forked from naisy/train_ssd_mobilenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild2_tf_record.py
192 lines (158 loc) · 6.53 KB
/
build2_tf_record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding: utf-8
import hashlib
import io
import logging
import os
import random
import re
from lxml import etree
import PIL.Image
import tensorflow as tf
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util
import yaml
## LOAD CONFIG PARAMS ##
if (os.path.isfile('config.yml')):
with open("config.yml", 'r') as ymlfile:
cfg = yaml.load(ymlfile)
# input data
LABEL_MAP_FILE = cfg['label_map_file']
PASCALVOC_DIR = cfg['pascalvoc_dir']
IMAGESETS_MAIN_DIR = cfg['imagesets_main_dir']
ANNOTATIONS_DIR = cfg['annotations_dir']
JPEGIMAGES_DIR = cfg['jpegimages_dir']
TRAINVAL_FILE = cfg['trainval_txt']
# output data
TFRECORD_DIR = cfg['tfrecord_dir']
TRAIN_RECORD_FILE = cfg['train_record_file']
VAL_RECORD_FILE = cfg['val_record_file']
IMAGESETS_MAIN_DIR = os.path.join(PASCALVOC_DIR,IMAGESETS_MAIN_DIR)
ANNOTATIONS_DIR = os.path.join(PASCALVOC_DIR,ANNOTATIONS_DIR)
JPEGIMAGES_DIR = os.path.join(PASCALVOC_DIR,JPEGIMAGES_DIR)
TRANVAL_FILE = os.path.join(IMAGESETS_MAIN_DIR,TRAINVAL_FILE)
TRAIN_RECORD_FILE = os.path.join(TFRECORD_DIR,TRAIN_RECORD_FILE)
VAL_RECORD_FILE = os.path.join(TFRECORD_DIR,VAL_RECORD_FILE)
trainval_list = dataset_util.read_examples_list(TRAINVAL_FILE)
def mkdir(path):
'''
ディレクトリを作成する
'''
if not os.path.exists(path):
os.makedirs(path)
return True
print('Error. Already exists: {}'.format(path))
return False
def dict_to_tf_example(data,
label_map_dict,
ignore_difficult_instances=False):
"""Convert XML derived dict to tf.Example proto.
Notice that this function normalizes the bounding box coordinates provided
by the raw data.
Args:
data: dict holding PASCAL XML fields for a single image (obtained by
running dataset_util.recursive_parse_xml_to_dict)
label_map_dict: A map from string label names to integers ids.
ignore_difficult_instances: Whether to skip difficult instances in the
dataset (default: False).
Returns:
example: The converted tf.Example.
Raises:
ValueError: if the image pointed to by data['filename'] is not a valid JPEG
"""
jpeg_file = os.path.join(JPEGIMAGES_DIR, data['filename'])
with tf.gfile.GFile(jpeg_file, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
width = int(data['size']['width'])
height = int(data['size']['height'])
xmin = []
ymin = []
xmax = []
ymax = []
classes = []
classes_text = []
truncated = []
poses = []
difficult_obj = []
for obj in data['object']:
difficult = bool(int(obj['difficult']))
if ignore_difficult_instances and difficult:
continue
difficult_obj.append(int(difficult))
class_name = obj["name"]
xmin.append(float(obj['bndbox']['xmin']) / width)
ymin.append(float(obj['bndbox']['ymin']) / height)
xmax.append(float(obj['bndbox']['xmax']) / width)
ymax.append(float(obj['bndbox']['ymax']) / height)
classes_text.append(class_name.encode('utf8'))
classes.append(label_map_dict[class_name])
truncated.append(int(obj['truncated']))
poses.append(obj['pose'].encode('utf8'))
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(
data['filename'].encode('utf8')),
'image/source_id': dataset_util.bytes_feature(
data['filename'].encode('utf8')),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
'image/object/truncated': dataset_util.int64_list_feature(truncated),
'image/object/view': dataset_util.bytes_list_feature(poses),
}))
return example
def create_tf_record(output_record_file,
label_map_dict,
jpegfilenames):
'''Creates a TFRecord file from examples.
Args:
output_record_file: Path to where output file is saved.
label_map_dict: The label map dictionary.
jpegfilenames: Examples to parse and save to tf record.
'''
writer = tf.python_io.TFRecordWriter(output_record_file)
for idx, example in enumerate(jpegfilenames):
if idx % 100 == 0:
logging.info('On image %d of %d', idx, len(jpegfilenames))
xmlfile = os.path.join(ANNOTATIONS_DIR, example + '.xml')
if not os.path.exists(xmlfile):
logging.warning('Could not find %s, ignoring example.', xmlfile)
continue
with tf.gfile.GFile(xmlfile, 'r') as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
tf_example = dict_to_tf_example(data, label_map_dict)
writer.write(tf_example.SerializeToString())
writer.close()
def main():
if not mkdir(TFRECORD_DIR): return
label_map_dict = label_map_util.get_label_map_dict(LABEL_MAP_FILE)
logging.info('Reading from dataset.')
# shuffle
random.seed(42)
random.shuffle(trainval_list)
num_trainval = len(trainval_list)
num_train = int(0.7 * num_trainval)
train = trainval_list[:num_train]
val = trainval_list[num_train:]
logging.info('%d training and %d validation examples.',
len(train), len(val))
# create train.record
create_tf_record(TRAIN_RECORD_FILE, label_map_dict, train)
# create val.record
create_tf_record(VAL_RECORD_FILE, label_map_dict, val)
if __name__ == '__main__':
main()