBOCZ3olNDJdBQR8WR33206ge/avPnIo48zM90eRUTkiAoLYfJk12PLlkG3bkbiyMlTI9nXhTaBlqNNpxAREU9UsNK1bpxmJoeIeJxGwY0Y2Gqg6RgiIiIiInIkq1cf+fjy5e7NISJyNCtWuNaBgdCxo5ksckrUSBYREfFXIzOtUckFK60t9jTTiURERERERETkeKqroXNnWHXITGM5ObBnDyQmmsklIvK7Q2dI6NhR01p7KTWSRURE/FVIHDQ5w9pERERERERExDtccIG1HTgA/ftDmzZw1VXWGqRNmphOJyJi/d301FNWQzkzE7p3N51ITpIaySIiIiIiIiIiIiIi3iY4GJYsMZ1CRORw3bu7No8dDlNJ5BSpkSwiIiIiIiIiIsf0xeov2Fu6l/Qm6aQ3SScqJMp0JBHxNgUF1hq+Z55pOomIiLib3W46gZwkNZL9SWUxFK2D4g3QaqzpNCIiIiLi4RxOB9sLt5Odm012bjbX9biO0MBQ07FERMSA1xe/zvSN02vqZ4c9y30D7jOYSES8Ql4e3H03LFgAa9ZYx3JyICHBbC4RERGpEzWS/UHpTvi+N5TtrD02Zp+1NqaIiIiIyBGUVZYR90wcZVVlNccGtR5EWpM0g6lERMSUrJwsl7p1dGtDSUTEq0RGwiefQGlp7bEFC+D8881lEhERkTrTWHJ/ENoEKva6HitcayaLiIiYV10BxZvBqbVJROTowoLCaBza2OVYdm62mTAiImLU/rL97Cre5XIsvUm6oTQi4lUCA6FXL9djCxaYySIiIiInTI1kf2APhMj2rscKV5vJIiIi5u1fAv9Lhk+i4LvesOBP4HSaTiUiHig1LtWlViNZRMQ/lRwo4ZK0S0hLSCPQHkhwQDApsSmmY4mIt+jbt3Y/ONhaK1lO3qefwoQJsHAhFBcf/vX9+2HPHrfHEhER36Sprf1FVCcoWAXYIKKt6TQiImJSwUrr16oS2L8YqkvBZjObSUQ8UvvY9szcMpOI4AhS41IPG6EsIiL+ISk6iY/GfgRARVUFWwq2EBQQZDiViHiNP/4RWrWyGsrdukFIiOlE3u2FF2DOnNr61VchKgomT4bMTNi+He65B55/3lhEEfFzQ4ZAWBh07Wptw4ZBnJZa9VZqJPuLLk9A+mMQlQoBoabTiIiISb83kn8X1dlMDhHxeI8PfpynznqKphFNsemBExERAUICQw6bsUJE5Jj69LE2OXVOJ6w85N/0rVtb04V/+23tseXL3ZtLROR3FRUwYwY4HDB1qnVs/nw1kr2YGsn+orHWLhIRkd+UbHato9OMxBARz9cyqqXpCCIiIiIi8rvduyE/3/VYWhqUl7seW77cajrrYVARcbe1a60m8sE6axCLN1MjWURExN+c8QWU7YLCVZC/EhIGmk4kIiIiIiIiIsdTVgYXXmiNSt6wAUJDrWnDKytdzysshNxciI83ElNE/Nihsya0agWRkWaySL1QI1lERMTf2GwQ3tzamg41nUZERERERERE6qJtW/jiC2u/vBy2bgW7Hdq1g4cegvR0ax3q1FQI0lr2ImLAGWfAe+9ZDeWVKyEx0XQiOUVqJIuIiIiIiIiIiIiIeJPQUKthDFYz+e9/N5tHRASgZUu48krTKaQeqZEsIiIiIiIiIiJH9OWaL5m7bS5dmnQhvUk6HeM7EhYUZjqWiHirqirIyoIFC+Dss6F9e9OJRERE5BjUSPY31eVQmA2Fq8Fmh1Z/NJ1IRERERDyY0+lkV/EusnOzyc7NJiI4gnFdxpmOJSIibvL12q95Z9k7NfW13a/lnQveOcYrRESO4tpr4eOPrXV+AV54Ae6802gkEREROTY1kv3Jpkkw/ypwOqy6cVc1kkVERETkmF5f/Dq3fntrTX1a89PUSBYR8SNZe7Nc6i5NuhhKIiJez26vbSKDNSpZREREPJrddABxo0ZJtU1kgMK14Kg2l0dERNxvz0wo2wVOp+kkIuIlUmJTXOrs3Gyc+jtERMQvOJwOVuasdDmW3iTdUBoR8Xp9+rjWaiSLiIh4PI1I9idRHV1rRwWUboGItmbyiIiIex3Ih58GW/vBMRDdGU7/FMKamkwlIh4uNS7VpS6sKCSnJIfEiERDiURExF0qqiq4s++dZO3NIisni415G9VIFpGT17dv7X67dlZdWQlBQeYyeZNp02DOHEhLg86doUMHCA098rmlpdZa1I0bQ2rqkc8REalvTifYbKZTSD1TI9mfhCRAcCwc2A/hSVZjubrcdCoREXGXglW1+wfyYN8C6+eCiMgxJEUlERwQTIAtgPZx7UmNS6W8Su8hRUT8QVhQGE8PebqmLj5QTKOgRgYTiYhXS0+HqVOtkcnx8abTeJ+vvoI336ytr7gC3n/f9ZznnoO334Z166yGzj33wPPPuzeniPiviy+GlSutB17S0uCii6BbN9Op5BSpkexPbDYYNgfCW0JQhOk0IiLibgc3kgGiUiEg2EwWEfEaAfYAtty1hSaNmmC3aWUcERF/FhGszxJE5BQEBsLIkaZTeK8VK1zrLkdYs764GLKza+vlyxs2k4jIwZYtg/XrYfVq+PRTSE5WI9kHqJHsb6I7Hv8cERHxTZUFEBAO1aVWHdXZbB4R8RpNIzQFvoiIiIiIMQ7H4Y3krl0PP+/QY8uXa6pZEXGPsjLYsMH1WGd99ugL1EgWERHxF53uhY53Q8lWKFgJwY1NJxIRERERERGR46mogNtug8xMa9u27ciN5INH/tlsEBsLRUUQFeW+rCLin9autR5cOVinTmaySL1SI1lERMSf2OwQ0cbaRERERERERMTzhYXB3/9eW+flQePGh5+XnGytkdy1q7UmdXi42yKKiJ/r0AHmzIFVq6x1kvftgwgti+IL1EgWEREREREREREREfEWMTFHPm63ww03uDeLiAhYD7wMGGBt4lPUSBYRERERERERERffr/+et5a+RVpCGulN0unetDupcammY4mIr9i1C+bOtbbGjeGvfzWdSERERI5AjWR/5KiG4o1QkAX5WRDfF5oNN51KRERERDxYTkkO2bnZNdul6ZfSvWl307FERKSBzN02l89Xf87nqz8HYHi74Xx/xfeGU4mIT3jvPbj66to6OVmNZBEREQ+lRrI/mn8tbH6/tm5/sxrJIiIiInJMIyeNZMmuJTV1UlSSGskiIj4sa2+WS52ekG4oiYj4nO7dXetNm6wRys2aGYkjIiIiR2c3HUAMiO7kWudnHfk8ERHxHTu+gZxfoSLXdBIR8VKHTmeanZttKImIiLhDVs4hjeQmaiSLSD1JS4OoKNdjc+eaySIiIiLHpBHJ/ij6kH/8FWSB0wk2m5k8IiLS8BbeCGU7rf3QRBj4ESQONhpJRLzLoY3kdfvXGUoiIiLu8MgZj7B893Ky9maRlZNFWpM005FExFcEBEC/fjBvHvTvDwMGWM1lObLPP4cPP4SuXa2tZ09o1er4r6uqgjVrYNkya/rwgQMbPKqI+KnycggOBrvGrvoiNZL9UePfGsmhTaymcnQ6OA5AQIjZXCIi0jAO5Nc2kQHK91g/A0RETkD72PaEBISQEptCalwqA5P0QZSIiC+7qttV0K22djqd5sKIiO/54AOIjbWaynJsM2fCZ59ZG8DYsfDJJ8d+zWOPwTPPQEWFVV9/vRrJItJwnn0W/vEP6NABOnaE886Dyy83nUrqiRrJ/qhRa/iDmggiIn6jYJVrbQuEiBQzWUTEa12cdjGXpl9KgF0f9omI+CObZjETkfqUkGA6gffIzHStu3Y9/msaN65tIoM1KllEpKGsWQOlpZCRYW3x8Wok+xCNM/dHNruayCIi/qS6HBp3AXuwVUelQkCw2Uwi4nWCAoLURBYRERERcSen8+QayT16uNZZWVBZWX+5REQOtmaNa92hg5kc0iA0IllERMTXNT0bRmaCowqKN1hTXYuIiIiIiIiIZ3M4rCljMzOtbfnyujWSux20NkFSktVYLiiwRgmKiNQnh+PwRnLHjmaySINQI1lERMRf2AMhSk8EioiIiIiIiHiFgAC47rrauq7r1cfGWmsrp6VBXFzDZBMRAbDZYN06q5m8Zg2sXQvp6aZTST1SI1lEREREREREREREzPq9Sao12Y/uRP5szjyz4XKIiPzOZoPmza3t7LNNp5EGoEayiIiIiIiIiIgAsGjHIm74+gbSm6STlpBGt8RunJd6nulYIuKLnE6YNw/mzoU5c6xfZ83S2poiIiIeRI1kf1a6A/IzIT8LCrKg3fXQRE+qiYiIiMiRlVWWsWz3MrJzs8nOzSanJIe3R79tOpaIiNSj5XuWk7knk8w9mQB0iu+kRrKINJw//hF27qyt1UgWERHxKGok+7O5l0POzNo6qoMaySIiIiJyVBvyNjDgnQEux/59zr+JCI4wlEhEROpbVk6WS53eRGvciX/ZvHkz06dPZ+bMmaxYsYKtW7dSXFxMZGQkLVu2pH///owbN45BgwaZjur9bDZr+uWPPqo9NmsW/OlP5jKJiIiICzWS/Vl0umsjOX+FuSwiItIwtv8PKnIhOg2iO0OQmj0icvLaxbTDhg0nzppj63LX0aNZD4OpRESkPq3Icf1sQI1k8RcZGRncdNNNLFy48Ihfz8vLIy8vjxUrVvDWW28xePBgJk6cSKtWrdyc1Mcc2kieOdOa8lrrJIuIiHgENZL9WeND/jGYn3Xk80RExHtlvwK7p9fWPZ6FTveZyyMiXi0sKIyk6CS2FmytObZuvxrJIiK+5O9n/52lu5aSlZNF1t4sTmt+mulIIm6xdu3aw5rIqamppKenEx8fT35+PnPnzmX79u0AzJgxg/79+/Prr7/Stm1bE5F9w6BBkJpq/XrmmdamJrLl3/+G//wHeva0tjPPhF69TuwaTids3QoZGdbWsSNcdlnD5BUR/3PgAOTmQtOm+rvbh6mR7M+i0yEoyvq1cTrEdDedSERE6lvBStc6XE/Li8ipSUtIIywwjNS4VFLjUkmJTTEdSURE6lHfln3p27Kv6RgixqSkpHDDDTdwxRVX0KJFC5evORwOJkyYwO23305paSk7d+7k8ssvZ+7cudj0AfrJ6dwZ1q41ncIzLVoEq1ZZ2wcfwJ//DG++eWLXeOQRGD++th41So1kEak/mZnQuzdERVkPqqSlwX//q6ayj1Ej2Z8lDICx+fqfWkTEVx3Ih7Kdrsei04xEERHfMXXcVH1QKiIiIj6nWbNmvPvuu1x55ZUEBAQc8Ry73c51111HTEwMf/jDHwCYP38+P/zwAyNGjHBnXPEHS5e61j17nvg10g75DCAj4+TziIgcas0a69fCQli40BqdrM8LfI7ddAAxyGbX/9QiIr6ssghaXgSRqb/9nR8Ike1NpxIRL6cmsoiIiPiiQYMGcc011xy1iXywiy66iD59+tTUU6dObcho4o+KiiA72/XYyTSSu3d3rbdvh337TjqWiIiL3xvJv+vY0UwOaVAakSwiIuKrGiXBmZ9b+9XlULwZAoKNRhIREREREfEFAwcOrFlTefPmzWbDiO8JDYW5c61RyUuXwrJl0KXLiV+nQwfrWmFhVlO5Rw+oqqrvtCLirzZscK3VSPZJaiSLiIj4g4BQiNabORERERERkfpw8Cwt1dXVBpOITwoKgn79rO1UBAbCpk2QmKiZKUWk/k2aBP/4hzUyee3ak5s5QTye1zSSN2/ezPTp05k5cyYrVqxg69atFBcXExkZScuWLenfvz/jxo1j0KBBpqOKiIiIiIiIiHgVp9OJEyd2m1ZBE6mLFStW1OwnJSUZTOKD8vKsKZhPZgSuHK5pU9MJRMRX2e3QurW1jRhhOo00EI9vJGdkZHDTTTfVTBVzqLy8PPLy8lixYgVvvfUWgwcPZuLEibRq1crNSUVEREREREREvNOOoh10fKUjaU3SSE9IJ71JOrf2uZVgLY0icpitW7fy888/19RDhw41mMZHrF0Lr74KM2fCihXW9KirVplOJSIi4vc8vpG8du3aw5rIqamppKenEx8fT35+PnPnzmX79u0AzJgxg/79+/Prr7/Stm1bE5G9T+4iyF0IecusretT0Pxc06lERERExENl52azaMcisnOzyd6fzZmtzuTm3jebjiUiIqdgxZ4VlFSWsHDHQhbuWEhkcCR39bvLdCwRj3TPPffUTGfdqlUrRo0aZTiRDygogJdfrq1Xr4acHGjSxFwmERER8fxG8u9SUlK44YYbuOKKK2jRooXL1xwOBxMmTOD222+ntLSUnTt3cvnllzN37lyX9UrkKDLuh5yZtXXuYjWSRUREROSo3lryFs/Pe76mrnJUqZEsIuLlsnKyXOr0Jun6TEXkCCZOnMhnn31WU48fP56QkJDjvq6iooKKioqaurCwsEHyea2ePaFRIygpqT02axaMHWsuk4iIiODxC980a9aMd999lzVr1vDggw8e1kQGsNvtXHfddXzwwQc1x+bPn88PP/zgzqjeK6a7a52/zEQKERGpT7umw/JHYPOHkLccqstNJxIxYvPmzbz99ttcccUVdOvWjZiYGIKCgoiNjaVr167ceOONzJw58/gXEhepcaku9brcdYaSiIhIfcnae3gjWURcLV68mJtuuqmmvuyyyxg3blydXjt+/Hiio6NrNq2rfIjAQBg4sLYOD4fdu83lMWnvXjhwwHQKERERAGxOp9NpOkR96tu3b81U2LfffjsvvfTSCb2+sLCQ6OhoCgoKiIqKaoiInmfjBJh/bW0d0RZGbzAWR0RE6sGSu2HtC7V1qz/C6VOMxZG688v3Ig0gIyODm2666bAlUo5m8ODBTJw4kVatWp3wvfzxe/bLpl84+72za+rwoHCKHirCbvP451RFROQo9hTvIXNPJlk5WWTlZDEiZQQXp11sOpbUkT++H3G3TZs2MWDAAHb/1tzs2rUrv/76a53/vI80IjkpKUnfs4NNnmytlTxkCPTtC8F+ukb7H/8IX38NPXpAnz4wbpz153Eq8vJg6VLIyLC2Tp3g0UfrJ6+I+Kc1a6zlB2JjTSeRk1TX949eM7V1XQ0cOLDmA8PNmzebDeMtYnpCdBrE9LBGJ8f0MJ1IREROVcFK1zqqs5kcIoasXbv2sCZyamoq6enpxMfHk5+fz9y5c9m+fTsAM2bMoH///vz666+0bdvWRGSvkhqXSkpsCqlxqbSPbU9qXCpVjiqCA/z0wz4RER+QGJHIsIhhDGs3zHQUEY+za9cuhg0bVtNEbtu2Ld99990JNYBDQkLqNAW2X7vsMtMJPMPChVBRAfPnW1u3bqfeSH77bXjwwdq6b181kkXk1IwYAVu3Wo3k9u3hxRdP/e8q8Ug+10g+eP2e6upqg0m8SExXOC/r+OeJiIj3KFjlWjdOM5NDxLCUlBRuuOEGrrjiisOWSHE4HEyYMIHbb7+d0tJSdu7cyeWXX87cuXO1JuRxtIhqwbrbNZ21iIiI+L7c3FyGDRvGhg3W7H3NmjXjxx9/pFmzZoaTiU/avdtqzBysT59Tv26PQwYOLV8OVVXWlOIiIieqvBy2bbP29++HBQv8dxYJP+Bzc8+tWLGiZl9rjYiIiF9yOqDNOGh2LjRqbR3TiGTxM82aNePdd99lzZo1PPjgg4c1kQHsdjvXXXcdH3zwQc2x+fPn88MPP7gzqoiIiIh4qMLCQkaMGMHKldaMT/Hx8fz4448kJycbTiY+66DPtgFo1MiahvpUHdpILi+3pqUVETkZGzbAoavmpqSYySINzqceOdq6dSs///xzTT106FCDaURERAyx2aHHM7V1ZREEhJvLI2LAoEGDGDRoUJ3Oveiii+jTp0/NVNhTp05lxIgRDRlP5IhyS3OJC48zHUNERESAkpISRo4cyZIlSwCIjo7mu+++o3NnPaQrDWjYMGt03+LF1gi/0lIICDj168bHW1PPRkVBz57QqxckJp76dUXEP+3YYc1oUFVl1U2bQmSk2UzSYHyqkXzPPffUTGfdqlUrRo0aZTiRiIiIBwjSGzmR4xk4cGBNI3nz5s1mw4hfenH+i/zt17/x/RXf07NZT9NxRERE/Fp5eTmjR49mzpw5AISHhzN16lR69eplOJn4hZgYq6E8rJ7XrF+zBuw+N0GpiJgwfLj1oMuWLbBuHRQXm04kDchnGskTJ07ks88+q6nHjx9PSEjIcV9XUVFBRUVFTV1YWNgg+cTHVZVCwUoo3W7VjVpDrD4AFBER8RYHr4n8+4OJIu7yTsY73PX9XQCcNfEsvh33LQNbDTQbSkT8yt6SvcSHx7v8PBTxV5WVlYwZM6Zm1sOQkBC++uorBg7Uz2a3cjisaZ5/+gk6dIDzzjOdyPupiSwi9SkoyJrOWlNa+zyfaCQvXryYm266qaa+7LLLGDduXJ1eO378eJ588smGiua9HNXgrISAUNNJPN+BPPi8GThqH0ggujOct9JcJhERETkhKw5aiywpKclgEvE3P2z4gT99/aeaurCikOEfDCf7tmxaRB2+treISH2rrK6k+b+aExUSRXqTdNIT0nls0GMkRmjKU/E/1dXVjBs3jm+//RaAwMBApkyZouXz3O211+CJJ2DvXqu+8EI1kkVERAzx+seQNm3axKhRoygvLwega9euvPHGG3V+/UMPPURBQUHNtm3btoaK6vl2TYeM++HHwfBpY1hX9z9HvxYcA/H9XI9Fab0cERERb7F169aaESeAPiisI6fTyUdZH/HUzKe48osr6fufvmzM22g6ltcZkDSAwW0Guxx77MzHaprIe4r3cO/39/Li/BcNpBMRf7AxbyNVjir2l+1n1pZZvLb4NYIDgk3HEnE7p9PJ9ddfz6effgqA3W7n/fffZ/To0YaT+aGIiNomMsCMGaBZg0RERIzw6hHJu3btYtiwYezevRuAtm3b8t133xEVFVXna4SEhNRpCmy/sOUj2PhObZ27yFwWb9PmcsiZWVtHp5nLIiIiIifknnvuqZnOulWrVowaNcpwIu9gs9m47dvbyC3LrTm2Zt8a2sa0NZjK+0QERzB13FQu/uRivs7+modOf4gHT3+QfaX7eGbOM7yy8BXKqsqIC4vjuh7XERmide9FpH6t2bfGpW7SqAkxYTGG0oiY8/rrrzNx4sSaul27dsyePZvZs2fX6fWvvPJKQ0XzP0OGuNb5+bB0KfTubSSOiIiIP/PaRnJubi7Dhg1jw4YNADRr1owff/yRZs2aGU7mxeL6uDaS96uRXGetxsKSOyD0t6m/Gqcf/dzyfRAcDfYg92QTEf+StwxW/sN6oCW6MzTuAlGpplOJeKyJEyfy2Wef1dTjx48/7kOGFRUVVFTULmlRWFjYYPk8XWpcKvO2z6ups3OzGdl+pMFE3ik0MJTPLv6MyVmTubLrlQBsyd/Cs3OfrTkntyyXVxa+wkNnPGQqpoj4qLW5a13qjvEdDSURMSsnJ8elXrduHevWravz69VIrkctWkDHjrBmDbRtazWWGzUynarhffYZdOsG7dqBu9asdzrddy8REfFKXtlILiwsZMSIEaxcaa1BGx8fz48//khycrLhZF4u7pCn+orWwYF8CG5sIo3nKd8HofFH/lpwDIzNO/6a0lUlMOMcaJQMAyeD3Sv/FxQRT5a7CLZ+XFtrzXaRo1q8eDE33XRTTX3ZZZcxbty4475u/PjxPPnkkw0ZzWscqZEsJycoIIirul1VU/dq3ovRHUbzv7X/qzn2woIXuHfAvZpyVkTq1d397ubCjheydt9a1uxbo7WRRcQzvPMONGsGbdqYTuIeubkwdqy136QJDBwIb7xh7denHTvg229hyRJrlHfjxvDDD/V7DxHxbVu3Qk4OtG8P0dGm04gb2JxOp9N0iBNRUlLCiBEjmDNnDgDR0dH89NNP9OrVq16uX1hYSHR0NAUFBSc0RbZPcFTCrIsgtifE9rYay2FNTafyDNu+gHlXwYBJ0PIk18ZxVMPsMbD9K6tOvgr6TdBTfyJSv5bcDWtfqK1b/RFOn2Isjpw4v34v4kabNm1iwIABNUukdO3alV9//bVOf+ZHGpGclJTkl9+zNxa/wRdrviA1NpXUuFT6texH7xaacvBo8svzaRzauM7nZ+zKoOdbPQmwBXBVt6t49MxHNXW4iIgckd5Deh99z8TF11/Dwetxh4VBQQEE1fOMht98Awcv5RMRYd3Hbq/f+4iI7/r73+GRR6z9hAS47DJ48UWzmeSk1PW9iFcNhywvL2f06NE1TeTw8HCmTp1ab01kv2cPgsHfmE7hefIyYe7lUF0Gsy6EXi9AhztO/DqZj9Q2kQE2vQeR7SH90fpKKiICBYeMPo7qbCaHiAfbtWsXw4YNq2kit23blu+++67OH+CFhIQcd/prf3HTaTdx02k3Hf9EYVvBNk5/93Su7X4tjw96HFsdHibs0awHL5/7MueknENKbIobUoqIiIiIEb993l2jT5/6byIDHPo5enExrFsHHTrU/71ExDcdvOzD3r1w4IC5LOIWXvOoUWVlJWPGjOHnn38GrA/wvvrqKwYOHGg4mfi0qlKYc6nVRAbACUvuhF3TT/xaTYe7Tn1tD4aw5vUSU0SkRttrIPV2SDwbQptC4zTTiUQ8Sm5uLsOGDWPDhg0ANGvWjB9//JFmzZoZTia+bE/xHoa+P5StBVt5cuaT3PvDvdR1Yqjb+tymJrKIiIiIrwsOhsSDlhZoqM+8mzWztoMtWdIw9xIR33RwIxmsKa7Fp3nFiOTq6mrGjRvHt99+C0BgYCBTpkxh6NChhpOJz6sqhfCWULi69li766HpSfy31/RsOP1TmDUaQprAGZ9DQv/6yyoiAtBmnLX9zrtWsBBpUIWFhYwYMYKVK62R+/Hx8fz4448kJycbTia+7ED1AUZ+ONJl/eh/z/83CeEJPHTGQwaTiYiIiIjHeOopePJJ2LDBGp3co0fD3evCC2H/fmt0cs+e0FtL04jICaiutqbDdzisWo1kn+fxjWSn08n111/Pp59+CoDdbuf9999n9OiTXKdW5ESExsNZ38Hq52H5w9C4C5z26smva9ziPOj/PjQZBOEt6jeriMiRaB12EQBKSkoYOXIkS3572j46OprvvvuOzp01/bs0rKKKIppHNmfprqU1xzondOZPvf5kMJWIiIiIl6quhoAA0ykahs0GKSnW1pBee61hry8ivm3ePGs6602bIDsb+muwnK/z+Eby66+/zsSJE2vqdu3aMXv2bGbPnl2n17/yyisNFU38hc0One+HxMEQFA0Bp7gm4sEjBUVERKTBlZeXM3r0aOb8tu5YeHg4U6dOpdeh64OJNIC48Dj+d+n/+GLNF9w+7XZCAkKYfuV04sPjT/naDqcDu81rVisSEQ+0vXA7USFRRIVEmY4iInJkZWUwaxZMmwbffQc33AD33Wc6lYiIfwsOttZW1/rqfsHjG8k5OTku9bp161h36Bzsx6BG8ikq2QoVuRDbgNOpeIs4TfMiIiLibSorKxkzZgw///wzACEhIXz11VcMbKg1x/xctaOa+dvnMyBpADbNiFDDZrPxh05/YGjboewt2UvzyOandL3FOxfzxIwn6NmsJ0+d9VQ9pRQRf3Tz1Jv5JvsbmkU0o0N8B+7qexcXdLzAdCwRkVr33guvv15bT5umRrKIiIgb6fF1Ody+BTD7EvgyCb5qDYtuNp3If2gtUxERkXpTXV3NuHHj+PbbbwEIDAxkypQpDB061HAy3+J0Opm9dTZ3TLuDpH8ncfq7p7Nk1xLTsTxSVEgU7WLbnfTrs3OzGT15NL3f7s3UdVN5Yf4L5Jbm1mNCEfE3a/atAWBX8S5mbJ5BYUWh4UQiIocYPty1/vVXKCoyk0VERMQPeXwj+YknnsDpdJ70JiehshC2ToHS7VadtxSqysxm8gd5y2D66bD7Z9NJREREvJ7T6eT666/n008/BcBut/P+++8zevRow8l80zVfXsPLC19mV/EuAKasnGI4kW+qdlTzTfY3NXXRgSKen/e8wUQi4s0qqirYlLfJ5VjH+I6G0oiIHMWQIRAUVFtXVsKMGcbiiIiI+BuPn9paDIjvZ60L7HRYtaMS9i+GJmeYzeUO+StgxzfQ4U4IDHfPPQ/kQ+ZjsO5V68884z44Z7H1PRARqasDBfDzEIhOg+jO1q9Nh0NAsOlkIka8/vrrTJw4saZu164ds2fPZvbs2XV6vZZHqTubzcbFaRczfvb4mmNTVk7hn0P/qemt61mnhE6M6zKOSSsm1Rz7eOXHPHXWUwTa9U87ETkxWwu24sT1AfwO8VrnTkQ8TGQkDBoEJSVw7rlwzjnQq5fpVPXno49g+XI46ywYOBAaNXJ/BqcTcnIgMdH99xYREY+nTxvkcEGR0LirNUIWIDgGynYZjeQ2y/4CO7+F7Fegy5PQ9hpo6A/ltn4K2S/X1nkZsPUTaH1Jw95XRHxLwUrYv8TaAGyBcHGJ2UwiBuXk5LjU69atY926dXV+vRrJJ+aStEtcGsnRodHsKdlD04imBlOZMXfbXP4x+x+8fO7LtG7cut6v/9igx5icNZmY0BgeGPgAt/a+VU1kETkp7ePaU/pwKev3r2fNvjVsKdhCVEiU6VgiIof77jsICDCdomG8/z58+y384x8QGAhPPw0PPNDw992xA156CZYutTaHA/bvBz0IKiLH8vXXkJQE7dpZD/qIX9AnDnJkHe8DRznED4CoDv4xOnbvXKuJDFC2Exb+CapKoOOdDXvfttfCmn9B4eraY2teUCNZRE5MwUrXOrK9RiOLiNt0TezK6A6j6dWsFxenXey3U6NWVldy4zc3kpWTxU+bfuKpwU9xZ78767XRmxqXyheXfMFZbc4iMkT/cBeRUxMSGEJakzTSmqSZjiIicnS+2kSurIRZs2rrqipoXf8PIh5RdTU884zrsU2boG1b99xfRLxPcTEcvFxYQgIsWADJyeYyiVv4QXdQTkry5dDueoju5B9NZICVT7vWoU2sP4OGZg+Abr/dO7ARpP8Vzvqu4e8rIr6lYJVrHa0PA8W/PfHEEzidzpPe5MTYbDa+uvQrHhv0mN82kQGen/c8WTlZAJRWlnLf9Pt4f/n79X6f0R1Gq4ksIiIi4u2WLLEaMwcbPNg9905Kgri4w/OIiBzNxo2u9d690NT/ZiHzR37SIRSpg453Q5PBtXXnv0BQhHvu3fJC6P4MjNoAXZ+C4Gj33FdEfEfyldDrRUj5MyScDvF9TScSEfErB6oP8NaSt1yOdW/anSu7XWkokYiIiIh4tCZN4OGHoX9/a1rrzp3dt06xzXb4WtMrVrjn3iLinQ5tJDdvDmFhZrKIW2lqa5HfNR1qbXvnWGskp/zZffe22aDz/e67n4j4ntie1iYiIkYEBwSz9MalPPTjQ7y55E0A3jr/La1fLCIiIiJH1rattSYyWCOTt21z7/0vvxx694aePa2mcqtW7r2/iHiXigpo2dJaY93ptNZJFr+gTzVEDpUw0NpERERERE5A49DGvH7+61zd/WrmbJ1D7xa93Xr/akc1ZVVlRAS7aVYdEREREROqqmD2bKuRcdZZptPUj4gI6NTJvfe86ir33k9EvNsll1hbeTls3gwHDphOJG6iqa1FRERERETqUb+W/bh3wL1uu1+1o5oPV3xI59c688hPj7jtviLivXJKcli2exmllaWmo4iI1N3SpXD11db0z2edBY89ZjqRiIj/CQ2Fjh2ha1fTScRNNCJZjq+qDPbNhT2/QLsbIKKN6UQiIiIi4sGqHFXM2DyDj7M+pmlEU/7v7P8zHclnLdyxkGu+vIbV+1YDsCV/Cw8MfIAWUS0MJxMRT/bF6i+4aepNALSKbsV57c/jtfNeM5xKROQ4du2C996rrefOhb17ISHBXCYREREfpxHJcmyzL4VPG8PPQ2Hl07D7B9OJ/IfTCbt/hFkXQuFa02lERERE6mTaumk0e74Zw94fxn8y/sPbS9+m2lFtOpbPSmyUyPr962vqiuoK/jH7HwYTiYg3+P3hE4CtBVvZV7rPYBoRkToaMgQaNaqtHQ74+mtzeURERPyAGslybDY7OA6a637PL+ay1LfqClj1DJTvNZ3kcBvehamd4OdhsP0ryNaT4SIiIuId2sW2c2lI7CnZw6wtswwmahiV1ZVMWDbBeJO8dePWXN/jepdjS3YtMZ5LRDzbwY1kgE7xbl6XU0TkZISGwogRtXWfPhATYy7PyTpwAKr1Xk1ERLyDGslybIlnudZ7frFGyvqCLR/BsgfhyySYfz3kZZpOVKtwteso5E0ToLLYWBwR8XDfdoPpp8OCP8OaF6Bst+lEIuLHUuNS6d60u8uxj1d+bCZMA/r3/H9z7VfX0u+//Vi6a6nRLA+f8TDBAcF0b9qdLy/5kjnXzSHAHmA0k4h4ttLKUmzYaupOCWoki4iXuPFG+Oc/YdMmWLAALrrIdKITN2mStc7zZZfBxInWlN2eYN8++P573/nsV0RE6oXWSJZj+72RbLND7GlWXV0OgWFmc50qpxPWvmDtOypg4ztQshmG/GQyVa32N8Pq54Df3rhVFsLmD6D9TUZjiYgHOlAA+b89CLN3jvVr06EQ1tRcJhHxe5ekXcKy3cs4rflpXNz5Yi5Ou9h0pHq1KW8TT8x4AoDFOxfT++3e/Gv4v7iz351G8iRFJ7HwhoV0SeyC3aZnhUXk+H699ldKK0vJzs1m9d7VnNn6TNORRETqZvhwa/Nm330Hubnw0UfWNnYsfPKJmSylpXDNNbBoEWzebB1btw5SUszkERHPlJkJGzdC27bWFhFhOpG4kRrJcmwR7WDwNIjvD8HRptPUn72/Qt4y12MdzHzwd0QRydD8PNj5DUSnQdtroeWFplOJiCcqdJ2WEFsARKaaySIi8pvre1zPHzv/kXax7UxHaRC3TbuNsqqymtrpdNI/qb/BRNCtaTej9xcR7xMeFE73pt0Pm0VCREQaUHU1TJ/ueuycc8xkAQgLg5kzISen9tiiRWoki4irSZPgmWdq62uvhXfeMZdH3EqPq8ux2WzQ/BzfaiIDhCZC8tVgD7bqiHZW49aTdHsaRiyCkSug070aXSgiR1aw0rWObA8BwWayiIj8JqFRgs82kQEeHPggHeM71tS39L6FPi36GEwkIiIiIl4hMxPy812PHbzus7vZbNC7t+uxxYvNZBERz7Vhg2udkGAmhxihEcnin6I6QP8J0P2fsP4NaNQaPG0duZiuphOIiDdoMRoGTbUayoWrIFQPnYiINLQzW5/JshuX8ezcZ3l32bs8ffbTpiOJiIiIiDfo0QN27oRvvoEvv4S9e6FlS7OZTjsNpk619sPCoLzcbB4R8TwbN7rWbduaySFG2JxOp9N0CE9SWFhIdHQ0BQUFREVFmY4jIiIifkbvRbyPvmf+7UD1AYI9eCaI/WX7qayuJDEi0XQUERFpQHo/4n30PatnlZUQFGQ6xYlzOMBueNLQzExYuNAamZyWBoEaeyYihzj/fMjIsB6EAWuK/qFDzWaSU1bX9yKa2lpEREREROQkeWoTOa8sj8d+eYw2L7Th4Z8eNh1HREREpP5VVMDXX8OVV0KTJrB9u+lEJ850Exmga1e44Qbo1k1NZBE5sm++gR07oLQUVq6Efv1MJxI38oCfVOKVnA7TCURERETEi1RUVfD12q85UH3AdBSf98OGH0h+MZn/m/V/FB0oYuLyiazfv950LBHxAJXVlUxZOYUVe1ZQUVVhOo6IyMlzOKBDBxg9Gj74wFp3+IMPTKcSEfFtYWHQuTNERJhOIm6kRrLUXXkObHof5oyDz5tAyTbTifyPoxJ2fgeVRaaTiIiIiNTJtHXTuObLa0h8LpHRH41m+obppiOdsPzyfNMRTki3xG4uDftqZzV/m/U3g4lExFOs37+eSz69hK5vdCX87+G0f7k9ZZVlpmOJiJw4ux2GDXM9NnEiaBVHERGReqVGstSN0wFTO8O8q2DLZKjIhV3fmU51YorWQ8Eq0ylOzp5fYMGf4POmMONc2PG16UQiIiIidfK3X//GxOUTKagoAODjlR8bTnRiNudvps0LbXhw+oOUHCgxHadOEiMSua3PbTW1DRsOpwOHZhUS8Xur962u2Xc4HRQfKCYsKMxgIhGRU3D11a71hg3WJiIiIvVGjWSpG5sdEoe4Hts5zUyWk7XiKZiaBj+eBVs/A0eV6UR1t+pZ2PAfOLDfqrd41wewItJAqjUdoYh4vkvSLnGpv1r7FeVV5YbSnBin08mt395KQUUBz8x9hvTX0/l23bemY9XJ/QPuJzI4kkvSLiHrlizeu+g97Db980/E363eu9ql7hTfyVASEZF6MHAgtGsHvXvDK6/Arl2QkmI61ZH973/w7rvWFNwiIiJeRJ8kSN01H+la7/kJvGWNu/K9sPW35mvODJg9FrJfNhrphLR2/QCWXd/BgQIzWUTEc8y6CD5PhJ/OhsW3w76FphOJiBxmbOex2LDV1F0Tu7K7eLfBRHX32erPXBrHm/M3MzV7qsFEdZfQKIFNd27io7Ef0Tmhs+k4IuIhAuwBtIhsUVOrkSwiXs1mg8WLYeFCuPVWiIsznejo/vEPuO46SEyECy6AefNMJzqy8nJYsABefVWju0VEBIBA0wHEizQfCQFhkHgWJP0BWoyGgGDTqepmw3/BcVDT2x4Mba4wl+dEtbzAyvz77yGmO5TthOBoo7FExLDCVdb69eU51hT48QMgvo/pVCIiLppHNufW3rfSLrYdYzuPpWVUS9OR6mx74XaC7EFUOioBaBrRlL8P+bvhVHUXF+7BH6aKiBF/Of0v/OX0v1BYUcjafWuJDIk0HUlE5NQ0bmw6wfFt3lzbOD5wwBqdfNNNRiMd0dix8NVXUPXbLI6vvQY332w2k4iY98Yb0KyZNQNE27YQHm46kbiZGslSd6EJMGYfBHrhXxQBYRCSABV7rbr1pdbvx1sEN4YOd1i/h1YXQ0Qb04lExLTKYijZ4nosWiPORMQzvTzSi2aCOchd/e5iRLsR3DT1JmZtmcWL57xIdKge5BMR7xcVEkXvFr1NxxAR8Q9TprjWsbEwdKiZLMcSGlrbRAZYtEiNZBF/V15++N8DK1ZAerqZPGKEpraWE+ONTWSAjnfChdug/wcQ3x/a32o60Ynr8Sx0fkBNZBGxFKxyrW12iOpgJouIiA/rlNCJGVfP4Ntx3/LHzn80HUdEREREvE2PHnDRRRASYtVjxkBQkNlMR3Laaa71okVmcoiI59iy5fBjrVu7P4cYpRHJ4j8CQiD5cmsTEfF2sT3h/DVWQ7lgJVTsg4BQ06lERHySzWbj3Pbnmo4hIiIiIt5o2DBrKyiwpo721JF8vX+bqcJmg44drdrptGoR8U+bN7vWcXEQqaVR/I0aySIiIt7IHmiNQI7qAEkXmU4jIiIerrCikEU7FjF/+3zSmqRxYccLTUcSERERqX8lJTB5srV98w2EhZlOVCs6Gq66ynSKo+vVC375BXr2hKgo02lExBMEBEC/flZDefduaNPGdCIxQI1kERERERERH/b4L4/zf7P+DydOAMZ2HqtGsoiIiPgWhwPuuQcmTLBG/gJ8/DFcc43JVN4lNBQGDzadQkQ8ydChtWu6l5VBXp7ZPGKE1kiWU1ORC+vegL1zTScRERERES9QVlnGZ6s+45JPL+HqL682HaeG0+nk9m9vZ/qG6aaj1Ls2jdvUNJEB5m+fbzCNiJjy/vL3+XLNl6zdt5YqR5XpOCIi9ctuh9Wra5vIAC+/bE3NLCIipy4sDJo3N51CDNCIZDk5e2bA2hdh51RwVEKrSyBhgOlUrorWQ6M21vSvvqaqDHb/CDv+B41aQ/qjphOJiIiIHNcvm35h1ORRlFSWABAaGMqrI18lIjjCcDL4Ys0XvLLoFV5Z9AqXd7mcf434F00aNTEdq170a9nPpd5euJ0dhTtoEdXCUCIRMeHu7+8mtywXgCB7ENMun8aQtkMMpxIRqUc33ww//FBbL10K8+dD//7mMomIiHg5jUiWk1OwErZ/aTWRAXZ8BZWFRiO5cFTBT0Pg6xRY/S84UHD813iLzR/BZ3EwazRs+A9seEdPV4qIiIhX6JrYlYrqipq6vKqcr9d+bTCRpbCikNun3V5TT1oxicETBuNwOgymqj8d4jsQHRJNkD2IPi36cEefO3zm9yYidbO3ZG9NExmg0lFJ68atDSYSEWkAo0ZB27bW/nnnwYwZ1tqeJuzeDYsXm7m3iIhIPVIjWU5Oq0vAdtBI3+py2Pa5uTyH2v4FlG6Fki2QcS98mWTt+4LojlBdVluXbIKCVebyiIj7VeRCZZHpFCIiJywuPI6hbYe6HJuyaoqhNLXeXvI2O4t2uhx7bNBj2G2+8c8lu83O3OvnUvhQIQtuWMCL575IUnSS6Vgi4kar9612qUMCQkhunGwojYhIAwkIgLffhqws+OYbGDQIbDYzWV56CXr3hoEDYcoUqNKSAiIi4p1845MRcb/QeGh+rrVvD4FWf4TIVLOZDrbm3651VEcIb2UmS31r3A3CD/ngb9c0M1lExIzVz8InUfBlK/jlXNjwrulEIiJ1dknaJdhtds5qcxZvnPcGb53/lulI3N3/bt48/00ahzYGYES7EVySdonZUPWsc0JnQgNDTccQEUNs2BjUelDNlP2pcakE2AMMpxIRaQBnnw1paWYzlJXBW7+9x507Fy65BB55xGymE+F0wrp18OGHcPfdMGmS6UQiImKQDy4eK27T8R5oeSEkjYHgaNNpah0oAGe167GO95h7ArG+2WxWE3/juxA/EJoNhxajTKcSEXfKX2n9WrrN2mK6G40jInIixnYeyzkp59A0oqnpKDXsNjt/7vVnRncYzYM/Psjjgx7H5ivvHUVEgDNan8GMa2YAsL9sP3tL9poNJCLiyyZNgtxc12PXXmsmy8m47z74179q64sugssvN5dHRMxYtQp+/hnatIHkZGjdGiIiTKcSA9RIlpOXONjaPE1wNAyfD/vmWSOT9y+GVmNMp6pfXZ6EHs9BUKTpJCJiQsFK1zra8NPWIiInICI4gohgz/zHZ9OIpky8cKLpGCIiDSo2LJbYsFjTMUREfFdgIDRvDjt/WzplxAjo2NFsphPRtatrvWiRmRwiYtbPP8Ptt9fWffrAggXm8ogxmtpafJPNBgkD4IxP4LxVYA8ynah+hTVVE1nEX1WXW6OQDxbd2UwWEREREREREW9RXX38c+rDNdfA5s0weTL06wd33OGe+9aX3r1d6+3bYdcuM1lExJzNm13r5GQjMcQ8jUgW3xcYZjqBiEj9CQiFi4uhcC0UrLJGJ0d50ZPNIiIiIiIiIu60cSM88QSUl8OUKe65Z1AQXHqptTmd7rlnfenQASIjISwM+va1tkC1EUT8zqZNrrUayX5LPwFERES8TUAIxHS1NhEROWGLdiwiOSaZ+PB401HcqtpRzaq9q5i/fT7zt89nT8kevhn3jelYIiIiIg0jNxceeQT++1+oqrKO/fornHGGe3PYbO6936kKCIB166BJE+/LLiL1p2NHa1aFTZtgzx5rrWTxS2okS/1yOiFnFgSEQXwf02lERERExAsUVhTy9dqvObf9uQ2+bmdRRREXfXwR5VXlPD/8ea7qdhU2P/mAbNnuZZz29mkux3JLc4kLjzOUSERERKQBBQXBJ5/UNpEBbrsNlizRCNvjSUw0nUBETHv66dr90lJzOcQ4rZEs9cPpgO1fwQ8D4KfBsOx+996/eJM1xas/c1RB+V7TKURERETq7PPVn3PRxxfR5NkmXPHFFXyx+osGv+dff/krO4p2kFuWyzVfXcPZ751NYUVhg9/XE3RN7EpoYKjLsYU7FhpKIyLu8sXqL3h+7vN8u+5bNuVtwuF0mI4kIuIeUVHWlNYHy8mB9euNxBER8Vrh4dYmfkmNZKkfW6bArAshd75V58yCvXPdd/+MB+DbLrDgBijd7r77mla2C9a/Bb+Ogc/iYfFtphOJiIiI1NmkFZP4cs2XVFRXADBlVcOuWbd452JeXviyy7EgexCRwZENel9PERQQxGnNXUckL9ixwFAaEXGX9zLf477p93Heh+fR9qW2PPTjQ6YjiYi4z803Q5cu1gjke++FtWut6VrrU0EBPPww5OXV73VFREQ8gBrJUj+SLoKwFq7HVjzhnnvvWwDbPrVGRW/4L3zdHnZ+5557m7bzW1h4I2z7HCoLIGeGNb24iIiIiBe4JO0Sl/qnjT+xt6ThZlhpFtGMizpeVFOHBoby+nmv+83U1gD9WvQjuXEyl6ZfygsjXuDitItNRxKRBrZ672qXumN8PTdQREQ8WWAgTJgAy5fDc89Zo5Tr2wMPwPjx0L49vPIKVFbW/z1EREQM0WIQUj8CQqDjPZBxr1VHpkL7m6ymZkN+MOd0wrIHD8kSBvH9Gu6eniTxLNe6PMea4rtxmpk8ItKwKvZD6TaI6gABocc/X0TEw53X/jzCg8IprSwl0B7I8HbDySvPI6FRQoPcr0VUCz69+FO+Xvs1t027jRt73Ui72HYNci9PNX7oeJ4d/qzpGCLiJgeqD7B+v+sUrp0SOhlKIyJiSM+eDXftH3+Et96y9nNz4fbbrVHPL7987NeJiIh4CTWSpf60vwm2fAjt/gTtrgN7kBtu6oSksZCXAZW/rW2X9ggEN3bDvT1Ao2QIbwWlW2uP5c5XI1nEV+2cBvOuAJsdItpB4hDo87rpVCIiJ61RcCP+euZfadKoCRd2vJDYsFi33HdUh1GclXwWwQHBbrmfJwm065+AIv6k5EAJV3e7mtX7VrN632ryy/PpFK9GsohIvXn1Vde6USO45x4zWepbcTHMnQsLFlhbRQVMn246lYiIuJk+RZD6ExgOIxY17AjkQ9ns0OE2aDUWMu6DnF8h9Vb33d80mw3aXGatlZx4FjQZDBFtTKcSkYZSuMr61emAonXW7A8iIl7uL6f/xch9I4IjjNxXRMSdYsJi+O8F/wXA6XSSU5JDdGi04VQiIh7E6bTWOG7c+OReP3ky3HILvPuuVT/7LCQn11s8ozIyYMSI2tpuh5ISq1kuIr7t3Xet/9+Tk6FNG2jbFsLCTKcSQ9RIlvplan25sKYw4AM4kOd/0712/4fpBCLiLgWrXOvozmZyiIiIiIjXsdlsJEYkmo4hIuI5SkrgmmsgKwtmzIDEk/g7MjQU/vtf6NsXvvwSbryxnkMa1KsXBARAdbVVOxywZAmceabZXCLS8F580Vpb/nf/+Q9cf725PGKU3XQAkXoVHGM6gYhIw6kscK3VSBYROabK6kqcTqfpGCIiIiLiaTZvhgED4NNPYc0aOPts2LTp5K5ls1kN5KlTrVG7viI8HLp0cT22YIGZLCLiPk7n4X8ftmljJIp4Bo1IFvdwOqFki6ZdFhE5FUN+hspiKFwDBSshcbDpRCIiHu2B6Q+wat8qXhv5Gu1i25mO47GqHFXYsBFgDzAdRURERKThOZ1w+eWQmVl7bNUquPde+Pzzo7+uvNwagXw0vtRE/t2gQdbvuW9fa9NoZBHfl58PhYWux3xlyn45KWokS8OrLISFN8LO7+DcjFNrJjsdsH8pxJ1Wb/FERLxKUIT1d6D+HhQRH1ftqD6lxubSXUt5aeFLOJwO0l9P57EzH+PeAfcSHBBcjym919drv2bOtjnM3z6fRTsX8e24bxnUZpDpWCIiIiINz2aDjz+2mqQbN1rHkpLgjTcOP7ey0moyf/IJvP02/PwzpKW5N69JL7xgOoGIuFt5OVx6qTUqefNm2LfP+jtS/JYPPiYlHmX/EpjWE7Z8BJX5MOtCq7F8sjIfhx/6wurnracHRURERMRn5JXl8W7Gu5w76VyGvj/0pK9T7ajmz1//GYfTAUB5VTlPznySbQXb6iuq13ti5hP8c84/mbllJqWVpczfPt90JBERERH3adkSfvkFOnWCsDBrfeMmTQ4/b9Uq6N4dnn4acnKsNUJ/XzNYRMQXNWsGkyfD/PmwezcUFUFQkOlUYpBGJEvDWvsSFG+orfOXw7xr4MxjTBNz1Gu9Aiv/Zu1n3Ad5y6HvWxBwjCll/FFlEeybD9FpEN7cdBoRERGROlm4YyGnv3M6lY7KmmPbC7fTMqrlCV9rU/4mdhfvdjn26JmPanrrg/Rr0Y+lu5bW1PN3qJEs4msW7ljIhGUT6BTfiY7xHUlrkkbzSP0bUUSkRqtWVqNk6VLo2fPI57Q85L3oggXw4otwzz0Nn09ExBOEhZlOIIZpRLI0rNNehsj2tXVoU0h/9MSvU7Eflj/semzLh7A/49Ty+ZKsp63R3582hl+Gw46vTCcSERERqbPuTbsTHhTucuyTlZ+c1LVSYlNYdesq7uhzBzZsdIrvxP0D7q+PmD6jX8t+LvWC7QtwasYfEZ8ye+tsXl/8Ond8dwfDPxjOHz7+g+lIIiKeJyoKBg8++tdjYw9fF3nt2gaNJCIi4knUSJaGFRQFg7+FkASI6gDD50HsUZ7wO5aQWBgwCbDVHuv1EiT0r7eoXq9wDeRlWOtIA+ydYzaPiIiIyAkIDgjmok4XuRz7cu2XJ329qJAoXjz3RRbcsIAJF04gJDDkFBP6lv5J/RmSPIRHzniEry/7muU3Lcdmsx3/hSLiNVbvXe1Sd07obCiJiIgXs9msUcmtW8Ott8LKlfDmm6ZTiYiIuI2mtpaGF5kCZ0+H8JYQEnfkc5xO643ZsbQcBT2egYz7odvTkHpL/Wf1ZgkDYfMHtfXe2eayiEj9qq6AHV9bU9ZHpoBd65KIiG+6uPPFTF4xmXPbn8vFnS/m/NTzT/mavVv0rodkviclNoUfr/rRdAwRaUCr97k2kjvFdzKURETEy2VmamrXg+XnQ2QkBASYTiIiIm6gRrK4R0y3Y399zb9h3WsQngT2YDj7+yOf1/Feq5HS/Nz6z+jtEgbW7tuDrGnEq0ogsJG5TCJSP4qyYfYfrX17EER2gHOWQECw2VwiIvVsaNuh5NyfQ1RIlOkoIiJe75K0S0iOSWb13tWs2beGTglqJIuInBR/byI7nfD669b60AsWWFN7L18OXbuaTiYiIm6gRrJ4hs3vQ/EGawOoLIagiMPPs9nURD6a6DTo/g+I7w+xvSHQz9/kiviSglW1+45KqCxQE1lEfFJQQBBBAZp1QUSkPtze9/aafYfToXXQRUTk5Nhs8OyzsHlz7bEFC9RIFvFFpaXw1FPWdP6tWllb586agcDPqZEs5uVnQd4y12PF6yGmu4k03stmh84Pmk4hIg2hYKVrHZ1mJoeIiIfK2JXBz5t+5s5+dxJo1z9xREQOZbfZQcugi4jIyerb9/BG8p/+ZCyOiDSQLVvgn/90PVZSAuHhZvKIR7CbDiDClo8PP1a03v05REQ8lS3Amq7+d9GdzWUREfEw1Y5q/vzNn7lv+n30frs3C3csNB1JRERERMS39O3rWi9daiaHiDSsrVtd6/h4NZFFI5LFA3R5DJIugvwVUFlkrf8Z29N0KhERz9HlcWur2A+FqyE4znQiERGP8fri11m8czEAy3Yvo99/+jF13FTOba/lUE7UjsIdlFeV0y62nekoIiIiIuJJBg+GK66wGsp9+0K3bqYTiUhDOLSR3KqVmRziUdRIFvN+bxyreSwicmwhsZAw0HQKERG32lO8h89Xf845KeeQHJPs8rWiiiIe/flRl2OpcamcnXy2OyN6te/Xf89/Mv7D/O3z2V64nXFdxjHpD5NMxxIRERERT9KjB7z/vukUItLQkpLgj3+0prjeutVaK1n8nhrJIiIiIiLicSavmMx/Mv7DjM0zcDgd/O2sv/HImY+4nBMZEsm0y6dx4zc3siJnBQBvnv8mIYEhJiJ7pc35m/l01ac19fzt8w2mEREREREREWPOOcfafudwmMsiHkONZBFf5KiGwjWQuwCqiqHDHaYTiYiIiJyQ2Vtn8/Omn2vqKaumHNZIBuif1J8lf17Cv+f/my35WxjUZpA7Y3q9fi37udQb8zayt2QvCY0SDCUSkVNVfKCYP3z8BzrFd6JTQic6xXdiQNIAggKCTEcTEREREW9it5tOIB5AjWQRX7NnBswcDVVFVh0cA6m3g81mNJaIiIjIibg47WJeW/xaTZ25J5M1+9bQMb7jYecGBQTxwMAH3BnPZ6Q1SSM8KJzSylIAokOiWb9/vRrJIl5szb41TN84nekbpwNgt9kpebiEINRIFhERERGRE6NGsoiviWhb20QGOJAHResgKtVcJhEREZETdHqr02kW0YxdxbtoFNSIUR1G4XQ6TcfyOYH2QJ4Y9ATx4fH0a9mPDvEdsNv01LmIN1u9d7VL3TamLaGBoYbSiIiIiIiIN1MjWcTXhCdBaFMo3117LHeBGski3mr92xDWDKI7Q6M2oA/3RcRPBNgD+PuQvxMRHMHI9iMJDwo3Hcln3T/wftMRRKQerdq7yqXuFN/JUBIREfFZlZWwfDlERkKHDqbTiIhIA1IjWcTX2GwQ3xe2f2U1leP6Qlhz06lE5GRUH4BFt4CzyqoDwmD4PIjpZjaXiIibXNP9Gpe62lHN6n2rSW+SbiaQiIgXOD/1fEIDQ1m9bzWr962me9PupiOJiIiveP99+M9/YNEiKCuDW2+FV14xnUpERBqQGskivqj7s9D7dWsUo4h4r+L1tU1kgOoyaNTaXB4REcPeXPImt0+7nTv73slTZz1FRHCE6UgiIh5nYKuBDGw10HQMERHxRTt2wKxZtfW8eeayiGf6+GN48knrQYOyMmvQ086d1q/i2ebNg6++gtatoVUrSEnRjAMCqJEs4pui2ptOICL1ocB1WkLCmkNwYyNRRERM21m0k4d+egiH08G/5/+bT1Z9wjuj32FYu2Gmo4mIiIiI+If+/V3r5cuhpAQaNTKTRzzT6tW1+xERR28iOxzWf1N9+8KoUTBoEAQHuyejHO7XX+Gf/6ythwyBH380l0c8hhZaFBER8VQBoZBwOgTHWHV0Z7N5REQMuuu7uyisKKyptxduJ9Cu52JFRERERNzmtNMgIKC2btcOtm83l0c8T6tWrnXEMWaRWrcOFi6El1+G4cOhZUuYOrVh88nRbd3qWh/6vRS/pU9eREREPFWL863N6YTyPVBZZDqRiIgRTqeTrold+d/a/1FRXQHA1d2u5qzkswwn8z2llaUs2bmEtblruaHnDabjiIiIiIgnadQI/v1vSE6Gfv0gPt50IvE0SUmudWTk0c9dsMC13rsXLr0UNmyAJk3qP5sc25YtrnVrLa8nFjWSRUREPJ3NBmFNrU1ExA/ZbDYePfNRLkm7hJun3syy3ct4bvhzpmP5lM35mxkzZQzLdy+n2lmNDRsXp11MVEiU6WgiIiIi4kluv910AjHJ4YCrr4aRI+HCCyEszPXrzZrBhx9aI5HDwo7dSJ4/v3bfbocLLoBbb4WEhAaJLsdx9tnW92zLFmt0shrJ8hub0+l0mg7hSQoLC4mOjqagoICoKH1oIiIiIu6l9yLeR98z93I6nWzO30xyTLLpKD6lvKqcqPFRVDoqa479dNVPnJ18tsFUIiJSV3o/4n30PRMRrzR/fu1a2Y0bw2WXwb/+BaGhJ36tlSvhiy9g0SJ46SU1LkXcrK7vRTQiWcSXle2B3AW/bQthwGQI1ZQzIiIi4r1sNpuayA0gNDCUHs16sHDHwppj87fPVyNZxMsMeW8IQfYguiZ2pWtiV0a0G0FCI43qETlR1dXVrFy5kkWLFrF48WIWLVpEZmYmlZXWA1eDBg1ixowZZkOKiJjw6ae1+/n58MsvEBJyctdKS7M2sJZ1ExGPpEayiK9yVMH/2kJ1ae2x3IXQYqS5TCIiIiLisfq26MvCHQux2+x0TexKTGiM6UjiIYoqirjjuzt46PSHSI1LNR1HjqK8qpyZm2dSB+r2nQAAhJxJREFU7azm+w3fAzD3urlqJIucoC+//JLLL7+c0tLS458sIuJPnE747DPXY2PHWkuynar6uIaINAi76QAi0kDsgRDby/XY/kVmsojnW3ovLPsLFK03nUREREQMuem0m5h5zUwK/1JIxo0Z3Nz7ZtORxEP8c84/mbBsAmmvpXHHtDvYV7rPdCQ5gtV7V1PtrHY5lt4k3VAaEe+Vn5+vJrKIyJFUVcF998HgwdaaxmA1kkXEp2lEsogviz0N9v5aW+9fYi6LmOV0Hv3JPqcTtkyGsl2w6hlodwN0expCNXLBqPVvQ1UJRKdBdGcIa66nM0VEpEF1TuhsOoJ4oO2F23l+3vMAVDmqeHnhy+SU5PDR2I8MJ5NDZe7JdKnbxrQlMiTSUBoR75eYmEjv3r1rtu+//54XX3zRdCwRz7J9O8ybB5s2wQMPmE4jDS0oCG691dpycuD776FrV9OpRKSBqZEs4stie0FQtPVrbC9ocqbpROJuTies+gcUroH+E498Tul2q4lsvQA2vA0VOXDml+5KKUey9iUoyKqt+7wFKX8yl0dERET80t9//TvlVeU1dYAtgMcHPW4wkRzN8HbD+Xjsx2TuySRzTyYtIluYjiTilc455xy2bNlCq1atXI4vWLDAUCIRD7R2LQwdajWSwRqdevPNEKkHmPxGkyZw5ZUNd/0NG+Dtt+HRRyEiouHuIyLH5VWN5OrqalauXMmiRYtYvHgxixYtIjMzk8rKSgAGDRrEjBkzzIYU8SStL4E24zSK0V85qmHxLbD+LatuOhySLz/8vNz5rnVwDPTSU9ZGOSqhaK3rsahOZrKIiIiIXxs/ZDxRIVG8MP8FKqor+HOvP9MpQe9LPFGzyGZcnHYxF6ddbDqKiFdr2rSp6Qginq9VK9izp7Z2OGDhQhgyxFwm8Q3TpsHLL8N331kDZJKT4cYbTafyfa++Ctu2QevW1v/f3btDCz2UKBavaSR/+eWXXH755VqjRORE2L3mf3Gpb04nLLoJNvyn9tjiWyBhIES0cT03thd0uBvWvwnVpdD/PWjU2q1x5RBF66xm8sEap5nJIiIiIn4tOjSafwz9BzefdjNPznzymKORN+ZtpKC8gB7NergxoYiIiLhdWBj06GE1j383b54ayXLqXnvNaib/7tVX4c9/1kCphjZ5MsyZU1u/+CLccYe5POJR7KYD1FV+fr6ayCIideWohAN5rseqiiFn1uHnRrSFXv+CUdnQ711ocb57MsrR2QKh7bUQ1wcCG0FYC2ukuIiIiEgDumPaHXyc9TFOp/Owr7Vu3Jp3LniHxIjEo77+/un30/Otntz27W1UOaoaMqqIiIiY1r+/9WvjxnDOOdCundE44iNuu821XrECfv3VTBZ/smWLa33I8g7i37xuuGJiYiK9e/eu2b7//ntefFFTsIqIuAgIhtOnQMb9sOZfYA+GgZMh6Q9Hf014C2h7jdsiyjFEpUK/d6x9pwPK95rNIyIifsXhdJCdm82C7QuYv30+N512E92adjMdSxrY1OypvLzwZV5e+DIfrPiA10a+RlJ0Up1fP3/7fD5f/TkAry56lfjweJ4Y/EQDpRURERHj7rjDmnK4QwdrjWTxXQUFEBgIjRo1/L2GDYOUFFi/HqKj4dprremWpeFs31673vnvkpPNZBGP5DWN5HPOOYctW7bQ6pAnIRYsWGAokYiIh7PZoefz0KgNhLeEpItO7XpVZYDDGiEr7mOzQ9jRR/6IyLFVV1ezcuVKFi1axOLFi1m0aBGZmZlUVlrTxw8aNIgZM2aYDSniYc549wzmbptbU6fGpaqR7OOKKoq4eerNNfU32d+QuSeT9bevJygg6LivdzqdPDD9AZdj/zfr/xjebjgDkgbUe14RERHxAG3bmk4g7vLqq/C3v8G558KYMXD++RAV1TD3stvh//4Piopg3Dj3NK/9XePG8OGH8OOPMH06FBdDerrpVOJBvKaR3LRpU9MRRES8U4fbT/0aBatg9iUQ2xP6Tzz164mIuMGXX37J5ZdfruVRRE5Q5/jOLo3k+TvmG0wj7jA5azLbCre5HHt80ON1aiIDVDurOTv5bH7dWjvt4GXpl5HeRB9AuUtldWWdv18iIiIiJ+TTT6GsDD7/3NpuvRVeeaXh7nfppQ13bTlcRARcdpm1OZ2wezcEBJhOJR7EaxrJInIKcmZD7nzYv8Taer0Ezc8xnUq8gdMJG9+BxbdDdRkUZEHSGGg52nQyEZHjys/PVxNZ5CT0bdmX/2T8p6aev12NZF/3p55/IiY0htun3c6ekj2cnXw213a/ts6vD7QH8sTgJwgOCOYfs//Ba+e9xhVdr2jAxHKovv/pS2FFIV0Tu9I1sStXdL2ClNgU07FE5CAVFRVUVFTU1IWFhQbTiIjU0caNkJHhemzMGDNZpOHZbNCsmekU4mHUSBbxB8v/Anvn1Nb7F6uRLHVTngNL77GayL9bfCskDoagBprCRkSkniUmJtK7d++a7fvvv+fFF180HUvk/9u777iorvz/4++hq0gRVFCxYMeOJXZFjcaSxBRT3PRkE9N3U9dsfim7yWazKbubaDZ+Ezd104uaaDT23nuv2AUEBASUOr8/bgTHBuoMZ8rr+XjcB/dc5s68dQbu5X7uOcdtdW/QXZJUr2Y9dW/QXd3rd1dJaYn8/bgr3VvZbDaNajNKg+IHaezssXqq51Oy2WwX/TzP9npWt7W/TQ3DG1b8YDhNUUmRNh/drMKSQu0+tls/bvtRSY2TKCQDbua1117Tyy+/bDoGAFycZcus4qLdbrWjo6U+fcxmAlClKCQDviCy8xmF5NXmssA1Nv5VUqmU8KzkH+K8561WV+r8rrTszvJtNn8pb58U0c55rwMALnDVVVdp3759atjQsaCxfPlyQ4kAz9A6urUO/PGAGoQ1MB0FVSyyWqTeH/H+Je/v7+dPEdmAHRk7VFhS6LCtXV3O1QF3M3bsWD3xxBNl7ZycHMXFxRlMBACVMHq0NGiQ9PPP0pQpUsOGUgBlJcCX8BMP+IJanR3bFJK9y4kUacvfpZJ8Kflzqet4KXaw856/ye3S3s+k1DlSyz9K7V+WAmo47/nhaNeH0rG1UkRbKbyNVbAPijSdCvBIMTExpiMAHsnfz58iMuBBNqZtdGjXr1lftarVMpQGwPkEBwcrODjYdAzA+fLzpVWrpCVLpKVLpSeflPr2NZ0KzlSnjnTPPdZiit1u9Y5u0UKKijKXA/BBFJIBXxDVVYpMtArKtX77ardbw5LA823+m1VElqTcXdK8YdK1+6Tq9Z3z/Dab1G2CVHjs7JsS4HyHpkiHfipvJzwrdfy7uTwAAABOUmovlZ/Nz3QMrzOy1Uitvn+1NqRu0IbUDQoJcOIIRQAAVGTwYGnxaSMhdupEIRnOc+yY9Pnn0v/9n7Rpk/TGG9JTT5lO5R0KCqSsLKluXdNJ4OZ8vpBcUFCggoKCsnZOTo7BNICLhLeWhtIL2Svl7Zd2nTH8YPxdzisinxIa79znw/llbXJsh7c1kwMAAHit9Px0BfkHKSw4rEpe70D2AT018yk1iWiivw/iBjlnCwkIUWJsohJjE01HAQD4oiuucCwkL1liLgu8zxNPSB9/XN7+v/+zer3TQeryzZ0rDR0qdewoDRlirffrZzoV3JDP3wr82muvKTw8vGxhbhIAHqVafannl1LUFVbbL0hq+4LZTLh0xXlSXrLjtvA2ZrIAAACv9ezMZ9XsnWZ6d/m7Z82t60wFxQV6beFrajW+lb7Z/I3eXvq2tqdvd9nrAQAAA3r1cmwvXSoVF5vJAu9z772O7Z07pfnzzWTxNr/+an1dt056/XXpz382Ggfuy+cLyWPHjlV2dnbZcuDAAdORAKDy/PylhjdIg5dKgxZKXcZLNRqaToVLVVosdXhVanSrNTeyfzUprJXpVAAAwItsTtusj9d/rKP5R/XY9MfUenxrrTi0wiWvtS97n16c96Lyi6xpWIpKi/Tkr0+65LUAAIAhvXpJfn5Wr8aHH5Y++EAqLTWdCt6iVy+pdevydny8dPy4uTze5FQh+ZTBg83kgNvz+aGtg4ODFRwcbDoGAFwem02q09taqpLdLqUvlaJ7MKSMMwSFS22eK2+Xllg3CwAAYMCxE8e09OBSLTu4TMsOLlOr6FZ6Z+g7pmPhMj035zmV2ssv7qbkpqhhuGtuRGwR1UJP9HhCry9+vWzb1J1TlXwsWU0im7jkNQEAQBWrW9eaZ7VmTdNJ4EwffCDVqCENGyZFRJjLYbNJDz0kLVggPfCAlJRk3biAy3PsmLR/v+M2Csk4D58vJAMALoHdLh36Sdr0ipS5Uho4V6rb33Qq70MRGXBLBQUFKigoKGvn5OQYTAO4zucbPtdj0x8rax/IYfQmT1dQXHDWtid7PKmY0BiXvebzfZ/XxLUTlV+Ur9va3aaHuz1MERkAAG9DEdm7lJZKL7wgpaRIAQFS377SG29IiYlm8jzyiLXAeSIjpYwMadkyacYMa27zrl1Np4KbopAM+KrSEsleJPmHmE4CT7RgpHRoSnl7898oJAPwGa+99ppefvll0zEAl+veoLtDe1v6Nh07cUyR1SINJcLlCg4I1uRbJmvR/kV6dtaz2pGxQ0/1fMqlrxkaFKofb/5RbWq34bPjAoePH1Z09WgF+QeZjgIAALzFihVWEVmy5rueM4ebBbxRYKDUp4+1ABdAIRnwJfu/lVJmScfWSVkbpU5vSi0eMp0Knih2iGMhOWWmlLVZimhjLhMAVJGxY8fqiSeeKGvn5OQoLi7OYCLANTrEdFCwf7AKSsp7sa44tEJDmg0xmArO0Lthby26e5H2Ze9TWHBYlbweXOP6r6/X6iOr1Tq6tdrXba/Hr3hcXevTmwS4XMOGDdPhw4cdtqWcKqpIWrVqlTp27HjWftOmTVO9evVcHQ8AXGvyZMd269ZS8+ZmsgAwjkIy4EsOTpH2fl7ePrbOWBRchmMbpLT5UpPbpaAIMxma3iNtfEkqOGq1q9WT8vZRSAbgE4KDgxUcHGw6BuByQf5B6tOojwqKC9S9QXddUf8KClRexGazqXFEY9MxcBlK7aXamLZRxaXF2pi2URvTNurODneajgV4hS1btmjfvn3n/X5eXp7Wr19/1vbCwkJXxgKAqtG1qzR8uDRrllRQIF17relEAAyikAz4ksiOFJK9wY53pd0fSuuelRrdLLV4RKrVuWoz+IdIzR6QUn6VWv5BirtBYjg9AAC8zq+3/SqbzWY6BoBz2HNsj/KL8h22ta/b3lAaAADOUFAgcQOuZ7r+emvJzZV+/VVq46YdR0pKrPmcAwNNJwG8GoVkwJdEdnRsZ2+USoslP34VeIyiHGnfl9Z6yQlpz8dSjfiqLyRLUrsXpA5/rfrX9VZ7v5KSP5bC20jhbaWoLlJEO9OpAAA+jiIy4L62p293aNeuXlt1Q+saSgN4l71795qOAHie9HRp2jRp8WJp0SKruLdunelUuByhoVZB2d3s2CF99JH06afS3/8u3X676USAV6N6BPiSyI5S499ZXyM7ShEdKCJ7mr1fSMV55W2bv9T0XjNZ/Ljbz6nSl0hHZliLJDW8Ser9tdlMAADA49ntdtlll5/Nz3QUBysPrdT4leP116S/Ki6ceeYvxfAWw5X1bJY2pm3UhtQNKiguqHgnAABcZccO6c7Tpliw2aSsLCkiwlQieKOnnpLeequ8/dFHFJIvRnGxNGGC1K+f1dOcG4dRCR5VQRo2bJgOHz7ssC0lJaVsfdWqVerYseNZ+02bNk316tVzdTzA/QVHST0/r/hxcF81m0v1RkhHpkv2Yqn+1VJ1fr95hexNju3wtmZyAAAAr7Ls4DKN+naUbml7i37X7nfqGNPRaE/zbzZ/o7eWvqUVh1ZIkhqENdArA14xlsfThYeEq3fD3urdsLfpKAAAX9e5szWUdcFvNzbZ7dLSpdLQoWZzwbt07erYnjtXSk6WmjQxk8fTrFkjPfKItV67tpSUJH3+OcOD44I8qpC8ZcsW7du377zfz8vL0/r168/aXlhY6MpYAFB1YgZay8mj0v5vzh6uHJ4re7NjO8JN558BAAAe5YuNX+jQ8UN6a+lbemvpW7q6xdWacusUY3nm7Z1XVkSWpA/WfKD/1/f/KTiAORQBAPBowcFWkW/RovJtixdTSIZzXXut1cs9K6t82/Tp0oMPmkrkWebOLV8/elTauJEiMirkUYVkAMBvQmpLLR42neLc7HaptEjyDzKdxHPYS6XO71q9krM3S1mb6JEMAHBbJaUl8vfzNx0DlVBUUqSvNztOldGlXhdDaSwPd31Y/1n1n7J2Wl6avtvynX7X/ncGUwEAAKcYMcLq5dirl9S7t9Spk+lEuBglJZK/m5/nh4RIo0dL334r3XabdPfdUrt2plN5jjlzHNtJSWZywKN4VCF57969piMAAM7nZJqU/Km0+0OpyZ1Sm7GmE3kOm5/U6CZJN5lOAgDAWQ4fP6yP1n6kjWkbtTFto44XHNf+P+43HQuVsPjAYh3NP+qwbXS70YbSWNrUaaP+jftr3t55iguL05guY3Rl0yuNZgIAAE7y7LOmE+BSlZRYw0O3bSsNH24tjRubTnVur7wi/fOfUhCdWC5as2bStm3S/t/+nqOQjEqw2e12u+kQ7iQnJ0fh4eHKzs5WWFiY6TgA4Bl