forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTopological_Sort.c
157 lines (144 loc) · 3.44 KB
/
Topological_Sort.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of
//vertices such that for every directed edge uv, vertex u comes before v in the ordering.
#include<stdio.h>
#include<stdlib.h>
#define MAX 50
void create_graph();
void add(int);
int delete();
int isEmpty();
int find_indegree(int);
int total_vertices;
int adj_matrix[MAX][MAX];
int queue[MAX];
int front = -1;
int rear = -1;
int main()
{
int i, vertex, count, topological_sort[MAX], indegree[MAX];
create_graph();//To create the graph
for(i = 0; i < total_vertices; i++)
{
indegree[i] = find_indegree(i);
if(indegree[i] == 0)
{
add(i);
}
}
count = 0;
while(!isEmpty() && count < total_vertices)
{
vertex = delete();
topological_sort[++count] = vertex;
for(i = 0; i < total_vertices; i++)
{
if(adj_matrix[vertex][i] == 1)
{
adj_matrix[vertex][i] = 0;
indegree[i] = indegree[i] - 1;
if(indegree[i] == 0)
{
add(i);
}
}
}
}
if(count < total_vertices)
{
printf("Graph is Cyclic. Therefore, Topological Ordering Not Possible\n");
exit(1);
}
printf("Topological Sort \n");
for(i = 1; i <= count; i++)
{
printf("%2d", topological_sort[i]);
}
printf("\n");
return 0;
}
void create_graph()
{
int count, edges, origin_vertex, destination_vertex;
printf("Enter number of vertices ");
scanf("%d", &total_vertices);
printf("Enter the number of edges ");
scanf("%d",&edges);
for(count = 1; count <= edges; count++)
{
printf("Enter Edge [%d] co-ordinates (Origin Vertex and Destination vertex) ", count);
scanf("%d", &origin_vertex);
scanf("%d", &destination_vertex);
adj_matrix[origin_vertex][destination_vertex] = 1;//Assigning the value in adjacent matrix
}
}
void add(int vertex)
{
if(rear == MAX - 1)
{
printf("Queue Overflow\n");//No more vertex can be added i.e. array is completely filled
}
else
{
if(front == -1)
{
front = 0;
}
rear = rear + 1;
queue[rear] = vertex ;
}
}
int isEmpty()
{
if(front == -1 || front > rear)
{
return 1;
}
else
{
return 0;
}
}
int delete()
{
int element;
if(front == -1 || front > rear)
{
printf("Queue Underflow\n");//No element present
exit(1);
}
else
{
element = queue[front];
front = front + 1;
return element;
}
}
//to find sum of indegree
int find_indegree(int vertex)
{
int count, total_indegree = 0;
for(count = 0; count < total_vertices; count++)
{
if(adj_matrix[count][vertex] == 1)
{
total_indegree++;
}
}
return total_indegree;
}
/* Enter number of vertices 6
Enter the number of edges 6
Enter Edge [1] co-ordinates (Origin Vertex and Destination vertex) 5
2
Enter Edge [2] co-ordinates (Origin Vertex and Destination vertex) 2
3
Enter Edge [3] co-ordinates (Origin Vertex and Destination vertex) 3
1
Enter Edge [4] co-ordinates (Origin Vertex and Destination vertex) 4
1
Enter Edge [5] co-ordinates (Origin Vertex and Destination vertex) 4
0
Enter Edge [6] co-ordinates (Origin Vertex and Destination vertex) 2
0
Topological Sort
4 5 2 0 3 1 */