-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathe.py
60 lines (38 loc) · 1.02 KB
/
e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python
#
# Author Dario Clavijo 2015
# GPLv3
import math
# direct aproximation of e
# the x magic number is between 6444429920 and 6444429921
def direct_e():
x = 6444429920 + 0.22 # or int(0x1801e3260,16) + 0.22
return (1 + (1.0 / x)) ** x
# taylor aproximation of e
def taylor_e():
return sum(1.0 / (math.factorial(n)) for n in range(0, 15))
# by limits definition:
# d/dx e^x = lim ((e^x . e^h) - e^x)/h as h->0
# = e^x . lim((e^h - 1)/h) as h->0
# = e^x . 1 = e^x as h -> 0
def lim_ddx_e(x):
h = 1.0 / (534645555)
return (
(math.e**x * math.e**h) - math.e**x
) / h # = math.e * ((math.e ** h - 1.0)/h)
def test():
print((math.e))
print((direct_e()))
print((taylor_e()))
print((lim_ddx_e(1)))
i = complex(0, 1)
pi = math.pi
def exp(n, precision=100):
return sum((n**x) / math.factorial(x) for x in range(0, precision))
def test_exp():
print((exp(0)))
print((exp(0.5)))
print((exp(1)))
print((exp(pi)))
print((exp(i * pi)))
test_exp()