-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2train_image_classifier_mobilenet_mnist.py
570 lines (466 loc) · 22.2 KB
/
2train_image_classifier_mobilenet_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic training script that trains a model using a given dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from slim.datasets import dataset_factory
from slim.deployment import model_deploy
from slim.nets import nets_factory
from slim.preprocessing import preprocessing_factory
import tensorflow.contrib.slim as slim
#slim = tf.contrib.slim
#设定训练时参数
tf.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.flags.DEFINE_string(
'train_dir', 'C:\\project-dl\\cell-fenlei\\train_dir',#生成模型的路径,windows下写绝对路径
'Directory where checkpoints and event logs are written to.')
tf.flags.DEFINE_integer('num_clones', 1,'Number of model clones to deploy.')#每个单机部署多少个clone(即部署在多少个GPU)
tf.flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.')#如果为True,则单机中的每个clone将被放在CPU中
# 使用多少个单机,通常为1,表示单机部署。此时`worker_device`, `num_ps_tasks`和 `ps_device`这几个参数将被忽略。
tf.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')
#分布式作业使用多少个单机,如果为0表示不使用单机
tf.flags.DEFINE_integer(
'num_ps_tasks', 0,
'The number of parameter servers. If the value is 0, then the parameters '
'are handled locally by the worker.')
tf.flags.DEFINE_integer(
'num_readers', 4,
'The number of parallel readers that read data from the dataset.')#并行阅读器数量
tf.flags.DEFINE_integer(
'num_preprocessing_threads', 4,
'The number of threads used to create the batches.')#线程个数
tf.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')#间隔10步打印训练信息
tf.flags.DEFINE_integer(
'save_summaries_secs', 2,
'The frequency with which summaries are saved, in seconds.')#间隔2s保存日志,tensorboard可查看
tf.flags.DEFINE_integer(
'save_interval_secs', 300,
'The frequency with which the model is saved, in seconds.')#间隔300s保存模型
tf.flags.DEFINE_integer(
'task', 0, 'Task id of the replica running the training.')## 整数,模型所部署的单机的索引,通常是0
######################
# Optimization Flags #
######################
tf.flags.DEFINE_float('weight_decay', 0.00004, 'The weight decay on the model weights.')#正则化参数
tf.flags.DEFINE_string(
'optimizer', 'rmsprop',
'The name of the optimizer, one of "adadelta", "adagrad", "adam",'#优化器
'"ftrl", "momentum", "sgd" or "rmsprop".')#Adam(Adaptive Moment Estimation)算法是将Momentum算法和RMSProp算法
tf.flags.DEFINE_float(
'adadelta_rho', 0.95,
'The decay rate for adadelta.')#优化器是adadelta时使用
tf.flags.DEFINE_float(
'adagrad_initial_accumulator_value', 0.1,
'Starting value for the AdaGrad accumulators.')#优化器是adagrad时使用
tf.flags.DEFINE_float(
'adam_beta1', 0.9,
'The exponential decay rate for the 1st moment estimates.')#优化器是adam时使用
tf.flags.DEFINE_float(
'adam_beta2', 0.999,
'The exponential decay rate for the 2nd moment estimates.')#优化器是adam时使用,算法计算了梯度的指数移动均值, beta1 和 beta2 控制了这些移动均值的衰减率。
tf.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.')#
tf.flags.DEFINE_float('ftrl_learning_rate_power', -0.5,'The learning rate power.')#
tf.flags.DEFINE_float(
'ftrl_initial_accumulator_value', 0.1,
'Starting value for the FTRL accumulators.')#
tf.flags.DEFINE_float(
'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.')#
tf.flags.DEFINE_float(
'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.')#
tf.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')#
tf.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.')#
#######################
# Learning Rate Flags #
#######################
tf.flags.DEFINE_string(
'learning_rate_decay_type',
'exponential',
'Specifies how the learning rate is decayed. One of "fixed", "exponential",'
' or "polynomial"')#学习率是否下降固定
tf.flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')#学习率
#以下是衰减学习率才设置
tf.flags.DEFINE_float(
'end_learning_rate', 0.0001,
'The minimal end learning rate used by a polynomial decay learning rate.')#下降的话,最小的学习率值
tf.flags.DEFINE_float(
'label_smoothing', 0.0, 'The amount of label smoothing.')#防止过拟合策略
tf.flags.DEFINE_float(
'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.')#学习率衰减因子
tf.flags.DEFINE_float(
'num_epochs_per_decay', 2.0,
'Number of epochs after which learning rate decays.')#多少个epoch后学习率衰减
tf.flags.DEFINE_bool(
'sync_replicas', False,
'Whether or not to synchronize the replicas during training.')
