-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
91 lines (76 loc) · 2.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
__author__ = "Jakob Aungiers"
__copyright__ = "Jakob Aungiers 2018"
__version__ = "2.0.0"
__license__ = "MIT"
import os
import json
import time
import math
import matplotlib.pyplot as plt
from core.data_processor import DataLoader
from core.model import Model
def plot_results(predicted_data, true_data):
fig = plt.figure(facecolor='white')
ax = fig.add_subplot(111)
ax.plot(true_data, label='True Data')
plt.plot(predicted_data, label='Prediction')
plt.legend()
plt.show()
def plot_results_multiple(predicted_data, true_data, prediction_len):
fig = plt.figure(facecolor='white')
ax = fig.add_subplot(111)
ax.plot(true_data, label='True Data')
# Pad the list of predictions to shift it in the graph to it's correct start
for i, data in enumerate(predicted_data):
padding = [None for p in range(i * prediction_len)]
plt.plot(padding + data, label='Prediction')
plt.legend()
plt.show()
def main():
configs = json.load(open('config.json', 'r'))
if not os.path.exists(configs['model']['save_dir']): os.makedirs(configs['model']['save_dir'])
data = DataLoader(
os.path.join('data', configs['data']['filename']),
configs['data']['train_test_split'],
configs['data']['columns']
)
model = Model()
model.build_model(configs)
x, y = data.get_train_data(
seq_len=configs['data']['sequence_length'],
normalise=configs['data']['normalise']
)
'''
# in-memory training
model.train(
x,
y,
epochs = configs['training']['epochs'],
batch_size = configs['training']['batch_size'],
save_dir = configs['model']['save_dir']
)
'''
# out-of memory generative training
steps_per_epoch = math.ceil((data.len_train - configs['data']['sequence_length']) / configs['training']['batch_size'])
model.train_generator(
data_gen=data.generate_train_batch(
seq_len=configs['data']['sequence_length'],
batch_size=configs['training']['batch_size'],
normalise=configs['data']['normalise']
),
epochs=configs['training']['epochs'],
batch_size=configs['training']['batch_size'],
steps_per_epoch=steps_per_epoch,
save_dir=configs['model']['save_dir']
)
x_test, y_test = data.get_test_data(
seq_len=configs['data']['sequence_length'],
normalise=configs['data']['normalise']
)
predictions = model.predict_sequences_multiple(x_test, configs['data']['sequence_length'], configs['data']['sequence_length'])
# predictions = model.predict_sequence_full(x_test, configs['data']['sequence_length'])
# predictions = model.predict_point_by_point(x_test)
plot_results_multiple(predictions, y_test, configs['data']['sequence_length'])
# plot_results(predictions, y_test)
if __name__ == '__main__':
main()