-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcolorTransfer.cpp
234 lines (204 loc) · 8.77 KB
/
colorTransfer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
Copyright (c) 2019 CNRS
David Coeurjolly <[email protected]>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDi
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <string>
#include <random>
#include <vector>
#include <chrono>
#include <ctime>
#include <thread>
//Command-line parsing
#include "CLI11.hpp"
//Image filtering and I/O
#define cimg_display 0
#include "CImg.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
//Global flag to silent verbose messages
bool silent;
void slicedTransfer(std::vector<float> &source,
const std::vector<float> &target,
const int nbSteps,
const int batchSize,
const double factor)
{
//Random generator init to draw random line directions
std::mt19937 gen;
gen.seed(10);
std::normal_distribution<float> dist{0.0,1.0};
auto N = source.size()/3;
//Advection vector
std::vector<float> advect(3*N, 0.0);
//To store the 1D projections
std::vector<float> projsource(N);
std::vector<float> projtarget(N);
//Pixel Id
std::vector<unsigned int> idSource(N);
std::vector<unsigned int> idTarget(N);
//Lambda expression for the comparison of points in RGB
//according to their projections
auto lambdaProjSource = [&projsource](unsigned int a, unsigned int b) {return projsource[a] < projsource[b]; };
auto lambdaProjTarget = [&projtarget](unsigned int a, unsigned int b) {return projtarget[a] < projtarget[b]; };
for(auto i=0; i < idSource.size() ; ++i)
{
idSource[i]=i;
idTarget[i]=i;
}
for(auto step =0 ; step < nbSteps; ++step)
{
for(auto batch = 0; batch < batchSize; ++batch )
{
//Random direction
float dirx = dist(gen);
float diry = dist(gen);
float dirz = dist(gen);
float norm = sqrt(dirx*dirx + diry*diry + dirz*dirz);
dirx /= norm;
diry /= norm;
dirz /= norm;
if (!silent) std::cout<<"Slice "<<step<<" batch "<<batch<<" "<<dirx<<","<<diry<<","<<dirz<<std::endl;
//We project the points
for(auto i = 0; i < projsource.size(); ++i)
{
projsource[i] = dirx * source[3*i] + diry * source[3*i+1] + dirz * source[3*i+2];
projtarget[i] = dirx * target[3*i] + diry * target[3*i+1] + dirz * target[3*i+2];
}
//1D optimal transport of the projections with two sorts
std::thread threadA([&]{ std::sort(idSource.begin(), idSource.end(), lambdaProjSource); });
std::sort(idTarget.begin(), idTarget.end(), lambdaProjTarget);
threadA.join();
//We accumulate the displacements in a batch
for(auto i = 0; i < idSource.size(); ++i)
{
auto pix = idSource[i];
advect[3*pix] += dirx * (projtarget[idTarget[i]] - projsource[idSource[i]]);
advect[3*pix+1] += diry * (projtarget[idTarget[i]] - projsource[idSource[i]]);
advect[3*pix+2] += dirz * (projtarget[idTarget[i]] - projsource[idSource[i]]);
}
}
//Advection
for(auto i = 0; i <3*N; ++i)
{
source[i] += factor*advect[i]/(float)batchSize;
advect[i] = 0.0;
}
}
}
int main(int argc, char **argv)
{
CLI::App app{"colorTransfer"};
std::string sourceImage="pexelAred.png";
app.add_option("-s,--source", sourceImage, "Source image");
std::string targetImage="pexelBred.png";
app.add_option("-t,--target", targetImage, "Target image");
std::string outputImage= "output.png";
app.add_option("-o,--output", outputImage, "Output image");
unsigned int nbSteps = 3;
app.add_option("-n,--nbsteps", nbSteps, "Number of sliced steps (3)");
unsigned int batchSize = 1;
app.add_option("-b,--sizeBatch", batchSize, "Number of dirtections on a batch (1)");
bool applyRegularization = false;