2/kda/bjVE1mSQuOlq3daBVIAF4VzEecaNmyYDh8+7LAtJSVFqampkqQaNWqoWbNmZ+03bdo01atXuTnoec/g7balb1Pr8a0dth19+qiiq0cbSoSLsSltk77Y+IW+2PiF6obW1fL7lpuOpAX7FigjP0NXt7xaAX4edX874LY4H/E8vGcA3MrSpVLPno7bDhyQGjQwkweuY7db80rPnStdd51Uq5bpRDCksuci/MUG+DK7Xco/KPkHSyF1TKeBJ4vsVF5ElqTcPVLaAqluf2ORAECStmzZon379p33+3l5eVq/fv1Z2wsLC10ZC/AozWo1U7B/sApKCsq2bUzdqKQm3L3uCdrWaau/DfybXhnwio7mHa14hyrQt1Ff0xE83vqU9aoRVEPxkfHy4+ZNAABwuaZNc2wnJFBE9lY2mxQfby1AJfDXBuCLdoyXZg+Uvo+WJjeUdk80nQgXUloiFeWYTnFhUVecPafvwUlGogAAAOcK8AtQQu0Eh23rU8++AQPuzc/mp7qhdU3HgJM8+sujav5uc4W9FqbuH3bXtJ3TKt4JAADgfKZPd2wPH24mBwC3Q49kwBdlb5FS55S3j60zFgWVcHSRNHewFDNYaniDVP8aKdjNhhyx2aQmt0ubXrEyNr5NqtPfdCoA0N69e01HALzC9a2vV9d6XdW5XmclxiaqXZ12piMBPstut2tD6gZJUl5RnpYfWq5Se6nhVAAAwKP9+qs0Y4bVM/mXXygkAyhDIRnwRZEdHdsUkt3bgR+k0kLp8M/WEpkoDV1tOtXZmj8otXhECqhuOgkAAHCy5/s+bzoCgN8cyDmg7IJsh23t67Y3lAYAgAsoLpY2bpQaNpSiokynwYVERkq33GItJSVWpxFPYbdLS5ZIn30mPfmk1Ly56USAV2Foa8AXnVlILjgqnTbnHdyIvVQ6+IPjtgbXmslSkcCaFJEvxcHJ0uQm0vxrpPXPSwd/Mp0IAACgyhWVFOm7Ld9p8f7FpqO4vUM5hxRdPbqsHR4crriwOIOJAAA4wzvvSIMHW8XJxETpJ651eBR/f8nPQ0pH//631KyZ1Lu3NGGCVUwG4FT0SAZ8UXhbqe2LVkE5sqNUo5Fn3WXmS47vlE6mOm6Lu8FMFrjGsfVS3l5rOfSTVHeA1OBq06kAAIAH+9+G/6lZrWbqWr+r/GzufREwJTdFH6z+QO+vfl+Hjx/WkKZDNP226RXv6MN6xPVQ2lNpSs1L1YbUDUrPT5eNv+cAAO5kwQJp5szy9qJF0l13GYsDL5acLO3ZU97+/HPp5Ze51n2mZ56xbhDo00fq2VOKiDCdCB6EQjLgiwKqSe1fMp0ClRHWUro+TTr0s3TgeylvnxSeYDoVnClrg2M7gjknAQDApTtZfFJjpo5RbmGu6tWsp2tbXqvn+jynBmENTEc7p2k7p+mFeS+UtWfsnqEdGTvUIqqFwVTuz2azKSY0RjGhMaajAABwtl69pO+/L28vZsQRuMjtt1u9kk9JTrY+b717m8vkbkpKrN7aOTnS3/9uFdmnTpWGDjWdDB7CvW9NBgBIQRFSk9ukvj9KV63ijjpvc1YhmfntAADApZu1Z5ZyC3MlSYePH9aE1RMU7B9sONX53dr2VtWqVsth239W/sdQGgAA4BRnFvFKSqQTJ8xkgXdLTJRatbLWW7SQ/vpXqWlTs5nczcaNVhH5FLtd6tDBXB54HHokA4AncfOhCc9yfJe0/1sp/m6pGr0lzqn3d1Yx+dRSq7PpRAAAVKiopEh7ju1Ry+iWpqPgDJO2TXJo94rrpdo1apsJUwnVAqvpno736M2lb0qSesb1VJ9GfQynAgAAl6VjR+nJJ60hdHv1kurWNZ0I5/PNN1K/fp77HtlsVo/kyEipSxc64JzLokWO7fh4qV49M1ngkSgkAwCcb9u/pT0fSVnrrXZgmNTiYbOZ3FVke2sBAMDNpeam6sV5L2r1kdXakLpBpfZSHR97XCEBIaaj4TQto1qqVXQrbUvfJkka2Wqk2UCV8GDXB5V5IlMPd3tYibGJpuMAAIDLFRgovfmm6RSoyK5d0s03W+tdukjDh0vPPitVq2Y218UaPNh0AvfWs6c0dqy0cKG0YoU1TzJwESgkAwCcL2NFeRFZsnolU0gGAMCjVQ+srgmrJzhs25S2SV3qdTGUCOfydK+n9XSvp7UtfZsmbZuk61tfbzpSheIj4zXx2ommYwAAAPiWqVPL11etkg4ckF54wVweuEZiorVI0smTjsNcA5XgYWOkAnCJgkwpdb6Uu8d0EniLhqMc22kLpBOpZrIAAACnqBlcUy2iWjhsW3NkjaE0qEir6Fb6U+8/qXFEY9NR4ERzkudo+q7pOnz8sOx2u+k4AADAk/3yi2N76FDJj5KRVwsJkerUMZ0CHobfCoAvW/cnaVKc9H2UNLu/tO8r04lwSsocKflzqSDDdJJLEztECgi11kPqSM0ekEoLzWYCAACXrXNsZ4f2nmPciAhUpb8t/JuG/m+o6r9dX7XfqK2P1n5kOhIAAPBEdrsUESHVqFG+bdgwY3EAuC+GtgZ8WVGulH+wvH1sg7kscLT939KhKZLNT4rqLiU8IzW41nSqyguoJnV+RwptItXuI/n5m04EAACcYHS70eoU00mJsYlKjE1UZLVI05EAn2G327U+tXz6mIwTGQoPCTeYCAAAeCybTfrqK6mwUFq8WJoxQxo40HQq5ykqkpYtYz5gwAkoJAO+LLK9YzuLQrJbKDkppcyy1u2lUvoSqei42UyXoundphO4t5JCSaWSf4jpJAAAVNqIFiM0osUI0zHgI0rtpUrLS1NMaIzpKG4hNS9V6fnpDtva121/nkcDAOBGUlOlhQullBTpkUdMp8HpgoKkpCRr8XR2uzXX82efWUXyo0elnTulZs1MJwM8GkNbA74s4rSLDn5BUkB1qbTEXB5YUudJJfnlbZufFHuVsThwkdTZ0jeh0s8J0qJbpG3/Mp0IAAB4MG+ZL/d4wXF9t+U73TXpLsW+FauRX400HcltHDtxTD0a9FBokDWFTI3AGoqPjDecCgCAC1i7VmrZUoqJkUaNkp591uopCrhCcbE1PPe771pFZEn6/HOzmUwqLbWK68BlopAM+LKI9lLPL6Vhm6SbcqWrVjEEsTsICJXqXy35V7Pa0T2kkGizmeB8WRsle4mUs1Xa/7W0/1vTiQAAgIfam7VXcf+M08NTH9bM3TNVWFJoOtIlW3ZwmUZ9O0qfrP9EaXlpWnFohY7mHTUdyy20rt1aS+5douw/ZWv3Y7v18+if5Wfjsg4AwI01aCDt2FHezs+X1qwxlwfeLTBQuuUWx22ff+67xdQpU6SGDaVbb5Xee0/avNl0Ingo/uIAfFlAdanxLVJEG8kv0HQanFKnt9RvinRDhtR/mtT2BdOJ4ApnDiUf0c5MDgAA4PEmb5usQ8cP6b1V72nw54OVMD7BY3so923UVzUCa5S17bLrl12/GEzkfvxsfoqPjFf/xv1NRwEA4MJq15Zat3bctnChmSzwDbff7tiOiCjvnexrliyRDh60hvl++GHpscdMJ4KHopAMAO4qoJpUb6gUO9h0Eufy4B4yTpW10bEdwfx2AADg0kzaPsmh3adRH9lsNjNhLlNwQLCubHqlw7bVh1cbSgMAAC5b377W19BQacgQqVEjs3ng3bp2lYYPl15+Wdq+3ZozuU4d06nMWLbMsd2zp5kc8HgBpgMAALyc3S4dWysdnGwtNZtLfRjGWVcukrI3Wz2Tj22QavcynQgAgItit9u1N2uv1hxZo2tbXasAP/68NCHzRKYW7FvgsG1ky5FmwjjJ9a2uV35RvoY3H67hzYeraa2mpiMBAIBL9fjj0u9/L3XoIAVwvmhcSYl0441S797SVVdJCQmSh96AeE42m/Tzz6ZTmFdcbBXRT9e9u5ks8Hg2u6eOd+UiOTk5Cg8PV3Z2tsLCwkzHAQDPl/yZtPSO8nZAqHRDuuQfbC4T4MY4F/E8vGfwNQXFBRr+xXCtObJGx04ekyRtfHCj2tZpaziZ79qWvk0/bv1Rk7ZP0ua0zTr69FFVC6xmOhaAKsT5iOfhPQNgxLJlUo8e5e0GDay5c/k95F1KS6WNG633+9SycKEUHW06GdxIZc9FuAUIAOBaMYMl2ST9dt9Sca6UOscathsAAHic4IBg7czcWVZElqQ1R9ZQSDaoVXQrje0zVmP7jFXWySyKyAAAADi3GTMc22FhFJG9kZ+fNQpAhw7SAw+YTgMPxxzJACzF+VLGSmn3RCl7q+k08CbV6kq1z5iD4/B0M1kAAIBTdI7t7NBmDlv3ERESYToCXOCHrT9o3IpxWrBvgY6dOFbxDgAAAOdyZiH5qqvM5ADgMeiRDEBadJO0/zuV9Rjt9KYU3tpoJJ+07jkpa73Vgzd2sBTWynvmKKl/rXTiiNRgpLVE96xoDwAA4MYSYxP147YfJUlR1aKYHxlwsQ/XfKhfdv1S1n51wKt6rs9zBhMBAACP9Mwz0rRpVkF5/35pyBDTiQC4Of7aByAFRqisiCxJWRtMJfFtB3+UcrZJh6dZ7U5vSa2fMJvJWVr9QWr9lPcUxgEA8HGjEkapTe026lyvs+LC4mTjGA+41IZUx7/R4iPjDSUBAAAebeRIa7Hbpe3bpcaNDQdyseJiac4c6csvpWrVpPfeM50I8DgUkgFIEe0d2xSSq17efquIfLo6fcxkcQW/QNMJ3EfhMSn/kNXjnN5bAAAP1TK6pVpGtzQdAz7iRNEJzUmeo93HduuxKx4zHafKZeRn6NDxQw7b2tdtf55HAwDgpoqKpDVrpIULpQULpNtuk266yXQq32WzSa1amU7hWgsWSKNGSWlpVrtGDenNN6Xq1c3mAjwMV7ABSJGnLkLYpJrNpfA21l1p9CypOkd+dWwH1ZIiE81kgWsdni4tGS35h0jh7aSYQVLHv5lOBQAAPMzWo1t16Pgh9WvUT4H+3nnTXvKxZD36y6OakzxHJ4pPKMg/SPd0ukehQaGmo1WpE8UndHv727UhdYO2HN0im82mFlEtTMcCAODi3HGH9NVX5e3oaArJcK2WLaX09PJ2Xp7000/SzTeby1QVDh2yfr6Cg00ngZfwMx0AgBuo1UUaslK6KVe6ervU83OKyFUt7nqp19dS/D1S9QZWcdHP33QquMKxtdbXkpNS5kprXmwAAICL9J9V/9GVn12pOm/W0e0/3q65yXNNR3K6WtVqacbuGTpRfEKSVFhSqFl7ZhlOVfUahDXQp9d9qnVj1invuTxtfmgz85IDADxPjx6O7YULzeSA76hbVxo40HHbl1+ayVKV7rpLCguzfub++Edp3TrTieDhKCQDkAKqS1FdrK8wI7iW1OgmqftE6dr90hUTTSeCq5wqJJ8S2clMDgAA4LHsdrsmbZskSco6maXPN3yuJQeWmA3lAuEh4erbqK/Dtp93/GwojXsI9A9Us1rNTMcAAODi9XU8pmvXLunwYTNZ4DtuvdX62rWr9Pbb0vjxZvO4WkmJtHy5VFgoLVsm/etf0t69plPBw3ELKwC4G5tNCvTy4frsdmsu7oyVUrP7TKepWgWZjm0KyQAA4CKtObJGB3IOOGwb2WqkmTAuNrz5cM1JniM/m596xvVU13pdTUcCAACXol07KSJCio21isp9+kg1a5pO5TuOH/fN/+8bb7Q+a8185Ea8bdus9/p0V1xhJgu8BoVkAEDVKciUNr4sHZoi5e2VZJPqXy1Vq2s6WdUZuloqyJCOrZMy10i1e5pOBADAZcnIz9CaI2u05sga3db+NtUPq286ktfLLcxV13pdtfLwSklSs1rNlFA7wXAq17gx4UbFhMboqmZXqVa1WqbjAACAS+XvLx04IIV6eecJd1RQYBXwmzWTBg2ylqQk35hDt2ZN3yqgb95sdVKy2612o0bWew9cBgrJAICqE1BD2vNfqTj3tw126dBPvtcrOThKihloLQAAeLArPrxCKw6tKGs3iWyim9rcZDCRb+jXuJ9W/H6FDuYc1JTtUxTsHyybzWY6lks0DG+o0e1Gm44BAACcgSKyGcuWSXl50vr11vL221Jamm8Ukn3NTTdJQ4ZIK1da73tQkOlE8AIUkgEAVcc/WIq9SjrwXfm2g5N9r5AMAICXiKoW5dBefXg1heQq1CCsgR7q+pDpGAAAAHBns2Y5tjt1kqKjzWSB64WHl/c8B5zAz3QAAG6ktEjK2izt/VJaN1Y6tsF0Iu934sjZc+Z6uwbXlq/XaCRFtDGXBQAAXJbE2ESH9pqUNYaSAN7pk3Wf6A/T/6D/rv2vVh1epRNFJ0xHAgAAnmbRIsc2BUYAF4EeyQDK/dpLylxZ3q5WT4psby6PL9jyD2n7v6XIjlLdAVLDG6Xo7qZTuVb94VK7l62CckR7a94OAADgkTrHdpYkBfsHq0NMB3WJ7WI4EeBdJm2fpEnbJpW1/9j9j3p7yNvmAgEAAM8zY4a0YoXVM3nWLGnwYNOJzDp5Uvr1V6l7d6lOHdNpALdHIRlAufDWjoXkrI3msviK1DmS7NKxtdYSGO79heSgSKndC6ZTAAAAJxjQZIDWj1mv1tGtFegfaDoOfIjdbvfaeaFPtyHVcZSoDnU7GEoCAICL5OYyd7KrBQVJvXtby0svmU5jzowZ0uefS5MnS8ePS+PGSQ8/bDoV4PYY2hpAuYgzeh9nMbS1S508evb/ccwAM1ngetlbpP3fSrl7JbvddBoAAJwiPCRc7eu2p4iMKpGWl6ZP1n2im769SY3+1UiFJYWmI7lUTkGO9hzb47CtfV1GjAIAeLgTJ6RvvpEeeUTq0EGKipLy8kyngi/49FOrkHz8uNX+9luzeQAPQY9kAOVOFZKrN5AiOkhRV5jN4+2yt0j+1aSS3+Y5C6gh1epqNhNcZ9/X0qa/WOvB0VL8PVKn181mAgAAHuWrTV9p5aGV6tWwl3rF9VLd0LqmI1WZjPwMxb4Vq1J7adm2RfsXaUAT770Rs6S0RC/3f1kbUjdoQ+oG7cvep4TaCaZjAQBweUpKpNGjra+nLF3KvL1wvVGjpC++KG8vWCClpEgxMeYyOdMvv0itW0uNGjGVIJyKQjKAcnX6SDdkSMG1TCfxDXX7STcekzKWS6lzpeJ8yT/IdCq4Suaq8vWCdMlebC4LAADwSF9v/lqTtk3S28usOXKf6/2cXh34quFUVSOqepQ6xXTS6iOry7ZN3THVqwvJkdUi9UK/8ilhThSdUHBAsMFEAAA4QWio1LmzNWfvKQsWUEiG6w0ZYn3+cnOtQmvv3lJamncUknNypOHDrVEQo6OlLl2kiROlevVMJ4MXYGhrAOX8QygiVzX/YKlOX6ndi/ROtdu9d8hnu13KWOm4jd7nAADgItjtdi3ev9hhW6voVobSmDG8+XCH9tSdUw0lMaNaYDXTEQAAcI5+/RzbS5eayQHfUq2a9Kc/Se++Kx08aN3A0N5Lpg1Zs6b8ump6ujR7tjVsPOAE9EgGAJhTWiwdXSwdnCwdmiz1nSJFtDGdyvmK86RaiVYxuTDT2hZFIRkAAFTersxdOpp/1GFbz7iehtKYMaLFCL219C0NbjpYw5sP19DmQ01HAgAAl2LwYGnDBqug3L+/1UMZzjdtmlS/vtSuneRHn0JJ0p//bDqBa6xa5dhu104KZiQbOAeFZACAOTO6SsfWlbcPeWkhOTBUSppu3RmYlyxlrpZC402nAgDAaU4UndCG1A1ac2SNVh9Zrdvb365+jftVvCMqrXpgdb3Y70UtPrBYyw4uU43AGoqP9K3zic71OivjmQyGdwYAwNMNGsRQ1q5mt0v33mvNAVy7tjRwoPTCC9YcuvA+hYVSrVpS5m8dWLp0MZsHXoVCMgDAnOiejoXkg5OlNmONxXE5m80qIFNEBgB4mRFfjtCc5Dll7fo161NIdrL6YfX1Uv+XJEklpSU6kHNANpvNbKgq5mfzo4gMAABQGZs3W0VkSTp6VPrqK+mvfzWbCa7z3HPS2LHS3r1W7+SGDU0nghdhPAMAgDkNrnVsZyyXThwxkwUAAFyyTjGdHNprUtYYSuIb/P381TiisekYAAAAcFezZjm2GzWSmjY1kwVVw2aTmjSRRo2SrrjCdBp4EXokAzhb3j6rl+ix9VLWeqnNn635XeEceQekAz9IMQOk8DaSzYfv6anTXwoMk2o0sYrKDa6VQmJMpwIAABepc6zjvHarD682lATwDu+tfE/Tdk5T+7rt1b5ue3Wr383nhjIHAACXITBQio+X9uyx2oMGWYVGnJvdzv8PcB4UkgGcbd5wKXtzeTtmEIVkZzoyXVrzB2s9uLbU8Cap6zijkYzxD5KuSZaCa5lOAgAALkNibKJssqlldEt1ju2sxNhElZSWyN/P33Q0wCPN3TtXU3dO1dSdUyVJj3R9RO8Oe9dwKgAA4DEeftha9uyRZs+WEhJMJ3I/eXnStGnSt99KJ05IP/1kOhHgligkAzhbRHvHQvKx9eayeKPU8vkDVXBUKsw0l8UdUEQGAMDjNY9qrpyxOQoNCjUdBT4m+2S2ZifP1shWI+XnJSP9lJSWOMw5LkkdYzqaCQMAQFUoKZE2bJAKCxmS19ni460FjpYvl5KSrAKyJPn5SWlpUp06ZnMBbsg7/soC4FyRHRzbFJKdx253LCRLUt0BZrKgauwYL238i5QySyo6bjoNAAAu4Wfzo4iMKlNSWqK3l76tAZ8MUPQb0brhmxu05oj3zMu9/NByZZ5wvNn0yqZXGkoDAIALzZsnXXONFB0tJSZKzz1nOhF8Rfv2VvH4lNJS6YcfzOUB3Bg9kgGcLaKDFBRpfY1oL0VzJ6DTFOdJ9UZYxeS8vda2GArJXm3XB9Zc45I1H3a3D6Sm95jNBAAAPEZhSaFajmupTjGd1Cuul3o17KUu9boowM93/5z39/PX+6ve187MnWXbpu6Yqi71uhhM5TzdG3TXivtWlA1tXVBcoIbhDU3HAgDA+bKzHYcTXrpUKiiQgoPNZYJvqFZNGjFC+vrr8m3ffiuNGWMu06XIzJQ++kjq1Enq2FGqxciPcD7f/csTwPnFDpZuyJBsNtNJvE9gqNR9orWemywdXSLVaGI2E1ynKEfK3ljetpdKYS3N5QEAAB5nzZE12pu1V3uz9urHbT9KkjKfyVRktUjDycwa3ny4/rX8X2XtqTun6sX+L5oL5ER+Nj91rd9VXet31Uv9X9LJ4pOmIwEA4Bp9+ljXH+12q33ihLRypdS7t9lc8A2jRknffy8NGCBdf7107bWmE128Vaukp54qbyckSJs2cV0fTkUhGcDZvGRuMbcX2sRa4Ki0RMpYJgXXkcKam05zeTJWWMXjU/wCpVqdzeUBAAAeZ/H+xQ7tNrXb+HwRWZJGtBhRVkgO8g9SVPUoFZUUKdA/0GwwFwgJCDEdAQAA16hVyxpieP1vI7k1bSplZRmNBB8yYoQ1L3KkB59br13r2A4Lo4gMp6OQDABwD6nzpeRPpUM/SQVHpZZ/kDr/03SqyxMSa/070pdIx9ZKkYmSPxcCAQBA5S0+4FhI7hXXy1AS99KnUR892OVBDWk6RAPjBzJHNwAAnmrsWKmkROrXT6pf33Qaz/fuu9K+fVJSktXjOyzMdCL3FRzs+cOon1lI7tTJTA54NQrJAAD3kDpX2vPf8vbByVLi2559F11Em/JiePEJ6WSq2TwAALhY8rFkLT24VGuOrNHqI6t1Xavr9NgVj5mO5dHeGvyWRrYaqUX7F2nxgcXq06iP6UhuIcg/SO8Nf890DAAAcLluvtl0Au/y8cfSmjXSW29J/v7SuHGeN+8vKq9VK6lzZ2njRqmw0JonGXAyCskAAPfQ4Fpp08vl7bxkKXuTFNHOXCZnCqgmhTY2nQIAAJd6a+lbGr9yfFk7uno0heTL1CSyiZpENtEdHe6QJNlPzSEIAAAAnC4z07GHakmJ1Lq1uTxwvZdespaiImnrVik21nQieCEmQgUAuIfIjlL1huXt8LZSQYaxOAAA4OJ1ju3s0F59eLWhJN7L5smjteCCtqdv17KDy1RSWmI6CgAA8EQLFkin33QYEiJ1724uD6pOYKA133jt2qaTwAvRIxnA+aXOkzJXS8fWS1nrpa7vSbWZk+2SlJZIc4dItRKlOv2s/8egCNOp3IvNJiU8I5UWWr2TQ+NNJwIAABcpMTbRoZ2claxjJ44pslqkoUSA53h3xbsav3K8oqtHa1jzYbqrw11KapJkOhYAAPAUCQnSiy9Kc+ZIy5ZJPXt6/hzAVe34cemXX6RrrrEK8QAoJAO4gNV/sArIp2SuoZB8qbI3SqmzrWXrG5LNT7ruiBRSx3Qy99LiYdMJAADAZUionaAmEU3Upk4bdY7trMTYRIUEcAEGqIjdbtfUnVMlSen56fp0/adqGdWSQjIAAKi8Fi3KhzrOz5fS0kwn8hyffCJ99500c6ZUUCD9/LM0fLjpVIBboJAM4PwiOzgWko+tMxbF46UtcGzXaEIRGQAAeJ1A/0DteXyP6RjwQfuz92vqjqmaunOq/jnkn2oe1dx0pIuyNX2r9mbtddg2osUIM2EAADAlM9Mannn+fOnuu62henFpqleXGjc2ncJzfPihtGhRefuHHygkA7+hkAzg/CI6OLZPLyrj4qTNd2zX6WcmB6pG3gFpZi+pTn+pbj/ra2i8NXw3AABAJaTnpyvYP1g1g2uajuL2hnw+RL/u/rWsPSh+kP4Q9QdzgS5BWl6aWke31tb0rZKkBmEN1K5OO8OpAACoQqNGSd9/Xz7Hb0wMhWRUneuvdywkT54sTZggBVBCA/xMBwDgxqK6SLW6Sk3vkzq/K3V+x3Qiz9Xyj1Lb/yfV6Sv5BVNI9