-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlibsimulate.py
275 lines (234 loc) · 9.64 KB
/
libsimulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3
import json
import random
from multiprocessing import Pool, cpu_count
from collections.abc import Iterable
from datetime import datetime
from libmodel import LendingAMM
pool = None
price_data = None
EXT_FEE = 5e-4
class Simulator:
min_loan_duration = 1 # day
max_loan_duration = 1 # days
SAMPLES = 400
other = {'dynamic_fee_multiplier': 0, 'use_po_fee': 1, 'po_fee_delay': 2}
def __init__(self, filename, ext_fee, add_reverse=False,
log=False, verbose=False):
"""
filename - OHLC data in the same format as Binance returns
ext_fee - Fee which arb trader pays to external platforms
add_reverse - Attach the same data with the time reversed
"""
self.filename = filename
self.ext_fee = ext_fee
self.add_reverse = add_reverse
self.load_prices()
self.log = log
self.verbose = verbose
self.ema_time = 0
self.emas = []
def load_prices(self):
global price_data
if self.filename.endswith('.gz'):
import gzip
with gzip.open(self.filename, "r") as f:
data = json.load(f)
else:
with open(self.filename, "r") as f:
data = json.load(f)
# timestamp, OHLC, vol
unfiltered_data = [[int(d[0])] + [float(x) for x in d[1:6]] for d in data]
data = []
prev_time = 0
for d in unfiltered_data:
if d[0] >= prev_time:
data.append(d)
prev_time = d[0]
if self.add_reverse:
t0 = data[-1][0]
data += [[t0 + (t0 - d[0])] + d[1:] for d in data[::-1]]
price_data = data
def update_emas(self, Texp):
if self.ema_time != Texp:
self.ema_time = Texp
self.emas = []
ema = price_data[0][1]
ema_t = price_data[0][0]
for t, _, high, low, _, _ in price_data:
ema_mul = 2 ** (- (t - ema_t) / (1000 * Texp))
ema = ema * ema_mul + (low + high) / 2 * (1 - ema_mul)
ema_t = t
self.emas.append(ema)
def single_run(self, A, range_size, fee, Texp, position, size, p_shift=None, **kw):
"""
position: 0..1
size: fraction of all price data length for size
"""
self.update_emas(Texp)
# Data for prices
pos = (int(position * len(price_data)), int((position + size) * len(price_data)))
data = price_data[pos[0]: pos[1]]
emas = self.emas[pos[0]: pos[1]]
if p_shift is None:
p0 = data[0][1]
else:
p0 = data[0][1] * (1 - p_shift)
initial_y0 = 1.0
p_base = p0 * (A / (A - 1) + 1e-4)
initial_x_value = initial_y0 * p_base
amm = LendingAMM(p_base, A, fee, **kw)
# Fill ticks with liquidity
amm.deposit_nrange(initial_y0, p0, range_size) # 1 ETH
initial_all_x = amm.get_all_x()
losses = []
fees = []
def find_target_price(p, is_up=True, new=False):
if is_up:
for n in range(amm.max_band, amm.min_band - 1, -1):
p_down = amm.p_down(n)
dfee = amm.dynamic_fee(n, new=new)
p_down_ = p_down * (1 + dfee)
# XXX print(n, amm.min_band, amm.max_band, p_down, p, amm.get_p())
if p > p_down_:
p_up = amm.p_up(n)
p_up_ = p_up * (1 + dfee)
# if p >= p_up_:
# return p_up
# else:
return (p - p_down_) / (p_up_ - p_down_) * (p_up - p_down) + p_down
else:
for n in range(amm.min_band, amm.max_band + 1):
p_up = amm.p_up(n)
dfee = amm.dynamic_fee(n, new=new)
p_up_ = p_up * (1 - dfee)
if p < p_up_:
p_down = amm.p_down(n)
p_down_ = p_down * (1 - dfee)
# if p <= p_down_:
# return p_down
# else:
return p_up - (p_up_ - p) / (p_up_ - p_down_) * (p_up - p_down)
if is_up:
return p * (1 - amm.dynamic_fee(amm.min_band, new=False))
else:
return p * (1 + amm.dynamic_fee(amm.max_band, new=False))
for (t, o, high, low, c, vol), ema in zip(data, emas):
amm.set_p_oracle(ema)
# max_price = amm.p_up(amm.max_band)
# min_price = amm.p_down(amm.min_band)
high = find_target_price(high * (1 - self.ext_fee), is_up=True, new=True)
low = find_target_price(low * (1 + self.ext_fee), is_up=False, new=False)
