-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcharform.py
649 lines (631 loc) · 22.9 KB
/
charform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# charform.py
# Compute the principal character formula.
def charform(X, n, r, S):
nfin, rdual, imadim, Comat, delta = _init(X, n, r)
if nfin + 1 != len(S):
err_fmt = 'invalid spcialization - length should be {}.'
raise ValueError(err_fmt.format(nfin + 1))
if X == 'A' and n % 2 == 0 and r == 2:
K = _genhitsA(Comat, S, rdual, delta, imadim, nfin)
else:
K = _genhits(Comat, S, rdual, delta, imadim, nfin)
return _min_tile(K)
# What does it do?
# Raise ValueError for inapporpiate input
def _init(X, n, r):
# Eror message if (X, n, r) isn't a valid affine Lie algebra
error_msg = 'invalid affine Lie algebra ${}_{}^{{({})}}$'.\
format(X, n, r)
delta = [] # guard
# Xfin = letter type for the semisimple Lie algebra corresponding
# to the dual of the given affine Lie algebra (i.e., the
# nodes labeled the same way, but the arrows are reversed)
#
# nfin = rank of the corresponding semisimple Lie algebra of the
# dual of the given affine Lie agebra
#
# ndual = the subscript for the dual of the given affine Lie
# algebra
#
# rdual = the superscript for the dual of the given affine Lie
# algebra
#
# imadim = ???
# dim of the root space for the imaginary root
# $s \delta$ where $s \not\equiv 0 \pmod{6}$
# for the dual of the given affine Lie algebra
# = (ndual - rk(dual(A))) / (rdual - 1)
# = (ndual - nfin) / (rdual - 1)
#
# Comat = coefficient matrix describing all the positive roots
# (with respect to the simple roots) of the semisimple
# Lie algebra corresponding to the dual of the given
# affine Lie algebra
#
# delta = delta of the dual of the given affine Lie algbra
#
# (See [Kac] for more details)
if X == 'A':
if r == 1:
if n < 1:
raise ValueError(error_msg)
# Dual=(A, n, 1), DualFin=(A, n)
nfin, rdual, imadim = n, 1, 0
Comat = _comatA(nfin)
delta = [1 for _ in range(nfin + 1)]
elif r == 2:
if n % 2 == 0:
if n < 2:
raise ValueError(error_msg)
# Dual=(A, n, 2)[opp], DualFin=(B, n/2)
nfin, rdual, imadim = n/2, 2, n/2
Comat = _comatA2(nfin)
delta = [2 for _ in range(nfin + 1)]
delta[0] = 1
elif n % 2 == 1:
if n < 5:
raise ValueError(error_msg)
# Dual=(B, (n+1)/2, 1), DualFin=(B, (n+1)/2)
nfin, rdual, imadim = (n+1)/2, 1, 0
Comat = _comatB(nfin)
delta = [2 for _ in range(nfin + 1)]
delta[0] = delta[1] = 1
else:
raise ValueError(error_msg)
else:
raise ValueError(error_msg)
elif X == 'B':
if n < 3 or r != 1:
raise ValueError(error_msg)
# Dual=(A, 2*n-1, 2), DualFin=(C, n)
nfin, rdual, imadim = n, 2, n-1
Comat = _comatC(nfin)
delta = [2 for _ in range(nfin + 1)]
delta[0] = delta[1] = delta[nfin] = 1
elif X == 'C':
if n < 2 or r != 1:
raise ValueError(error_msg)
# Dual=(D, n+1, 2), DualFin=(B, n)
nfin, rdual, imadim = n, 2, 1
Comat = _comatB(nfin)
delta = [1 for _ in range(nfin + 1)]
elif X == 'D':
if r == 1:
if n < 4:
raise ValueError(error_msg)
# Dual=(D, n, 1), DualFin=(D, n)
nfin, rdual, imadim = n, 1, 0
Comat = _comatD(nfin)
delta = [2 for _ in range(nfin + 1)]
delta[0] = delta[1] = delta[nfin] = delta[nfin-1] = 1
