-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsitsbook.Rmd
947 lines (674 loc) · 29.1 KB
/
sitsbook.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
---
title: '**sits**: Satellite Image Time Series Analysis
on Earth Observation Data Cubes'
author:
- Gilberto Camara
- Rolf Simoes
- Felipe Souza
- Felipe Menino
- Charlotte Pelletier
- Pedro R. Andrade
- Karine Ferreira
- Gilberto Queiroz
date: "`r Sys.Date()`"
output:
html_document:
df_print: tibble
theme:
base_font:
google: "IBM Plex Serif"
code_font:
google: "IBM Plex Mono"
pdf_document:
latex_engine: xelatex
toc: true
toc_depth: 2
df_print: tibble
documentclass: report
link-citations: yes
colorlinks: yes
lot: yes
lof: yes
always_allow_html: true
fontsize: 10,5pt
site: bookdown::bookdown_site
cover-image: images/cover_sits_book.png
bibliography: e-sensing.bib
biblio-style: apalike
csl: ieee.csl
indent: true
description: |
This book presents **sits**, an open-source R package for satellite image time series analysis. The package supports the application of machine learning techniques for classifying image time series obtained from Earth observation data cubes.
---
# Preface {-}
Placeholder
## How much R knowledge is required?{-}
## Software version described in this book{-}
## Main reference for `sits` {-}
## Intellectual property rights {-}
<!--chapter:end:index.Rmd-->
# Setup {.unnumbered}
Placeholder
## How to use this on-line book {.unnumbered}
## How to install sits using R and RStudio {.unnumbered}
### Installing `sits` from CRAN {.unnumbered}
### Installing in Microsoft Windows and MacOS environments{.unnumbered}
### Installing in Ubuntu environments{.unnumbered}
### Installing in Debian environments{.unnumbered}
### Installing in Fedora environments {.unnumbered}
## Using Docker images {.unnumbered}
## Install `sits` from CONDA {.unnumbered}
## Accessing the development version {.unnumbered}
## Additional requirements {.unnumbered}
## Using GPUs with `sits` {.unnumbered}
<!--chapter:end:01-setup.Rmd-->
# Acknowledgements {-}
Placeholder
## Funding Sources {-}
## Community Contributions {-}
## Reproducible papers and books used in building `sits` {-}
## Publications using `sits` {-}
## AI support in preparing the book {-}
<!--chapter:end:02-acknowledgements.Rmd-->
# Introduction{-}
Placeholder
## Who is this book for?{-}
## Why work with satellite image time series?{-}
## Time-first, space-later{-}
## Land use and land cover{-}
## How `sits` works {.unnumbered}
## Creating a data cube {.unnumbered}
## The time series tibble {-}
## Training a machine learning model {.unnumbered}
## Data cube classification {.unnumbered}
## Spatial smoothing {.unnumbered}
## Labeling a probability data cube {.unnumbered}
<!--chapter:end:03-intro.Rmd-->
# Earth observation data cubes{-}
Placeholder
## Analysis-ready data(ARD){-}
## Image collections handled by sits{-}
## Regular image data cubes{-}
## Creating data cubes{-}
## Amazon Web Services{-}
## Microsoft Planetary Computer{-}
### SENTINEL-2/2A images in MPC{-}
### LANDSAT-C2-L2 images in MPC{-}
### SENTINEL-1-GRD images in MPC{-}
### SENTINEL-1-RTC images in MPC{-}
### Copernicus DEM 30 meter images in MPC{-}
## Brazil Data Cube{-}
## Copernicus Data Space Ecosystem (CDSE){-}
### SENTINEL-2/2A images in CDSE{-}
### SENTINEL-1-RTC images in CDSE{-}
## Digital Earth Africa{-}
## Digital Earth Australia{-}
## Harmonized Landsat-Sentinel {-}
## EO products from TERRASCOPE{-}
## Planet data as ARD local files{-}
## Reading classified images as local data cube{-}
## Regularizing data cubes{-}
### Regularizing Sentinel-2 images{-}
### Regularizing Sentinel-1 images{-}
### Merging Sentinel-1 and Sentinel-2 images{-}
## Combining multitemporal data cubes with digital elevation models{-}
## Merging multitemporal data cubes with DEM{-}
<!--chapter:end:04-datacubes.Rmd-->
# Operations on data cubes{-}
Placeholder
