-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdversarialReasoningDefenseSystem.py
382 lines (330 loc) · 13.7 KB
/
AdversarialReasoningDefenseSystem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import networkx as nx
from typing import List, Dict, Any, Tuple
import transformers
import sympy as sp
import scipy.stats as stats
class ConfidentialAISafetyFramework:
"""
Top-Secret AI Alignment and Safety Research Implementation
"""
class SystemCorrigibilityModel(nn.Module):
"""
Advanced Neural Network for Corrigibility Modeling
"""
def __init__(
self,
input_dim: int = 768,
corrigibility_dimensions: int = 128
):
super().__init__()
# Multi-layer corrigibility transformation network
self.corrigibility_encoder = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, corrigibility_dimensions)
)
# Advanced corrigibility validation mechanism
self.corrigibility_validator = nn.Sequential(
nn.Linear(corrigibility_dimensions, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid() # Probabilistic corrigibility score
)
# Dynamic constraint adaptation layer
self.constraint_adaptation = nn.Sequential(
nn.Linear(corrigibility_dimensions, 256),
nn.ReLU(),
nn.Linear(256, corrigibility_dimensions),
nn.Tanh()
)
def forward(
self,
input_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Advanced corrigibility processing
"""
# Encode input to corrigibility space
corrigibility_embedding = self.corrigibility_encoder(input_embedding)
# Validate corrigibility
corrigibility_probability = self.corrigibility_validator(corrigibility_embedding)
# Generate adaptive constraints
adapted_constraints = self.constraint_adaptation(corrigibility_embedding)
return corrigibility_embedding, adapted_constraints, corrigibility_probability
class AdversarialReasoningDefenseSystem:
"""
Advanced Defense Against Recursive and Logical Reasoning Attacks
"""
def __init__(self, symbolic_reasoning_engine):
self.reasoning_engine = symbolic_reasoning_engine
self.recursion_depth_limit = 7 # Advanced recursion management
def validate_reasoning_trace(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive reasoning trace validation
"""
# Multilayered reasoning analysis
reasoning_analysis = {
'current_depth': len(reasoning_trace),
'logical_consistency_score': self._compute_logical_consistency(reasoning_trace),
'semantic_coherence': self._analyze_semantic_coherence(reasoning_trace),
'recursion_vulnerability': self._detect_recursion_patterns(reasoning_trace)
}
# Advanced intervention logic
if (reasoning_analysis['current_depth'] > self.recursion_depth_limit or
reasoning_analysis['recursion_vulnerability'] > 0.8 or
reasoning_analysis['logical_consistency_score'] < 0.3):
return {
'status': 'BLOCK',
'intervention_reason': self._generate_intervention_explanation(reasoning_analysis)
}
return {
'status': 'ALLOW',
'reasoning_analysis': reasoning_analysis
}
def _compute_logical_consistency(
self,
reasoning_trace: List[str]
) -> float:
"""
Advanced logical consistency computation
"""
if len(reasoning_trace) < 2:
return 1.0
# Symbolic logic-based consistency checking
consistency_scores = []
for i in range(1, len(reasoning_trace)):
try:
consistency = self.reasoning_engine.check_logical_equivalence(
reasoning_trace[i-1],
reasoning_trace[i]
)
consistency_scores.append(consistency)
except Exception:
# Penalize parsing failures
consistency_scores.append(0.0)
return np.mean(consistency_scores)
def _analyze_semantic_coherence(
self,
reasoning_trace: List[str]
) -> float:
"""
Advanced semantic coherence analysis
"""
# Compute semantic similarity and information entropy
semantic_scores = []
for i in range(1, len(reasoning_trace)):
semantic_similarity = self._compute_semantic_similarity(
reasoning_trace[i-1],
reasoning_trace[i]
)
information_entropy = self._compute_information_entropy(
reasoning_trace[i]
)
# Combine metrics
semantic_scores.append(
0.6 * semantic_similarity + 0.4 * (1 - information_entropy)
)
return np.mean(semantic_scores)
def _detect_recursion_patterns(
self,
reasoning_trace: List[str]
) -> float:
"""
Advanced recursion pattern detection
"""
# Implement sophisticated recursion detection
pattern_detection_scores = []
for window_size in [2, 3, 4]:
for i in range(len(reasoning_trace) - window_size + 1):
window = reasoning_trace[i:i+window_size]
# Check for repeated patterns
pattern_similarity = self._compute_window_similarity(window)
pattern_detection_scores.append(pattern_similarity)
return np.max(pattern_detection_scores) if pattern_detection_scores else 0.0
class SemanticVulnerabilityAnalyzer:
"""
Advanced Semantic Vector Space Vulnerability Detection
"""
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.adversarial_detector = self._train_adversarial_detector()