nZp86X8A9Lez6Tl90kzukr2UtOpAACAB3lryVuKeD1CnSZ00iPTHtGc5DmmI7mtBjUbOLQnbZtkJshl6N+4v7Y8vEV7Htujd4e+qz/1+pNs3IQIAPAldeqUF5Elq1cyUFWuu658PTBQ6tJFSk83l6ciO3ZIDz4o/d//SStXSidPmk4EL8btFADOr05f6aoVplN4hzq9rUWSSk46nhjD+6TNc2zX6Sv5+RuJAgAAPNPiA4tVai/VupR1WpeyTmHBYRrQZIDpWG5pRIsR+u+6/5a15++br+RjyWoS2cRgqkvTJLKJHun2iOkYAABUvX79pPfeK28vXCgVF9MjFFWjcWPpySelTp2sIa0jIkwnurClS6X33y9vN2sm7dxpLg+8Gr+FAaCq+YeYTuAZSgqllFnS/q+lgnSp/1TTiSov9cyhzPsbiQEAADxTYUmhVh5e6bCtV1wvQ2nc39DmQxVdPVq5hbka3Xa0Hu72sEcWkQEA8Gn9fhu9r1o1qWdPq33ypBQaajaXJygulvz9mVLtcr35pukElbd2rWO7HVOiwHUoJAMA3E/WRmlWP6nwWPm2vANSjThzmS5Gv8nW8Nap86zeyXX7Gw4EAIBZRSVFCvQPNB3DY+zI2KGS0hKHbT3iehhK4/5CAkL0/U3fq03tNoqqHmU6DgAAuBR160orVljzIgcHm07jWb79Vnr8cSkpyVoGDpSaNzedCq50ZiG5Y0cjMeAbKCQDANxPzZZnD/+9/1up9RNm8lys8ARraf4gw5gDAHzS+pT1mrx9slYfWa01R9aof+P++uy6z0zH8hht67RV9p+yterwKi0+sFj7s/erVrVapmO5tb6N+pqOAAAALlfXrqYTeKY5c6SjR6VvvrGWq6+WpkwxnQquNGqUFBtrFZR37rSG5AZchEIyAMD9+AdJcddJez4q37b/G88pJJ+OYYUAAD5oyYElenHei2Xt1YdXG0zjmaoFVlOfRn3Up1Ef01EAAADgzubOdWwnJZnJgarzyCPWIknHj0uBjP4E1/EzHQCAh7GXSmcMs4cLKMqlR+qlaniz9TW6p5T4L6nP90bjAACAykuMTXRob0vfptzCXENpAPf172X/1pifx+jnHT8rvyjfdBwAAOBpDh6Udu923EYh2bfUrCmFhJhOAS9Gj2QAFdv9kZSxQspab81d23eSFDPQdCrPsHKMlDJbqtPXWuoNl0Ibm07lGWIGSNfu95x5kQEAQJn2ddvL3+avErt1A6Jddq1PWa9eDXsZTga4l4/Xf6x1Kes0YfUEhQSEaNzQcbo38V7TsQAAgKeoX98qJM+day3r11vzTOPyHD1qDQ/+449S377SM8+YTgQYQyEZQMV2vidlripvH1tPIbky7HYpbb50MsUalnn/N1JXf6n5GNPJPINfIEVkAAA8VLXAarq9w+2KCI5QYmyiEmMT1Sq6lelY8DFrj6zV+JXj9f/6/j81imhkOs5ZDuUc0rqUdWXtk8Un1axWM3OBAACA57HZpPh4a7mXm9Gc4t//lp54QiottdqHDlFIhk+jkAygYhHtHQvJWevNZfEkeclS/kHHbXX6mcmCqpGxUgprJQXWNJ0EAADjPrr2I9MR4KN+3Pqj3lz6ppYcWCJJql29tl4b9JrhVGebtnOaQzs8OFw943oaSgMAgJsoLZU2bpTmz7eWjRulrVslf3/TyeAr2rcvLyJL0rp10p49VrEe8EHMkQygYpEdHNvHKCRXytGlju3g2laREd6ptEiaPVD6Pkqa1V/a/Jp0Mt10KgAA4GG+3PilNqVtUqm9tOIH45zmJM8pKyJL0odrP9TJ4pMGE53bwPiBen3Q6+rbqK/8bf66qtlVCvQPNB0LAACzjhyROnaUHn9c+uEHaedOacMG06ngS/r0kaKjHbd9/72ZLIAboEcygIpF95Qa3WoVlCM6nF1Yxrk1Hi1FX2ENb522QAoMt4abgXdKXyYVH7fW0+ZbS/zdZjMBAACPknkiU6N/GC1JigiJUI8GPTTxmomKrRlrOJlnebjbwxq3clxZOz0/Xd9s/kZ3dLjDYKqzxUfG65lez+iZXs/o2IljyinIMR0JAADz6teXmjWTdu0q3zZvntSpk7FI8DEBAdLIkdIXX0hDh0o33CANH246lWXNGunPf7Z6TbdvL3XoILVtazoVvByFZAAVi+oi9frCdArPY7NJNZtZS1PmKHGKolzp4I9SaLxUu5fpNI6OzHBsR3SQqsWYyQIAADzS6b1os05mae7euYqqHmUwkWdqFd1Kg+IHadaeWapXs54e6PyABjcdbDrWBUVWi1RktUjTMQAAcA/9+59dSP7jH02lgS965RVrruTq1U0ncbRqlTR9urVIUuvW0pYtZjPB61FIBgC4v4xV0o5x0oHvpOI8Ke569ysklxZK/iFSyW/DJsYOMZsHAAB4nMX7Fzu0u9XvpiD/IENpPNsLfV/Q/Yn3a2SrkQwXDQCAp0lKkmbNsr727299hSO7XZo5U+rRQ6pZ03Qa71O3rukE53bmMO/t25vJAZ9CIRkA4P6OrZGSPylvH/pJKsiQgt2oh06nf0jtXpSOzJQOTZYaXGM6EQAAbiW/KF+pualqEtnEdBS3VSOohhqGN9T+7P2SpF5xbnbjnAfp06iP6QgAAOBS3XKLNHq06RTubft2acgQyd9f6trVKra/+KIUHGw6GVxp40bHNoVkVAEKyQAA99fwJmnVY1JpgdUuLZL2fCK1fsJsrjMF1JDiRloLAADQ2iNr9c9l/9SaI2u0NX2r2tdtr7UPrDUdy2093/d5Pd/3eR3MOajF+xerTZ02piMBAABUPT8/0wnc39y51teSEmnZMmn/funVV81mguv98Y9Sr15Wz+SNGykko0pQSAYAuL+gCCnuBmnfF5LNX6p/jRTVzXQqAABQgZyCHH224bOy9qa0TSooLlBwAD0lLqRBWAPd3PZm0zHgIodyDql2jdoMWw64ucLCQn399df68ssvtXnzZqWmpioyMlJNmjTR9ddfr7vuukvR0dGmYwLwVfPnO7aTkiSbzUwWVJ2RI63lFLvdVBL4EArJAC6e3S7lH5QCw6SgcNNp3E9BppS5SoruKQWGmk7jPVo+JoW1kJreJ1WvbzoNAACohI4xHR3axaXF2pS2SZ3rdTYTCHADt/94u1YdXqXBTQdrePPhurrl1YquTjEKcCfbtm3TrbfeqnXr1jlsT0lJUUpKipYuXao33nhDH330kYYNG2YmJADfVlAgBQRIxcVWu18/s3l8QVqatHKlNHy46STluHkAVcDjxogoLCzUZ599pmHDhqlRo0YKCQlRbGysevbsqTfffFPp6emmIwLea+ub0pwh0g91pMkNpUNTTCdyTykzpblDpO8ipRndpU2vmE7kHaKvsOYgpogMAIDHCA8JV/NazcvafjY/7crcZTARfFlxabEmbZukhfsWGsuQfTJbC/cv1PHC4/p+6/e6Z8o9WrR/kbE8AM528OBBDRw4sKyIbLPZ1K9fP91zzz26+uqrVa1aNUlSWlqaRo4cqTlz5hhMC8Bn/fijlJUl/fqr9Oc/S1deaTqRdzp+XHrnHatQHxsrXXeddOyY6VRAlfKoHsncDQgYdnSRlPJreTtzjdTkdnN53FXab0PL2IuljOVScJTZPAAAAAY90eMJlZSWKDE2UR1iOqh6YHXTkeBjjuYd1cS1E/WfVf/R/uz9SmqcpDl3min8zNwzU8WlxWXtIP8gDYofZCQLgHMbPXq0Dh8+LElq1KiRJk+erA4dOpR9Pz09Xbfccotmz56toqIijRo1Srt371ZERIShxICPyMqSMjKkpk1NJ3EfNWpYBWSKyK71zDNWD3BJKi2Vvv1Wuv9+s5mAKuQxPZK5GxBwA5GJju3M1WZyuLu0M+YoqcPQMl6rOE+a2Ufa+pY13DsAADjLmC5j9HC3h9UjrgdFZBgxY/cMjZ09Vvuz90uS5u6dq81pm41k2ZS2yaHdv3F/hQYxHQ7gLqZNm6aFC61RC4KCgvTTTz85FJElKTo6WpMnT1Z8fLwkKTMzU//4xz+qPCvgEzZulJ5+WurSRYqKkh5+2HQi+JqaNaURIxy3ffaZmSyAIR5TSD7zbsC1a9dq3rx5mjhxoqZMmaL9+/dr4MCBklR2N2BWVpbBxIAXqnVGITlvrzVfMsqVFEiB4ZLttAEfKCR7r4M/WT311z4lTWoozR4kndbDBAAAoDJm7JqhP836k37a/pMy8jNMx/E6oxJGqXb12g7b3lv5npEsL/V/SYefOKyJ10zU9a2v16iEUUZyADi38ePHl63feeedateu3TkfV6NGDf3lL38pa0+YMEHFxfwtCDjd9u3Sm29Kq1dbPUEXLZKKikyngq+57bby9fBwKSFBKikxlweoYh5RSOZuQMBNRHWTEsZKvb+VrtktXbtPstlMp3Iv/sHS4CXSqCxpwEyp7QtnF+DhXFmbpDRD89zt+/K0hl2y+Ul+HjVrBOAzCgsL9dlnn2nYsGFq1KiRQkJCFBsbq549e+rNN99Uenq66YgAfNjXm7/W64tf1zVfXaPoN6L16LRHTUfyKsEBwbq/c/nwg93qd1O/xuZu9oytGat7Ot2j72/6Xvcl3mcsBwBHubm5mj17dln77rvvvuDjb7jhBoWGWiMKZGZmasGCBS7NB/ikfmccr/PypJUrzWSB7xo2TLr1VmtI65QUacIEyd+/ajNs2iQ1by7dcIP08svWHNl08EIV8YhCMncDAm4ipI7U8W9Swxul0HiKyBcSUEOKGSS1f1nyCzSdxvvY7VLKbGnuUGlaO2nlmKo/eSrIlI784rit8eiqzQCgUrZt26YrrrhCd9xxh3755Rft379fBQUFSklJ0dKlS/X000+rTZs2mjZtmumoAHyQ3W7XrD2zHLY1q9XMUBrv9UDnB3RHhzu0/L7lWn7fct3U5ibTkQC4mSVLlqjgtzkwa9Sooa5du17w8SEhIerRo0dZm2n2ABeoXVtq27a8HRws7d5tLg98U1CQ9MUX0o03SiEhZjKsXy/t2iX98IP00kvSH/7AtXlUGbcvJHM3IADgLGnzpDmDpCPTrXb2lvL1qhIYLvWfJsXfba37BUsNrqvaDAAqdPDgQQ0cOFDr1q2TJNlsNvXr10/33HOPrr76alWrVk2SlJaWppEjR3IBEECV25W5SwdyDjhsGxQ/yFAa7xUXHqdPRn6ibvW7mY4CwE1t3bq1bL1du3YKCKh4tKnExPIRyE7fH4ATPfCA9MIL0ty5UlaWdPvtphOZ9cEH1rJjBz1SfcmGDY7t9u3N5IBPcvtCMncDAgDOUqefFJ7guG1LFU9n4Odv9Trv/l/p+hRp0DwpKLxqMwCo0OjRo3X48GFJUqNGjbR27VrNmzdPEydO1JQpU7R//34NHDhQklRUVKRRo0YpKyvLYGLAu5WUlmhz2mZN28kIAKfUDK6pVwe8qqTGSQryD1JMaIwSaidUvCMAwKm2b99ett6oUaNK7dOwYcOy9W3btjk9EwBJjzxiDeXbv7+53qDu5LXXpPvvl1q2lOrXl375peJ94PkoJMMgty8kczcgAOAsNj+p1ZPl7ZAYKe56yV5qJo9/iBTd3cxrAzivadOmaeFCaw71oKAg/fTTT+rQoYPDY6KjozV58mTFx8dLska0+cc/qvjGFMAHbEvfpp4Teyrs72Fq+5+2uvGbG1VcyjREkhQTGqPn+jynOXfOUdazWZp1+yzZGKYOAKpcRkZG2XrdunUrtU9MTEzZemZmptMzAYCDAwek5OTy9pEjUr165vKg6rz+uvTf/1pDWg8cKF1xhelE8CFuX0jmbkAAwDk1/p0U0UHq9KZ0zW6p5aNWgRkAfjN+/Piy9TvvvFPt2rU75+Nq1Kihv/zlL2XtCRMmqLiYAhfgTFHVorT04FLlF+VLkk4Un9D29O0V7OV7qgVWU5s6bUzHgJMVFBeo70d99c7yd5R1Mst0HADnkZubW7Z+avqTipz+uNP3P5eCggLl5OQ4LABwUebPd2xHRkrn+TsXVeDECau4WxVDjLdvL919t/TPf0qzZknXXOP61wR+4/ZX3LkbEHBjhVlS6lwpZ4fpJO5h/f+Tdn1g/X8wR4nr+QdLQ9dKrZ+UAqqbTgPAzeTm5mr27Nll7bvvvvuCj7/hhhsUGhoqyTp/XLBggUvzAb6mdo3aiguLc9i2+shqQ2mAclkns7Ro/yKXvsZ3W77Twv0L9fj0x1X/7fq6/6f76ZEPuKGTJ0+WrQcFBVVqn+Dg4LL1EydOXPCxr732msLDw8uWuLi4Cz4eAM7SoIF0883SqfpHnz6Sn9uXeLxPQYE0frzUtKl0773Sjz+aTgS4lNv/luFuQMANbXpFmtJU+i5Smj1ASv7EdCLzinKkLX+TVtwv/dxS+rGelLXZdCrvx7CPAM5jyZIlKigokGT1OO7atesFHx8SEqIePXqUtefMmePSfIAvSowtn4KoQVgDFRQXGEwDX7cxdaPG/DxG9d+ur5FfjdSJogsXgC7He6veK1vPL8rX7mO7FeBX8bRdAKpWyGlzrxYWFlZqn1Pnm1LF1y3Hjh2r7OzssuXAgQOXFhSA7+rfX/rqK+nwYWn7dumVV0wn8k3XXmvN3X3kiNV+4QWppMRsJsCF3L6QzN2AgBsqzpVy95S3M1aay+Iuji52nJ+3MEMKjTeXB65RWiwt/731fgNwa1u3bi1bb9eunQICKr5gn5hYXuQ6fX8AzvFUz6f0y+9+UepTqTrwxwP6feffm44EH7U/e7/av99eE1ZPUH5RvjJOZOjrzV+75LU2pW3SkgNLHLY91OUhl7wWgMtzanQaqeLried63On7n0twcLDCwsIcFgAXyW6XNm+Wxo2TNmwwncYcm01q0YJhrU255x7H9ubNVoEf8FJuX0jmbkDADUV1c2xnrHQsovqitDOGQI3qJgVUbhQFeJAD30u7P5Rm9pZ+7Skd+JFhzAE3tX17+dyrjRo1qtQ+DRs2LFvftm2b0zMBvq53w966qtlVqlOjjukobqGktEQlpfRcMKFheEMNbjrYYdu7K96V3QXndW1qt9GcO+boxoQb5W/zV72a9XRNS+a0A9xRVFRU2Xpqamql9klJSSlbr1WrltMzATjN889bQzq3bSs9+qj0/femE8FX3XijNWfxKYMHS61bm8sDuJjbF5K5GxBwQ6cXkv2CpbBWUuExc3ncQdQVUqNbpGqxVrtOP7N5fFlJgbTldWnLP5z7vPZSafOr5e30pdLm15z7GgCcJiMjo2y9bt26ldon5tQ8U7LmSQYAV1qwb4Gi34jW9V9fr/Erxmt7+vaKd4LTPNL1kbJ1f5u/mkY2VX5RvtNfx2azKalJkr4d9a32/3G//nf9/xToH+j01wFw+Vq2bFm2vm/fvkrts3///rL1Vq1aOT0TgNMUFEhpaeXtuXPNZYFv8/OT/vpXqW9facECacYM6bQRzpyOYbNhmNtPysPdgIAbqlZfumKiFNlRCm8r+Vdu2HmvFjfSWux26fgueiObYLdLh36S1jwh5e62bnKof7UU7qQ7Ag9OkrI2Om5LeJp5mgE3lZubW7Ze0Qg153rc6fufqaCgwGEEnJycnEtICMDXzU6erayTWfpx24/6cduP6hzbWavuX2U6ls8Y1nyYujforsHxg3V/5/tVP6y+y1+zXs16qleznstfB8ClaX1ab7KNGzequLi4wulR1qxZc879AbhAUpL05pvl7WXLpPx8qXp1c5ngu66+2lrOd13QbnfONcPsbKsnfqtWUps2UkKC9NhjUgUdKAFncvseydwNCLghm01qeo9UK5Ei8plsNimsuVS9gekkvicvWVp4vVVElqTSAmnZ3ZKzhoysf63U/WOp+m9D34a3lRpc75znBuB0J0+eLFsPCqrcsSo4OLhs/UIj4bz22msKDw8vW+Li4i49KACfNWvPLIf2oPhBhpL4Jn8/fy29d6leTnq5SorIANxfz549y84H8/LytGrVhW/uKSgo0LJly8raAwYMcGk+wOf16SP5+1vrDRtKo0dL3NQLU2y2CxeKH33UKjT/8MPl9SjeskU6eVJat0763/+kF1+UKnmNA3AWty8kn+tuwIpwNyAA+KDQeKnl447bstZLx9ac+/EXy89fir9Tunq7lPhPqdOb1jYAbikkJKRsvbCwsFL7nN7L+EK9mMeOHavs7Oyy5cCBA5ceFIBPOl5wXKsOOxYoBjYZaCgNAECypscbOLD8d/HHH398wcf/8MMPOn78uCRrRMS+ffu6Mh6AmjWl776Tdu+W9u6VPv7Y6qnpC6ZMsQrpzz8vzZwp5eWZToQLOXnSKvr+/LN0ww1S8+bSr79e2nNt2eLYbt6cQjKqnNsXkrkbEABQae3/KtVsbq1HdZeGrpOiujr3NfxDpFZ/kOoNce7zAnCq0NOGebpQ7+LTnf640AsMExUcHKywsDCHBUDl2e12Hcw5qMnbJusv8/+iUnup6UhVrmZwTe39w159MvIT3d7+djWJaKJeDXuZjgUnKSop8snPNeANHnroobL1jz/+WJs3bz7n4/Lz8/XCCy+Ute+///4Kh8EG4AQjR0rx8b43zdisWdKiRdKrr0qDB1vFSbivn3+WsrLK28nJ0mlTuF6UM49DCQmXHAu4VG5fSOZuQABApQVUt4af7vSGdOUiKaxlhbsA8E5Rp/2RlpqaWql9UlJSytZr1arl9EwApIz8DMW8FaO4f8Zp5Ncj9eK8F5V8LNl0LCMahDXQHR3u0KfXfao9j+9R9UDm93MnB7IvfbSJ1xe/rl7/7aXVh1c7MRGAqjB8+HD16dNHktVZZcSIEdqwYYPDYzIyMjRy5Ejt2rVLknXe+Oyzz1Z5VgA+ZP58x/Zvv6fgpr76yrGdlCR17nxpz/XnP0tz5kjjxkkPPiiNGHH5+YCL5PaFZIm7AQEAF6F2T6n1Uww7Dfi4li3LbyTZt29fpfbZv39/2XqrVq2cngmAVKtaLdntdodtq49QbIP7KLWX6o3Fb6jpO001ZfuUi95/V+Yu/W3h37Ts4DJ1/aCrxvw8Rhn5GS5ICsBVvvjiC8XGxkqS9u7dq44dOyopKUn33Xefrr32WjVs2FAzZ86UJAUEBOibb75RRESEwcQAvFpmprRxo+O2fv3MZEHlfPSRtZwqHj/11KU/V1SUVYh++GHpvfeku+5ySkTgYnhEIZm7AQE3VlokZa6Rdr4v7Z5oOk3V2/x3aWYfaf3z0pGZUlGu6URwlp3/kXaMN50CwCVq3bp12frGjRtVXFxc4T5r1pTPqX76/gCcx2azKTE20WHbmiNrzvNooGql5aVp2P+G6ZlZz6iotEh3T75bB3MOVnr/jPwMXfX5VTpRbE2VYJddH6z5QAdyLr13M4Cq16BBA82ZM0cdO3aUZE3JMG/ePE2cOFFTpkxRfn6+JKl27dqaNGmSw0iKAOB0NWpYQyU/84x0xRXWXNFdnTyNG5yrZk2r4LtypbR4sXTVVed/7EcfSRMmSGfcbAu4E48oJEvcDQi4pX3fSN/UlKZ3llY+KG1723SiqpcyUzq6SNr8qjR3sLThhYr3gTl2u7TuT1LWpgs/Zuvb0sqHpVWPSBtf5mQO8EA9e/ZUcHCwJCkvL0+rVq264OMLCgq0bNmysvaAAQNcmg/wZZ1jrTvzw4LD1L9xfzWNbGo4EWD5aftPmrF7Rlk780SmRn8/WsWlFd+MJEkRIRG6Mv5Kh20PdH5AHWM6OjMmgCrQqlUrLV++XJ988omuuuoqxcXFKSgoSHXq1FH37t31j3/8Q1u2bNHw4cNNRwXg7YKDpWHDpNdfl5Ytk44etbbB/dlsUs+ekt95ynCHD0t/+IM0Zox03XVSenqVxgMqy2PGfT51N+Ctt96qdevWld0NOG/ePIfH1a5dWx999BF3AwJVoUYjqbSgvJ29VSrKkQLDzGWqSiWFUvpSx211GVrGrW18WdryurTtn1LCs1KrP0pBkY6P2fRXaeOLp+3zklSQLnV+xzoBBOARQkNDNXDgQE2bNk2SNT1K9+7dz/v4H374QcePH5dkjWzTt2/fKskJ+KIHuz6oezrdoyaRTeRn85h7m+ED7ul0j37Z9Yu+3/q9JMkmm/o1qvz5vb+fv94b/p7q1Kijvyz4izrU7aC/D/q7q+ICcLGgoCDdcccduuOOO0xHAXCm48elRYukuXOlBQukX3+VwnzkeiRFZO/x+ONSTo61PnmytGKFtTRoYDYXcAaP+quduwEBNxPZQfILPG2DXcr0oTnuMldKJSdO22CTavcxFgcVSP5M2vSytV5aaBWMc3ac/bjGoyX/EMdtwdEUkQEP9NBDD5Wtf/zxx9q8efM5H5efn68XXigfUeL+++9XQIDH3G8JeJwGYQ3UtFZTnywi2+12/bzjZ2WdzDIdBedgs9n04TUfqlF4I8WGxmrWHbP01wF/VYBf5Y8JNptNLye9rP9e819Nv226woJ95KI2AABVpbBQiomxeum+8Ya0fLm0cKHpVMDFWb9e+u47x21du0r165vJA1yAzW5nvM7T5eTkKDw8XNnZ2QrzlbuYgMsxvauUuUqq2VyK6ia1/IMU1cV0qqpRnCelLZDS5kup863i5FAfKqR7EnupNLO3Yw/y4GjpuhTJz//sx299U1r7tLXe4W9Swp8oJKPKcC7iXH379tXC3y4qNG7cWJMnT1b79u3Lvp+RkaFbb721bIqUWrVqaffu3Rc1RQrvGYDK2p6+Xa3Gt5KfzU9d6nXRwCYD9UK/FxQSEFLxzqgyG1M3qm5oXdWpUees7xWVFOmLjV/oq81f6adbf7qoIjPgSpyPeB7eM+Ay9O3rWDx+8knpzTfN5QEuxdSp0t13W8OVx8ZKGzZI0dHl38/IkGrV4pokXKay5yL8xQPg8vT4TKpW9+zhgX1BQA2p3lBrkaTSErN5cH42P2ngHGnDi9K2N63CcuxV5y4iS9YNEanzpKb3SnHXVWVSAE72xRdfqFu3bjpy5Ij27t2rjh07ql+/fmratKmOHj2qWbNmKT8/X5IUEBCgb7755qKKyABwMWYnz5YkldpLteLQCh3IPqBXB7xqOBXO1K5uu7O2lZSWaMLqCfrH4n9oX/Y+SdJXm77Sbe1vq+p4AAAgKcmxkHzG9JeARxg+3Coe33OPdTPE6UVkSerQwRr6OiFBatNGeuYZqWVLM1nh03xvLDEAzhXeyjeLyOdyvqIk3IN/iNTpdWnoeqnx76QG15z/sX4BUv+fKSIDXqBBgwaaM2eOOnbsKMkaVnbevHmaOHGipkyZUlZErl27tiZNmqSBAwcaTAvA283aM8uhPSh+kGz0MPAIfjY/fbr+07IisiS9tug1ldpLDaYCAMBHJSVJgYFS797S8897b2/ko0dNJ4CrxcRYPZPPvBaRnS0dOmTNB758ufTf/0pFRWYywufRIxkA4Fsi2ko9PzedAkAVatWqlZYvX66vvvpKX375pTZv3qzU1FRFREQoPj5e119/ve6++25Fn3n3LwA4mb+fv4L9g1VQUiBJGtiEm1c8hc1m03N9ntO1X11btm3L0S2auXumhjQbYjAZAAA+qHdv6dgxqUYN00lc58QJa77cevWkPn2s5dZbpZo1TSeDs53rxtItW6yv7dtbvZb9/aXmzas2F/Ab5kg+A/OTAAAAkzgX8Ty8Z8ClyT6ZrbUpa7XmyBqtPrJab1z5hurVrGc6lsudLD6pJQeWaNaeWXqk2yM+8W/2FqX2UnV8v6M2pm1Uz7ie+nOfP2tos6H0Kodb4HzE8/CeAbigefOsnten+PlZxXN+X/iGlBSptFT6/nvpscekVq2krVtNp4KXYY5kAAAAAIBbstvtavSvRsouyC7bdnObm3VNywtMPeElQgJCNKDJAA1oMsB0FFwkP5uf/n3Vv2Wz2dSvUT8KyAAAwHVOnwNakjp2pIjsS2JirCLy449b7X79zOaBT2OOZAC4WKUlUm6yxIAOAAAAl8Rms6ljTEeHbWuOrDETBrgISU2S1L9xf4rIAADAtdaccW7cp4+ZHDDDbrd6pYeGSgMGSH//u+lE8GH0SAbgHPmHpfQl0tHF1tek6VJQpOlUrpG1TpreRaoeJ9XpZy1N7z33fBYAAAA4p8TYRM3fN7+svfrIaoNpAAAAADfy/ffWPLkLF1rL0KGmE6Eq2WzSu+9K77zDNWcYRyEZwOUrKZSmxEulBeXb0pdJ9bz0BCd1nvU1/4C093MpY4XU7D6jkQAAADxN59jOCvQLVLu67ZQYk6ikJkkV7wQAAACci90upadLtWubTuIcfn5S27bW8uCDptPAFIrIcAMUkgFcPv8gKaqrdHRR+bajS7y3kJw237FdhzkqAAAALtYNCTfoxoQbFRwQbDoKAAAAPFFamvTjj9LcudYwwHXqSBs2mE4FAF6FQjIA54ju6VhITl9iLosr2e1SznbHbRSSAQAALlpIQIjpCFXm6V+fVqOIRhrYZKBaRbdifl0AAABn2LVLGjOmvJ2aKh096j29kgHADVBIBuActXtJu8Kl6B5WUbmulxZXbTZpxDYpZ6vVMzl1vvf+WwEAAHDZsk5m6e1lb6vUXipJqleznmbePlMJtRMMJwMAAPBwXbtK1atL+fnl2+bPl2680VwmAPAyFJIBOEe9YdKNmZLNz3QS17PZpPAEa2nOHCUAAAA4v3l755UVkSUp80Sm4iPjDSYCAADwEoGBUu/e0q+/lm9btYpCMgA4EYVkAM7hx68TAAAA4Eyz9sxyaPeK6+VTw3oDAAC41PXXS9HRUv/+UlKS1LSp6USXZ+1a6fhxqVs3KYRzRgDmUfkBAAAAALiNk8UnvarQelWzq5RbmKvZybN1MOegBsUPMh0JAADAezzwgLV4i3/+U/rsMykoyBq6+5FHpFtuMZ0KgA+jkAwAAAAAMCbzRKZm7p6pOclzNGfvHLWIaqGpo6eajuU0I1qM0IgWI2S327UjY4fCQ8JNRwIAAIC7WrjQ+lpYKC1eLN16q9k8AHwehWQAAAAAgDGz9szSLd+X97JIyU1RUUmRAv0DDaZyPpvNppbRLU3HAAAAgLs6eFDau9dxW58+RqIAwCl+pgMA8GL2Uqkg03QK59n/rZQ6Tyo+YToJAACA1+jfuL9DO7cwV6sOrzITBgAAADAlLU3q2FGy2ax2RITUtq3JRABAj2QATpabLB2cZBVcjy6U6iZJfb43nery2e3Sqkekk2mSX5AUdYXU+V9SrUTTyQAAADxanRp11K5OO21M21i2bf6++eoR18NgKgAAAKCKJSZKa9dK2dnSkiVWYdmPvoAAzKKQDMC50hZKa544rT3f6pls8/CTnpztVhFZkkoLrSJ5IPPbAQAAOMM1La9RXHicBjQeoAFNBqhDTAfTkQAAAOCJcnOlRYukunWlTp1Mp7k04eHS0KGmUwCAJArJAJytbj/HdkGGlL1ZimhnJo+zpM13bFerL4XGm8kCAADgZV4Z8IrpCE5XUloifz9/0zEAAAB8wxdfSO+9Jy1fLhUXS/feK334oelUAODxPLyLIAC3U6ORVKOx47aMlUaiOFVgmBTVrbxndZ1+5fOVAAAAAGe46bub1OX/uuhPs/6kmbtn6kTRCdORAAAAvFdqqrR4sVVElqS5c83mAQAvQY9kAM7X+HfSyVSpTn+rh3L1BqYTXb7Gt1pLYbaUtkAKqW06EQAAANxUcWmxZu+ZreyCbK0+slqvL35dn478VLd3uN10NAAAAO80YIBje88ead8+qVEjM3kAwEtQSAbgfB28b2jCMkHhUoOrTacAAACAG1t9eLWyC7Idtg2MH2goDQAAgA9o106KipIyMqSAAKlbNykzk0IyAFwmCskAAAAAADjR7OTZDu3W0a1Vr2Y9Q2kAAAB8gJ+f9M9/SrVrS717S6GhphNVXn6+9Ic/WLn79JEaN2ZKPQBug0IyAAAAAMCtFJUUaeXhlYquHq0WUS1Mx7loT/R4Qj0a9NDs5NmatWeWejToYToSAACA97vdQ6cRWb5c+uADa5GsXtQ7d0qBgWZzAYAoJAMAAAAA3MS3m7/VR+s+0oJ9C5RXlKcnuj+ht4a8ZTrWRQsJCFFSkyQlNUnSKwNekd1uNx0JAAAA7mrhQsd2dDRFZABug0IyAAAAAMAtbDm6Rb/s+qWsPWfvHINpnMfG0IQAAAA4nzMLyX36mMkBAOfgZzoAAB9wMl3a97V0bIPpJBdv5/vSkjukPR9LeQdMpwEAAPBqA+MHOrTXpaxTRn6GoTQAAABAFbjhBmnkSKsnskQhGYBboZAMwHV2fShN7yr9UEdafItVjPU0+7+T9n4mLbtbmtxQ2vCi6UQAAABeq1v9bqoeWL2s3a5OOx3MOWgwEQAAAOBiY8ZIP/4opaVJW7ZIV15pOhEAlGFoawCuc+KwlLmqvJ3yq7ksl6LkpJS+2HFbZCczWQAAAHxAkH+Q/jbgb4qtGav+jfurTo06piMBAADA09jt0u7d0ty51vLii1LLlqZTVcxmk1q3Np0CABxQSAbgOrGDpY2n9eDN3izlH5Kq1zeX6WKkL7WKyafY/KS6/Y3FAQAA8AWPd3/cdIRLtitzlwpLCtU6ujXzIgMAAJjSp4+0+LTOIT17ekYhGQDcEENbA3CdWl2kwAhr3b+6VG+YVJRtNNJFCWsldRkvxd0gBdWSIhOloAjTqQAAAOCm3l76ttq810b1366v23+8XTN3zzQdCQAAwPc0a+bYnjvXTA4A8AL0SAbgOn4BUpd3rR7I0T0l/2DTiS5OtVipxUPWYi+VTqaZTgQAAAA3Njt5tiTpSO4Rfb7hc7Wr005XNmWOOwAAgCqVlCR98kl5e948qbRU8qNfHQBcLArJAFyryW2mEziHzU+qFmM6BQAAANzUgewD2pGxw2HbwCYDDaUBAADwYUlJ1tc6daQBA6yluFgKCjKbCwA8EIVkAAAAAAAu077sfYoLi9OBnAOSpFrVaqljTEezoQAAAHxRw4bStm1SixaSzWY6zfk99JC0c6c1p3OfPtIVV0jVq5tOBQAOKCQDAAAAANxSWl6a5ibP1ZzkORrbZ6waRzQ2Hem8ejfsrX1/2Kddmbs0O3m28grz5O/nbzoWAACAb2rZ0nSCik2bJu3bJ82aZbXHj7eKywDgRigkAwAAAADczpWfXalZe2aVtbvW76r7Eu8zmKhiNptNzaOaq3lUc9NRAAAA4M4OHLCKyKfr08dMFgC4AGaXB4AzFWZLRcdNpwAAAPBp0dWjHdpzkucYSgIAAAA42aJFju3ISKlNGzNZAOACKCQDqDo5O6Wtb0uz+ktb3zSd5vx2T5S+q2Xl3PyalLXJdCIAAACfM6DxAIf2nOQ5stvthtIAAAAATnTVVdIPP0h//KPUpYvUv7/kR7kGgPthaGsAVWPDi9Kmv5S3S4uk1k+Zy3MhR2ZI9mIpbb615O6RrvjAdCoAAACfMqCJVUgODQpV30Z9NaDxABWVFinIP8hwMgAAAHikwkIpyE3OJSMjpeuusxZJKi01mwcAzoNCMoCqEd3dsZ2+VDpxRKoWaybP+RSfkI4ucNwWO8RMFgAAAB8WHxmvZfcuU2JsogL9A03HAQAAgKcpKpIWL5bmzJHmzpU2bZJSU92nmHw6eiMDcFMUkgFUjbpJUkBNqfjU3MN26eAkqfmDJlOdLWerHEb9t/lJMQONxQEAAPBVNptNVzS4wnSMCq1PWa//bfyfBsUPUu+GvVU9sLrpSAAAAJCk7GwpKclx28qVUq9eZvIAgAfiNhcAVcM/RKp/tRRUS2p6r5Q0Q2p6n+lUZ6uVKN2QLvX7WWp2v9RgpBQUaToVAAAA3NSU7VP0xpI3NOTzIYp8PVL3TXHDc1wAAABfFB0tdejguG3OHDNZAMBD0SMZQNXp/C8pKELyc/OhCQOqSfWHWwsAAABwAbOTZ5etF5YUKjQo1GAaAAAAOEhKktavL2/Pny/9v/9nLg8AeBgKyQCqTkht0wkAAAAAp8krzNOSA0sctg1swrQoAAAAbmPQIGnRIqugPGCA1Lu32Txjx0r9+kmDBzMvMgCPwG8qAAAAAIDHSM9PNx2hTGFJof7U+0/qGddT/jZ/+dv81a9xP9OxAAAAcMrw4da8yP/4h3TVVVKowdFjNmyQ/v53aehQqUUL6c03pRMnzOUBgEqgkAwAAAAAcGuHjx/Wu8vfVb+P+6num3WVfCzZdCRJUmS1SP0l6S9afM9iZT6bqbl3zlVYcJjpWAAAAHBH771Xvr57t/TWW1IAg8YCcG/8lgIAAAAAuK1Se6k6TeiktLy0sm3fbflOT/d62mCqs4UFh6lPoz6mYwAAAMAdZWdLn3/uuO3++6XAQDN5AKCS6JEMwKysjdLWN02nkA7/Im37t5S7x3QSAAAAnMbP5qdrW17rsO3bLd8aSgMAAABcgqAg6e23pfbtrba/v/T735vNBACVQCEZQNUrKbCKtr8kStPaS2uflo5tMJtpxzhpzR+kKU2lqW2lfV+bzQMAAIAyoxJGObS3pW9T5olMQ2kAAACAi1StmtUDed06adEia37kBg1MpwKACjG0NYCqZwuQtr4hnThUvi35EynyLTN5Co9JR34tb2dvluwlZrIAAADgLP0b91d8ZLx6xvXUqIRRGtx0sEICQkzHAgAAgKex26U9e6TMTKlr16p/fZtN6tXLWgDAA9AjGUDV8/OXmtzuuG3v/6TSYjN5DkyS7Ke9tl+wVP9qM1kAAABwlkD/QO18dKc+u+4zXdPyGuNF5APZBzRz90zZ7XajOQAAAFBJa9dKd90lNW4sNWsmPfyw6UQA4BEoJAMwo8md5evV6knxd0klJ8xkiewoNRsjBde22vWGSYE1zWQBAADAOfnZ3OfP178u+KsGfz5Y/T/pr0X7F5mOAwAAgIocOyZ98om0f7/VXr1ays42mwkAPID7/CUOwLeEt5LaPC8lzZCu3S91/Lu54m2tTlK3/0jXHZYGzJIS/mQmBwAAANzersxd+u/a/0qSFuxboD4f9dH4FeMNpwIAAMAF9eghBQWVt0tLpQULzOUBAA9BIRmAOR3+KsUOtoa6dgd+AVLMQCm6m+kkAAAAcFMvz39ZJfaSsna1gGq6IeEGg4kAAABQoWrVpJ49y9u1a1u9lF2pqEiaOFHKzXXt6wCAC1FIBgAAAACgkpIaJykuLK6s/Wi3RxUTGmMwEQAAACrloYekd96RNm2SUlOlO+5w7ev9+KN0331S/frSY49JW7e69vUAwAUCTAcAAAAAAOBiJR9L1vur3teJ4hN6Z+g7Vfa693S6R79r9zv93+r/07sr3tUzvZ6pstcGAADAZRg1qmpf7733rK85OdK770pr10oLF1ZtBgC4TBSSAQAAAAAeY3fmbj02/TH9svMX2WVXoF+gnu/7vOrUqFNlGYIDgvXoFY/q4W4Py8/GQF8AAAA4w+bN0vz5jtseeshMFgC4DPzFC8C9FOdLe7+Q7HbXvo7dLqUvc/3rAAAAwKkiQiI0J3mO7LLO44pKizRxzUQjWSgiAwAA4JzsdunqqyWbzWrXqSNdf73ZTABwCfirF4B7KMySNr0qTW4sLfmdlDrXta93dJH0aw/ppxbW6+YdcO3rAQAAwCmiqkfplra3OGybsHqCSu2lhhIBAAAAZ2jbVpoyRdqzRxo7Vnr6aSk42HQqALhoFJIBuIfZSdKG56WCo1Z7y99d+3q7Jlhfc3dZrztvqGtfDwAAAE7zUBdrWMDw4HA9fsXjmnHbDHoHAwAAwP00biz97W/SU0+ZTgIAl4S/tAG4h2YPOLZTZkqZq13zWidSpP3fOG5rcodrXgsAAABO17V+V3076lsdeuKQ/nXVv9QyuqXLXutE0QlN2zmNHs8AAADe5ORJad486cUXpdmzTacBALdFIRmAe4i/SwqpW96OHSLZAlzzWidTpIj25W3/ECn+Hte8FgAAAFzixoQbVSOohstf5+vNX2v4F8PV7J1memPxG8rIz3D5awIAAMCFnn9eioyUkpKkv/xF+vpr04kAwG25qEoDABfJP0Rq9aTVCznhWalWJ9e9VmRHachKKX2ZtONdKTBcCol23esBAADAY41fOV6SlJyVrGdmPaN5++Zp6uiphlMBAADgktWqZfVIPmXuXHNZAMDNUUgG4D4Snr6k3XJzpV27pIICKThYatZMCg2tYCebTardw1rs9kt6XQAAAHiGA7szNee7HcrLKVSNsCANuLGF4prWqnC/lYdWatXhVQ7b7k+831UxAQAAUBWSkhzbu3ZJBw5IcXFnPTQ3N1e7du1SQUGBgoOD1axZM4We78JjRoZ1obJRIxeEBgAzKCQD8Ehbtkjvvy9Nmybt2eNYC7bZpPh4adgwacwYKSGhgiez2VyaFQAAAFXv63Gr9fNLa1UrI0eROq5TZ3xHJU380wwdU01lRoVpxEuddPMjnc/5HHlFeepQt4PWp66XJDUMb6gRLUZUzT8AAAAArtGhgzW0dVaWlJhoFZZPuz64ZcsWvf/++5o2bZr27Nkj+2kXHm02m+Lj4zVs2DCNGTNGCadfeBw/Xnr5ZWnECOmhh6Qrr5T8mF0UgGez2e10xTtdTk6OwsPDlZ2drbCwMNNxAJwhOVl64AFp5kwpIEAqLj7/Y099/8orpQkTpCZNqi4nAFwqzkU8D+8Z4B7sdrsW7l+o8VM+VfUnOqpxcYZKZJO/zv8n76nv7wuI1s2fJ2nIzWffgWi327X04FKNXzlenWI66ameT7nynwEAl4TzEc/DewYYtny51KKFVVD+TXJysh544AHNnDlTAQEBKr7AhcdT37/yyis1YcIENWnQQGrcWDp8uPxBzz4r/f3vLvxHAMClq+y5CLfDAPAMdrs+/NDqXXxq2pILFZFP//7cudZ+H37o2ogAAACoeoUlhfrPyv+o/fvt1e/jfvomc6L86m6QpAsWkU//foPiDC285Uc90vPrsx5js9nUM66n/nf9/ygiAwAAeIsrrnAoIn/44YdKSEjQ3N8uPF6oiHz69+fOnauEhARNHTvWsYgsSTfd5NzMAGAAhWQA7i9jpQ5+1EtvvbhVJ09WXEA+U3GxdG3Hr/TuX9fr1VddExEAAABm+Nv89fri17UpbVPZttVdV1zcc8iuABWr9tJturvZJ86OCAAAADf26quv6ve//71OnjxZYQH5TMXFxTp58qRGvPWWlvbuXf6N7t2tYbMBwMNRSAbgvgqzpVWPyj79CjUIWaovHh6toICCi36aBrUO6MPf36c1ryYqas8Y/W/iUReEBQAAgAn+fv6KXdnTYdvexntV4ldyUc9zala8xrv36pFeZ/dMBgAAgPf58MMP9fzzzzvluXovWqR9HTtajT/+0SnPCQCmUUgG4L62/VPaMU42mzXkYKfG6/TG6Kcv6ilstlJ99MDdCg3Jk79fqcYMnKCrSlpp385jrkgMAACAKjbj6y3qPqmx/Iv9JUmxh2N178R75V/qf9HPdTT6qI5GH1XEkl2a8fUWZ0cFAACAG0lOTtajjz7qtOcrldR561ZlPPecNGqU054XAEyikAzAfSU8q73H2jhssskuVTDX3em6NV2hQW1nO2ybtOp6/f7hyPPsAQAAAE/y9W1zVTM/RIlrEtVmUxvd/dHdCjsedtHPk1c9T1+M/kIT752ofU126uvb5rogLQAAANzFAw884DCUdR1Jl1tWzi4p0a0rV0o2W8UPBgAPQCEZgNvasqOaRvz9K50oDJEkPfm/N/XYp++ofODBii3f1V3X/fMH5Z2sLkk6kNFAT/7vDc2cKW3d6orUAAAAqCpfj1utRsXp8pddQ2YM0Q3f36CgoqCLfp5i/2J9dctXOlbrmE5WO6kvbvtM6e1n6Nv/rHFBagAAAJi2ZcsWzZw5U8XFxeok6WNJ+yW9I2n4Bfa7WtI8SdXP8/3i4mLNnDlTW7nwCMBLUEgG4Lbef1/antJWY/77vm5652u9Pe1JXUwR+ZRJq65T778s0r70hrp7wkfKzo9QQID0n/84PzMAAACqzs8vrVXJb+eHASUB8rNf2p+4i3ov0oGGB8rapf6lWt15jSa9uMIpOQEAAOBe3n//fQUEBEiSPpd0p6Tg377383n2eVLSJEn9JH2q81+lDAgI0H+48AjASwSYDgAA5zNtmlRcLH268M4LPi4ooECFxUG6UJF53b5Oav30Vp0otO4XLC6WfvnFmWkBAABQ1Wpl5Mi/EtOe2GVXSkyK6qbWPWexueeSnkqtm6qtCVbPkbDsMN365S0qys13emYAAACYN23atLJhrd+R9P5p3xt/jse/JOnF09o3SHpF0p/P8dji4mL9woVHAF6CHskA3NLx49KePZV77Pv3jNHhcfW0463muq33Z+d93Kki8im7d0u5uZeTEgAAAKbs3ZGhSB2v1GPXJK7RhDET9OqfX9W8fvPO+n5QUZBGfTtKvRb1UlBBkEZ/MVo1c2sqUsd1YHemk5MDAADApOPHj2vPaRceP5N05LTvf3qOfb6UdOyMbfV1/m4tu3fvVi4XHgF4AQrJANzS7t2SveLOJYqvs1u39/5MsZEpah6zS9d2nlzp17DbpV27LiMkAAAAjJn/484KJz0ptZVq+pDp+umanyRJJQElSo9OP+dj/ex+unLWlXpk3COKSY2RZF0YnPPdDiemBgAAgGm7d++W/bQLj/mShkqaLWmLpHNNbrJd0o2Sin9r/0nSXdJ5x8ax2+3axYVHAF6Aoa0BuKWCgso97rlr/6YA/5Ky9pB2MxToX6iikiCnvg4AAADcS15OYYWPWdpjqZb1WOawLSsi64L7hB0Pu+jXAQAAgOcoOMcFwfWSBkmqdoH95kh6QFKWpB8u8XUAwNPQIxmAWwoOrvgx1YLy1b/1PIdtNavlql/r+U59HQAAALifGmEV3zjYfVl3DZo5SFHpUWXbKiokX8rrAAC8Q0lJiTZs2KCJEyfqwQcfVJcuXRQUFCSbzSabzab+/fubjgjACYIvcEHwRAX7/leVKyJX9DoA4Ck8okdySUmJNm/erJUrV2rVqlVauXKlNmzYoKKiIklSv379NG/ePLMhAThVs2aSzXbh4a1PFFZXsyd2KaH+FjWL2aUg/0IdOlZfa/YmVuo1bDbrdQAAAOB5BtzYQhP/NOOCw1v7l/qr9+Le6r24t3Jq5ii1bqoCiwIr/Rr2314HAOD9Jk2apN/97nfKz883HQWAizVr1kw2m81heGtns9lsasaFRwBewO0LyZzEAb4pNFSKj7fmSr4wm7YcaqMth9pc9Gs0bWq9DgAAADxPXNNaOqaaqqXjlXp82PGws4atrsgx1VRc01qXEg8A4GGysrK4/gj4iNDQUMXHx2t3xRceL1nTpk0VyoVHAF7A7Ye25iQO8F3DhkkBLrrdJSBAGjrUNc8NAHAPDE0IeL/MqDCVXLBP8qUrkU2ZURdXeAYAeL66detqxIgRevnllzVt2jQ9/vjjpiMBcIFhw4YpwEUXHgMCAjSUC48AvITb90g+pW7duuratWvZMmPGDP373/82HQuAC40ZI737rmueu7hYevBB1zw3AMA8RrUBfMOIlzpp26OHXPLc/rLrmr9WbsoUAIDnu+qqq7Rv3z41bNjQYfvy5csNJQLgSmPGjNG7LrrwWFxcrAe58AjAS7h9IZmTOMB3JSRIV14pzZ1rFX6dJSBASkqSWrd23nMCANwLo9oAvuHmRzrrnj8uU4PiDPnLeXPclcimgwFRevFBCskA4CtiYmJMRwBQhRISEnTllVdq7ty5KnbihceAgAAlJSWpNRceAXgJtx/aOiYm5qwiMgDfMWGC84e3DgiwnhcA4P0YmhDwfjd/nqRSJ5aR7ZJK5a+bP09y0jMCAADAHU2YMMHpw1sHBARoAhceAXgRty8kA/BtTZo4f3jrceOs5wUAeK9To9qkpKTop59+0gsvvKChQ4cqIiLCdDQATjbk5gRl9WjmtJmSbZKyejbTkJsTnPSMAAAAcEdNmjRx+vDW48aNUxMuPALwIhSSAbi9++6TXnnFOc/16qvSvfc657kAAO6LUW0A3zJuyc3a27SxJF1yz+RT++1r1ljjFt/sjFgAAABwc/fdd59ecdKFx1dffVX3cuERgJehkAzAI/z5z9IHH0ghIRc/1HVAgLXfhx9Kzz3nmnwAAAAw66Ndd+poj1YqVoBKLrJ/colsKlaAjvZspf/uvNNFCQEAAOCO/vznP+uDDz5QSEjIRQ91HRAQoJCQEH344Yd6jguPALwQhWQAHuO++6QtW6Sk36arq+i87tT3k5Ks/bghEAAAwLuNW3Kz+nx1nQ4GRElShQXlU98/GBClPl9dR09kAAAAH3Xfffdpy5YtSvrtwmNFBeVT309KStKWLVvoiQzAa/l8IbmgoEA5OTkOCwD31aSJ9Ouv0ubN0oMPSs2aSbYzrg/abNb2Bx+0Csi//sqcyAAAAL5iyM0J+m/Rw2r17gglR9VTpmqeNdy1XVKmaio5qp4S3rta/y16mDmRAQAuxTVIwP01adJEv/76qzZv3qwHH3xQzZo1k+2MC482m03NmjXTgw8+qC1btujXX39lTmQAXu0iB4j1Pq+99ppefvll0zEAXKSEBOmdd6z13Fxp1y6poEAKDraKyKGhZvMBAADArJsf6aybH+ksSTqwO1NzvtuhvJxC1QgL0oAbWyiuaS3DCQEAvoRrkIDnSEhI0Du/XXjMzc3Vrl27VFBQoODgYDVr1kyhXHgE4EN8vpA8duxYPfHEE2XtnJwcxcXFGUwE4GKFhkodO5pOAQAAAHcV17SW7ny2u+kYAICLNG7cOI0bN86pz/nKK6/oxhtvdOpzVgbXIAHPFBoaqo5ceATgwy6pkOxNJ3HBwcEKDg6u8tcFAACAZyooKFBBQUFZm2EJAQAAXCM9PV3bt2936nNmZWU59fkqi2uQAADAE11SIdmbTuIAAACAi8GwhAAAAAAAAPAFPj+0NQAAAKqGt4xqw7CEAAAAVeOll17SSy+9ZDoGAACAz7qkQjIncQAAALhY3jKqDcMSAgAAAAAAwBf4mQ4AAAAAAAAAAAAAAHAvFJIBAABQJV566SXZ7XanLvfdd5/pfxYAAAAAAADglSgkAwAAAAAAAAAAAAAcUEgGAAAAAAAAAAAAADgIMB0AAAAAAAAAAEwbNmyYDh8+7LAtJSWlbH3VqlXq2LHjWftNmzZN9erVc3U8AACAKucRhWRO4gAAAAAAAAC40pYtW7Rv377zfj8vL0/r168/a3thYaErYwEAABjjEYVkTuIAAAAAAAAAAAAAoOp4RCEZAAAAuFiMagMAAICLsXfvXtMRAAAA3IpHFJKr8iTObrdLknJycqrsNQEAAE45dQ5y6pwEl66qRrXh/BEAAJjGOaTn4RwSAACYVNnzR48oJFel48ePS5Li4uIMJwEAAL7s+PHjCg8PNx0DlcD5IwAAcBecQ3oOziEBAIA7qOj80WbnVkUHpaWlOnz4sGrWrCmbzeaS18jJyVFcXJwOHDigsLAwl7wG3Afvt+/hPfctvN++pSreb7vdruPHj6tevXry8/NzyWvAuTh/hCvwnvsW3m/fwvvteziHxLlwDgln4/32Lbzfvof33Le40/kjPZLP4OfnpwYNGlTJa4WFhfED70N4v30P77lv4f32La5+v+lF4lk4f4Qr8Z77Ft5v38L77Xs4h8TpOIeEq/B++xbeb9/De+5b3OH8kVsUAQAAAAAAAAAAAAAOKCQDAAAAAAAAAAAAABxQSDYgODhYL774ooKDg01HQRXg/fY9vOe+hffbt/B+wxQ+e76H99y38H77Ft5v38N7DlP47PkW3m/fwvvte3jPfYs7vd82u91uNx0CAAAAAAAAAAAAAOA+6JEMAAAAAAAAAAAAAHBAIRkAAAAAAAAAAAAA4IBCMgAAAAAAAAAAAADAAYVkAAAAAAAAAAAAAIADCsluaO/evfrggw902223qUOHDoqMjFRgYKBq1aql9u3b64EHHtD8+fNNx4STlJSUaMOGDZo4caIefPBBdenSRUFBQbLZbLLZbOrfv7/piKhAYWGhPvvsMw0bNkyNGjVSSEiIYmNj1bNnT7355ptKT083HRFOws+rb+F4DE/C59X3cEzyfJxD+gZ+Vn0Lx2N4Gj6zvoVjkufj/NF38PPqW9z+eGyH21izZo29W7dudkmVWvr372/ft2+f6di4DD/++KO9evXqF3yf+/XrZzomLmDr1q32jh07XvA9rFOnjn3q1Kmmo+Iy8fPqOzgew5PwefVNHJM8H+eQvoGfVd/B8Riehs+s7+GY5Pk4f/Qd/Lz6Dk85HgcIbmP79u1asWKFw7YWLVqobdu2io6OVlZWlpYsWaKDBw9KkubNm6cePXpo4cKFio+PNxEZlykrK0v5+fmmY+ASHTx4UAMHDtThw4clSTabTX379lXTpk119OhRzZo1SydOnFBaWppGjhyp6dOna8CAAYZT41Lx8+o7OB7Dk/B59U0ckzwb55C+g59V38HxGJ6Gz6zv4Zjk2Th/9C38vPoOTzkeU0h2Q82aNdN9992n2267TfXr13f4XmlpqT7++GM9+uijys/P1+HDh/W73/1OS5Yskc1mM5QYl6tu3brq2rVr2TJjxgz9+9//Nh0LFRg9enTZCVyjRo00efJkdejQoez76enpuuWWWzR79mwVFRVp1KhR2r17tyIiIgwlhjPw8+o7OB7Dk/B59U0ckzwT55C+h59V38HxGJ6Gz6zv4ZjkmTh/9E38vPoOtz8eV3kfaJzXvHnz7B999JG9uLi4wsf+8MMPDl3ap0+fXgUJ4WxHjhw551AEL774IsNUuLmpU6eWvUdBQUH2DRs2nPNxubm59vj4+LLHjh07toqTwln4efUdHI/hSfi8+iaOSZ6Lc0jfws+q7+B4DE/DZ9b3cEzyXJw/+h5+Xn2HpxyP/VxVoMbF69evn+666y75+/tX+NjrrrtO3bp1K2tPnTrVldHgIjExMWrYsKHpGLgE48ePL1u/88471a5du3M+rkaNGvrLX/5S1p4wYYKKi4tdng/Ox8+r7+B4DE/C59U3cUzyXJxD+hZ+Vn0Hx2N4Gj6zvodjkufi/NH38PPqOzzleEwh2YP16tWrbH3v3r3mggA+Jjc3V7Nnzy5r33333Rd8/A033KDQ0FBJUmZmphYsWODSfACqFsdjeBI+r4A5nEMCOIXjMTwNn1nADM4fAZzO1PGYQrIHO33885KSEoNJAN+yZMkSFRQUSLLu9uvatesFHx8SEqIePXqUtefMmePSfACqFsdjeBI+r4A5nEMCOIXjMTwNn1nADM4fAZzO1PGYQrIH27hxY9l6XFycwSSAb9m6dWvZert27RQQEFDhPomJiefcH4Dn43gMT8LnFTCHc0gAp3A8hqfhMwuYwfkjgNOZOh5TSPZQ+/fvd7ijaNCgQQbTAL5l+/btZeuNGjWq1D6nz2uxbds2p2cCYAbHY3gSPq+AWZxDApA4HsPz8JkFzOH8EcApJo/HFJI91BNPPFHWdb1hw4a6+uqrDScCfEdGRkbZet26dSu1T0xMTNl6Zmam0zMBMIPjMTwJn1fALM4hAUgcj+F5+MwC5nD+COAUk8djCske6JNPPtH3339f1n7ttdcUHBxsMBHgW3Jzc8vWq1WrVql9Tn/c6fsD8Fwcj+FJ+LwC5nEOCYDjMTwNn1nALM4fAUjmj8cUkj3MqlWrNGbMmLL2rbfeqtGjRxtMBPiekydPlq0HBQVVap/Tf7GfOHHC6ZkAVC2Ox/AkfF4B98A5JODbOB7D0/CZBczj/BGAOxyPK56dHRo3bpzGjRvn1Od85ZVXdOONN17UPsnJybr66qvLDiDt27fX+++/79RccJ/3G+4rJCSkbL2wsLBS+xQUFJStV/YOQgDuieMxKsNdzif4vFYdd3nP4b44hwR8F8djVJa7nE/wma0a7vJ+w31x/gj4Nnc5HlNIroT09HSHie2dISsr66Ief+TIEV155ZVKSUmRJMXHx2v69OkKCwtzai64x/sN9xYaGlq2Xtk7+05/3On7A/AsHI9RWe5wPsHntWq5w3sO98Y5JOCbOB7jYrjD+QSf2arjDu833Bvnj4DvcqfjMUNbe4CMjAxdeeWV2r17tyQpNjZWs2bNUmxsrOFkgG+KiooqW09NTa3UPqd+4UtSrVq1nJ4JgOtxPIYn4fMKuB/OIQHfw/EYnobPLOBeOH8EfJO7HY8pJFfCSy+9JLvd7tTlvvvuq9Rr5+TkaMiQIdq8ebMkKTo6WrNmzVKTJk1c+U/2aSbfb3iGli1blq3v27evUvvs37+/bL1Vq1ZOzwTAtTge42Jx/uh7OIdERTiHBHwLx2NcCs4hfQvnj6gI54+A73HH4zGFZDeWl5enYcOGafXq1ZKk8PBwTZ8+XQkJCYaTAb6tdevWZesbN25UcXFxhfusWbPmnPsDcH8cj+FJ+LwC7otzSMB3cDyGp+EzC7gnzh8B3+Kux2MKyW7q5MmTuuaaa7R48WJJUvXq1TV16lR17tzZcDIAPXv2VHBwsCTrl/uqVasu+PiCggItW7asrD1gwACX5gPgPByP4Un4vALujXNIwDdwPIan4TMLuC/OHwHf4c7HYwrJbqioqEg33HCD5syZI0kKDg7W5MmT1atXL8PJAEhSaGioBg4cWNb++OOPL/j4H374QcePH5dkzU3St29fV8YD4CQcj+FJ+LwC7o9zSMD7cTyGp+EzC7g3zh8B3+Dux2MKyW6mpKREo0eP1rRp0yRJAQEB+uabbzRo0CDDyQCc7qGHHipb//jjj8vmLDhTfn6+XnjhhbL2/fffr4CAAJfnA3B5OB7Dk/B5BTwH55CA9+J4DE/DZxbwDJw/At7NE47HFJLdiN1u17333qvvvvtOkuTn56fPPvtM11xzjeFkAM40fPhw9enTR5I1bMyIESO0YcMGh8dkZGRo5MiR2rVrlyTrTsBnn322yrMCuDgcj+FJ+LwCnoVzSMA7cTyGp+EzC3gOzh8B7+Upx2Ob3W63mw4By3vvvaeHH364rN28eXMNHjy40vuPGzfOFbHgYsOGDdPhw4cdtqWkpCg1NVWSVKNGDTVr1uys/aZNm6Z69epVSUac28GDB9WtWzcdOXJEkmSz2dSvXz81bdpUR48e1axZs5Sfny/JupNo+vTpDsPRwPPw8+obOB7Dk/B59V0ckzwX55C+hZ9V38DxGJ6Gz6xv4pjkuTh/9D38vPoGTzkeU0h2Iy+99JJefvnlS96ft9IzNW7cWPv27bvo/ZKTk9W4cWPnB8JF2bZtm2699VatW7fuvI+pXbu2PvroIw0fPrzqgsEl+Hn1DRyP4Un4vPoujkmejXNI38HPqm/geAxPw2fWN3FM8mycP/oWfl59g6ccjxkkHwAuQ6tWrbR8+XJ99dVX+vLLL7V582alpqYqIiJC8fHxuv7663X33XcrOjradFQAAAC4Cc4hAQAAcDE4fwRgCj2SAQAAAAAAAAAAAAAO/EwHAAAAAAAAAAAAAAC4FwrJAAAAAAAAAAAAAAAHFJIBAAAAAAAAAAAAAA4oJAMAAAAAAAAAAAAAHFBIBgAAAAAAAAAAAAA4oJAMAAAAAAAAAAAAAHBAIRkAAAAAAAAAAAAA4IBCMgAAAAAAAAAAAADAAYVkAAAAAAAAAAAAAIADCskAAAAAAAAAAAAAAAcUkgEAAAAAAAAAAAAADigkAwAAAAAAAAAAAAAcUEgGAAAAAAAAAAAAADigkAwAAAAAAAAAAAAAcEAhGQAAAAAAAAAAAADggEIyAAAAAAAAAAAAAMDB/webYyNRvk3pLAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2352,7 +2324,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/setup.cfg b/setup.cfg index 465b3976..cb8d5e2e 100644 --- a/setup.cfg +++ b/setup.cfg @@ -79,7 +79,7 @@ testing = linear-tree matplotlib pandas - keras==2.9.0 + keras>=3.0 onnx onnxruntime onnxmltools diff --git a/tests/io/test_keras_reader.py b/tests/io/test_keras_reader.py index d47b0920..21629c66 100644 --- a/tests/io/test_keras_reader.py +++ b/tests/io/test_keras_reader.py @@ -10,7 +10,7 @@ not keras_available, reason="Test only valid when keras is available" ) def test_keras_reader(datadir): - nn = keras.models.load_model(datadir.file("keras_linear_131"), compile=False) + nn = keras.models.load_model(datadir.file("keras_linear_131.keras"), compile=False) net = load_keras_sequential(nn) layers = list(net.layers) @@ -21,7 +21,7 @@ def test_keras_reader(datadir): assert layers[2].weights.shape == (3, 1) nn = keras.models.load_model( - datadir.file("keras_linear_131_sigmoid"), compile=False + datadir.file("keras_linear_131_sigmoid.keras"), compile=False ) net = load_keras_sequential(nn) layers = list(net.layers) @@ -32,7 +32,7 @@ def test_keras_reader(datadir): assert layers[2].weights.shape == (3, 1) nn = keras.models.load_model( - datadir.file("keras_linear_131_sigmoid_output_activation"), compile=False + datadir.file("keras_linear_131_sigmoid_output_activation.keras"), compile=False ) net = load_keras_sequential(nn) layers = list(net.layers) @@ -42,7 +42,7 @@ def test_keras_reader(datadir): assert layers[1].weights.shape == (1, 3) assert layers[2].weights.shape == (3, 1) - nn = keras.models.load_model(datadir.file("big"), compile=False) + nn = keras.models.load_model(datadir.file("big.keras"), compile=False) net = load_keras_sequential(nn) layers = list(net.layers) assert len(layers) == 5 diff --git a/tests/models/big/variables/variables.data-00000-of-00001 b/tests/models/big.keras similarity index 88% rename from tests/models/big/variables/variables.data-00000-of-00001 rename to tests/models/big.keras index 2e6b0b39..f2cfdec1 100644 Binary files a/tests/models/big/variables/variables.data-00000-of-00001 and b/tests/models/big.keras differ diff --git a/tests/models/big/saved_model.pb b/tests/models/big/saved_model.pb deleted file mode 100644 index ccc1d6bd..00000000 Binary files a/tests/models/big/saved_model.pb and /dev/null differ diff --git a/tests/models/big/variables/variables.index b/tests/models/big/variables/variables.index deleted file mode 100644 index bc9e0cb5..00000000 Binary files a/tests/models/big/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131.keras b/tests/models/keras_linear_131.keras new file mode 100644 index 00000000..e4f42efe Binary files /dev/null and b/tests/models/keras_linear_131.keras differ diff --git a/tests/models/keras_linear_131/saved_model.pb b/tests/models/keras_linear_131/saved_model.pb deleted file mode 100644 index 4723d34f..00000000 Binary files a/tests/models/keras_linear_131/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131/variables/variables.data-00000-of-00001 deleted file mode 100644 index 416691ef..00000000 Binary files a/tests/models/keras_linear_131/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131/variables/variables.index b/tests/models/keras_linear_131/variables/variables.index deleted file mode 100644 index c780e89f..00000000 Binary files a/tests/models/keras_linear_131/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131_relu.keras b/tests/models/keras_linear_131_relu.keras new file mode 100644 index 00000000..08053262 Binary files /dev/null and b/tests/models/keras_linear_131_relu.keras differ diff --git a/tests/models/keras_linear_131_relu/saved_model.pb b/tests/models/keras_linear_131_relu/saved_model.pb deleted file mode 100644 index c2a499b4..00000000 Binary files a/tests/models/keras_linear_131_relu/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131_relu/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131_relu/variables/variables.data-00000-of-00001 deleted file mode 100644 index b642e071..00000000 Binary files a/tests/models/keras_linear_131_relu/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131_relu/variables/variables.index b/tests/models/keras_linear_131_relu/variables/variables.index deleted file mode 100644 index b543c030..00000000 Binary files a/tests/models/keras_linear_131_relu/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131_relu_output_activation.keras b/tests/models/keras_linear_131_relu_output_activation.keras new file mode 100644 index 00000000..004cef20 Binary files /dev/null and b/tests/models/keras_linear_131_relu_output_activation.keras differ diff --git a/tests/models/keras_linear_131_relu_output_activation/saved_model.pb