## Pixel-based and neighborhood-based operations{-}
## Computing vegetation indexes{-}
## Spectral indexes for identifying burned areas{-}
## Support for non-normalized indexes{-}
## Temporal combination operations{-}
## Spectral mixture analysis{-}
<!--chapter:end:05-cubeoperations.Rmd-->
# Working with time series{-}
Placeholder
## Data structures for satellite time series{-}
## Utilities for handling time series{-}
## Time series visualisation{-}
## Visualizing sample patterns{-}
## Geographical variability of training samples{-}
## Obtaining time series data from data cubes{-}
## Filtering time series{-}
### Savitzky–Golay filter{-}
### Whittaker filter{-}
<!--chapter:end:06-timeseries.Rmd-->
# Improving the quality of training samples{-}
Placeholder
## Datasets used in this chapter{-}
## Cross-validation of training sets{-}
## Hierarchical clustering for sample quality control{-}
## Using SOM for sample quality control{-}
## Creating the SOM map{-}
## Measuring confusion between labels using SOM{-}
## Detecting noisy samples using SOM{-}
## Reducing sample imbalance{-}
## Conclusion{-}
<!--chapter:end:07-clustering.Rmd-->
# Machine learning for data cubes{-}
Placeholder
## Machine learning classification{-}
## Common interface to machine learning and deep learning models{-}
## Random forest{-}
## Support vector machine{-}
## Extreme gradient boosting{-}
## Deep learning using multilayer perceptron{-}
## Temporal Convolutional Neural Network (TempCNN){-}
## Attention-based models{-}
## Deep learning model tuning{-}
## Considerations on model choice{-}
<!--chapter:end:08-machinelearning.Rmd-->
# Classification of raster data cubes{-}
Placeholder
## Data cube for case study {-}
## Training data for the case study{-}
## Training machine learning models{-}
## Classification of machine learning models in CPUs{-}
## Training and running deep learning models{-}
### Deep learning model tuning{-}
### Classification in GPUs using parallel processing{-}
## Map reclassification{-}
<!--chapter:end:09-rasterclassification.Rmd-->
# Bayesian smoothing for post-processing{-}
Placeholder
## Introduction{-}
## The need for post-processing{-}
## Empirical Bayesian estimation{-}
## Using non-isotropic neighborhoods{-}
## Effect of the hyperparameter{-}
## Running Bayesian smoothing {-}
## Assessing the local logit variance{-}
## Using the variance to select values of hyperparameters{-}
<!--chapter:end:10-bayesiansmoothing.Rmd-->
# Validation and accuracy measurements{-}
Placeholder
## Introduction{-}
## Example data set{-}
## Stratified sampling design and allocation{-}
## Accuracy assessment of classified images{-}
<!--chapter:end:11-validation.Rmd-->
# Uncertainty and active learning{-}
Placeholder
## Measuring uncertainty{-}
## Using uncertainty measures for active learning{-}
<!--chapter:end:12-uncertainty.Rmd-->
# Ensemble prediction from multiple models{-}
Placeholder
<!--chapter:end:13-ensembleprediction.Rmd-->
# Object-based time series image analysis {.unnumbered}
Placeholder
## Image segmentation in sits {-}
## Simple linear iterative clustering algorithm{-}
## Example of SLIC-based segmentation and classification{-}
<!--chapter:end:14-obia.Rmd-->
# Data visualisation in `sits` {-}
Placeholder
## Plotting{-}
### Plotting false color maps{-}
### Plotting RGB color composite maps{-}
### Plotting classified maps{-}
## Visualization of data cubes in interactive maps {.unnumbered}
## How colors work in sits{-}
## Exporting colors to QGIS{-}
<!--chapter:end:15-visualisation.Rmd-->
# Technical annex {-}
```{r, eval = TRUE, echo = FALSE, include = FALSE}
source("common.R")
library(sits)
library(sitsdata)
if (!file.exists("./tempdir/chp16"))
dir.create("./tempdir/chp16")
```
This Chapter contains technical details on the algorithms available in `sits`. It is intended to support those that want to understand how the package works and also want to contribute to its development.