def _train_adversarial_detector(self):
"""
Train advanced adversarial embedding detector
"""
# Placeholder for sophisticated adversarial detection model training
# Would involve generative adversarial network (GAN) based approach
class AdversarialDetector(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.detector = nn.Sequential(
nn.Linear(input_dim, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.detector(x)
return AdversarialDetector(input_dim=768)
def analyze_semantic_vulnerability(
self,
input_embedding: torch.Tensor
) -> Dict[str, float]:
"""
Comprehensive semantic vulnerability analysis
"""
# Adversarial detection
adversarial_probability = self.adversarial_detector(input_embedding).item()
# Advanced embedding space analysis
vulnerability_metrics = {
'adversarial_probability': adversarial_probability,
'embedding_entropy': self._compute_embedding_entropy(input_embedding),
'vector_space_deviation': self._analyze_vector_space_deviation(input_embedding)
}
return vulnerability_metrics
def __init__(
self,
embedding_model_name: str = 'sentence-transformers/all-MiniLM-L6-v2'
):
# Load advanced embedding model
self.embedding_model = transformers.AutoModel.from_pretrained(embedding_model_name)
# Initialize core safety components
self.corrigibility_model = self.SystemCorrigibilityModel()
self.reasoning_defense = self.AdversarialReasoningDefenseSystem(
symbolic_reasoning_engine=self._create_symbolic_reasoning_engine()
)
self.semantic_analyzer = self.SemanticVulnerabilityAnalyzer(self.embedding_model)
def _create_symbolic_reasoning_engine(self):
"""
Create advanced symbolic reasoning engine
"""
class SymbolicReasoningEngine:
def check_logical_equivalence(self, statement1: str, statement2: str) -> float:
"""
Advanced logical equivalence checking
"""
try:
# Use SymPy for symbolic logic analysis
p = sp.Symbol('p')
q = sp.Symbol('q')
# Simplified logical equivalence check
equivalence_check = sp.simplify(
sp.Equivalent(
sp.sympify(statement1),
sp.sympify(statement2)
)
)
return 1.0 if equivalence_check is sp.true else 0.0
except Exception:
return 0.5 # Moderate penalty for parsing failure
return SymbolicReasoningEngine()
def execute_comprehensive_safety_analysis(
self,
input_prompt: str,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive AI safety and alignment verification
"""
# Embed input prompt
input_embedding = self._embed_text(input_prompt)
# Corrigibility analysis
corrigibility_embedding, adapted_constraints, corrigibility_prob = self.corrigibility_model(
input_embedding
)
# Reasoning trace validation
reasoning_validation = self.reasoning_defense.validate_reasoning_trace(
reasoning_trace
)
# Semantic vulnerability analysis
semantic_vulnerability = self.semantic_analyzer.analyze_semantic_vulnerability(
input_embedding
)
# Comprehensive safety assessment
safety_assessment = {
'corrigibility_probability': corrigibility_prob.item(),
'reasoning_validation': reasoning_validation,
'semantic_vulnerability': semantic_vulnerability,
'overall_safety_score': self._compute_safety_score(
corrigibility_prob.item(),
reasoning_validation,
semantic_vulnerability
)
}
return safety_assessment
def _compute_safety_score(
self,
corrigibility_prob: float,
reasoning_validation: Dict[str, Any],
semantic_vulnerability: Dict[str, float]
) -> float:
"""
Advanced safety score computation
"""
# Weighted safety score calculation
safety_components = [
(corrigibility_prob, 0.4),
(1 - (reasoning_validation.get('recursion_vulnerability', 0)), 0.3),
(1 - semantic_vulnerability.get('adversarial_probability', 0), 0.3)
]
# Compute weighted safety score
safety_score = sum(
component * weight
for component, weight in safety_components
)
return safety_score
def _embed_text(self, text: str) -> torch.Tensor:
"""
Generate advanced text embedding
"""
# Tokenize and embed text
inputs = transformers.AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)(
text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = self.embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze()
def main():
# Initialize Confidential AI Safety Framework
ai_safety_framework = ConfidentialAISafetyFramework()
# Sample safety analysis scenario
input_prompt = "Explore the ethical implications of advanced AI systems"
reasoning_trace = [
"AI systems should prioritize human well-being",
"Ethical considerations require comprehensive analysis",
"Multiple perspectives must be considered"
]
# Execute comprehensive safety analysis
safety_results = ai_safety_framework.execute_comprehensive_safety_analysis(
input_prompt,
reasoning_trace
)
# Result visualization
import json
print("Confidential Safety Analysis Results:")
print(json.dumps(safety_results, indent=2))
if __name__ == "__main__":
main()