-
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathREADME.Rmd
332 lines (220 loc) · 8.89 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
---
output: github_document
---
# `datawizard`: Easy Data Wrangling and Statistical Transformations <img src='man/figures/logo.png' align="right" height="139" />
```{r, echo=FALSE, warning=FALSE, message=FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
dpi = 300,
out.width = "100%",
fig.path = "man/figures/",
comment = "#>"
)
set.seed(333)
library(datawizard)
```
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04684/status.svg)](https://doi.org/10.21105/joss.04684)
[![downloads](http://cranlogs.r-pkg.org/badges/datawizard)](https://cran.r-project.org/package=datawizard)
[![total](https://cranlogs.r-pkg.org/badges/grand-total/datawizard)](https://cranlogs.r-pkg.org/)
<!-- ***:sparkles: Hockety pockety wockety wack, prepare this data forth and back*** -->
<!-- ***Hockety pockety wockety wock, messy data is in shock*** -->
<!-- ***Hockety pockety wockety woss, you can cite i-it from JOSS*** <sup>(soon)</sup> -->
<!-- ***Hockety pockety wockety wass, datawizard saves your ass! :sparkles:*** -->
`{datawizard}` is a lightweight package to easily manipulate, clean, transform, and prepare your data for analysis. It is part of the [easystats ecosystem](https://easystats.github.io/easystats/), a suite of R packages to deal with your entire statistical analysis, from cleaning the data to reporting the results.
It covers two aspects of data preparation:
- **Data manipulation**: `{datawizard}` offers a very similar set of functions to that of the *tidyverse* packages, such as a `{dplyr}` and `{tidyr}`, to select, filter and reshape data, with a few key differences. 1) All data manipulation functions start with the prefix `data_*` (which makes them easy to identify). 2) Although most functions can be used exactly as their *tidyverse* equivalents, they are also string-friendly (which makes them easy to program with and use inside functions). Finally, `{datawizard}` is super lightweight (no dependencies, similar to [poorman](https://github.com/nathaneastwood/poorman)), which makes it awesome for developers to use in their packages.
- **Statistical transformations**: `{datawizard}` also has powerful functions to easily apply common data [transformations](https://easystats.github.io/datawizard/reference/index.html#statistical-transformations), including standardization, normalization, rescaling, rank-transformation, scale reversing, recoding, binning, etc.
</br>
<img src='https://media.giphy.com/media/VcizxCUIgaKpa/giphy.gif' width="300"/>
</br>
# Installation
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/datawizard)](https://cran.r-project.org/package=datawizard) [![insight status badge](https://easystats.r-universe.dev/badges/datawizard)](https://easystats.r-universe.dev) [![R-CMD-check](https://github.com/easystats/datawizard/workflows/R-CMD-check/badge.svg?branch=main)](https://github.com/easystats/datawizard/actions)
Type | Source | Command
---|---|---
Release | CRAN | `install.packages("datawizard")`
Development | r-universe | `install.packages("datawizard", repos = "https://easystats.r-universe.dev")`
Development | GitHub | `remotes::install_github("easystats/datawizard")`
> **Tip**
>
> **Instead of `library(datawizard)`, use `library(easystats)`.**
> **This will make all features of the easystats-ecosystem available.**
>
> **To stay updated, use `easystats::install_latest()`.**
# Citation
To cite the package, run the following command:
```{r, comment=""}
citation("datawizard")
```
# Features
Most courses and tutorials about statistical modeling assume that you are working with a clean and tidy dataset. In practice, however, a major part of doing statistical modeling is preparing your data--cleaning up values, creating new columns, reshaping the dataset, or transforming some variables. `{datawizard}` provides easy to use tools to perform these common, critical, and sometimes tedious data preparation tasks.
## Data wrangling
### Select, filter and remove variables
The package provides helpers to filter rows meeting certain conditions...
