forked from NJU-Jet/SR_Mobile_Quantization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (51 loc) · 2.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import argparse
import cv2
import numpy as np
from options import parse
from solvers import Solver
from data import DIV2K
import matplotlib as mpl
import matplotlib.pyplot as plt
import shutil
import os
import os.path as osp
from tensorboardX import SummaryWriter
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='FSRCNN Demo')
parser.add_argument('--opt', required=True)
parser.add_argument('--name', required=True)
parser.add_argument('--scale', default=3, type=int)
parser.add_argument('--ps', default=48, type=int, help='patch_size')
parser.add_argument('--bs', default=16, type=int, help='batch_size')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--gpu_ids', default=None)
parser.add_argument('--resume', action='store_true', default=False)
parser.add_argument('--resume_path', default=None)
parser.add_argument('--qat', action='store_true', default=False)
parser.add_argument('--qat_path', default=None)
args = parser.parse_args()
args, lg = parse(args)
# Tensorboard save directory
resume = args['solver']['resume']
tensorboard_path = 'Tensorboard/{}'.format(args['name'])
if resume==False:
if osp.exists(tensorboard_path):
shutil.rmtree(tensorboard_path, True)
lg.info('Remove dir: [{}]'.format(tensorboard_path))
writer = SummaryWriter(tensorboard_path)
# create dataset
train_data = DIV2K(args['datasets']['train'])
lg.info('Create train dataset successfully!')
lg.info('Training: [{}] iterations for each epoch'.format(len(train_data)))
val_data = DIV2K(args['datasets']['val'])
lg.info('Create val dataset successfully!')
lg.info('Validating: [{}] iterations for each epoch'.format(len(val_data)))
# create solver
lg.info('Preparing for experiment: [{}]'.format(args['name']))
solver = Solver(args, train_data, val_data, writer)
# train
lg.info('Start training...')
solver.train()