-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
284 lines (226 loc) · 10.5 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from collections import defaultdict
import boto3
import datetime
import os
import requests
import sys
n_days = 7
yesterday = datetime.datetime.today() - datetime.timedelta(days=1)
week_ago = yesterday - datetime.timedelta(days=n_days)
# It seems that the sparkline symbols don't line up (probably based on font?) so put them last
# Also, leaving out the full block because Slack doesn't like it: '█'
sparks = ['▁', '▂', '▃', '▄', '▅', '▆', '▇']
def sparkline(datapoints):
lower = min(datapoints)
upper = max(datapoints)
n_sparks = len(sparks) - 1
line = ""
for dp in datapoints:
scaled = 1 if upper == 0 else dp/upper
which_spark = round(scaled * n_sparks)
line += (sparks[which_spark])
return line
def delta(costs):
if (len(costs) > 1 and costs[-1] >= 1 and costs[-2] >= 1):
# This only handles positive numbers
result = ((costs[-1]/costs[-2])-1)*100.0
else:
result = 0
return result
def find_by_key(values: list, key: str, value: str):
for item in values:
if item.get(key) == value:
return item
return None
def lambda_handler(event, context):
group_by = os.environ.get("GROUP_BY", "SERVICE")
length = int(os.environ.get("LENGTH", "5"))
cost_aggregation = os.environ.get("COST_AGGREGATION", "UnblendedCost")
summary, buffer, data = report_cost(group_by=group_by, length=length, cost_aggregation=cost_aggregation)
slack_hook_url = os.environ.get('SLACK_WEBHOOK_URL')
if slack_hook_url:
publish_slack(slack_hook_url, summary, buffer)
teams_hook_url = os.environ.get('TEAMS_WEBHOOK_URL')
if teams_hook_url:
publish_teams(teams_hook_url, summary, buffer)
def report_cost(group_by: str = "SERVICE", length: int = 5, cost_aggregation: str = "UnblendedCost", result: dict = None, yesterday: str = None, new_method=True):
if yesterday is None:
yesterday = datetime.datetime.today() - datetime.timedelta(days=1)
else:
yesterday = datetime.datetime.strptime(yesterday, '%Y-%m-%d')
week_ago = yesterday - datetime.timedelta(days=n_days)
# Generate list of dates, so that even if our data is sparse,
# we have the correct length lists of costs (len is n_days)
list_of_dates = [
(week_ago + datetime.timedelta(days=x)).strftime('%Y-%m-%d')
for x in range(n_days)
]
# Get account account name from env, or account id/account alias from boto3
account_name = os.environ.get("AWS_ACCOUNT_NAME", None)
if account_name is None:
iam = boto3.client("iam")
paginator = iam.get_paginator("list_account_aliases")
for aliases in paginator.paginate(PaginationConfig={"MaxItems": 1}):
if "AccountAliases" in aliases and len(aliases["AccountAliases"]) > 0:
account_name = aliases["AccountAliases"][0]
if account_name is None:
account_name = boto3.client("sts").get_caller_identity().get("Account")
if account_name is None:
account_name = "[NOT FOUND]"
client = boto3.client('ce')
query = {
"TimePeriod": {
"Start": week_ago.strftime('%Y-%m-%d'),
"End": yesterday.strftime('%Y-%m-%d'),
},
"Granularity": "DAILY",
"Filter": {
"Not": {
"Dimensions": {
"Key": "RECORD_TYPE",
"Values": [
"Credit",
"Refund",
"Upfront",
"Support",
]
}
}
},
"Metrics": [cost_aggregation],
"GroupBy": [
{
"Type": "DIMENSION",
"Key": group_by,
},
],
}
# Only run the query when on lambda, not when testing locally with example json
if result is None:
result = client.get_cost_and_usage(**query)
cost_per_day_by_service = defaultdict(list)
if new_method == False:
# Build a map of service -> array of daily costs for the time frame
for day in result['ResultsByTime']:
for group in day['Groups']:
key = group['Keys'][0]
cost = float(group['Metrics'][cost_aggregation]['Amount'])
cost_per_day_by_service[key].append(cost)
else:
# New method, which first creates a dict of dicts
# then loop over the services and loop over the list_of_dates
# and this means even for sparse data we get a full list of costs
cost_per_day_dict = defaultdict(dict)
for day in result['ResultsByTime']:
start_date = day["TimePeriod"]["Start"]
for group in day['Groups']:
key = group['Keys'][0]
if group_by == "LINKED_ACCOUNT":
dimension = find_by_key(result["DimensionValueAttributes"], "Value", key)
if dimension:
key += " ("+dimension["Attributes"]["description"]+")"
cost = float(group['Metrics'][cost_aggregation]['Amount'])
cost_per_day_dict[key][start_date] = cost
for key in cost_per_day_dict.keys():
for start_date in list_of_dates:
cost = cost_per_day_dict[key].get(start_date, 0.0) # fallback for sparse data
cost_per_day_by_service[key].append(cost)