elif r == 2:
if n < 3:
raise ValueError(error_msg)
# Dual=(C, n-1, 1), DualFin=(C, n-1)
nfin, rdual, imadim = n-1, 1, 0
Comat = _comatC(nfin)
delta = [2 for _ in range(nfin + 1)]
delta[0] = delta[nfin] = 1
elif r == 3:
if n != 4:
raise ValueError(error_msg)
# Dual=(G, 2, 1), DualFin=(G, 2)
nfin, rdual, imadim = 2, 1, 0
Comat = _CoeffG2
delta = [1, 2, 3]
else:
raise ValueError(error_msg)
elif X == 'E':
if r == 1:
if n == 6:
Comat = _CoeffE6
delta = [1, 1, 2, 3, 2, 1, 2]
elif n == 7:
Comat = _CoeffE7
delta = [1, 2, 3, 4, 3, 2, 1, 2]
elif n == 8:
Comat = _CoeffE8
delta = [1, 2, 3, 4, 5, 6, 4, 2, 3]
else:
raise ValueError(error_msg)
# Dual=(E, n, 1), DualFin=(E, n)
nfin, rdual, imadim = n, 1, 0
elif r == 2:
if n != 6:
raise ValueError(error_msg)
# Dual=(F, 4, 1), DualFin=(F, 4)
nfin, rdual, imadim = 4, 1, 0
Comat = _CoeffF4
delta = [1, 2, 3, 4, 2]
else:
raise ValueError(error_msg)
elif X == 'F':
if n != 4 or r != 1:
raise ValueError(error_msg)
# Dual=(E, 6, 2), DualFin=(F, 4)[opp]
nfin, rdual, imadim = 4, 2, 2
Comat = _CoeffF4rev
delta = [1, 2, 3, 2, 1]
elif X == 'G':
if n != 2 or r != 1:
raise ValueError(error_msg)
# Dual=(D, 4, 3), DualFin=(G, 2)[opp]
nfin, rdual, imadim = 2, 3, 1
Comat = _CoeffG2rev
delta = [1, 2, 1]
else:
raise ValueError(error_msg)
return nfin, rdual, imadim, Comat, delta
# What does it do:
def _genhitsA(C, S, rdual, delta, imadim, nfin):
S1 = [s + 1 for s in S]
# dotproduct of delta and S1:
modulo = sum(d*s for d, s in zip(delta, S1))
# powers = C * S1 (matrix times vector):
powers = [sum(c*s for c, s in zip(R, S1)) for R in C]
dim = modulo * rdual
L = [0 for _ in xrange(dim)]
L[dim - 1] = nfin
for i in xrange(nfin * nfin):
for j in (0, 1):
p = j*modulo + powers[i]
q = (j + 1)*modulo - powers[i]
L[(p - 1) % dim] += 1 #[djn]
L[(q - 1) % dim] += 1 #[djn]
for i in xrange(nfin*nfin, nfin*(nfin + 1)):
p = powers[i]
q = dim - powers[i]
L[(p - 1) % dim] += 1 #[djn]
L[(q - 1) % dim] += 1 #[djn]
L[modulo - 1] += imadim
for i in xrange(dim):
L[i] -= nfin
return L
# What does it do:
def _genhits(C, S, rdual, delta, imadim, nfin):
rows, cols = len(C), len(C[0])
S1 = [s + 1 for s in S]
# dotproduct of delta and S1:
modulo = sum(d*s for d, s in zip(delta, S1))
# powers = C * S1 (matrix times vector):
# last column of C is long/short
# augment 0 as the first column (effectively, the first entry
# in S1 is ignored).
powers = [sum(c*s for c, s in zip(R[:-1], S1[1:])) for R in C]
dim = modulo * rdual
L = [0 for _ in xrange(dim)]
L[dim - 1] = nfin
for i in xrange(rows):
if C[i][cols - 1] == 'short':
for j in range(rdual):
p = j*modulo + powers[i]
q = (j+1)*modulo - powers[i]
L[(p - 1) % dim] += 1 #[djn]
L[(q - 1) % dim] += 1 #[djn]
else:
p = powers[i]
q = dim - powers[i]
L[(p - 1) % dim] += 1 #[djn]
L[(q - 1) % dim] += 1 #[djn]
if rdual != 1:
for i in range(1, rdual):
L[modulo*i - 1] += imadim
for i in range(dim):
L[i] -= nfin
return L
# Find the minimal tile that covers ``K``.
def _min_tile(K):
A = [] # guard
k = len(K)
for i in [d for d in xrange(1, k+1) if k % d == 0]:
A = K[:i]
repeat = True
for j in xrange(0, k, i):
repeat = repeat and A == K[j:j+i]