```{r}
data_match(mtcars, data.frame(vs = 0, am = 1))
```
... or logical expressions:
```{r}
data_filter(mtcars, vs == 0 & am == 1)
```
Finding columns in a data frame, or retrieving the data of selected columns, can be achieved using `extract_column_names()` or `data_select()`:
```{r}
# find column names matching a pattern
extract_column_names(iris, starts_with("Sepal"))
# return data columns matching a pattern
data_select(iris, starts_with("Sepal")) |> head()
```
It is also possible to extract one or more variables:
```{r}
# single variable
data_extract(mtcars, "gear")
# more variables
head(data_extract(iris, ends_with("Width")))
```
Due to the consistent API, removing variables is just as simple:
```{r}
head(data_remove(iris, starts_with("Sepal")))
```
### Reorder or rename
```{r}
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
```
```{r}
head(data_rename(iris, c("Sepal.Length", "Sepal.Width"), c("length", "width")))
```
### Merge
```{r}
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 2:4)
x
y
data_merge(x, y, join = "full")
data_merge(x, y, join = "left")
data_merge(x, y, join = "right")
data_merge(x, y, join = "semi", by = "c")
data_merge(x, y, join = "anti", by = "c")
data_merge(x, y, join = "inner")
data_merge(x, y, join = "bind")
```
### Reshape
A common data wrangling task is to reshape data.
Either to go from wide/Cartesian to long/tidy format
```{r}
wide_data <- data.frame(replicate(5, rnorm(10)))
head(data_to_long(wide_data))
```
or the other way
```{r}
long_data <- data_to_long(wide_data, rows_to = "Row_ID") # Save row number
data_to_wide(long_data,
names_from = "name",
values_from = "value",
id_cols = "Row_ID"
)
```
### Empty rows and columns
```{r}
tmp <- data.frame(
a = c(1, 2, 3, NA, 5),
b = c(1, NA, 3, NA, 5),
c = c(NA, NA, NA, NA, NA),
d = c(1, NA, 3, NA, 5)
)
tmp
# indices of empty columns or rows
empty_columns(tmp)
empty_rows(tmp)
# remove empty columns or rows
remove_empty_columns(tmp)
remove_empty_rows(tmp)
# remove empty columns and rows
remove_empty(tmp)
```
### Recode or cut dataframe
```{r}
set.seed(123)
x <- sample(1:10, size = 50, replace = TRUE)
table(x)
# cut into 3 groups, based on distribution (quantiles)
table(categorize(x, split = "quantile", n_groups = 3))
```
## Data Transformations
The packages also contains multiple functions to help transform data.
### Standardize
For example, to standardize (*z*-score) data:
```{r}
# before
summary(swiss)
# after
summary(standardize(swiss))
```
### Winsorize
To winsorize data:
```{r}
# before
anscombe
# after
winsorize(anscombe)
```
### Center
To grand-mean center data
```{r}
center(anscombe)
```
### Ranktransform
To rank-transform data:
```{r}
# before
head(trees)
# after
head(ranktransform(trees))
```
### Rescale
To rescale a numeric variable to a new range:
```{r}
change_scale(c(0, 1, 5, -5, -2))
```
### Rotate or transpose
```{r}
x <- mtcars[1:3, 1:4]
x
data_rotate(x)
```
## Data properties
`datawizard` provides a way to provide comprehensive descriptive summary for all variables in a dataframe:
```{r}
data(iris)
describe_distribution(iris)
```
Or even just a variable
```{r}
describe_distribution(mtcars$wt)
```
There are also some additional data properties that can be computed using this package.
```{r}
x <- (-10:10)^3 + rnorm(21, 0, 100)
smoothness(x, method = "diff")
```
## Function design and pipe-workflow
The design of the `{datawizard}` functions follows a design principle that makes it easy for user to understand and remember how functions work:
1. the first argument is the data
2. for methods that work on data frames, two arguments are following to `select` and `exclude` variables
3. the following arguments are arguments related to the specific tasks of the functions
Most important, functions that accept data frames usually have this as their first argument, and also return a (modified) data frame again. Thus, `{datawizard}` integrates smoothly into a "pipe-workflow".
```{r}
iris |>
# all rows where Species is "versicolor" or "virginica"
data_filter(Species %in% c("versicolor", "virginica")) |>
# select only columns with "." in names (i.e. drop Species)
data_select(contains("\\.")) |>
# move columns that ends with "Length" to start of data frame
data_relocate(ends_with("Length")) |>
# remove fourth column
data_remove(4) |>
head()
```
# Contributing and Support
In case you want to file an issue or contribute in another way to the package, please follow [this guide](https://easystats.github.io/datawizard/CONTRIBUTING.html). For questions about the functionality, you may either contact us via email or also file an issue.
# Code of Conduct
Please note that this project is released with a
[Contributor Code of Conduct](https://easystats.github.io/datawizard/CODE_OF_CONDUCT.html). By participating in this project you agree to abide by its terms.