tf.flags.DEFINE_integer(
'replicas_to_aggregate', 1,
'The Number of gradients to collect before updating params.')
tf.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
#######################
# Dataset Flags #
#######################
tf.flags.DEFINE_string(
'dataset_name', 'cell', 'The name of the dataset to load.')#与datasets中对应
tf.flags.DEFINE_string(
'dataset_split_name', 'train', 'The name of the train/test split.')#选取训练集
tf.flags.DEFINE_string(
'dataset_dir', 'C:\\project-dl\\cell-fenlei\\data', 'The directory where the dataset files are stored.')#数据集路径
tf.flags.DEFINE_integer(
'labels_offset', 0,
'An offset for the labels in the dataset. This flag is primarily used to '
'evaluate the VGG and ResNet architectures which do not use a background '
'class for the ImageNet dataset.')#?
tf.flags.DEFINE_string(
'model_name', 'mobilenet_v2_140', 'The name of the architecture to train.')#网络模型选择
tf.flags.DEFINE_string(
'preprocessing_name', None, 'The name of the preprocessing to use. If left '
'as `None`, then the model_name flag is used.')#使用的预训练模型名称
tf.flags.DEFINE_integer(
'batch_size',64, 'The number of samples in each batch.')#每步使用的batch大小,32修改
tf.flags.DEFINE_integer(
'train_image_size', 224, 'Train image size')#训练图像大小,inception_v3.default_image_size = 224
tf.flags.DEFINE_integer('max_number_of_steps', 500000,'The maximum number of training steps.')#最大的执行步数
#####################
# Fine-Tuning Flags #
#####################
tf.flags.DEFINE_string(
'checkpoint_path', 'C:\\project-dl\\cell-fenlei\\pretrained\\mobilenet_v2_1.4_224.ckpt',#写到ckpt即可
'The path to a checkpoint from which to fine-tune.')#预训练模型位置
tf.flags.DEFINE_string(
'checkpoint_exclude_scopes', 'MobilenetV2/Logits,MobilenetV2/AuxLogits',
'Comma-separated list of scopes of variables to exclude when restoring '
'from a checkpoint.')#恢复预训练模型时,排除末端层
tf.flags.DEFINE_string(
'trainable_scopes', 'MobilenetV2/Logits,MobilenetV2/AuxLogits',
'Comma-separated list of scopes to filter the set of variables to train.'
'By default, None would train all the variables.')#微调的范围,None的话,对所有层训练!!
tf.flags.DEFINE_boolean(
'ignore_missing_vars', True,
'When restoring a checkpoint would ignore missing variables.')
FLAGS = tf.flags.FLAGS#新版
def _configure_learning_rate(num_samples_per_epoch, global_step):
"""Configures the learning rate.
Args:
num_samples_per_epoch: The number of samples in each epoch of training.
global_step: The global_step tensor.
Returns:
A `Tensor` representing the learning rate.
Raises:
ValueError: if
"""
decay_steps = int(num_samples_per_epoch / FLAGS.batch_size *
FLAGS.num_epochs_per_decay)
if FLAGS.sync_replicas:
decay_steps /= FLAGS.replicas_to_aggregate
if FLAGS.learning_rate_decay_type == 'exponential':
return tf.train.exponential_decay(FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS.learning_rate_decay_factor,
staircase=True,
name='exponential_decay_learning_rate')
elif FLAGS.learning_rate_decay_type == 'fixed':
return tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')
elif FLAGS.learning_rate_decay_type == 'polynomial':
return tf.train.polynomial_decay(FLAGS.learning_rate,
global_step,
decay_steps,
FLAGS.end_learning_rate,
power=1.0,
cycle=False,
name='polynomial_decay_learning_rate')
else:
raise ValueError('learning_rate_decay_type [%s] was not recognized',
FLAGS.learning_rate_decay_type)
#优化器参数配置
def _configure_optimizer(learning_rate):
"""Configures the optimizer used for training.