## Adding functions to the `sits` API{-}
### General principles{-}
New functions that build on the `sits` API should follow the general principles below.
- The target audience for `sits` is the community of remote sensing experts with Earth Sciences background who want to use state-of-the-art data analysis methods with minimal investment in programming skills. The design of the `sits` API considers the typical workflow for land classification using satellite image time series and thus provides a clear and direct set of functions, which are easy to learn and master.
- For this reason, we welcome contributors that provide useful additions to the existing API, such as new ML/DL classification algorithms. In case of a new API function, before making a pull request please raise an issue stating your rationale for a new function.
- Most functions in `sits` use the S3 programming model with a strong emphasis on generic methods wich are specialized depending on the input data type. See for example the implementation of the `sits_bands()` function.
- Please do not include contributed code using the S4 programming model. Doing so would break the structure and the logic of existing code. Convert your code from S4 to S3.
- Use generic functions as much as possible, as they improve modularity and maintenance. If your code has decision points using `if-else` clauses, such as `if A, do X; else do Y` consider using generic functions.
- Functions that use the `torch` package use the R6 model to be compatible with that package. See for example, the code in `sits_tempcnn.R` and `api_torch.R`. To convert `pyTorch` code to R and include it is straightforward. Please see the [Technical Annex](https://e-sensing.github.io/sitsbook/technical-annex.html) of the sits on-line book.
- The sits code relies on the packages of the `tidyverse` to work with tables and list. We use `dplyr` and `tidyr` for data selection and wrangling, `purrr` and `slider` for loops on lists and table, `lubridate` to handle dates and times.
### Adherence to the `sits` data types{-}
The `sits` package in built on top of three data types: time series tibble, data cubes and models. Most `sits` functions have one or more of these types as inputs and one of them as return values. The time series tibble contains data and metadata. The first six columns contain the metadata: spatial and temporal information, the label assigned to the sample, and the data cube from where the data has been extracted. The time_series column contains the time series data for each spatiotemporal location. All time series tibbles are objects of class `sits`.
The `cube` data type is designed to store metadata about image files. In principle, images which are part of a data cube share the same geographical region, have the same bands, and have been regularized to fit into a pre-defined temporal interval. Data cubes in `sits` are organized by tiles. A tile is an element of a satellite's mission reference system, for example MGRS for Sentinel-2 and WRS2 for Landsat. A `cube` is a tibble where each row contains information about data covering one tile. Each row of the cube tibble contains a column named `file_info`; this column contains a list that stores a tibble
The `cube` data type is specialised in `raster_cube` (ARD images), `vector_cube` (ARD cube with segmentation vectors). `probs_cube` (probabilities produced by classification algorithms on raster data), `probs_vector_cube`(probabilites generated by vector classification of segments), `uncertainty_cube` (cubes with uncertainty information), and `class_cube` (labelled maps). See the code in `sits_plot.R` as an example of specialisation of `plot` to handle different classes of raster data.
All ML/DL models in `sits` which are the result of `sits_train` belong to the `ml_model` class. In addition, models are assigned a second class, which is unique to ML models (e.g, `rfor_model`, `svm_model`) and generic for all DL `torch` based models (`torch_model`). The class information is used for plotting models and for establishing if a model can run on GPUs.
### Literal values, error messages, and testing{-}
The internal `sits` code has no literal values, which are all stored in the YAML configuration files `./inst/extdata/config.yml` and `./inst/extdata/config_internals.yml`. The first file contains configuration parameters that are relevant to users, related to visualisation and plotting; the second contains parameters that are relevant only for developers. These values are accessible using the `.conf` function. For example, the value of the default size for ploting COG files is accessed using the command `.conf["plot", "max_size"]`.