if not repeat: break
if repeat: break
return A
#
# NOTES:
#
# * Generate positive roots of various semisimple Lie algebras...
# * The body of the functions are opaque to me.
# * I don't understand what does _comatA2(n) does, or why it has
# no short/long in the last column, unlike other similar functions.
#
def _comatA2(n):
rows, cols = n*(n + 1), n + 1
C = [[0 for _ in xrange(cols)] for _ in xrange(rows)]
icur = 0
for i in xrange(n):
C[icur][i + 1] = 1
icur += 1
for i in xrange(n-1):
for j in xrange(n-i):
for k in xrange(i+2):
C[icur][j + k] = 1
icur += 1
for i in xrange(n-2):
for j in xrange(n-i-1, 1, -1):
for k in xrange(n-i-1, 0, -1):
if k >= j:
C[icur][k] = 1
else:
C[icur][k] = 2
C[icur][0] = 1
icur += 1
for i in xrange(n):
for j in xrange(n-i-1):
C[icur][j + 1] = 2
C[icur][0] = 1
icur += 1
return C
def _comatA(n):
rows, cols = (n*(n+1))/2, n+1
C = [[0 for _ in xrange(cols)] for _ in xrange(rows)]
icur = 0
for i in xrange(n):
for j in xrange(n-i):
for k in xrange(i+1):
C[icur][j + k] = 1
icur += 1
for i in xrange(rows):
C[i][cols - 1] = 'long'
return C
def _comatB(n):
rows, cols = n*n, n+1
C = [[0 for _ in xrange(cols)] for _ in xrange(rows)]
icur = 0
for i in xrange(n):
for j in xrange(n-i):
for k in xrange(i+1):
C[icur][j + k] = 1
icur += 1
for i in xrange(n-1):
for j in xrange(n-i-1):
for k in xrange(i, n):
if k <= i + j:
C[icur][k] = 1
else:
C[icur][k] = 2
icur += 1
for i in xrange(rows):
if C[i][cols - 2] == 1:
C[i][cols - 1] = 'short'
else:
C[i][cols - 1] = 'long'
return C
def _comatC(n):
rows, cols = n*n, n+1
C = [[0 for _ in xrange(cols)] for _ in xrange(rows)]
icur = 0
for i in xrange(n):
for j in xrange(n-i):
for k in xrange(i+1):
C[icur][j + k] = 1
icur += 1
for i in xrange(n-1):
for j in xrange(n-i-1):
for k in xrange(i, n-1):
if k < i + j:
C[icur][k] = 1
else:
C[icur][k] = 2
C[icur][n - 1] = 1
icur += 1
for i in xrange(rows):
a = 0
while C[i][a] == 0:
a += 1
if C[i][a] == 2 or a == n-1:
C[i][cols - 1] = 'long'
else:
C[i][cols - 1] = 'short'
return C
def _comatD(n):
rows, cols = (n*n - n + 1), (n + 1)
C = [[0 for _ in xrange(cols)] for _ in xrange(rows)]
icur = 0
for i in xrange(n):
for j in xrange(n-i):
for k in xrange(i+1):
C[icur][j + k] = 1