Args:
learning_rate: A scalar or `Tensor` learning rate.
Returns:
An instance of an optimizer.
Raises:
ValueError: if FLAGS.optimizer is not recognized.
"""
if FLAGS.optimizer == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(
learning_rate,
rho=FLAGS.adadelta_rho,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'adagrad':
optimizer = tf.train.AdagradOptimizer(
learning_rate,
initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate,
beta1=FLAGS.adam_beta1,
beta2=FLAGS.adam_beta2,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'ftrl':
optimizer = tf.train.FtrlOptimizer(
learning_rate,
learning_rate_power=FLAGS.ftrl_learning_rate_power,
initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
l1_regularization_strength=FLAGS.ftrl_l1,
l2_regularization_strength=FLAGS.ftrl_l2)
elif FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate,
momentum=FLAGS.momentum,
name='Momentum')
elif FLAGS.optimizer == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(
learning_rate,
decay=FLAGS.rmsprop_decay,
momentum=FLAGS.momentum,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
raise ValueError('Optimizer [%s] was not recognized', FLAGS.optimizer)
return optimizer
def _get_init_fn():
"""Returns a function run by the chief worker to warm-start the training.
Note that the init_fn is only run when initializing the model during the very
first global step.
Returns:
An init function run by the supervisor.
"""
if FLAGS.checkpoint_path is None:
return None
# Warn the user if a checkpoint exists in the train_dir. Then we'll be
# ignoring the checkpoint anyway.
if tf.train.latest_checkpoint(FLAGS.train_dir):
tf.logging.info(
'Ignoring --checkpoint_path because a checkpoint already exists in %s'
% FLAGS.train_dir)
return None
exclusions = []
if FLAGS.checkpoint_exclude_scopes:
exclusions = [scope.strip()
for scope in FLAGS.checkpoint_exclude_scopes.split(',')]
# TODO(sguada) variables.filter_variables()
variables_to_restore = []
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Fine-tuning from %s' % checkpoint_path)
return slim.assign_from_checkpoint_fn(
checkpoint_path,
variables_to_restore,
ignore_missing_vars=FLAGS.ignore_missing_vars)
def _get_variables_to_train():
"""Returns a list of variables to train.
Returns:
A list of variables to train by the optimizer.
"""
if FLAGS.trainable_scopes is None:
return tf.trainable_variables()
else:
scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]
variables_to_train = []
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train
#主函数
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
#######################
# Config model_deploy 多CPU或GPU部署使用,一般用不到#
#######################
deploy_config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.worker_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Create global_step
with tf.device(deploy_config.variables_device()):#global_step在训练中是计数的作用,每训练一个batch就加1
global_step = tf.train.create_global_step()#代表全局步数,比如在多少步该进行什么操作,现在神经网络训练到多少轮等等,类似于一个钟表。
######################
# Select the dataset #
######################
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)
######################
# Select the network #
######################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
weight_decay=FLAGS.weight_decay,
is_training=True)#训练
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)#用于训练true
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
with tf.device(deploy_config.inputs_device()):#从TFRecords文件读取数据集方法
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,#训练集
num_readers=FLAGS.num_readers,
common_queue_capacity=20 * FLAGS.batch_size,#读取数据队列的容量,默认为256
common_queue_min=10 * FLAGS.batch_size)#读取数据队列的最小容量
[image, label] = provider.get(['image', 'label'])
label -= FLAGS.labels_offset
train_image_size = FLAGS.train_image_size or network_fn.default_image_size#224
image = image_preprocessing_fn(image, train_image_size, train_image_size)#预处理函数
#喂养数据的函数
images, labels = tf.train.batch(
[image, label],#一个列表或字典的tensor用来进行入队
batch_size=FLAGS.batch_size,#设置每次从队列中获取出队数据的数量
num_threads=FLAGS.num_preprocessing_threads,#用来控制入队tensors线程的数量,如果num_threads大于1,则batch操作将是非确定性的,输出的batch可能会乱序
capacity=5 * FLAGS.batch_size)#一个整数,用来设置队列中元素的最大数量
labels = slim.one_hot_encoding(
labels, dataset.num_classes - FLAGS.labels_offset)
batch_queue = slim.prefetch_queue.prefetch_queue(
[images, labels], capacity=2 * deploy_config.num_clones)#使用预加载队列
####################
# Define the model #
####################
def clone_fn(batch_queue):
"""Allows data parallelism by creating multiple clones of network_fn."""