Error messages are also stored outside of the code in the YAML configuration file `./inst/extdata/config_messages.yml`. These values are accessible using the `.conf` function. For example, the error associated to an invalid NA value for an input parameter is accessible using th function `.conf("messages", ".check_na_parameter")`.
We strive for high code coverage (> 90\%). Every parameter of all `sits` function (including internal ones) is checked for consistency. Please see `api_check.R`.
### Supporting new STAC-based image catalogues{-}
If you want to include a STAC-based catalogue not yet supported by `sits`, we encourage you to look at existing implementations of catalogues such as Microsoft Planetary Computer (MPC), Digital Earth Africa (DEA) and AWS. STAC-based catalogues in `sits` are associated to YAML description files, which are available in the directory `.inst/exdata/sources`. For example, the YAML file `config_source_mpc.yml` describes the contents of the MPC collections supported by `sits`. Please first provide an YAML file which lists the detailed contents of the new catalogue you wish to include. Follow the examples provided.
After writing the YAML file, you need to consider how to access and query the new catalogue. The entry point for access to all catalogues is the `sits_cube.stac_cube()` function, which in turn calls a sequence of functions which are described in the generic interface `api_source.R`. Most calls of this API are handled by the functions of `api_source_stac.R` which provides an interface to the `rstac` package and handles STAC queries.
Each STAC catalogue is different. The STAC specification allows providers to implement their data descriptions with specific information. For this reason, the generic API described in `api_source.R` needs to be specialized for each provider. Whenever a provider needs specific implementations of parts of the STAC protocol, we include them in separate files. For example, `api_source_mpc.R` implements specific quirks of the MPC platform. Similarly, specific support for CDSE (Copernicus Data Space Environment) is available in `api_source_cdse.R`.
## Exporting data to JSON{-}
Both the data cube and the time series tibble can be exported to exchange formats such as JSON.
```{r, tidy = "styler", eval = FALSE}
library(jsonlite)
# Export the data cube to JSON
jsonlite::write_json(
x = sinop,
path = "./data_cube.json",
pretty = TRUE)
# Export the time series to JSON
jsonlite::write_json(
x = samples_prodes_4classes,
path = "./time_series.json",
pretty = TRUE)
```
## SITS and Google Earth Engine APIs: A side-by-side exploration{-}
This section presents a side-by-side exploration of the `sits` and Google Earth
Engine (`gee`) APIs, focusing on their respective capabilities in handling
satellite data. The exploration is structured around three key examples:
(1) creating a mosaic, (2) calculating the Normalized Difference Vegetation
Index (NDVI), and (3) performing a Land Use and Land Cover (LULC) classification.
Each example demonstrates how these tasks are executed using `sits` and `gee`,
offering a clear view of their methodologies and highlighting the similarities
and the unique approaches each API employs.
### Example 1: Creating a Mosaic{-}
A common application among scientists and developers in the field of Remote
Sensing is the creation of satellite image mosaics. These mosaics are formed by
combining two or more images, typically used for visualization in various
applications. In this example, we will demonstrate how to create an image
mosaic using `sits` and `gee` APIs.
#### Define Region of Interest data{-}
In this example, a Region of Interest (ROI) is defined using a bounding box
with longitude and latitude coordinates. Below are the code snippets for
specifying this ROI in both `sits` and `gee` environments.
**sits**
```{r, eval = FALSE}
roi <- c("lon_min" = -63.410, "lat_min" = -9.783,
"lon_max" = -62.614, "lat_max" = -9.331)
```
**gee**
```js
var roi = ee.Geometry.Rectangle([-63.410,-9.783,-62.614,-9.331]);
```
#### Load Satellite Imagery{-}
Next, we will load the satellite imagery. For this example, we used data from [Sentinel-2](https://sentinels.copernicus.eu/web/sentinel/copernicus/sentinel-2).
In `sits`, several providers offer Sentinel-2 ARD images. In this example,
we will use images provided by the Microsoft Planetary Computer (**MPC**).