icur += 1
for i in xrange(n-2):
for j in xrange(i, n-2):
C[icur][j] = 1
C[icur][n - 1] = 1
icur += 1
for i in xrange(n-3):
for j in xrange(n-i-3):
for k in xrange(i, n-2):
if k <= i + j:
C[icur][k] = 1
else:
C[icur][k] = 2
C[icur][n - 2] = 1
C[icur][n - 1] = 1
icur += 1
del C[2*n - 2]
for i in xrange(rows-1):
C[i][cols - 1] = 'long'
return C
_CoeffE6 = [[0, 0, 0, 0, 0, 1, "long"],
[0, 0, 0, 0, 1, 0, "long"],
[0, 0, 0, 1, 0, 0, "long"],
[0, 0, 1, 0, 0, 0, "long"],
[0, 1, 0, 0, 0, 0, "long"],
[1, 0, 0, 0, 0, 0, "long"],
[0, 0, 0, 1, 0, 1, "long"],
[0, 0, 1, 0, 1, 0, "long"],
[0, 0, 1, 1, 0, 0, "long"],
[0, 1, 1, 0, 0, 0, "long"],
[1, 1, 0, 0, 0, 0, "long"],
[0, 0, 1, 1, 0, 1, "long"],
[0, 0, 1, 1, 1, 0, "long"],
[0, 1, 1, 0, 1, 0, "long"],
[0, 1, 1, 1, 0, 0, "long"],
[1, 1, 1, 0, 0, 0, "long"],
[0, 0, 1, 1, 1, 1, "long"],
[0, 1, 1, 1, 0, 1, "long"],
[0, 1, 1, 1, 1, 0, "long"],
[1, 1, 1, 0, 1, 0, "long"],
[1, 1, 1, 1, 0, 0, "long"],
[0, 1, 1, 1, 1, 1, "long"],
[1, 1, 1, 1, 0, 1, "long"],
[0, 1, 2, 1, 1, 0, "long"],
[1, 1, 1, 1, 1, 0, "long"],
[0, 1, 2, 1, 1, 1, "long"],
[1, 1, 1, 1, 1, 1, "long"],
[1, 1, 2, 1, 1, 0, "long"],
[0, 1, 2, 2, 1, 1, "long"],
[1, 1, 2, 1, 1, 1, "long"],
[1, 2, 2, 1, 1, 0, "long"],
[1, 1, 2, 2, 1, 1, "long"],
[1, 2, 2, 1, 1, 1, "long"],
[1, 2, 2, 2, 1, 1, "long"],
[1, 2, 3, 2, 1, 1, "long"],
[1, 2, 3, 2, 2, 1, "long"]]
_CoeffE7 = [[1, 0, 0, 0, 0, 0, 0, "long"],
[0, 0, 0, 0, 0, 0, 1, "long"],
[0, 1, 0, 0, 0, 0, 0, "long"],
[0, 0, 1, 0, 0, 0, 0, "long"],
[0, 0, 0, 1, 0, 0, 0, "long"],
[0, 0, 0, 0, 1, 0, 0, "long"],
[0, 0, 0, 0, 0, 1, 0, "long"],
[1, 1, 0, 0, 0, 0, 0, "long"],
[0, 0, 1, 0, 0, 0, 1, "long"],
[0, 1, 1, 0, 0, 0, 0, "long"],
[0, 0, 1, 1, 0, 0, 0, "long"],
[0, 0, 0, 1, 1, 0, 0, "long"],
[0, 0, 0, 0, 1, 1, 0, "long"],
[1, 1, 1, 0, 0, 0, 0, "long"],
[0, 1, 1, 0, 0, 0, 1, "long"],
[0, 0, 1, 1, 0, 0, 1, "long"],
[0, 1, 1, 1, 0, 0, 0, "long"],
[0, 0, 1, 1, 1, 0, 0, "long"],
[0, 0, 0, 1, 1, 1, 0, "long"],
[1, 1, 1, 0, 0, 0, 1, "long"],
[1, 1, 1, 1, 0, 0, 0, "long"],
[0, 1, 1, 1, 0, 0, 1, "long"],
[0, 0, 1, 1, 1, 0, 1, "long"],
[0, 1, 1, 1, 1, 0, 0, "long"],
[0, 0, 1, 1, 1, 1, 0, "long"],
[1, 1, 1, 1, 0, 0, 1, "long"],