# Sort the map by yesterday's cost
most_expensive_yesterday = sorted(cost_per_day_by_service.items(), key=lambda i: i[1][-1], reverse=True)
service_names = [k for k,_ in most_expensive_yesterday[:length]]
longest_name_len = len(max(service_names, key = len))
buffer = f"{'Service':{longest_name_len}} ${'Yday':8} {'∆%':>5} {'Last '}{n_days}{'d':7}\n"
for service_name, costs in most_expensive_yesterday[:length]:
buffer += f"{service_name:{longest_name_len}} ${costs[-1]:8,.2f} {delta(costs):4.0f}% {sparkline(costs):7}\n"
other_costs = [0.0] * n_days
for service_name, costs in most_expensive_yesterday[length:]:
for i, cost in enumerate(costs):
other_costs[i] += cost
buffer += f"{'Other':{longest_name_len}} ${other_costs[-1]:8,.2f} {delta(other_costs):4.0f}% {sparkline(other_costs):7}\n"
total_costs = [0.0] * n_days
for day_number in range(n_days):
for service_name, costs in most_expensive_yesterday:
try:
total_costs[day_number] += costs[day_number]
except IndexError:
total_costs[day_number] += 0.0
buffer += f"{'Total':{longest_name_len}} ${total_costs[-1]:8,.2f} {delta(total_costs):4.0f}% {sparkline(total_costs):7}\n"
cost_per_day_by_service["total"] = total_costs[-1]
credits_expire_date = os.environ.get('CREDITS_EXPIRE_DATE')
if credits_expire_date:
credits_expire_date = datetime.datetime.strptime(credits_expire_date, "%m/%d/%Y")
credits_remaining_as_of = os.environ.get('CREDITS_REMAINING_AS_OF')
credits_remaining_as_of = datetime.datetime.strptime(credits_remaining_as_of, "%m/%d/%Y")
credits_remaining = float(os.environ.get('CREDITS_REMAINING'))
days_left_on_credits = (credits_expire_date - credits_remaining_as_of).days
allowed_credits_per_day = credits_remaining / days_left_on_credits
relative_to_budget = (total_costs[-1] / allowed_credits_per_day) * 100.0
if relative_to_budget < 60:
emoji = ":white_check_mark:"
elif relative_to_budget > 110:
emoji = ":rotating_light:"
else:
emoji = ":warning:"
summary = (f"{emoji} Yesterday's cost for {account_name} ${total_costs[-1]:,.2f} "
f"is {relative_to_budget:.2f}% of credit budget "
f"${allowed_credits_per_day:,.2f} for the day."
)
else:
summary = f"Yesterday's cost for account {account_name} was ${total_costs[-1]:,.2f}"
return summary, buffer, cost_per_day_by_service
def publish_slack(hook_url, summary, buffer):
resp = requests.post(
hook_url,
json={
"text": summary + "\n\n```\n" + buffer + "\n```",
}
)
if resp.status_code != 200:
print("HTTP %s: %s" % (resp.status_code, resp.text))
def publish_teams(hook_url, summary, buffer):
resp = requests.post(
hook_url,
json={
"text": summary + "\n\n```\n" + buffer + "\n```",
}
)
if resp.status_code != 200:
print("HTTP %s: %s" % (resp.status_code, resp.text))
if __name__ == "__main__":
# for running locally to test
import json
with open("example_boto3_result.json", "r") as f:
example_result = json.load(f)
with open("example_boto3_result2.json", "r") as f:
example_result2 = json.load(f)
# summary, buffer, data = report_cost(group_by="LINKED_ACCOUNT")
# print(summary)
# print(buffer)
#
# summary, buffer, data = report_cost(group_by="REGION")
# print(summary)
# print(buffer)
#
# summary, buffer, data = report_cost(group_by="USAGE_TYPE", length=20)
# print(summary)
# print(buffer)
#
# summary, buffer, data = report_cost(group_by="SERVICE", length=20)
# print(summary)
# print(buffer)
# summary, buffer, data = report_cost(group_by="SERVICE", length=5, cost_aggregation="UnblendedCost")
# print(summary)
# print(buffer)
# summary, buffer, data = report_cost(group_by="SERVICE", length=5, cost_aggregation="AmortizedCost")
# print(summary)
# print(buffer)
# New Method with 2 example jsons
summary, buffer, cost_dict = report_cost(None, None, "UnblendedCost", example_result, yesterday="2021-08-23", new_method=True)
assert "{0:.2f}".format(cost_dict.get("total", 0.0)) == "286.37", f'{cost_dict.get("total"):,.2f} != 286.37'
summary, buffer, cost_dict = report_cost(None, None, "UnblendedCost", example_result2, yesterday="2021-08-29", new_method=True)
assert "{0:.2f}".format(cost_dict.get("total", 0.0)) == "21.45", f'{cost_dict.get("total"):,.2f} != 21.45'
# Old Method with same jsons (will fail)
summary, buffer, cost_dict = report_cost(None, None, "UnblendedCost", example_result, yesterday="2021-08-23", new_method=False)
assert "{0:.2f}".format(cost_dict.get("total", 0.0)) == "286.37", f'{cost_dict.get("total"):,.2f} != 286.37'
summary, buffer, cost_dict = report_cost(None, None, "UnblendedCost", example_result2, yesterday="2021-08-29", new_method=False)
assert "{0:.2f}".format(cost_dict.get("total", 0.0)) == "21.45", f'{cost_dict.get("total"):,.2f} != 21.45'