-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathgenerate.py
47 lines (38 loc) · 2.35 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Generate images using pretrained network pickle.
import os
import numpy as np
import PIL.Image
from tqdm import trange
import argparse
import dnnlib
import torch
import loader
from training import misc
from training.misc import crop_max_rectangle as crop
# Generate images using pretrained network pickle.
def run(model, gpus, output_dir, images_num, truncation_psi, ratio):
os.environ["CUDA_VISIBLE_DEVICES"] = gpus # Set GPUs
device = torch.device("cuda")
print("Loading networks...")
G = loader.load_network(model, eval = True)["Gs"].to(device) # Load pre-trained network
print("Generate and save images...")
os.makedirs(output_dir, exist_ok = True) # Make output directory
for i in trange(images_num):
z = torch.randn([1, *G.input_shape[1:]], device = device) # Sample latent vector
imgs = G(z, truncation_psi = truncation_psi)[0].cpu().numpy() # Generate an image
pattern = "{}/sample_{{:06d}}.png".format(output_dir) # Output images pattern
img = crop(misc.to_pil(imgs[0]), ratio).save(pattern.format(i)) # Save the image
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(description = "Generate images with the GANformer")
parser.add_argument("--model", help = "Filename for a snapshot to resume", type = str)
parser.add_argument("--gpus", help = "Comma-separated list of GPUs to be used (default: %(default)s)", default = "0", type = str)
parser.add_argument("--output-dir", help = "Root directory for experiments (default: %(default)s)", default = "images", metavar = "DIR")
parser.add_argument("--images-num", help = "Number of images to generate (default: %(default)s)", default = 32, type = int)
parser.add_argument("--truncation-psi", help = "Truncation Psi to be used in producing sample images (default: %(default)s)", default = 0.7, type = float)
parser.add_argument("--ratio", help = "Crop ratio for output images (default: %(default)s)", default = 1.0, type = float)
# Pretrained models' ratios: CLEVR (0.75), Bedrooms (188/256), Cityscapes (0.5), FFHQ (1.0)
args, _ = parser.parse_known_args()
run(**vars(args))
if __name__ == "__main__":
main()