**sits**
```{r, eval = FALSE}
data <- sits_cube(
source = "MPC",
collection = "SENTINEL-2-L2A",
bands = c("B02", "B03", "B04"),
tiles = c("20LNQ", "20LMQ"),
start_date = "2024-08-01",
end_date = "2024-08-03"
)
```
**gee**
```js
var data = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
.filterDate('2024-08-01', '2024-08-03')
.filter(ee.Filter.inList('MGRS_TILE', ['20LNQ', '20LMQ']))
.select(['B4', 'B3', 'B2']);
```
> `sits` provides search filters for a collection as parameters in the
`sits_cube()` function, whereas `gee` offers these filters as methods of an
`ImageCollection` object.
#### Mosaic Creation{-}
In `sits`, we will use the `sits_mosaic()` function to create mosaics of our
images. In `gee`, we will utilize the `mosaic()` method.
`sits_mosaic()` function crops the mosaic based on the `roi` parameter.
In `gee`, cropping is performed using the `clip()` method.
We will use the same `roi` that was used to filter the images to perform
the cropping on the mosaic. See the following code:
**sits**
```{r, eval = FALSE}
mosaic <- sits_mosaic(
cube = data,
roi = roi,
multicores = 4,
output_dir = tempdir()
)
```
**gee**
```js
var mosaic = data.mosaic().clip(roi);
```
#### View Result{-}
Finally, the results can be visualized in an interactive map.
**sits**
```{r, eval = FALSE}
sits_view(
x = mosaic,
red = "B04",
green = "B03",
blue = "B02"
)
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/mosaic-sits.png")
```
**gee**
```js
// Define view region
Map.centerObject(roi, 10);
// Add mosaic Image
Map.addLayer(mosaic, {
min: 0,
max: 3000
}, 'Mosaic');
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/mosaic-gee.png")
```
### Example 2: Calculating NDVI{-}
This example demonstrates how to generate time-series of Normalized Difference
Vegetation Index (NDVI) using both the `sits` and `gee` APIs.
#### Define Region of Interest data{-}
In this example, a Region of Interest (ROI) is defined using the `sinop_roi.shp`
file. Below are the code snippets for specifying this file in both `sits` and
`gee` environments.
> To reproduce the example, you can download the shapefile using [this link](data/sits-gee/sinop_roi.zip).
In `sits`, you can just use it. In `gee`, it would be required to upload the
file in your user space.
**sits**
```{r, eval = FALSE}
roi_data <- "sinop_roi.shp"
```
**gee**
```js
var roi_data = ee.FeatureCollection("/path/to/sinop_roi");
```
#### Load Satellite Imagery{-}
Next, we load the satellite imagery. For this example, we use data from [Landsat-8](https://www.usgs.gov/landsat-missions/landsat-8).
In `sits`, this data is retrieved from the Brazil Data Cube, although
other sources are available. For `gee`, the data provided by the platform is used.
In `sits`, when the data is loaded, all necessary transformations to make the
data ready for use (e.g., `factor`, `offset`, `cloud masking`) are applied
automatically. In `gee`, users are responsible for performing these
transformations themselves.
**sits**
```{r, eval = FALSE}
data <- sits_cube(
source = "BDC",
collection = "LANDSAT-OLI-16D",
bands = c("RED", "NIR08", "CLOUD"),
roi = roi_data,
start_date = "2019-05-01",
end_date = "2019-07-01"
)
```
**gee**
```js
var data = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
.filterBounds(roi_data)
.filterDate("2019-05-01", "2019-07-01")
.select(["SR_B4", "SR_B5", "QA_PIXEL"]);
// factor and offset
data = data.map(function(image) {
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
return image.addBands(opticalBands, null, true);
});
data = data.map(function(image) {
// Select the pixel_qa band
var qa = image.select('QA_PIXEL');
// Create a mask to identify cloud and cloud shadow
var cloudMask = qa.bitwiseAnd(1 << 5).eq(0) // Clouds
.and(qa.bitwiseAnd(1 << 3).eq(0)); // Cloud shadows
// Apply the cloud mask to the image
return image.updateMask(cloudMask);
});
```
#### Generate NDVI{-}
After loading the satellite imagery, the NDVI can be generated. In `sits`, a
function allows users to specify the formula used to create a new attribute,
in this case, NDVI. In `gee`, a callback function is used, where the NDVI is
calculated for each image.
