-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDasen_RNAseq_report_controls.Rmd
195 lines (159 loc) · 7.02 KB
/
Dasen_RNAseq_report_controls.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
title: Dasen lab, Pbx-mutant RNAseq, controls
author: "Lisa J. Cohen"
output: html_document
---
# Introduction
This is an RNASeq differential expression analysis from paired-end 50 data from Illumina HiSeq 2500 high-output sequencing runs, Combo_HSQ_24 and Combo_HSQ_10 that took place at the NYU Genome Technology Center on November 18, 2014 and August 27, 2014, respectively.
The BaseSpace link with run quality information is here:
https://basespace.illumina.com/s/nblJAnaXNEuX
# Table of Contents:
1. Data Analysis Procedure
2. PCA
3. MA plots
4. Heatmap
5. Version Info
6. References
# 1. Data analysis procedure
For CPM data, the alignment program, Bowtie (version 1.0.0) was used with reads mapped to the Ensemble NCBIM37/mm9 (iGenome version) with two mismatches allowed. The uniquely-mapped reads were subjected to subsequent necessary processing, including removal of PCR duplicates, before transcripts were counted with htseq-count. Counts files were imported into the R statistical programming environment and analyzed with the DESeq2 R/Bioconductor package (Love et al. 2014).
Here, data analysis is presented from the thoarcic-level and brachial-level controls.
Filenames containing raw transcript counts from htseq-count are as follows:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
library(DESeq2)
library("genefilter")
library(gplots)
library(RColorBrewer)
library(biomaRt)
library("genefilter")
library("lattice")
setwd("../counts/")
mypath<-"../counts/"
filenames<-list.files(path=mypath, pattern= "_counts.txt", full.names=FALSE)
datalist <-lapply(filenames, function(x){read.table(x,header=FALSE, sep="\t")})
for (i in 1:length(filenames))
{
colnames(datalist[[i]])<-c("ID",filenames[[i]])
}
mergeddata <- Reduce(function(x,y) {merge(x,y, by="ID")}, datalist)
new_data_merge<-mergeddata[-1:-5,]
#write.csv(new_data_merge,file="Dasen_thoracic_count_data_Ensembl.csv")
rown<-new_data_merge$ID
rownames(new_data_merge)<-rown
new_data_merge<-new_data_merge[,-1]
data<-new_data_merge
colnames(data)
col.names<-c("BR-A-Control","BR-B-Control","BR-C-Control","TH-A-Control","TH-B-Control","TH-C-Control")
colnames(data)<-col.names
```
# 2. PCA
```{r,echo=FALSE, message=FALSE, warning=FALSE}
ExpDesign <- data.frame(row.names=colnames(data), condition = c("Control","Mutant","Control","Mutant","Control","Mutant"))
ExpDesign <- data.frame(row.names=colnames(data), condition = c("BR-Control","BR-Control","BR-Control","TH-Control","TH-Control","TH-Control"))
cds<-DESeqDataSetFromMatrix(countData=data, colData=ExpDesign,design=~condition)
cds$condition <- relevel(cds$condition, "TH-Control")
cds<-DESeq(cds, betaPrior=FALSE)
# log2 transformation for PCA plot
log_cds<-rlog(cds)
#plotPCAWithSampleNames(log_cds, intgroup="condition", ntop=40000)
##
x<-log_cds
ntop=40000
intgroup<-"condition"
rv = rowVars(assay(x))
select = order(rv, decreasing=TRUE)[seq_len(min(ntop, length(rv)))]
pca = prcomp(t(assay(x)[select,]))
# extract sample names
names = colnames(x)
fac = factor(apply( as.data.frame(colData(x)[, intgroup, drop=FALSE]), 1, paste, collapse=" : "))
colours = c( "dodgerblue3", "firebrick3" )
xyplot(
PC2 ~ PC1, groups=fac, data=as.data.frame(pca$x), pch=16, cex=1.5,panel=function(x, y, ...) {
panel.xyplot(x, y, ...);
ltext(x=x, y=y, labels=names, pos=1, offset=0.8, cex=0.7)
},
aspect = "fill", col=colours,
main = draw.key(key = list(
