-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathold-matcher.py
725 lines (613 loc) · 26 KB
/
old-matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import csv
import sys
from enum import Enum
### HOW TO USE ###
"""
Author: Jason Chang, former 61A Coordinator
This is a script for semi-autonomously matching JMs to families based on preferential data. In theory,
this script is generalized enough to be used to match any subset of people given a set of constraints,
but the primary intent of this script is for family matching and thus correct operation to fit other
scenarios cannot be guaranteed. Before running the script, make sure that your CSVs satisfy all of
the below assumptions; otherwise, the script is not guaranteed to work properly.
Assumptions before running the script:
- Numbers in sheets must be integers
- Preference and difference constraints must have matching headers and options between SM and JM sheets
(see sample inputs for JMs and SMs)
Assumptions about SM pair CSV headers:
- SM name headers must be called "SM 1" and "SM 2", respectively
- Aside from the above headers, no other headers contain the string "SM"
- Headers must not contain square brackets
Assumptions about JM CSV headers:
- Name header must be called "Name"
- Headers only contain square brackets to denote options (see sample input for JMs)
Follow the below steps to run the script:
(1) Download the script.
(2) Download CSVs for both JM and SM pair data. (see sample inputs for JMs and SMs)
(3) You may change the variable values in the INPUTS/OUTPUTS section below (it's a bit farther down the script).
BE CAREFUL NOT TO CHANGE THE VARIABLE NAMES
(4) In Terminal, run python family_matcher.py. Note: This script was written for Python 3.6, so using other
versions may lead to unintended behavior.
"""
### CONSTRAINTS ###
class Constraint:
def __init__(self, header):
self.header = header
def is_satisfied():
return False
class PreferenceConstraint(Constraint):
def __init__(self, header, max_pref):
super().__init__(header)
self.max_pref = max_pref
self.options = []
def is_satisfied(self, pref):
return int(pref) <= self.max_pref
class CountConstraint(Constraint):
def __init__(self, header, value, min_count, max_count):
super().__init__(header)
self.value = value
self.min_count = min_count
self.max_count = max_count
def is_match(self, value):
return value == self.value
def is_satisfied(self, count):
return self.min_count <= count and count <= self.max_count
def can_be_satisfied(self, count, availability):
return count + availability >= self.min_count
class JMCountConstraint(CountConstraint):
def __init__(self, min_count, max_count):
super().__init__("JM Count", "", min_count, max_count)
def can_be_satisfied(self, count, availability):
return count + availability == self.max_count
class DifferenceConstraint(Constraint):
def __init__(self, header, max_diff):
super().__init__(header)
self.max_diff = max_diff
def is_satisfied(self, val1, val2):
return abs(int(val1) - int(val2)) <= self.max_diff
class Text(Enum):
NONE = (0,)
SHORT = (1,)
FULL = 2
################################################
### SHOULD NOT NEED TO EDIT ABOVE THIS POINT ###
################################################
### INPUTS/OUTPUTS ###
"""
Below are brief descriptions for the types of constraints this script considers.
JMCountConstraint(min_count: int, max_count: int)
- Defines a constraint for how many JMs a family should have
- The following must be true: (# of families) * (jm_count_constraint.max_count) >= (total # of JMs)
PreferenceConstraint(header: string, max_pref: int)
- Defines a constraint to match JMs to the best fit family given preference ratings for some options
- Preference ratings are assumed to be positive integers, where lower numbers indicate higher preference
- max_pref indicates the lowest preference (highest rating) to consider for family matching
(i.e. threshold for low preferences that shouldn't be considered)
CountConstraint(header: string, value: string, min_count: int, max_count: int)
- Defines a constraint for how many JMs in a family should have a certain value
