-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathVTKBlender.py
392 lines (318 loc) · 11.9 KB
/
VTKBlender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Copyright (c) 2005, Chris Want
"""
VTK inside Blender module.
Please see LICENSE and README.md for information about this software.
"""
import vtk
import time, string
try:
import bpy, bmesh
except:
print("No Blender module found!")
class BlenderToPolyData:
### Below is the public interface of this class
def __init__(self, me, uvlayer=None):
self.mesh = me
self.points = vtk.vtkPoints()
self.polys = vtk.vtkCellArray()
self.lines = vtk.vtkCellArray()
self.pdata = vtk.vtkPolyData()
def convert_data(self):
self.create_point_data()
self.process_faces()
self.process_edges()
self.create_pdata()
#self.process_uvcoords()
#self.pdata.Update()
return self.pdata
@classmethod
def convert(cls, me, uvlayer=None):
ob = cls(me, uvlayer)
return ob.convert_data()
## Below should be regarded 'private' ...
def create_pdata(self):
self.pdata.SetPoints(self.points)
self.pdata.SetPolys(self.polys)
self.pdata.SetLines(self.lines)
def create_point_data(self):
pcoords = vtk.vtkFloatArray()
pcoords.SetNumberOfComponents(3)
pcoords.SetNumberOfTuples(len(self.mesh.vertices))
for i in range(len(self.mesh.vertices)):
v = self.mesh.vertices[i]
p0 = v.co[0]
p1 = v.co[1]
p2 = v.co[2]
pcoords.SetTuple3(i, p0, p1, p2)
self.points.SetData(pcoords)
def process_faces(self):
for face in self.mesh.polygons:
self.polys.InsertNextCell(len(face.vertices))
for i in range(len(face.vertices)):
self.polys.InsertCellPoint(face.vertices[i])
def process_edges(self):
for edge in self.mesh.edges:
self.lines.InsertNextCell(len(edge.vertices))
for i in range(len(edge.vertices)):
self.lines.InsertCellPoint(edge.vertices[i])
def process_uvcoords(self):
if me.faceUV:
if uvlayer:
uvnames = me.getUVLayerNames()
if uvlayer in uvnames:
me.activeUVLayer = uvlayer
tcoords = vtk.vtkFloatArray()
tcoords.SetNumberOfComponents(2)
tcoords.SetNumberOfTuples(len(me.verts))
for face in me.faces:
for i in range(len(face.verts)):
uv = face.uv[i]
tcoords.SetTuple2(face.v[i].index, uv[0], uv[1])
pdata.GetPointData().SetTCoords(tcoords);
class PolyDataMapperToBlender:
# some flags to alter behavior
TRIS_TO_QUADS = 0x01
SMOOTH_FACES = 0x02
### Below is the public interface for this class
def __init__(self, pmapper, me=None):
self.initialize_work_data()
self.initialize_mesh(me)
self.pmapper = pmapper
def convert_data(self):
self.initialize_work_data()
self.pmapper.Update()
pdata = self.pmapper.GetInput()
plut = self.pmapper.GetLookupTable()
scalars = pdata.GetPointData().GetScalars()
#print(pdata.GetNumberOfCells())
self.point_data_to_verts(pdata)
self.read_colors(scalars, plut)
self.process_topology(pdata, scalars)
self.mesh.from_pydata(self.verts, self.edges, self.faces)
self.set_smooth()
self.apply_vertex_colors()
#self.set_materials()
if (not self.newmesh):
self.mesh.update()
return self.mesh
@classmethod
def convert(cls, pmapper, me=None):
ob = cls(pmapper, me)
return ob.convert_data()
