-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpitopiimage
92 lines (72 loc) · 3.53 KB
/
pitopiimage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
Step-by-step
Take a picture on the Raspberry Pi
The Pi camera can be controlled using a Python script:
import picamera
from time import sleep
camera = picamera.PiCamera()
try:
camera.start_preview()
sleep(1)
camera.capture('image_test.jpg', resize=(500,281))
camera.stop_preview()
pass
finally:
camera.close()
The purpose of starting the camera preview and the sleep function is to allow time for the camera to warm up, which gives a better image. The resize of the image greatly reduces its filesize, reducing the time it takes to send and receive the image. In this example, a 500×281 image is sufficient, but if desired the full 5MP of the Raspberry Pi camera can be used.
Convert the image to Base64 and publish
Once the image is taken, encode the image as Base64, then split it into segments to publish.
Converting to Base64:
import base64
def convertImageToBase64():
with open("image_test.jpg", "rb") as image_file:
encoded = base64.b64encode(image_file.read())
return encoded
In this example we will be publishing to the IBM Watson IoT Platform, using our specific device ID and credentials.
import ibmiotf.device
options = ibmiotf.device.ParseConfigFile("/home/pi/device2.cfg")
client = ibmiotf.device.Client(options)
client.connect()
When sending the image, we add some additional fields in order to identify it and make the reconstruction process easier. We will make use of this function that generates a random string to be used as the picture ID.
import random, string
def randomword(length):
return ''.join(random.choice(string.lowercase) for i in range(length))
We then split the data into chunks of size 3000, append some identifying information, then publish.
import math
packet_size=3000
def publishEncodedImage(encoded):
end = packet_size
start = 0
length = len(encoded)
picId = randomword(8)
pos = 0
no_of_packets = math.ceil(length/packet_size)
while start <= len(encoded):
data = {"data": encoded[start:end], "pic_id":picId, "pos": pos, "size": no_of_packets}
client.publishEvent("Image-Data",json.JSONEncoder().encode(data))
end += packet_size
start += packet_size
pos = pos +1
Receive and reconstruct image
In this example, the image will be displayed on a web page in the browser. A Javascript MQTT client subscribes and receives the image data. When the data comes in, the image is reconstructed by putting together the chunks in the correct order using the following function. The image labeled “picture_to_show” will show the reconstructed image.
function reconstructBase64String(chunk) {
pChunk = JSON.parse(chunk["d"]);
//creates a new picture object if receiving a new picture, else adds incoming strings to an existing picture
if (pictures[pChunk["pic_id"]]==null) {
pictures[pChunk["pic_id"]] = {"count":0, "total":pChunk["size"], pieces: {}, "pic_id": pChunk["pic_id"]};
pictures[pChunk["pic_id"]].pieces[pChunk["pos"]] = pChunk["data"];
}
else {
pictures[pChunk["pic_id"]].pieces[pChunk["pos"]] = pChunk["data"];
pictures[pChunk["pic_id"]].count += 1;
if (pictures[pChunk["pic_id"]].count == pictures[pChunk["pic_id"]].total) {
console.log("Image reception compelete");
var str_image="";
for (var i = 0; i <= pictures[pChunk["pic_id"]].total; i++)
str_image = str_image + pictures[pChunk["pic_id"]].pieces[i];
//displays image
var source = 'data:image/jpeg;base64,'+str_image;
var myImageElement = document.getElementById("picture_to_show");
myImageElement.href = source;
}
}
}