- The following must be true: count_constraint.max_count <= jm_count_constraint.max_count
DifferenceConstraint(header: string, max_diff: int)
- Defines a constraint to match JMs to the best fit family given the SM pair value and JM value
- max_diff indicates the maximum difference between the SM pair value and JM value to consider
(i.e. threshold for high variance matches that shouldn't be considered)
"""
# [Mandatory] Inclusive range for number of JMs per family
jm_count_constraint = JMCountConstraint(4, 5)
# [Optional] Preference constraints
preference_constraints = [
PreferenceConstraint("Please fill in your family meeting availability", 2)
]
# [Optional] Count constraints
count_constraints = [CountConstraint("Gender", "Female", 2, 3)]
# [Optional] Difference constraints
difference_constraints = [
DifferenceConstraint("How social do you want your family to be?", 1)
]
# [Mandatory] Relative path to CSV of JM matching data
path_jms = "sample-input-jm.csv"
# [Mandatory] Relative path to CSV of SM matching data
path_sms = "sample-input-sm.csv"
# [Mandatory] Write location for script final output (short)
path_write_short = "./families_out.csv"
# [Mandatory] Write location for script final output (full)
path_write_full = "./families_out_full.csv"
# [Mandatory] Setting for Terminal text output (Text.NONE, Text.SHORT, Text.FULL)
text_output = Text.NONE
################################################
### SHOULD NOT NEED TO EDIT BELOW THIS POINT ###
################################################
### UTILS ###
MAX_ITERS = 100
def is_preference(header):
return any([c.header in header for c in preference_constraints])
def is_count(header):
return any([header == c.header for c in count_constraints])
def is_difference(header):
return any([header == c.header for c in difference_constraints])
def get_constraint(header, constraints):
for c in constraints:
if header == c.header:
return c
def get_preference_header(header):
return header.split("[")[0][:-1]
def get_preference_option(header):
return header.split("[")[1][:-1]
### DATA MODELS ###
class DataValue:
def __init__(self, header, value):
self.header = header
self.value = value
class SMs:
def __init__(self):
self.sms = []
self.data = []
def load_data(self, data):
for header in data:
if "SM" in header:
self.sms.append(data[header])
elif is_preference(header) or is_count(header) or is_difference(header):
self.data.append(DataValue(header, data[header]))
def get_datavalue(self, header):
for dv in self.data:
if dv.header == header:
return dv
class JM:
def __init__(self, name):
self.name = name
self.data = []
def load_data(self, data):
for header in data:
if is_preference(header):
pref_header = get_preference_header(header)
pref_option = get_preference_option(header)
dv = get_datavalue = self.get_datavalue(pref_header)
if dv:
dv.value[pref_option] = data[header]
else:
new_dict = {}
new_dict[pref_option] = data[header]
new_dv = DataValue(pref_header, new_dict)
self.data.append(new_dv)
elif is_count(header) or is_difference(header):
self.data.append(DataValue(header, data[header]))
def get_datavalue(self, header):
for dv in self.data:
if dv.header == header:
return dv
class FamilyStatus(Enum):
INCOMPLETE = 0
COMPLETE = 1
class Family:
def __init__(self):
self.sms = SMs()
self.jms = []
self.status = FamilyStatus.INCOMPLETE
# Mentor manipulation
def add_sms(self, data):
self.sms.load_data(data)
def add_jm(self, jm):
try:
self.jms.append(jm)
self.update_status()
return True
except Exception as e:
if jm in self.jms:
self.jms.remove(jm)
self.update_status()
print("An error occurred when adding a JM to a family.", e)
return False
def swap_jm(self, jm_outgoing, jm_incoming):
try:
self.jms.remove(jm_outgoing)
self.jms.append(jm_incoming)
self.update_status()
return True
except Exception as e:
if jm_outgoing not in self.jms:
self.jms.append(jm_outgoing)
if jm_incoming in self.jms:
self.jms.remove(jm_incoming)
self.update_status()
print("An error occurred when swapping JMs.", e)
return False
def remove_jm(self, jm):
try:
self.jms.remove(jm)
self.update_status()
return True
except Exception as e:
if jm not in self.jms:
self.jms.append(jm)
self.update_status()
print("An error occurred when removing a JM from a family.", e)
return False
def allow_steal(self, jm):
without_jm = list(filter(lambda j: j is not jm, self.jms))
return all(
[self.jm_steal_check(j, without_jm) for j in without_jm]
) and jm_count_constraint.is_satisfied(len(self.jms) - 1)
def allow_swap(self, jm_outgoing, jm_incoming):
with_swapped_jms = list(
map(lambda j: jm_incoming if j is jm_outgoing else j, self.jms)
)
return all([self.jm_swap_check(j, with_swapped_jms) for j in with_swapped_jms])
# Constraint satisfaction
def jm_steal_check(self, jm, jms):
compatible = []
for dv in jm.data:
sm_dv = self.sms.get_datavalue(dv.header)
if is_preference(dv.header):
constraint = get_constraint(dv.header, preference_constraints)
compatible.append(constraint.is_satisfied(dv.value[sm_dv.value]))
elif is_count(dv.header):
constraint = get_constraint(dv.header, count_constraints)
count = sum(
[constraint.is_match(j.get_datavalue(dv.header).value) for j in jms]
)
compatible.append(constraint.is_satisfied(count))
elif is_difference(dv.header):
constraint = get_constraint(dv.header, difference_constraints)
compatible.append(constraint.is_satisfied(sm_dv.value, dv.value))
return all(compatible)
def jm_swap_check(self, jm, jms):
compatible = []
good_family_size = jm_count_constraint.can_be_satisfied(
len(self.jms), self.get_availability()
)
compatible.append(good_family_size)
for dv in jm.data:
sm_dv = self.sms.get_datavalue(dv.header)
if is_preference(dv.header):
constraint = get_constraint(dv.header, preference_constraints)
compatible.append(constraint.is_satisfied(dv.value[sm_dv.value]))
elif is_count(dv.header):
constraint = get_constraint(dv.header, count_constraints)
count = sum(
[constraint.is_match(j.get_datavalue(dv.header).value) for j in jms]
)
if self.status == FamilyStatus.COMPLETE:
compatible.append(constraint.is_satisfied(count))
else:
compatible.append(
constraint.can_be_satisfied(count, self.get_availability())
)
elif is_difference(dv.header):
constraint = get_constraint(dv.header, difference_constraints)
compatible.append(constraint.is_satisfied(sm_dv.value, dv.value))
return all(compatible)
def jm_add_check(self, jm):
compatible = []
good_family_size = jm_count_constraint.can_be_satisfied(
len(self.jms) + 1, max(self.get_availability() - 1, 0)
)
compatible.append(good_family_size)
for dv in jm.data:
sm_dv = self.sms.get_datavalue(dv.header)
if is_preference(dv.header):
constraint = get_constraint(dv.header, preference_constraints)
compatible.append(constraint.is_satisfied(dv.value[sm_dv.value]))
elif is_count(dv.header):
constraint = get_constraint(dv.header, count_constraints)
count = sum(
[
constraint.is_match(j.get_datavalue(dv.header).value)
for j in self.jms
]
)
count += constraint.is_match(dv.value)
compatible.append(
constraint.can_be_satisfied(
count, max(self.get_availability() - 1, 0)
)
)
elif is_difference(dv.header):
constraint = get_constraint(dv.header, difference_constraints)
compatible.append(constraint.is_satisfied(sm_dv.value, dv.value))
return all(compatible)
def full_check(self):
compatible = []
compatible.append(jm_count_constraint.is_satisfied(len(self.jms)))
for jm in self.jms:
for dv in jm.data:
sm_dv = self.sms.get_datavalue(dv.header)
if is_preference(dv.header):
constraint = get_constraint(dv.header, preference_constraints)
compatible.append(constraint.is_satisfied(dv.value[sm_dv.value]))
elif is_count(dv.header):
constraint = get_constraint(dv.header, count_constraints)
count = sum(
[
constraint.is_match(j.get_datavalue(dv.header).value)
for j in self.jms
]
)
compatible.append(constraint.is_satisfied(count))
elif is_difference(dv.header):
constraint = get_constraint(dv.header, difference_constraints)
compatible.append(constraint.is_satisfied(sm_dv.value, dv.value))
return all(compatible)
def update_status(self):
if self.full_check():
self.status = FamilyStatus.COMPLETE
else:
self.status = FamilyStatus.INCOMPLETE
def get_availability(self):
return jm_count_constraint.max_count - len(self.jms)
# Output handlers
def short_output(self):
return (
self.sms.sms
+ [True if self.status == FamilyStatus.COMPLETE else False]
+ list(map(lambda j: j.name, self.jms))
)
def full_output(self, constraint_headers):