app.add_flag("-r,--regularization", applyRegularization, "Apply a regularization step of the transport plan using bilateral filter (false).");
float sigmaXY = 16.0;
app.add_option("--sigmaXY", sigmaXY, "Sigma parameter in the spatial domain for the bilateral regularization (16.0)");
float sigmaV = 5.0;
app.add_option("--sigmaV", sigmaV, "Sigma parameter in the value domain for the bilateral regularization (5.0)");
silent = false;
app.add_flag("--silent", silent, "No verbose messages");
double factor = 1.0;
app.add_option("--factor", factor, "Displacement factor [0:1]");
CLI11_PARSE(app, argc, argv);
//Image loading
int width,height, nbChannels;
unsigned char *source = stbi_load(sourceImage.c_str(), &width, &height, &nbChannels, 0);
if (!silent) std::cout<< "Source image: "<<width<<"x"<<height<<" ("<<nbChannels<<")"<< std::endl;
int width_target,height_target, nbChannels_target;
unsigned char *target = stbi_load(targetImage.c_str(), &width_target, &height_target, &nbChannels_target, 0);
if (!silent) std::cout<< "Target image: "<<width_target<<"x"<<height_target<<" ("<<nbChannels_target<<")"<< std::endl;
if ((width*height) != (width_target*height_target))
{
std::cout<< "Image sizes do not match. "<<std::endl;
exit(1);
}
if (nbChannels <3)
{
std::cout<< "Input images must be color images."<<std::endl;
exit(1);
}
std::vector<float> sourcefloat(width*height*nbChannels);
std::vector<float> targetfloat(width*height*nbChannels);
for(auto i = 0 ; i <width*height*nbChannels; ++i)
{
sourcefloat[i] = static_cast<float>(source[i]);
targetfloat[i] = static_cast<float>(target[i]);
}
//Main computation
auto start = std::chrono::system_clock::now();
slicedTransfer(sourcefloat, targetfloat, nbSteps, batchSize, factor);
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::time_t end_time = std::chrono::system_clock::to_time_t(end);
std::cout << "finished computation at " << std::ctime(&end_time)
<< "elapsed time: " << elapsed_seconds.count() << "s\n";
//Output
std::vector<unsigned char> output(width*height*nbChannels);
if (applyRegularization)
{
//Regularization of the transport plan (optional)
// (bilateral filter of the difference)
if (!silent) std::cout<<"Applying regularization step"<<std::endl;
cimg_library::CImg<float> transport(width, height, 1, 3);
for(auto i=0; i<width*height; ++i)
{
transport[i] = sourcefloat[3*i] - static_cast<float>(source[3*i]);
transport[i+ width*height] = sourcefloat[3*i+1] - static_cast<float>(source[3*i+1]);
transport[i+2*width*height] = sourcefloat[3*i+2] - static_cast<float>(source[3*i+2]);
}
transport.blur_bilateral(transport, sigmaXY,sigmaV);
auto output2(output);
for(auto i = 0 ; i < width*height ; ++i)
{
output[3*i] = static_cast<unsigned char>( std::min(255.0f, std::max(0.0f, static_cast<float>(source[3*i ]) + transport[i])));
output[3*i+1] = static_cast<unsigned char>( std::min(255.0f, std::max(0.0f, static_cast<float>(source[3*i+1]) + transport[i+ width*height])));
output[3*i+2] = static_cast<unsigned char>( std::min(255.0f, std::max(0.0f, static_cast<float>(source[3*i+2]) + transport[i+ width*height*2])));
}
}
else
{
for(auto i = 0 ; i < width*height*nbChannels ; ++i)
output[i] = static_cast<unsigned char>( std::min(255.0f, std::max(0.0f, sourcefloat[i])));
}
//Final export
if (!silent) std::cout<<"Exporting.."<<std::endl;
int errcode = stbi_write_png(outputImage.c_str(), width, height, nbChannels, output.data(), nbChannels*width);
if (!errcode)
{
std::cout<<"Error while exporting the resulting image."<<std::endl;
exit(errcode);
}
stbi_image_free(source);
stbi_image_free(target);
exit(0);
}