# What is this 'tri to quad' stuff? Well, sometimes it's best to
# try to read in pairs of consecutive triangles in as quad faces.
# An example: you extrude a tube along a polyline in vtk, and if
# you can get it into Blender as a bunch of quads, you can use a
# Catmull-Clark subdivision surface to smooth the tube out, with
# fewer creases.
def set_tris_to_quads(self):
self.flags = flags | self.TRIS_TO_QUADS
def set_tris_to_tris(self):
self.flags = flags & ~self.TRIS_TO_QUADS
def set_faces_to_smooth(self):
self.flags = flags | self.SMOOTH_FACES
def set_faces_to_faceted(self):
self.flags = flags & ~self.SMOOTH_FACES
### Below should be considered private to this class
def initialize_work_data(self):
self.verts = []
self.faces = []
self.edges = []
self.oldmats = None
self.colors = None
self.flags = 0
def initialize_mesh(self, me=None):
self.newmesh = False
if (me == None):
self.mesh = bpy.data.meshes.new("VTKBlender")
self.newmesh = True
else:
self.mesh = me
self.remove_mesh_data()
if me.materials:
self.oldmats = me.materials
def remove_mesh_data(self):
bm = bmesh.new()
bm.from_mesh(self.mesh)
all_verts = [v for v in bm.verts]
DEL_VERTS = 1
bmesh.ops.delete(bm, geom=all_verts, context=DEL_VERTS)
bm.to_mesh(self.mesh)
def point_data_to_verts(self, pdata):
self.verts = []
for i in range(pdata.GetNumberOfPoints()):
point = pdata.GetPoint(i)
self.add_vert(point[0],point[1],point[2])
def add_vert(self, x, y, z):
self.verts.append([x, y, z])
def read_colors(self, scalars, plut):
if ( (scalars != None) and (plut != None) ):
self.colors = []
scolor = [0,0,0]
for i in range(scalars.GetNumberOfTuples()):
plut.GetColor(scalars.GetTuple1(i), scolor)
color = scolor
alpha = plut.GetOpacity(scalars.GetTuple1(i))
self.colors.append([scolor[0], scolor[1], scolor[2], alpha])
def set_smooth(self):
if ( self.flags & self.SMOOTH_FACES):
for f in me.faces:
f.smooth = 1
def apply_vertex_colors(self):
# Some faces in me.faces may have been discarded from our
# list, so best to compute the vertex colors after the faces
# have been added to the mesh
if (self.colors != None):
if not self.mesh.vertex_colors:
self.mesh.vertex_colors.new()
color_layer = self.mesh.vertex_colors.active
i = 0
for poly in self.mesh.polygons:
for idx in poly.vertices:
rgb = self.colors[idx]
# No alpha? Why Blender, why?
color_layer.data[i].color = rgb[0:3]
i += 1
def set_materials(self):
if not self.mesh.materials:
if self.oldmats:
self.mesh.materials = oldmats
else:
newmat = Material.New()
if (colors != None):
newmat.mode |= Material.Modes.VCOL_PAINT
self.mesh.materials = [newmat]
def process_line(self, cell):
n1 = cell.GetPointId(0)
n2 = cell.GetPointId(1)
self.add_edge(n1, n2)
def process_polyline(self, cell):
for j in range(cell.GetNumberOfPoints()-1):
n1 = cell.GetPointId(j)
n2 = cell.GetPointId(j+1)
self.add_edge(n1, n2)
def process_triangle(self, cell, skiptriangle):
if skiptriangle:
skiptriangle = False
return
if ( (self.flags & self.TRIS_TO_QUADS) and
(i < pdata.GetNumberOfCells()-1) and
(pdata.GetCellType(i+1)==5) ):
n1 = cell.GetPointId(0)