[1, 1, 1, 1, 1, 0, 0, "long"],
[0, 1, 2, 1, 0, 0, 1, "long"],
[0, 1, 1, 1, 1, 0, 1, "long"],
[0, 0, 1, 1, 1, 1, 1, "long"],
[0, 1, 1, 1, 1, 1, 0, "long"],
[1, 1, 2, 1, 0, 0, 1, "long"],
[1, 1, 1, 1, 1, 0, 1, "long"],
[1, 1, 1, 1, 1, 1, 0, "long"],
[0, 1, 2, 1, 1, 0, 1, "long"],
[0, 1, 1, 1, 1, 1, 1, "long"],
[1, 2, 2, 1, 0, 0, 1, "long"],
[1, 1, 2, 1, 1, 0, 1, "long"],
[1, 1, 1, 1, 1, 1, 1, "long"],
[0, 1, 2, 2, 1, 0, 1, "long"],
[0, 1, 2, 1, 1, 1, 1, "long"],
[1, 2, 2, 1, 1, 0, 1, "long"],
[1, 1, 2, 2, 1, 0, 1, "long"],
[1, 1, 2, 1, 1, 1, 1, "long"],
[0, 1, 2, 2, 1, 1, 1, "long"],
[1, 2, 2, 2, 1, 0, 1, "long"],
[1, 2, 2, 1, 1, 1, 1, "long"],
[1, 1, 2, 2, 1, 1, 1, "long"],
[0, 1, 2, 2, 2, 1, 1, "long"],
[1, 2, 3, 2, 1, 0, 1, "long"],
[1, 2, 2, 2, 1, 1, 1, "long"],
[1, 1, 2, 2, 2, 1, 1, "long"],
[1, 2, 3, 2, 1, 0, 2, "long"],
[1, 2, 3, 2, 1, 1, 1, "long"],
[1, 2, 2, 2, 2, 1, 1, "long"],
[1, 2, 3, 2, 1, 1, 2, "long"],
[1, 2, 3, 2, 2, 1, 1, "long"],
[1, 2, 3, 2, 2, 1, 2, "long"],
[1, 2, 3, 3, 2, 1, 1, "long"],
[1, 2, 3, 3, 2, 1, 2, "long"],
[1, 2, 4, 3, 2, 1, 2, "long"],
[1, 3, 4, 3, 2, 1, 2, "long"],
[2, 3, 4, 3, 2, 1, 2, "long"]]
_CoeffE8 = [[0, 0, 0, 0, 0, 0, 1, 0, "long"],
[0, 0, 0, 0, 0, 0, 0, 1, "long"],
[0, 0, 0, 0, 0, 1, 0, 0, "long"],
[0, 0, 0, 0, 1, 0, 0, 0, "long"],
[0, 0, 0, 1, 0, 0, 0, 0, "long"],
[0, 0, 1, 0, 0, 0, 0, 0, "long"],
[0, 1, 0, 0, 0, 0, 0, 0, "long"],
[1, 0, 0, 0, 0, 0, 0, 0, "long"],
[0, 0, 0, 0, 0, 1, 1, 0, "long"],
[0, 0, 0, 0, 1, 0, 0, 1, "long"],
[0, 0, 0, 0, 1, 1, 0, 0, "long"],
[0, 0, 0, 1, 1, 0, 0, 0, "long"],
[0, 0, 1, 1, 0, 0, 0, 0, "long"],
[0, 1, 1, 0, 0, 0, 0, 0, "long"],
[1, 1, 0, 0, 0, 0, 0, 0, "long"],
[0, 0, 0, 0, 1, 1, 1, 0, "long"],
[0, 0, 0, 0, 1, 1, 0, 1, "long"],
[0, 0, 0, 1, 1, 0, 0, 1, "long"],
[0, 0, 0, 1, 1, 1, 0, 0, "long"],
[0, 0, 1, 1, 1, 0, 0, 0, "long"],
[0, 1, 1, 1, 0, 0, 0, 0, "long"],
[1, 1, 1, 0, 0, 0, 0, 0, "long"],
[0, 0, 0, 0, 1, 1, 1, 1, "long"],
[0, 0, 0, 1, 1, 1, 1, 0, "long"],
[0, 0, 0, 1, 1, 1, 0, 1, "long"],
[0, 0, 1, 1, 1, 0, 0, 1, "long"],
[0, 0, 1, 1, 1, 1, 0, 0, "long"],
[0, 1, 1, 1, 1, 0, 0, 0, "long"],
[1, 1, 1, 1, 0, 0, 0, 0, "long"],
[0, 0, 0, 1, 1, 1, 1, 1, "long"],
[0, 0, 1, 1, 1, 1, 1, 0, "long"],
