-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdataset.py
172 lines (146 loc) · 5.87 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
from torch.utils.data import Dataset
import torch
import math
import random
import os
def rotation2quaternion(M):
tr = np.trace(M)
m = M.reshape(-1)
if tr > 0:
s = np.sqrt(tr + 1.0) * 2
w = 0.25 * s
x = (m[7] - m[5]) / s
y = (m[2] - m[6]) / s
z = (m[3] - m[1]) / s
elif m[0] > m[4] and m[0] > m[8]:
s = np.sqrt(1.0 + m[0] - m[4] - m[8]) * 2
w = (m[7] - m[5]) / s
x = 0.25 * s
y = (m[1] + m[3]) / s
z = (m[2] + m[6]) / s
elif m[4] > m[8]:
s = np.sqrt(1.0 + m[4] - m[0] - m[8]) * 2
w = (m[2] - m[6]) / s
x = (m[1] + m[3]) / s
y = 0.25 * s
z = (m[5] + m[7]) / s
else:
s = np.sqrt(1.0 + m[8] - m[0] - m[4]) * 2
w = (m[3] - m[1]) / s
x = (m[2] + m[6]) / s
y = (m[5] + m[7]) / s
z = 0.25 * s
Q = np.array([w, x, y, z]).reshape(-1)
return Q
def quaternion2rotation(quat):
assert (len(quat) == 4)
# normalize first
quat = quat / np.linalg.norm(quat)
a, b, c, d = quat
a2 = a * a
b2 = b * b
c2 = c * c
d2 = d * d
ab = a * b
ac = a * c
ad = a * d
bc = b * c
bd = b * d
cd = c * d
# s = a2 + b2 + c2 + d2
m0 = a2 + b2 - c2 - d2
m1 = 2 * (bc - ad)
m2 = 2 * (bd + ac)
m3 = 2 * (bc + ad)
m4 = a2 - b2 + c2 - d2
m5 = 2 * (cd - ab)
m6 = 2 * (bd - ac)
m7 = 2 * (cd + ab)
m8 = a2 - b2 - c2 + d2
return np.array([m0, m1, m2, m3, m4, m5, m6, m7, m8]).reshape(3, 3)
class PnP_Data_Simulator(Dataset):
def __init__(self, sampleCnt=20000, gridCnt=200, minNoiseSigma=0, maxNoiseSigma=0, minOutlier=0, maxOutlier=0):
self.width = 640
self.height = 480
self.intrinsic = torch.from_numpy(np.array([[800, 0, self.width/2],
[0, 800, self.height/2],
[0, 0, 1]])).float()
self.point_3d = 0.5 * torch.from_numpy(np.array([1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1])).float()
self.point_3d = self.point_3d.view(-1, 3)
self.gridCnt = gridCnt
self.minNoiseSigma = minNoiseSigma
self.maxNoiseSigma = maxNoiseSigma
self.minOutlier = minOutlier
self.maxOutlier = maxOutlier
self.sampleCnt = sampleCnt
#
self.translation_min = [-2,-2,4]
self.translation_max = [2,2,8]
def __len__(self):
return self.sampleCnt
def __getitem__(self, index):
gt_r =self.RandomRotation()
gt_q = torch.from_numpy(rotation2quaternion(gt_r)).float()
gt_r = torch.from_numpy(gt_r).float()
gt_t = torch.from_numpy(self.RandomTranslation()).float()
#
# select grids randomly within the image plane
sy = np.random.randint(self.height, size=self.gridCnt)
sx = np.random.randint(self.width, size=self.gridCnt)
sy = torch.from_numpy(sy.reshape(-1, 1).repeat(len(self.point_3d), axis=1)).float()
sx = torch.from_numpy(sx.reshape(-1, 1).repeat(len(self.point_3d), axis=1)).float()
#
# 2d reprojection
p = torch.mm(self.intrinsic, torch.mm(gt_r, self.point_3d.t()) + gt_t.view(-1,1))
tx = (p[0] / p[2]).view(1,-1)
ty = (p[1] / p[2]).view(1,-1)
dx = tx-sx
dy = ty-sy
sxy = torch.cat((sx.view(-1, 1), sy.view(-1, 1)), 1)
dxy = torch.cat((dx.view(-1, 1), dy.view(-1, 1)), 1)
# add outlier
outlierRatio = np.random.uniform(self.minOutlier, self.maxOutlier)
outlierCnt = int(len(dxy) * outlierRatio + 0.5)
outlierChoice = np.random.choice(len(dxy), outlierCnt, replace=False)
sxy[outlierChoice, 0] = torch.from_numpy(np.random.uniform(0, self.width-1, size=outlierCnt)).float()
sxy[outlierChoice, 1] = torch.from_numpy(np.random.uniform(0, self.height-1, size=outlierCnt)).float()
#
dxy[outlierChoice, 0] = torch.from_numpy(np.random.uniform(0, self.width-1, size=outlierCnt)).float()
dxy[outlierChoice, 1] = torch.from_numpy(np.random.uniform(0, self.height-1, size=outlierCnt)).float()
# add noise to 2d
noiseSigma = np.random.uniform(self.minNoiseSigma, self.maxNoiseSigma)
noise = np.random.normal(0, noiseSigma, (len(dxy), 2)).astype(np.float32)
#
dxy = dxy + torch.from_numpy(noise)
return self.intrinsic, gt_q, gt_t, sxy, dxy, self.point_3d
def Rand(self, min, max):
return min + (max - min) * random.random()
def RandomRotation(self):
range = 1
# use eular formulation, three different rotation angles on 3 axis
phi = self.Rand(0, range * math.pi * 2)
theta = self.Rand(0, range * math.pi)
psi = self.Rand(0, range * math.pi * 2)
R0 = []
R0.append(math.cos(psi) * math.cos(phi) - math.cos(theta) * math.sin(phi) * math.sin(psi))
R0.append(math.cos(psi) * math.sin(phi) + math.cos(theta) * math.cos(phi) * math.sin(psi))
R0.append(math.sin(psi) * math.sin(theta))
R1 = []
R1.append(-math.sin(psi) * math.cos(phi) - math.cos(theta) * math.sin(phi) * math.cos(psi))
R1.append(-math.sin(psi) * math.sin(phi) + math.cos(theta) * math.cos(phi) * math.cos(psi))
R1.append(math.cos(psi) * math.sin(theta))
R2 = []
R2.append(math.sin(theta) * math.sin(phi))
R2.append(-math.sin(theta) * math.cos(phi))
R2.append(math.cos(theta))
R = []
R.append(R0)
R.append(R1)
R.append(R2)
return np.array(R)
def RandomTranslation(self):
tx = self.Rand(self.translation_min[0], self.translation_max[0])
ty = self.Rand(self.translation_min[1], self.translation_max[1])
tz = self.Rand(self.translation_min[2], self.translation_max[2])
return np.array([tx, ty, tz]).reshape(-1)