forked from zhang0jhon/AttentionOCR
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
226 lines (184 loc) · 7.78 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import json
import cv2
import time
import tqdm
import argparse
import numpy as np
from matplotlib import pyplot as plt
from model.tensorpack_model import *
import config as cfg
import tensorflow as tf
from common import polygons_to_mask
from tensorpack.predict import MultiTowerOfflinePredictor, OfflinePredictor, PredictConfig
from tensorpack.tfutils import SmartInit, get_tf_version_tuple
from tensorpack.tfutils.export import ModelExporter
class TextRecognition(object):
"""
AttentionOCR with tensorflow pb model.
"""
def __init__(self, pb_file, seq_len):
self.pb_file = pb_file
self.seq_len = seq_len
self.init_model()
def init_model(self):
self.graph = tf.Graph()
with self.graph.as_default():
with tf.gfile.FastGFile(self.pb_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
self.sess = tf.Session(graph=self.graph)
self.img_ph = self.sess.graph.get_tensor_by_name('image:0')
self.label_ph = self.sess.graph.get_tensor_by_name('label:0')
self.is_training = self.sess.graph.get_tensor_by_name('is_training:0')
self.dropout = self.sess.graph.get_tensor_by_name('dropout_keep_prob:0')
self.preds = self.sess.graph.get_tensor_by_name('sequence_preds:0')
self.probs = self.sess.graph.get_tensor_by_name('sequence_probs:0')
def predict(self, image, label_dict, EOS='EOS'):
results = []
probabilities = []
pred_sentences, pred_probs = self.sess.run([self.preds, self.probs], \
feed_dict={self.is_training: False, self.dropout: 1.0, self.img_ph: image, self.label_ph: np.ones((1,self.seq_len), np.int32)})
for char in pred_sentences[0]:
if label_dict[char] == EOS:
break
results.append(label_dict[char])
probabilities = pred_probs[0][:min(len(results)+1,self.seq_len)]
return results, probabilities
def cal_sim(str1, str2):
"""
Normalized Edit Distance metric (1-N.E.D specifically)
"""
m = len(str1) + 1
n = len(str2) + 1
matrix = np.zeros((m, n))
for i in range(m):
matrix[i][0] = i
for j in range(n):
matrix[0][j] = j
for i in range(1, m):
for j in range(1, n):
if str1[i - 1] == str2[j - 1]:
matrix[i][j] = matrix[i - 1][j - 1]
else:
matrix[i][j] = min(matrix[i - 1][j - 1], min(matrix[i][j - 1], matrix[i - 1][j])) + 1
lev = matrix[m-1][n-1]
if (max(m-1,n-1)) == 0:
sim = 1.0
else:
sim = 1.0-lev/(max(m-1,n-1))
return sim
def preprocess(image, points, size=cfg.image_size):
"""
Preprocess for test.
Args:
image: test image
points: text polygon
size: test image size
"""
height, width = image.shape[:2]
mask = polygons_to_mask([np.asarray(points, np.float32)], height, width)
x, y, w, h = cv2.boundingRect(mask)
mask = np.expand_dims(np.float32(mask), axis=-1)
image = image * mask
image = image[y:y+h, x:x+w,:]
new_height, new_width = (size, int(w*size/h)) if h>w else (int(h*size/w), size)
image = cv2.resize(image, (new_width, new_height))
if new_height > new_width:
padding_top, padding_down = 0, 0
padding_left = (size - new_width)//2
padding_right = size - padding_left - new_width
else:
padding_left, padding_right = 0, 0
padding_top = (size - new_height)//2
padding_down = size - padding_top - new_height
image = cv2.copyMakeBorder(image, padding_top, padding_down, padding_left, padding_right, borderType=cv2.BORDER_CONSTANT, value=[0,0,0])
image = image/255.
return image
def label2str(preds, probs, label_dict, eos='EOS'):
"""
Predicted sequence to string.
"""
results = []
for idx in preds:
if label_dict[idx] == eos:
break
results.append(label_dict[idx])
probabilities = probs[:min(len(results)+1, cfg.seq_len+1)]
return ''.join(results), np.mean(probabilities)
def test(args):
# model = TextRecognition(args.pb_path, cfg.seq_len+1)
model = AttentionOCR()
for filename in os.listdir(args.img_folder):
img_path = os.path.join(args.img_folder, filename)
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
points = [[0,0], [width-1,0], [width-1,height-1], [0,height-1]]
image = preprocess(image, points, cfg.image_size)
image = np.expand_dims(image, 0)
before = time.time()
preds, probs = model.predict(image, cfg.label_dict)
after = time.time()
print("Time runing: ", after-before)
print(preds, probs)
# plt.imshow(image[0,:,:,:])
# plt.show()
def test_checkpoint(args):
model = AttentionOCR()
predcfg = PredictConfig(
model=model,
session_init=SmartInit(args.checkpoint_path),
input_names=model.get_inferene_tensor_names()[0],
output_names=model.get_inferene_tensor_names()[1])
predictor = OfflinePredictor(predcfg)
list_dict = []
with open("result/model-500000-512.txt", "w") as f:
ned = 0.
count = 0
for filename in os.listdir(args.img_folder)[500:]:
results = {}
img_path = os.path.join(args.img_folder, filename)
print("----> image path: ", img_path)
name = filename.split('_')[0]
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
points = [[0,0], [width-1,0], [width-1,height-1], [0,height-1]]
image = preprocess(image, points, cfg.image_size)
before = time.time()
preds, probs = predictor(np.expand_dims(image, axis=0), np.ones([1,cfg.seq_len+1], np.int32), False, 1.)
print(preds)
print(probs)
after = time.time()
text, confidence = label2str(preds[0], probs[0], cfg.label_dict)
print("Text: ", text)
print("Label: ", name)
print("confidence: ", confidence)
print("cal_sim: ", cal_sim(text, name))
ned += cal_sim(text, name)
count += 1
print("-------------------------------")
f.write("Path: {}".format(img_path))
f.write("\n")
f.write("Text: {}".format(text))
f.write("\n")
f.write("Label: {}".format(name))
f.write("\n")
f.write("Confidence: {}".format(confidence))
f.write("\n")
f.write("1-N.E.D: {}".format(cal_sim(text, name)))
f.write("\n")
f.write("---------------------------------------------")
f.write("\n")
f.write("Total {} Images | Average NED: {}".format(count, ned/count))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OCR')
parser.add_argument('--pb_path', type=str, help='path to tensorflow pb model', default='./checkpoint')
parser.add_argument('--checkpoint_path', type=str, help='path to tensorflow pb model', default='./checkpoint_lstm512/model-500000')
parser.add_argument('--img_folder', type=str, help='path to image folder', default='datasets/test/resized')
args = parser.parse_args()
test_checkpoint(args)