[0, 0, 0, 1, 2, 1, 0, 1, "long"],
[0, 0, 1, 1, 1, 1, 0, 1, "long"],
[0, 1, 1, 1, 1, 0, 0, 1, "long"],
[0, 1, 1, 1, 1, 1, 0, 0, "long"],
[1, 1, 1, 1, 1, 0, 0, 0, "long"],
[0, 0, 0, 1, 2, 1, 1, 1, "long"],
[0, 0, 1, 1, 1, 1, 1, 1, "long"],
[0, 1, 1, 1, 1, 1, 1, 0, "long"],
[0, 0, 1, 1, 2, 1, 0, 1, "long"],
[0, 1, 1, 1, 1, 1, 0, 1, "long"],
[1, 1, 1, 1, 1, 0, 0, 1, "long"],
[1, 1, 1, 1, 1, 1, 0, 0, "long"],
[0, 0, 0, 1, 2, 2, 1, 1, "long"],
[0, 0, 1, 1, 2, 1, 1, 1, "long"],
[0, 1, 1, 1, 1, 1, 1, 1, "long"],
[1, 1, 1, 1, 1, 1, 1, 0, "long"],
[0, 0, 1, 2, 2, 1, 0, 1, "long"],
[0, 1, 1, 1, 2, 1, 0, 1, "long"],
[1, 1, 1, 1, 1, 1, 0, 1, "long"],
[0, 0, 1, 1, 2, 2, 1, 1, "long"],
[0, 0, 1, 2, 2, 1, 1, 1, "long"],
[0, 1, 1, 1, 2, 1, 1, 1, "long"],
[1, 1, 1, 1, 1, 1, 1, 1, "long"],
[0, 1, 1, 2, 2, 1, 0, 1, "long"],
[1, 1, 1, 1, 2, 1, 0, 1, "long"],
[0, 0, 1, 2, 2, 2, 1, 1, "long"],
[0, 1, 1, 1, 2, 2, 1, 1, "long"],
[0, 1, 1, 2, 2, 1, 1, 1, "long"],
[1, 1, 1, 1, 2, 1, 1, 1, "long"],
[0, 1, 2, 2, 2, 1, 0, 1, "long"],
[1, 1, 1, 2, 2, 1, 0, 1, "long"],
[0, 0, 1, 2, 3, 2, 1, 1, "long"],
[0, 1, 1, 2, 2, 2, 1, 1, "long"],
[1, 1, 1, 1, 2, 2, 1, 1, "long"],
[0, 1, 2, 2, 2, 1, 1, 1, "long"],
[1, 1, 1, 2, 2, 1, 1, 1, "long"],
[1, 1, 2, 2, 2, 1, 0, 1, "long"],
[0, 0, 1, 2, 3, 2, 1, 2, "long"],
[0, 1, 1, 2, 3, 2, 1, 1, "long"],
[0, 1, 2, 2, 2, 2, 1, 1, "long"],
[1, 1, 1, 2, 2, 2, 1, 1, "long"],
[1, 1, 2, 2, 2, 1, 1, 1, "long"],
[1, 2, 2, 2, 2, 1, 0, 1, "long"],
[0, 1, 1, 2, 3, 2, 1, 2, "long"],
[0, 1, 2, 2, 3, 2, 1, 1, "long"],
[1, 1, 1, 2, 3, 2, 1, 1, "long"],
[1, 1, 2, 2, 2, 2, 1, 1, "long"],
[1, 2, 2, 2, 2, 1, 1, 1, "long"],
[0, 1, 2, 2, 3, 2, 1, 2, "long"],
[1, 1, 1, 2, 3, 2, 1, 2, "long"],
[0, 1, 2, 3, 3, 2, 1, 1, "long"],
[1, 1, 2, 2, 3, 2, 1, 1, "long"],
[1, 2, 2, 2, 2, 2, 1, 1, "long"],
[0, 1, 2, 3, 3, 2, 1, 2, "long"],
[1, 1, 2, 2, 3, 2, 1, 2, "long"],
[1, 1, 2, 3, 3, 2, 1, 1, "long"],
[1, 2, 2, 2, 3, 2, 1, 1, "long"],
[0, 1, 2, 3, 4, 2, 1, 2, "long"],
[1, 1, 2, 3, 3, 2, 1, 2, "long"],
[1, 2, 2, 2, 3, 2, 1, 2, "long"],
[1, 2, 2, 3, 3, 2, 1, 1, "long"],
[0, 1, 2, 3, 4, 3, 1, 2, "long"],
[1, 1, 2, 3, 4, 2, 1, 2, "long"],
[1, 2, 2, 3, 3, 2, 1, 2, "long"],