jm_rows = []
family_completion = True if self.status == FamilyStatus.COMPLETE else False
for jm in self.jms:
res = self.sms.sms + [family_completion] + [jm.name]
for header in constraint_headers[4:]:
if is_preference(header):
pref_header = get_preference_header(header)
dv = jm.get_datavalue(pref_header)
pref_option = get_preference_option(header)
res.append(dv.value[pref_option])
else:
dv = jm.get_datavalue(header)
res.append(dv.value)
jm_rows.append(res)
return jm_rows
### CONTROLLERS ###
class FamilyMatcher:
def __init__(self):
self.families = []
self.stray_jms = []
# Load mentor data
def load_sms(self):
try:
with open(path_sms, newline="") as file_sms:
reader = csv.DictReader(file_sms)
for row in reader:
self.add_family(row)
except Exception as e:
print("An error occurred while adding SMs to a family.", e)
def load_pref_headers(self, headers):
for header in headers:
if is_preference(header):
pref_header = get_preference_header(header)
pref_constraint = get_constraint(pref_header, preference_constraints)
pref_constraint.options.append(header)
def load_jms(self):
try:
with open(path_jms, newline="") as file_jms:
reader = csv.DictReader(file_jms)
did_read_pref_headers = False
for row in reader:
if not did_read_pref_headers:
self.load_pref_headers(row)
did_read_pref_headers = True
self.add_jm(row)
except Exception as e:
print("An error occurred when initially loading JM data.", e)
raise e
def add_family(self, sm_data):
new_family = Family()
new_family.add_sms(sm_data)
self.families.append(new_family)
def add_jm(self, jm_data):
new_jm = JM(jm_data["Name"])
new_jm.load_data(jm_data)
self.stray_jms.append(new_jm)
# Mentor manipulation
def assign_perfect_fits(self):
assigned = []
for jm in self.stray_jms:
fit_found = False
for family in self.families:
if not fit_found and family.jm_add_check(jm):
fit_found = True
family.add_jm(jm)
assigned.append(jm)
for assigned_jm in assigned:
self.stray_jms.remove(assigned_jm)
def perfect_stray_adds(self, incomplete_families, complete_families):
for i in incomplete_families:
assigned = []
for jm in self.stray_jms:
if not jm_count_constraint.is_satisfied(len(i.jms)) and i.jm_add_check(
jm
):
i.add_jm(jm)
assigned.append(jm)
for assigned_jm in assigned:
self.stray_jms.remove(assigned_jm)
self.promote_families_by_status(incomplete_families, complete_families)
def perfect_steals(self, incomplete_families, complete_families):
for i in incomplete_families:
for c in complete_families:
stolen = None
for jm in c.jms:
if (
stolen is None
and not jm_count_constraint.is_satisfied(len(i.jms))
and i.jm_add_check(jm)
and c.allow_steal(jm)
):
stolen = jm
if stolen is not None:
i.add_jm(stolen)
c.remove_jm(stolen)
break
self.promote_families_by_status(incomplete_families, complete_families)
def perfect_swaps(self, incomplete_families, complete_families):
for i in incomplete_families:
for f in self.families:
swap_this, swap_other = None, None
for jm in i.jms:
for other_jm in f.jms:
if (
swap_this is None
and swap_other is None
and i.allow_swap(jm, other_jm)
and f.allow_swap(other_jm, jm)
):
swap_this, swap_other = jm, other_jm
if swap_this is not None and swap_other is not None:
i.swap_jm(swap_this, swap_other)
f.swap_jm(swap_other, swap_this)
self.promote_families_by_status(incomplete_families, complete_families)
def stray_swap(self, jm_from_family, jm_to_family):
self.stray_jms.remove(jm_to_family)
self.stray_jms.append(jm_from_family)
def perfect_stray_swaps(self, incomplete_families, complete_families):
for f in self.families:
swap_family, swap_stray = None, None
for jm in f.jms:
for stray in self.stray_jms:
if (
swap_family is None
and swap_stray is None
and f.allow_swap(jm, stray)
):
swap_family, swap_stray = jm, stray
if swap_family is not None and swap_stray is not None:
f.swap_jm(swap_family, swap_stray)
self.stray_swap(swap_family, swap_stray)
self.promote_families_by_status(incomplete_families, complete_families)
def iterate(self):
for _ in range(MAX_ITERS):
self.assign_perfect_fits()
incomplete_families, complete_families = [], []
self.split_families_by_status(incomplete_families, complete_families)
self.perfect_stray_adds(incomplete_families, complete_families)