rect = list(col = colours),
text = list(levels(fac)),
rep = FALSE)))
```
```{r,echo=FALSE, message=FALSE, warning=FALSE}
# get norm counts
norm_counts<-counts(cds,normalized=TRUE)
norm_counts_data<-as.data.frame(norm_counts)
ensembl_id<-rownames(norm_counts)
norm_counts_data<-cbind(ensembl_id,norm_counts_data)
filtered_norm_counts<-norm_counts_data[!rowSums(norm_counts_data[,2:7]==0)>=1, ]
dim(filtered_norm_counts)
```
# 3. MA plots
The size of the table with all transcripts is:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
# get gene name from Ensembl gene ID
ensembl=useMart("ensembl")
ensembl = useDataset("mmusculus_gene_ensembl",mart=ensembl)
data_table<-filtered_norm_counts
query<-getBM(attributes=c('ensembl_gene_id','external_gene_name','gene_biotype'), filters = 'ensembl_gene_id', values = ensembl_id, mart=ensembl)
col.names<-c("ensembl_id","external_gene_id","gene_biotype")
colnames(query)<-col.names
merge_biomart_res_counts <- merge(data_table,query,by="ensembl_id")
temp_data_merged_counts<-merge_biomart_res_counts
##
res<-results(cds,contrast=c("condition","BR-Control","TH-Control"))
res_ordered<-res[order(res$padj),]
ensembl_id<-rownames(res_ordered)
res_ordered<-as.data.frame(res_ordered)
res_ordered<-cbind(res_ordered,ensembl_id)
merge_biomart_res_counts <- merge(temp_data_merged_counts,res_ordered,by="ensembl_id")
dim(merge_biomart_res_counts)
merge_biomart_res_all<-subset(merge_biomart_res_counts,merge_biomart_res_counts$padj!="NA")
merge_biomart_res_all<-merge_biomart_res_all[order(merge_biomart_res_all$padj),]
dim(merge_biomart_res_all)
write.csv(merge_biomart_res_all,"Dasen_Dasen_BR_Control_vs_TH_Control_CPM_all.csv")
```
The size of the table with only significant transcripts, padj<0.05 is:
```{r,echo=FALSE, message=FALSE, warning=FALSE}
res_merged_cutoff<-subset(merge_biomart_res_all,merge_biomart_res_all$padj<0.05)
write.csv(merge_biomart_res_all,"Dasen_Dasen_BR_Control_vs_TH_Control_CPM_pdj0.05.csv")
dim(res_merged_cutoff)
plot(log2(res$baseMean), res$log2FoldChange, col=ifelse(res$padj < 0.05, "red","gray67"),main="(DESeq2) (DESeq2) Brachial Control vs. Thoracic Control (padj<0.05)",xlim=c(1,15),pch=20,cex=1)
abline(h=c(-1,1), col="blue")
```
# 4. Heatmap
```{r,echo=FALSE, message=FALSE, warning=FALSE}
up_down_1FC<-subset(res_merged_cutoff,res_merged_cutoff$log2FoldChange>1 | res_merged_cutoff$log2FoldChange< -1)
#d<-up_down_1FC
d<-as.matrix(up_down_1FC[,c(2:7)])
rownames(d) <- up_down_1FC[,8]
d<-na.omit(d)
hr <- hclust(as.dist(1-cor(t(d), method="pearson")), method="complete")
mycl <- cutree(hr, h=max(hr$height/1.5))
clusterCols <- rainbow(length(unique(mycl)))
myClusterSideBar <- clusterCols[mycl]
myheatcol <- greenred(75)
heatmap.2(d, main="Brachial-Control vs. Thoracic-Control, padj<0.05",
Rowv=as.dendrogram(hr),
cexRow=1,cexCol=0.8,srtCol= 90,
adjCol = c(NA,0),offsetCol=2.5,
Colv=NA, dendrogram="row",
scale="row", col=myheatcol,
density.info="none",
trace="none", RowSideColors= myClusterSideBar)
###
```
# 5. Version Info
```{r}
sessionInfo()
```
### Sequencing and original bioinformatics analysis by:
NYU Langone Medical Center
Bioinformatics Core, Genome Technology Center, OCS
Email: [email protected]
Phone: 646-501-2834
http://ocs.med.nyu.edu/bioinformatics-core
http://ocs.med.nyu.edu/genome-technology-center
# 6. References
M. I. Love, W. Huber, S. Anders: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biology 2014, 15:550. http://dx.doi.org/10.1186/s13059-014-0550-8
R-Bioconductor: http://www.bioconductor.org/
DESeq2: http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf