-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathhubconf.py
38 lines (31 loc) · 1.46 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
dependencies = ["efficientnet_pytorch", "pretrainedmodels",
"timm", "torch", "torchvision"]
import torch
from utils.utils import Params
from backbone import HybridNetsBackbone
from pathlib import Path
import os
def hybridnets(pretrained=True, backbone=None, compound_coef=3, device='cpu'):
"""Creates a HybridNets model
Arguments:
pretrained (bool): load pretrained weights into the model
backbone (str): use timm to create another backbone replacing efficientnet
compound_coef (int): compound coefficient of efficientnet backbone
device (str): 'cuda:0' or 'cpu'
Returns:
HybridNets model
"""
params = Params(os.path.join(Path(__file__).resolve().parent, "projects/bdd100k.yml"))
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=compound_coef,
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
seg_classes=len(params.seg_list), backbone_name=backbone)
if pretrained and not backbone and compound_coef == 3:
weight_url = 'https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth'
model.load_state_dict(torch.hub.load_state_dict_from_url(weight_url, map_location=device))
model = model.to(device)
return model
if __name__ == "__main__":
model = hybridnets(device='cpu')
img = torch.rand(1, 3, 384, 640)
result = model(img)
print(result)