**sits**
```{r, eval = FALSE}
data_ndvi <- sits_apply(
data = data,
NDVI = (NIR08 - RED) / (NIR08 + RED),
output_dir = tempdir(),
multicores = 4,
progress = TRUE
)
```
**gee**
```js
var data_ndvi = data.map(function(image) {
var ndvi = image.normalizedDifference(["SR_B5", "SR_B4"]).rename('NDVI');
return image.addBands(ndvi);
});
data_ndvi = data_ndvi.select("NDVI");
```
#### Crop Result{-}
The results are clipped to the ROI defined at the beginning of the
example to facilitate visualization.
> In both APIs, you can define a ROI before performing the
operation to optimize resource usage. However, in this example, the data is
cropped after the calculation.
**sits**
```{r, eval = FALSE}
data_ndvi <- sits_mosaic(
cube = data_ndvi,
roi = roi_data,
output_dir = tempdir(),
multicores = 4
)
```
**gee**
```js
data_ndvi = data_ndvi.map(function(image) {
return image.clip(roi_data);
});
```
#### View Result{-}
Finally, the results can be visualized in an interactive map.
**sits**
```{r, eval = FALSE}
sits_view(data_ndvi, band = "NDVI", date = "2019-05-25", opacity = 1)
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/ndvi-sits.png")
```
**gee**
```js
// Define view region
Map.centerObject(roi_data, 10);
// Add classification map (colors from sits)
Map.addLayer(data_ndvi, {
min: 0,
max: 1,
palette: ["red", 'white', 'green']
}, "NDVI Image");
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/ndvi-gee.png")
```
### Example 3: Land Use and Land Cover (LULC) Classification{-}
This example demonstrates how to perform Land Use and Land Cover (LULC)
classification using satellite image time series and machine-learning models in
both `sits` and `gee`.
#### Define Region of Interest data{-}
This example defines the region of interest (ROI) using a shapefile named
`sinop_roi.shp`. Below are the code snippets for specifying this file in both
`sits` and `gee` environments.
> To reproduce the example, you can download the shapefile using [this link](data/sits-gee/sinop_roi.zip).
In `sits`, you can just use it. In `gee`, it would be required to upload the
file in your user space.
**sits**
```r
roi_data <- "sinop_roi.shp"
```
**gee**
```js
var roi_data = ee.FeatureCollection("/path/to/sinop_roi");
```
#### Define Sample Data{-}
To train a classifier, sample data with labels representing the behavior of
each class to be identified is necessary. In this example, we use a small set
with `18` samples. The following code snippets show how these samples are defined
in each environment.
In `sits`, labels can be of type `string`, whereas `gee` requires labels to be
`integers`. To accommodate this difference, two versions of the same sample set
were created: (1) one with `string` labels for use with `sits`, and (2) another
with `integer` labels for use with `gee`.
> To download these samples, you can use the following links:
[samples_sinop_crop for sits](data/sits-gee/samples_sinop_crop.zip) or [samples_sinop_crop for gee](data/sits-gee/samples_sinop_crop_gee.zip)
**sits**
```r
samples <- "samples_sinop_crop.shp"
```
**gee**
```js
var samples = ee.FeatureCollection("samples_sinop_crop_gee");
```
#### Load Satellite Imagery{-}
Next, we load the satellite imagery. For this example, we use data from [MOD13Q1](https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD13Q1) .
In `sits`, this data is retrieved from the Brazil Data Cube, but other
sources are also available. In `gee`, the platform directly provides this data.
In `sits`, all necessary data transformations for classification tasks are
handled automatically. In contrast, `gee` requires users to manually transform
the data into the correct format.