self.perfect_steals(incomplete_families, complete_families)
self.perfect_swaps(incomplete_families, complete_families)
self.perfect_stray_swaps(incomplete_families, complete_families)
def split_families_by_status(self, incomplete_families, complete_families):
for f in self.families:
if f.status == FamilyStatus.COMPLETE:
complete_families.append(f)
else:
incomplete_families.append(f)
def promote_families_by_status(self, incomplete_families, complete_families):
promoted = []
for f in incomplete_families:
if f.status == FamilyStatus.COMPLETE:
complete_families.append(f)
promoted.append(f)
for promoted_family in promoted:
incomplete_families.remove(promoted_family)
### OUTPUT HANDLERS ###
def get_short_headers():
headers = ["SM 1", "SM 2", "Perfectly Compatible"]
for i in range(jm_count_constraint.max_count):
headers.append("JM " + str(i + 1))
return headers
def csv_short(matcher):
try:
with open(path_write_short, "w") as file_write:
writer = csv.writer(file_write, quoting=csv.QUOTE_MINIMAL)
writer.writerow(get_short_headers())
for family in matcher.families:
writer.writerow(family.short_output())
idx = 0
while idx < len(matcher.stray_jms):
jms = matcher.stray_jms[
idx : idx
+ min(jm_count_constraint.max_count, len(matcher.stray_jms) - idx)
]
writer.writerow(
[False] + ["Unassigned"] * 2 + list(map(lambda j: j.name, jms))
)
idx += jm_count_constraint.max_count
except Exception as e:
print("An error occurred when writing CSV output (short).", e)
def get_full_headers():
headers = ["SM 1", "SM 2", "Family Complete", "JM"]
for pc in preference_constraints:
headers.extend(pc.options)
for cc in count_constraints:
headers.append(cc.header)
for dc in difference_constraints:
headers.append(dc.header)
return headers
def csv_full(matcher):
try:
with open(path_write_full, "w") as file_write:
writer = csv.writer(file_write, quoting=csv.QUOTE_MINIMAL)
full_headers = get_full_headers()
writer.writerow(full_headers)
for family in matcher.families:
writer.writerows(family.full_output(full_headers))
for jm in matcher.stray_jms:
jm_row = [False] + ["Unassigned"] * 2 + [jm.name]
for header in full_headers[4:]:
if is_preference(header):
pref_header = get_preference_header(header)
dv = jm.get_datavalue(pref_header)
pref_option = get_preference_option(header)
jm_row.append(dv.value[pref_option])
else:
dv = jm.get_datavalue(header)
jm_row.append(dv.value)
writer.writerow(jm_row)
except Exception as e:
print("An error occurred when writing CSV output (full).", e)
def text_short(matcher):
print("################\n### FAMILIES ###\n################\n")
for f in matcher.families:
print("----------------")
print("INCOMPLETE" if f.status == FamilyStatus.INCOMPLETE else "COMPLETE")
sm_str = "SMs ({0}): ".format(len(f.sms.sms))
for sm in f.sms.sms:
sm_str += sm + ", "
print(sm_str[:-2])
jm_str = "JMs ({0}): ".format(len(f.jms))
for j in f.jms:
jm_str += j.name + ", "
print(jm_str[:-2])
print("----------------\n")
print("#################\n### STRAY JMS ###\n#################\n")
for j in matcher.stray_jms:
print(j.name)
def text_full(matcher):
print("################\n### FAMILIES ###\n################\n")
for f in matcher.families:
print("----------------")
print("INCOMPLETE" if f.status == FamilyStatus.INCOMPLETE else "COMPLETE")
sm_str = "SMs ({0}): ".format(len(f.sms.sms))
for sm in f.sms.sms:
sm_str += sm + ", "
print(sm_str[:-2])
for dv in f.sms.data:
print(dv.header + ":", dv.value)
print("JMs ({0}): ".format(len(f.jms)))
for j in f.jms:
print("---")
print(j.name)
for dv in j.data:
print(dv.header + ":", dv.value)
print("----------------\n")
print("#################\n### STRAY JMS ###\n#################\n")
for j in matcher.stray_jms:
print("----------------")
print(j.name)
for dv in j.data:
print(dv.header + ":", dv.value)
print("----------------\n")
### MAIN ###
def run():
# Load mentors
matcher = FamilyMatcher()
matcher.load_sms()
matcher.load_jms()
# Run algorithm
matcher.iterate()
# CSV output
csv_short(matcher)
csv_full(matcher)
# Text output
if text_output == Text.SHORT:
text_short(matcher)
elif text_output == Text.FULL:
text_full(matcher)
if __name__ == "__main__":
run()