-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_func_jiggy.py
executable file
·114 lines (98 loc) · 4.47 KB
/
get_func_jiggy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
"""
This looks for most correlated seeds within brain networks
Usage:
get_func_jiggy.py [options] <input.dtseries.nii> <ROItemplate.dscalar.nii> <result.csv>
Arguments:
<input.dtseries.nii> Paths to directory containing .mnc images to align and mean
<ROItemplate.dscalar.nii> Path to template for the ROIs of network regions
<result.csv> Name (with full path to the csv of the found nodes)
Options:
-v,--verbose Verbose logging
--debug Debug logging in Erin's very verbose style
-n,--dry-run Dry run
-h,--help Print help
DETAILS
Requires python enviroment with numpy and nibabel:
module load use.own datman/edickie
Requires HCP pipeline environment
module load FSL/5.0.7 freesurfer/5.3.0 connectome-workbench/1.1.1 hcp-pipelines/3.7.0
ROI template example:
ROItemplate='/projects/edickie/code/templates/fsaverage.Yeo2011_7Networksfrom17.32k_fs_LR.ROI.dscalar.nii'
fROItemplate='/projects/edickie/code/templates/fsaverage.Yeo2011_7Networksfrom17.32k_fs_LR.ROI_dscalarfake.nii'
inputfile example:
inputfile= '/projects/edickie/analysis/restcifti/SN110/MNINonLinear/Results/RSN/RSN_Atlas.dtseries.nii'
Work in progress
"""
from docopt import docopt
import numpy as np
import nibabel as nib
import os
import subprocess
import pandas as pd
arguments = docopt(__doc__)
inputfile = arguments['<input.dtseries.nii>']
ROItemplate = arguments['<ROItemplate.dscalar.nii>']
resultsfile = arguments['<result.csv>']
VERBOSE = arguments['--verbose']
DEBUG = arguments['--debug']
DRYRUN = arguments['--dry-run']
###
### Erin's little function for running things in the shell
def docmd(cmdlist):
"sends a command (inputed as a list) to the shell"
if DEBUG: print ' '.join(cmdlist)
if not DRYRUN: subprocess.call(cmdlist)
## use wm_commad to get the cross correlation - if not done
sub_dconn = inputfile.replace('.dtseries.nii','Z.dconn.nii')
if os.path.exists(sub_dconn)==False:
'''
if the dconn file does not exists - make it with wb_command
# wb_command -cifti-correlation -fisher-z <cifti-in> <cifti-out>
'''
docmd(['wb_command', '-cifti-correlation', '-mem-limit', '1.5', '-fisher-z', inputfile, sub_dconn])
## read in the dconn file
img1 = nib.load(sub_dconn)
sub_corrmat = img1.get_data()
fc_df = pd.DataFrame(sub_corrmat[0,0,0,0,:,:])
## also read in template
img2 = nib.load(ROItemplate)
ROInet = img2.get_data()
roi_df = pd.DataFrame(ROInet[0,0,0,0,:,:],index=range(1,ROInet.shape[4]+1))
cols = ['Network','ROI','cifti-index']
result = pd.DataFrame(columns = cols)
thisrow = 1
for network in roi_df.index.values.tolist():
### subset matrix to contain rows of only this Network
network_idx = roi_df.loc[network,roi_df.loc[network,:]>0].index
### get a list of ROIs to within the network
roi_list = roi_df.loc[network,network_idx].unique()
for roi in roi_list:
'''
for each roi find its best vertex and add to table
'''
### get the subarray that contains the ROI
roi_idx = roi_df.loc[network,roi_df.loc[network,:]==roi].index
### calculate the maximal correlation at every vertex with this ROI
max_indexes = []
for other_roi in roi_list[roi_list != roi]:
## for combination of ROI and other_roi get the indices of the other roi that is most correlated with it
oroi_idx = roi_df.loc[network,roi_df.loc[network,:]==other_roi].index
roi_oroi_mat = fc_df.loc[roi_idx,oroi_idx]
row_maxes = roi_oroi_mat.max(1)
max_idx = int(row_maxes.loc[row_maxes==row_maxes.max()].index[0])
max_indexes.append(max_idx)
### top picks are those ROIs are those vertices from each other ROI in the network with the highest correlation with it
toppicks = fc_df.loc[roi_idx,max_indexes]
### caculate the median correlation from these top picks
toppicks_median = toppicks.median(1)
### take the highest
toppick = toppicks_median[toppicks_median==toppicks_median.max()].index[0]
### add a row to the result dataframe and fill in the cols
result = result.append(pd.DataFrame(columns = cols, index = [thisrow]))
result.Network[thisrow] = network
result.ROI[thisrow] = int(roi)
result['cifti-index'][thisrow] = toppick
thisrow = thisrow + 1
## write the checklist out to a file
result.to_csv(resultsfile, sep=',', columns = cols, index = False)