[1, 2, 3, 3, 3, 2, 1, 1, "long"],
[0, 1, 2, 3, 4, 3, 2, 2, "long"],
[1, 1, 2, 3, 4, 3, 1, 2, "long"],
[1, 2, 2, 3, 4, 2, 1, 2, "long"],
[1, 2, 3, 3, 3, 2, 1, 2, "long"],
[1, 1, 2, 3, 4, 3, 2, 2, "long"],
[1, 2, 2, 3, 4, 3, 1, 2, "long"],
[1, 2, 3, 3, 4, 2, 1, 2, "long"],
[1, 2, 2, 3, 4, 3, 2, 2, "long"],
[1, 2, 3, 3, 4, 3, 1, 2, "long"],
[1, 2, 3, 4, 4, 2, 1, 2, "long"],
[1, 2, 3, 3, 4, 3, 2, 2, "long"],
[1, 2, 3, 4, 4, 3, 1, 2, "long"],
[1, 2, 3, 4, 4, 3, 2, 2, "long"],
[1, 2, 3, 4, 5, 3, 1, 2, "long"],
[1, 2, 3, 4, 5, 3, 2, 2, "long"],
[1, 2, 3, 4, 5, 3, 1, 3, "long"],
[1, 2, 3, 4, 5, 3, 2, 3, "long"],
[1, 2, 3, 4, 5, 4, 2, 2, "long"],
[1, 2, 3, 4, 5, 4, 2, 3, "long"],
[1, 2, 3, 4, 6, 4, 2, 3, "long"],
[1, 2, 3, 5, 6, 4, 2, 3, "long"],
[1, 2, 4, 5, 6, 4, 2, 3, "long"],
[1, 3, 4, 5, 6, 4, 2, 3, "long"],
[2, 3, 4, 5, 6, 4, 2, 3, "long"]]
_CoeffF4 = [[0, 0, 0, 1, "short"],
[0, 0, 1, 0, "short"],
[0, 1, 0, 0, "long" ],
[1, 0, 0, 0, "long" ],
[0, 0, 1, 1, "short"],
[0, 1, 1, 0, "short"],
[0, 1, 2, 0, "long" ],
[1, 1, 0, 0, "long" ],
[0, 1, 1, 1, "short"],
[1, 1, 1, 0, "short"],
[0, 1, 2, 2, "long" ],
[1, 1, 2, 0, "long" ],
[0, 1, 2, 1, "short"],
[1, 1, 1, 1, "short"],
[1, 1, 2, 2, "long" ],
[1, 2, 2, 0, "long" ],
[1, 1, 2, 1, "short"],
[1, 2, 2, 2, "long" ],
[1, 2, 2, 1, "short"],
[1, 2, 4, 2, "long" ],
[1, 2, 3, 1, "short"],
[1, 3, 4, 2, "long" ],
[1, 2, 3, 2, "short"],
[2, 3, 4, 2, "long" ]]
_CoeffF4rev = [[1, 0, 0, 0, "short"],
[0, 1, 0, 0, "short"],
[0, 0, 1, 0, "long" ],
[0, 0, 0, 1, "long" ],
[1, 1, 0, 0, "short"],
[0, 1, 1, 0, "short"],
[0, 2, 1, 0, "long" ],
[0, 0, 1, 1, "long" ],
[1, 1, 1, 0, "short"],
[0, 1, 1, 1, "short"],
[2, 2, 1, 0, "long" ],
[0, 2, 1, 1, "long" ],
[1, 2, 1, 0, "short"],
[1, 1, 1, 1, "short"],
[2, 2, 1, 1, "long" ],
[0, 2, 2, 1, "long" ],
[1, 2, 1, 1, "short"],
[2, 2, 2, 1, "long" ],
[1, 2, 2, 1, "short"],
[2, 4, 2, 1, "long" ],
[1, 3, 2, 1, "short"],
[2, 4, 3, 1, "long" ],
[2, 3, 2, 1, "short"],
[2, 4, 3, 2, "long" ]]
_CoeffG2 = [[0, 1, "short"],
[1, 0, "long" ],
[1, 1, "short"],
[1, 3, "long" ],
[1, 2, "short"],
[2, 3, "long" ]]
_CoeffG2rev = [[1, 0, "short"],
[0, 1, "long" ],
[1, 1, "short"],
[3, 1, "long" ],
[2, 1, "short"],
[3, 2, "long" ]]