# high = high * (1 - EXT_FEE - fee)
# low = low * (1 + EXT_FEE + fee)
# if high > amm.get_p():
# print(high, '/', high_, '/', max_price, '; ', low, '/', low_, '/', min_price)
if high > amm.get_p():
try:
amm.trade_to_price(high)
except Exception:
print(high, low, amm.get_p())
raise
# Not correct for dynamic fees which are too high
# if high > max_price:
# # Check that AMM has only stablecoins
# for n in range(amm.min_band, amm.max_band + 1):
# assert amm.bands_y[n] == 0
# assert amm.bands_x[n] > 0
if low < amm.get_p():
amm.trade_to_price(low)
# Not correct for dynamic fees which are too high
# if low < min_price:
# # Check that AMM has only collateral
# for n in range(amm.min_band, amm.max_band + 1):
# assert amm.bands_x[n] == 0
# assert amm.bands_y[n] > 0
d = datetime.fromtimestamp(t//1000).strftime("%Y/%m/%d %H:%M")
fees.append(amm.dynamic_fee(amm.active_band, new=False))
if self.log or self.verbose:
loss = amm.get_all_x() / initial_x_value * 100
if self.log:
print(f'{d}\t{o:.2f}\t{ema:.2f}\t{amm.get_p():.2f}\t\t{loss:.2f}%')
if self.verbose:
losses.append([t//1000, loss / 100])
if losses:
self.losses = losses
loss = 1 - amm.get_all_x() / initial_all_x
return loss
def f(self, x):
A, range_size, fee, Texp, pos, size, p_shift, other = x
try:
return self.single_run(A, range_size, fee, Texp, pos, size, p_shift=p_shift, **other)
except Exception as e:
print(e)
return 0
def get_loss_rate(self, A, range_size, fee, Texp, samples=None,
max_loan_duration=None, min_loan_duration=None,
n_top_samples=None, other={}):
_other = {k: v for k, v in self.other.items()}
_other.update(other)
other = _other
if not samples:
samples = self.SAMPLES
if not max_loan_duration:
max_loan_duration = self.max_loan_duration
if not min_loan_duration:
min_loan_duration = self.min_loan_duration
dt = 86400 * 1000 / (price_data[-1][0] - price_data[0][0]) # Which fraction of all data is 1 day
inputs = [(A, range_size, fee, Texp, random.random(), (max_loan_duration-min_loan_duration) * dt * random.random() +
min_loan_duration*dt, 0, other) for _ in range(samples)]
result = pool.map(self.f, inputs, 1000)
if not n_top_samples:
n_top_samples = samples // 20
return sum(sorted(result)[::-1][:n_top_samples]) / n_top_samples
def init_multicore():
global pool
pool = Pool(cpu_count() // 2)
def scan_param(filename, **kw):
simulator = Simulator(filename, EXT_FEE, add_reverse=kw.pop('add_reverse', True))
init_multicore()
args = {'samples': 500000, 'n_top_samples': 50, 'min_loan_duration': 0.15, 'max_loan_duration': 0.15}
args.update(kw)
iterable_args = [k for k in kw if isinstance(kw[k], Iterable) and not isinstance(kw[k], dict)]
assert len(iterable_args) == 1, "Not one iterable item"
scanned_name = iterable_args[0]
scanned_args = kw[scanned_name]
del args[scanned_name]
losses = []
discounts = []
for v in scanned_args:
args[scanned_name] = v
loss = simulator.get_loss_rate(**args)
A = args['A']
range_size = args['range_size']
# Simplified formula
# bands_coefficient = (((A - 1) / A) ** range_size) ** 0.5
# More precise
bands_coefficient = sum(((A - 1) / A) ** (k + 0.5) for k in range(range_size)) / range_size
cl = 1 - (1 - loss) * bands_coefficient
print(f'{scanned_name}={v}\t->\tLoss={loss},\tLiq_discount={cl}')
losses.append(loss)
discounts.append(cl)
return [(scanned_args, losses), (scanned_args, discounts)]
def plot_losses(param_name, losses):
try:
import pylab
import matplotlib
try:
matplotlib.use('Qt5Agg')
except Exception:
matplotlib.use('TkAgg')
except ImportError:
raise
for (x, y) in losses:
pylab.plot(x, y)
pylab.grid()
pylab.ylabel('Loss')
pylab.xlabel(param_name)
pylab.show()
if __name__ == '__main__':
simulator = Simulator('data/ethusdt-1m.json.gz', 5e-4, add_reverse=True)
init_multicore()
print(simulator.get_loss_rate(
100, 4, 0.005, min_loan_duration=0.05, max_loan_duration=0.05, Texp=600,
samples=500000, n_top_samples=50))