-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanomaly_detection.py
121 lines (86 loc) · 2.78 KB
/
anomaly_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python3
# Auhor Dario Clavijo 2021
import math
def mean(L):
"""mean or average of all values in list"""
tmp = sum(L) * 1.0
l = len(L)
return tmp / l
avg = mean
def stddev(X):
"""standar deviation calculaion of all values in the list"""
l = len(X)
def F(X):
x = mean(X)
s = 0
for i in range(0, l):
s += (X[i] - x) ** 2
return s
return math.sqrt((1.0 / l) * F(X))
def MAD(X):
"""Median Absolute deviation calculaion of all values in the list"""
l = len(X)
def F(X):
x = mean(X)
s = 0
for i in range(0, l):
s += abs(X[i] - x)
return s
return (1.0 / l) * F(X)
def bounds(X):
"""Upper and lower bounds"""
SD = stddev(X)
m = mean(X)
return m - SD, SD + m
def simple_anonaly_detection(X):
"""A simple check if a value in a list is outside the bounds
It sould return tuples of (index,value)"""
B = bounds(X)
for i in range(0, len(X)):
if X[i] < B[0] or X[i] > B[1]:
yield (i, X[i])
def zvalue(X):
"""zvalue calculation"""
SD = stddev(X)
m = mean(X)
for i in range(0, len(X)):
yield (X[i] - m) / SD
def zvalue_anomaly_detection(X, treshold=[-1, 1]):
"""zvalue anomaly detection
It sould return tuples of (index,value,score)"""
Z = list(zvalue(X))
for i in range(0, len(X)):
if Z[i] < treshold[0] or Z[i] > treshold[1]:
yield (i, X[i], Z[i])
def MAD_anomaly_detection(X, treshold=1.5):
"""Median absoute value anomaly detection
It should return a tuple of (index,value,score)"""
M = MAD(X)
m = mean(X)
for i in range(0, len(X)):
v = abs(X[i] - m) / M
if v > treshold:
yield (i, X[i], v)
def test():
"""
Expected output:
Series: [2, 3, 5, 2, 3, 12, 5, 3, 4]
Mean: 4.333333333333333
StdDev: 2.9059326290271157
Bounds: (1.4274007043062173, 7.239265962360449)
simple anomaly detection: [(5, 12)]
zvalues: [-0.8029550685469661, -0.45883146774112343, 0.22941573387056186, -0.8029550685469661, -0.45883146774112343, 2.6382809395114606, 0.22941573387056186, -0.45883146774112343, -0.11470786693528078]
zvalue anomaly detection: [(5, 12, 2.6382809395114606)]
MAD anomaly detection: [(5, 12, 3.8333333333333344)]
"""
S = [2, 3, 5, 2, 3, 12, 5, 3, 4]
print(("Series:", S))
print(("Mean:", mean(S)))
print(("StdDev:", stddev(S)))
print(("Bounds:", bounds(S)))
print(("simple anomaly detection:", list(simple_anonaly_detection(S))))
print(("zvalues:", list(zvalue(S))))
print(("zvalue anomaly detection:", list(zvalue_anomaly_detection(S))))
print(("MAD anomaly detection:", list(MAD_anomaly_detection(S))))
if __name__ == "__main__":
test()