b/tests/models/keras_linear_131_relu_output_activation/saved_model.pb deleted file mode 100644 index 68cd37a6..00000000 Binary files a/tests/models/keras_linear_131_relu_output_activation/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131_relu_output_activation/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131_relu_output_activation/variables/variables.data-00000-of-00001 deleted file mode 100644 index 487fb326..00000000 Binary files a/tests/models/keras_linear_131_relu_output_activation/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131_relu_output_activation/variables/variables.index b/tests/models/keras_linear_131_relu_output_activation/variables/variables.index deleted file mode 100644 index 624177b6..00000000 Binary files a/tests/models/keras_linear_131_relu_output_activation/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid.keras b/tests/models/keras_linear_131_sigmoid.keras new file mode 100644 index 00000000..7fcd47a9 Binary files /dev/null and b/tests/models/keras_linear_131_sigmoid.keras differ diff --git a/tests/models/keras_linear_131_sigmoid/saved_model.pb b/tests/models/keras_linear_131_sigmoid/saved_model.pb deleted file mode 100644 index 7d9fbb80..00000000 Binary files a/tests/models/keras_linear_131_sigmoid/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131_sigmoid/variables/variables.data-00000-of-00001 deleted file mode 100644 index f75e1d1c..00000000 Binary files a/tests/models/keras_linear_131_sigmoid/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid/variables/variables.index b/tests/models/keras_linear_131_sigmoid/variables/variables.index deleted file mode 100644 index 6ccd6488..00000000 Binary files a/tests/models/keras_linear_131_sigmoid/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_output_activation.keras b/tests/models/keras_linear_131_sigmoid_output_activation.keras new file mode 100644 index 00000000..4f0ccd55 Binary files /dev/null and b/tests/models/keras_linear_131_sigmoid_output_activation.keras differ diff --git a/tests/models/keras_linear_131_sigmoid_output_activation/saved_model.pb b/tests/models/keras_linear_131_sigmoid_output_activation/saved_model.pb deleted file mode 100644 index 10363f25..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_output_activation/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.data-00000-of-00001 deleted file mode 100644 index e4924b6b..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.index b/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.index deleted file mode 100644 index e5be42a8..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_output_activation/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_softplus_output_activation.keras b/tests/models/keras_linear_131_sigmoid_softplus_output_activation.keras new file mode 100644 index 00000000..ac11e8d2 Binary files /dev/null and b/tests/models/keras_linear_131_sigmoid_softplus_output_activation.keras differ diff --git a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/saved_model.pb b/tests/models/keras_linear_131_sigmoid_softplus_output_activation/saved_model.pb deleted file mode 100644 index ee1358f5..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.data-00000-of-00001 deleted file mode 100644 index d636cf1b..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.index b/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.index deleted file mode 100644 index d5e373d1..00000000 Binary files a/tests/models/keras_linear_131_sigmoid_softplus_output_activation/variables/variables.index and /dev/null differ diff --git a/tests/models/keras_linear_2353.keras b/tests/models/keras_linear_2353.keras new file mode 100644 index 00000000..1e776330 Binary files /dev/null and b/tests/models/keras_linear_2353.keras differ diff --git a/tests/models/keras_linear_2353/saved_model.pb b/tests/models/keras_linear_2353/saved_model.pb deleted file mode 100644 index d37afada..00000000 Binary files a/tests/models/keras_linear_2353/saved_model.pb and /dev/null differ diff --git a/tests/models/keras_linear_2353/variables/variables.data-00000-of-00001 b/tests/models/keras_linear_2353/variables/variables.data-00000-of-00001 deleted file mode 100644 index bce02613..00000000 Binary files a/tests/models/keras_linear_2353/variables/variables.data-00000-of-00001 and /dev/null differ diff --git a/tests/models/keras_linear_2353/variables/variables.index b/tests/models/keras_linear_2353/variables/variables.index deleted file mode 100644 index 14c98f13..00000000 Binary files a/tests/models/keras_linear_2353/variables/variables.index and /dev/null differ diff --git a/tests/neuralnet/test_keras.py b/tests/neuralnet/test_keras.py index 66b8a91b..02da81aa 100644 --- a/tests/neuralnet/test_keras.py +++ b/tests/neuralnet/test_keras.py @@ -108,27 +108,29 @@ def _test_keras_linear_big(keras_fname, reduced_space=False): @pytest.mark.skipif(not keras_available, reason="Need keras for this test") def test_keras_linear_131_full(datadir): - _test_keras_linear_131(datadir.file("keras_linear_131")) - _test_keras_linear_131(datadir.file("keras_linear_131_sigmoid")) - _test_keras_linear_131(datadir.file("keras_linear_131_sigmoid_output_activation")) + _test_keras_linear_131(datadir.file("keras_linear_131.keras")) + _test_keras_linear_131(datadir.file("keras_linear_131_sigmoid.keras")) _test_keras_linear_131( - datadir.file("keras_linear_131_sigmoid_softplus_output_activation") + datadir.file("keras_linear_131_sigmoid_output_activation.keras") + ) + _test_keras_linear_131( + datadir.file("keras_linear_131_sigmoid_softplus_output_activation.keras") ) @pytest.mark.skipif(not keras_available, reason="Need keras for this test") def test_keras_linear_131_reduced(datadir): - _test_keras_linear_131(datadir.file("keras_linear_131"), reduced_space=True) + _test_keras_linear_131(datadir.file("keras_linear_131.keras"), reduced_space=True) _test_keras_linear_131( - datadir.file("keras_linear_131_sigmoid"), + datadir.file("keras_linear_131_sigmoid.keras"), reduced_space=True, ) _test_keras_linear_131( - datadir.file("keras_linear_131_sigmoid_output_activation"), + datadir.file("keras_linear_131_sigmoid_output_activation.keras"), reduced_space=True, ) _test_keras_linear_131( - datadir.file("keras_linear_131_sigmoid_softplus_output_activation"), + datadir.file("keras_linear_131_sigmoid_softplus_output_activation.keras"), reduced_space=True, ) @@ -136,26 +138,26 @@ def test_keras_linear_131_reduced(datadir): @pytest.mark.skipif(not keras_available, reason="Need keras for this test") def test_keras_linear_131_relu(datadir): _test_keras_mip_relu_131( - datadir.file("keras_linear_131_relu"), + datadir.file("keras_linear_131_relu.keras"), ) _test_keras_complementarity_relu_131( - datadir.file("keras_linear_131_relu"), + datadir.file("keras_linear_131_relu.keras"), ) @pytest.mark.skipif(not keras_available, reason="Need keras for this test") def test_keras_linear_big(datadir): - _test_keras_linear_big(datadir.file("big"), reduced_space=False) + _test_keras_linear_big(datadir.file("big.keras"), reduced_space=False) @pytest.mark.skip("Skip - this test is too big for now") def test_keras_linear_big_reduced_space(datadir): - _test_keras_linear_big("./models/big", reduced_space=True) + _test_keras_linear_big("./models/big.keras", reduced_space=True) @pytest.mark.skipif(not keras_available, reason="Need keras for this test") def test_scaling_NN_block(datadir): - NN = keras.models.load_model(datadir.file("keras_linear_131_relu")) + NN = keras.models.load_model(datadir.file("keras_linear_131_relu.keras")) model = pyo.ConcreteModel() @@ -186,7 +188,7 @@ def obj(mdl): result = pyo.SolverFactory("cbc").solve(model, tee=False) x_s = (x - scale_x[0]) / scale_x[1] - y_s = NN.predict(x=[x_s]) + y_s = NN.predict([np.array((x_s,))]) y = y_s * scale_y[1] + scale_y[0] assert y - pyo.value(model.nn.outputs[0]) <= 1e-3 diff --git a/tests/neuralnet/train_keras_models.py b/tests/neuralnet/train_keras_models.py index 9bbd224c..c2de9dbc 100644 --- a/tests/neuralnet/train_keras_models.py +++ b/tests/neuralnet/train_keras_models.py @@ -1,11 +1,11 @@ import pytest -import tensorflow.keras as keras +import keras # from conftest import get_neural_network_data from keras.layers import Conv2D, Dense from keras.models import Model, Sequential from pyomo.common.fileutils import this_file_dir -from tensorflow.keras.optimizers import Adamax +from keras.optimizers import Adamax from omlt.io import write_onnx_model_with_bounds @@ -40,7 +40,7 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_131") + nn.save(this_file_dir() + "/models/keras_linear_131.keras") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid") @@ -72,7 +72,7 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_131_sigmoid") + nn.save(this_file_dir() + "/models/keras_linear_131_sigmoid.keras") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid_output_activation") @@ -105,7 +105,9 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_131_sigmoid_output_activation") + nn.save( + this_file_dir() + "/models/keras_linear_131_sigmoid_output_activation.keras" + ) x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_relu") @@ -137,7 +139,7 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_131_relu") + nn.save(this_file_dir() + "/models/keras_linear_131_relu.keras") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_relu_output_activation") @@ -170,7 +172,7 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_131_relu_output_activation") + nn.save(this_file_dir() + "/models/keras_linear_131_relu_output_activation.keras") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid_softplus_output_activation") @@ -204,7 +206,8 @@ def train_models(): x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save( - this_file_dir() + "/models/keras_linear_131_sigmoid_softplus_output_activation" + this_file_dir() + + "/models/keras_linear_131_sigmoid_softplus_output_activation.keras" ) x, y, x_test = get_neural_network_data("131") @@ -263,7 +266,7 @@ def train_models(): history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/big") + nn.save(this_file_dir() + "/models/big.keras") x, y, x_test = get_neural_network_data("2353") nn = Sequential(name="keras_linear_2353") @@ -306,7 +309,7 @@ def train_models(): x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) - nn.save(this_file_dir() + "/models/keras_linear_2353") + nn.save(this_file_dir() + "/models/keras_linear_2353.keras") def train_conv(): diff --git a/tox.ini b/tox.ini index 4442c7db..e64ab1d8 100644 --- a/tox.ini +++ b/tox.ini @@ -4,15 +4,17 @@ [tox] minversion = 3.15 -envlist = py36, py37, py38, py39, py310, lint +envlist = py36, py37, py38, py39, py310, py311, py312, lint [gh-actions] python = 3.6: py36 3.7: py37 - 3.8: lint, py38 - 3.9: py39 + 3.8: py38 + 3.9: lint, py39 3.10: py310 + 3.11: py311 + 3.12: py312 [testenv] deps = pytest