forked from naisy/train_ssd_mobilenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild1_trainval.py
141 lines (121 loc) · 4.71 KB
/
build1_trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding: utf-8
# pip install lxml pyyaml
import logging
import os
from lxml import etree
import tensorflow as tf
import numpy as np
import yaml
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
def mkdir(path):
'''
ディレクトリを作成する
'''
if not os.path.exists(path):
os.makedirs(path)
return True
print('Error. Already exists: {}'.format(path))
return False
def checkfile(path):
'''
ファイル・ディレクトリの存在を確認する
'''
if not os.path.exists(path):
print('Error. Not exists: {}'.format(path))
return False
return True
def filewrite(filepath,s):
f = open(filepath,'a')
f.writelines(s)
f.close()
return
def fileread(filepath):
f = open(filepath,'r')
lines = []
for line in f:
lines += [line]
f.close()
return lines
## LOAD CONFIG PARAMS ##
if (os.path.isfile('config.yml')):
with open("config.yml", 'r') as ymlfile:
cfg = yaml.load(ymlfile)
LABEL_MAP_FILE = cfg['label_map_file']
PASCALVOC_DIR = cfg['pascalvoc_dir']
IMAGESETS_MAIN_DIR = cfg['imagesets_main_dir']
ANNOTATIONS_DIR = cfg['annotations_dir']
JPEGIMAGES_DIR = cfg['jpegimages_dir']
TRAINVAL_FILE = cfg['trainval_txt']
IMAGESETS_MAIN_DIR = os.path.join(PASCALVOC_DIR,IMAGESETS_MAIN_DIR)
ANNOTATIONS_DIR = os.path.join(PASCALVOC_DIR,ANNOTATIONS_DIR)
JPEGIMAGES_DIR = os.path.join(PASCALVOC_DIR,JPEGIMAGES_DIR)
TRANVAL_FILE = os.path.join(IMAGESETS_MAIN_DIR,TRAINVAL_FILE)
def main():
if not checkfile(LABEL_MAP_FILE) or \
not checkfile(PASCALVOC_DIR) or \
not checkfile(ANNOTATIONS_DIR) or \
not checkfile(JPEGIMAGES_DIR): return
if not mkdir(IMAGESETS_MAIN_DIR): return
# classname一覧をlabel_map.pbtxtから取得する
label_map_dict = label_map_util.get_label_map_dict(LABEL_MAP_FILE)
print(label_map_dict)
classname_list=[]
for classname in label_map_dict:
classname_list += [classname]
print(classname_list)
classname_set = set(classname_list)
# Annotationsのxmlファイル一覧を取得する
file_names = sorted(os.listdir(ANNOTATIONS_DIR))
for file_name in file_names:
if not file_name.endswith(".xml"):
continue
with tf.gfile.GFile(os.path.join(ANNOTATIONS_DIR,file_name), 'r') as fid:
xml_str = fid.read()
#print(xml_str)
xml = etree.fromstring(xml_str)
data = dataset_util.recursive_parse_xml_to_dict(xml)["annotation"]
#print(xml)
#print(data)
# .jpgを削除してfilenameを取得する
filename = data["filename"][:-4]
found_classname_list = []
for obj in data["object"]:
found_classname_list += [obj["name"]]
#print("{} {}".format(filename,obj["name"]))
found_classname_set = set(found_classname_list)
# Set Difference
not_found_classname_list = list(classname_set - found_classname_set)
#print(found_classname_list)
#print("---")
#print(not_found_classname_list)
# ファイルの中でclassname全てを確認し、存在するなら 1、存在しないなら-1のファイルを作成する classname_trainval.txt
if not checkfile(os.path.join(JPEGIMAGES_DIR,filename+".jpg")): return
for classname in found_classname_list:
s = filename+" 1\n"
filewrite(os.path.join(IMAGESETS_MAIN_DIR,classname+"_trainval.txt"),s)
for classname in not_found_classname_list:
s = filename+" -1\n"
filewrite(os.path.join(IMAGESETS_MAIN_DIR,classname+"_trainval.txt"),s)
'''
Don't need this.
# trainval.txtをシャッフルしてtrain.txtとval.txtに分割する
for classname in classname_list:
filepath = os.path.join(IMAGESETS_MAIN_DIR,classname+"_trainval.txt")
lines = fileread(filepath)
np.random.shuffle(lines)
num_datas = len(lines)
num_train_datas = int(num_datas*0.5)
train_datas = lines[:num_train_datas]
val_datas = lines[num_train_datas:]
filewrite(os.path.join(IMAGESETS_MAIN_DIR,classname+"_train.txt"),train_datas)
filewrite(os.path.join(IMAGESETS_MAIN_DIR,classname+"_val.txt"),val_datas)
'''
# One class tranval.txt is enough. Because we only use the jpeg file list.
for classname in classname_list:
filepath = os.path.join(IMAGESETS_MAIN_DIR,classname+"_trainval.txt")
lines = fileread(filepath)
filewrite(os.path.join(TRAINVAL_FILE),lines)
break
if __name__ == '__main__':
main()