with tf.device(deploy_config.inputs_device()):
images, labels = batch_queue.dequeue()
logits, end_points = network_fn(images)
#############################
# Specify the loss function #
#############################
if 'AuxLogits' in end_points:
tf.losses.softmax_cross_entropy(
logits=end_points['AuxLogits'], onehot_labels=labels,
label_smoothing=FLAGS.label_smoothing, weights=0.4, scope='aux_loss')
tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels,
label_smoothing=FLAGS.label_smoothing, weights=1.0)
return end_points
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
first_clone_scope = deploy_config.clone_scope(0)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by network_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
# Add summaries for end_points.
end_points = clones[0].outputs
for end_point in end_points:
x = end_points[end_point]
summaries.add(tf.summary.histogram('activations/' + end_point, x))
summaries.add(tf.summary.scalar('sparsity/' + end_point,
tf.nn.zero_fraction(x)))
# Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
# Add summaries for variables.
for variable in slim.get_model_variables():
summaries.add(tf.summary.histogram(variable.op.name, variable))
#################################
# Configure the moving averages #
#################################
#tf.train.ExponentialMovingAverage用于更新参数,采用滑动平均方法更新参数。需要提供一个衰减速率用于控制模型更新速度。
if FLAGS.moving_average_decay:
moving_average_variables = slim.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
else:
moving_average_variables, variable_averages = None, None
#########################################
# Configure the optimization procedure. #
#########################################
with tf.device(deploy_config.optimizer_device()):
learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
optimizer = _configure_optimizer(learning_rate)
summaries.add(tf.summary.scalar('learning_rate', learning_rate))
if FLAGS.sync_replicas:
# If sync_replicas is enabled, the averaging will be done in the chief queue runner.
#分布式可以大大的加快模型训练速度,但是分布式怎么分配和参数设定,都和同步梯度更新SyncReplicasOptimizer这个函数有很大关系。
optimizer = tf.train.SyncReplicasOptimizer(
opt=optimizer,#优化器
replicas_to_aggregate=FLAGS.replicas_to_aggregate,
variable_averages=variable_averages,
variables_to_average=moving_average_variables,
replica_id=tf.constant(FLAGS.task, tf.int32, shape=()),
total_num_replicas=FLAGS.worker_replicas)
elif FLAGS.moving_average_decay:
# Update ops executed locally by trainer.
update_ops.append(variable_averages.apply(moving_average_variables))
# Variables to train.
variables_to_train = _get_variables_to_train()#获取训练那层的参数
#returns a train_tensor and summary_op
total_loss, clones_gradients = model_deploy.optimize_clones(
clones,
optimizer,
var_list=variables_to_train)
# Add total_loss to summary.
summaries.add(tf.summary.scalar('total_loss', total_loss))
# Create gradient updates.
grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name='summary_op')
###########################
# Kicks off the training. #
###########################
session_config = tf.ConfigProto(allow_soft_placement=True) # 新增
slim.learning.train(
train_tensor,
logdir=FLAGS.train_dir,
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
init_fn=_get_init_fn(),
summary_op=summary_op,
number_of_steps=FLAGS.max_number_of_steps,
log_every_n_steps=FLAGS.log_every_n_steps,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs,
sync_optimizer=optimizer if FLAGS.sync_replicas else None,
session_config=session_config)
if __name__ == '__main__':
tf.app.run()