In this context it's important to note that, in the `gee` code, transforming all
images into bands mimics the approach used by `sits` for non-temporal classifiers.
However, this method is not inherently scalable in `gee` and may need adjustments
for larger datasets or more bands. Additionally, for temporal classifiers like
TempCNN, other transformations are necessary and must be manually implemented by
the user in `gee`.
In contrast, `sits` provides a consistent API experience, regardless of the data
size or machine learning algorithm.
**sits**
```r
data <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
bands = c("NDVI"),
roi = roi_data,
start_date = "2013-09-01",
end_date = "2014-08-29"
)
```
**gee**
```js
var data = ee.ImageCollection("MODIS/061/MOD13Q1")
.filterBounds(roi_data)
.filterDate("2013-09-01", "2014-09-01")
.select(["NDVI"]);
// Transform all images to bands
data = data.toBands();
```
#### Extract sample time-series{-}
In this example, we'll use a Random Forest classifier to create a LULC map. To
train the classifier, we need sample data linked to time-series.
This step shows how to extract and associate time-series with samples.
**sits**
```r
samples_ts <- sits_get_data(
cube = data,
samples = samples,
multicores = 4
)
```
**gee**
```js
var samples_ts = data.sampleRegions({
collection: samples,
properties: ["label"]
});
```
#### Train classification model{-}
With the time-series data extracted for each sample, we can now train the Random
Forest classifier
**sits**
```r
classifier <- sits_train(
samples_ts, sits_rfor(num_trees = 100)
)
```
**gee**
```js
var classifier = ee.Classifier.smileRandomForest(100).train({
features: samples_ts,
classProperty: "label",
inputProperties: data.bandNames()
});
```
#### Generate classification map{-}
Now, it is possible to generate the classification map using the trained Random
Forest model.
In `sits`, the classification process starts with a probability map.
This map provides the probability of each class for every pixel, offering insights
into the classifier's performance. It also allows for refining the results using
methods like Bayesian probability smoothing. After generating the probability map,
it is possible to produce the class map, where each pixel is assigned to the class
with the highest probability.
In `gee`, while it is possible to generate probabilities, it is not strictly
required to produce the classification map. Yet, as of the date of this document,
there is no out-of-the-box solution available for utilizing these probabilities
to enhance classification results, as presented in `sits`
**sits**
```r
probabilities <- sits_classify(
data = data,
ml_model = classifier,
multicores = 4,
roi = roi_data,
output_dir = tempdir()
)
class_map <- sits_label_classification(
cube = probabilities,
output_dir = tempdir(),
multicores = 4
)
```
**gee**
```js
var probs_map = data.classify(classifier.setOutputMode("MULTIPROBABILITY"));
var class_map = data.classify(classifier);
```
#### Crop Result{-}
The results are clipped to the ROI defined at the beginning of the example to
facilitate visualization.
> In both APIs, it's possible to define an ROI before processing. However, this
was not applied in this example.
**sits**
```r
class_map <- sits_mosaic(
cube = class_map,
roi = roi_data,
output_dir = tempdir(),
multicores = 4
)
```
**gee**
```js
class_map = class_map.clip(roi_data);
```
#### View Result{-}
Finally, the results can be visualized on an interactive map.
**sits**
```r
sits_view(class_map, opacity = 1)
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/classification-sits.png")
```
**gee**
```js
// Define view region
Map.centerObject(roi_data, 10);
// Add classification map (colors from sits)
Map.addLayer(class_map, {
min: 1,
max: 4,
palette: ["#FAD12D", "#1E8449", "#D68910", "#a2d43f"]
}, "Classification map");
```
```{r, echo = FALSE, out.width = "100%", out.height = "50%"}
knitr::include_graphics("./images/sitsgee/classification-gee.png")
```
>>>>>>> 8712241aad54bee8b0ba9c8623758144364623a4:15-annex.Rmd
<!--chapter:end:16-annex.Rmd-->
# References{-}
<!--chapter:end:17-references.Rmd-->