n2 = cell.GetPointId(1)
n3 = cell.GetPointId(2)
nextcell = pdata.GetCell(i+1)
m1 = nextcell.GetPointId(0)
m2 = nextcell.GetPointId(1)
m3 = nextcell.GetPointId(2)
if ( (n2 == m3) and (n3 == m2) ):
self.add_face(n1, n2, m1, n3)
skiptriangle = True
else:
self.add_face(n1, n2, n3)
else:
n1 = cell.GetPointId(0)
n2 = cell.GetPointId(1)
n3 = cell.GetPointId(2)
self.add_face(n1, n2, n3)
def process_triangle_strip(self, cell):
numpoints = cell.GetNumberOfPoints()
if ( (self.flags & self.TRIS_TO_QUADS) and (numpoints % 2 == 0) ):
for j in range(cell.GetNumberOfPoints()-3):
if (j % 2 == 0):
n1 = cell.GetPointId(j)
n2 = cell.GetPointId(j+1)
n3 = cell.GetPointId(j+2)
n4 = cell.GetPointId(j+3)
self.add_face(n1, n2, n4, n3)
else:
for j in range(cell.GetNumberOfPoints()-2):
if (j % 2 == 0):
n1 = cell.GetPointId(j)
n2 = cell.GetPointId(j+1)
n3 = cell.GetPointId(j+2)
else:
n1 = cell.GetPointId(j)
n2 = cell.GetPointId(j+2)
n3 = cell.GetPointId(j+1)
self.add_face(n1, n2, n3)
def process_polygon(self, cell, pdata, scalars):
# Add a vert at the center of the polygon,
# and break into triangles
x = 0.0
y = 0.0
z = 0.0
scal = 0.0
N = cell.GetNumberOfPoints()
for j in range(N):
point = pdata.GetPoint(cell.GetPointId(j))
x = x + point[0]
y = y + point[1]
z = z + point[2]
if (scalars != None):
scal = scal + scalars.GetTuple1(j)
x = x / N
y = y / N
z = z / N
scal = scal / N
newidx = len(self.verts)
self.add_vert(x, y, z)
if (scalars != None):
scolor = [0,0,0]
plut.GetColor(scal, scolor)
color = map(vtk_to_blender_color, scolor)
alpha = int(plut.GetOpacity(scalars.GetTuple1(i))*255)
colors.append([color[0], color[1], color[2], alpha])
# Add triangles connecting polynomial sides to new vert
for j in range(N):
n1 = cell.GetPointId(j)
n2 = cell.GetPointId( (j+1) % N )
n3 = newidx
self.add_face(n1, n2, n3)
def process_pixel(self, cell):
n1 = cell.GetPointId(0)
n2 = cell.GetPointId(1)
n3 = cell.GetPointId(2)
n4 = cell.GetPointId(3)
self.add_face(n1, n2, n3, n4)
def process_quad(self, cell):
n1 = cell.GetPointId(0)
n2 = cell.GetPointId(1)
n3 = cell.GetPointId(2)
n4 = cell.GetPointId(3)
self.add_face(n1, n2, n3, n4)
def process_topology(self, pdata, scalars):
skiptriangle = False
for i in range(pdata.GetNumberOfCells()):
cell = pdata.GetCell(i)
# print(i, pdata.GetCellType(i))
# Do line
if pdata.GetCellType(i)==3:
self.process_line(cell)
# Do poly lines
if pdata.GetCellType(i)==4:
self.process_polyline(cell)
# Do triangles
if pdata.GetCellType(i)==5:
self.process_triangle(cell, skiptriangle)
# Do triangle strips
if pdata.GetCellType(i)==6:
self.process_triangle_strip(cell)
# Do polygon
if pdata.GetCellType(i)==7:
self.process_polygon(cell, pdata, scalars)
# Do pixel
if pdata.GetCellType(i)==8:
self.process_pixel(cell)
# Do quad
if pdata.GetCellType(i)==9:
self.process_quad(cell)
def vtk_to_blender_color(self, x):
return int(255*float(x)+0.5)
def add_face(self, n1, n2, n3, n4=None):
if (n4 != None):
self.faces.append([n1, n2, n3, n4])
else:
self.faces.append([n1, n2, n3])
def add_edge(self, n1, n2):
self.edges.append([n1, n2])