This guide has two sections, the first one is intended for precompiler module developers. It covers a minimal example of creating a precompiler module. The second section is intended for library developers who want their library to be able to use precompiled artefacts in a simple way.
This guide assumes you have already added elixir_make
to your library and you have written a Makefile
that compiles the native code in your project. Once your native code compile and works as expected, you are now ready to precompile it.
A full demo project is available on cocoa-xu/cc_precompiler_example.
To use a precompiler module such as the CCPrecompiler
example above, we first add the precompiler (:cc_precompiler
here) and :elixir_make
to deps
.
def deps do
[
# ...
{:elixir_make, "~> 0.6", runtime: false},
{:cc_precompiler, "~> 0.1.0", runtime: false, github: "cocoa-xu/cc_precompiler"}
# ...
]
end
Then add :elixir_make
to the compilers
list, and set the type (:nif
or :port
) and CCPrecompile
as the value for :make_precompiler
.
@version "0.1.0"
def project do
[
# ...
compilers: [:elixir_make] ++ Mix.compilers(),
# elixir_make specific config
# required
make_precompiler: {:nif, CCPrecompiler},
make_precompiler_url: "https://github.com/cocoa-xu/cc_precompiler_example/releases/download/v#{@version}/@{artefact_filename}",
# optional
make_precompiler_filename: "nif",
make_precompiler_priv_paths: ["nif.*"],
make_precompiler_nif_versions: [
versions: ["2.14", "2.15", "2.16"]
]
# ...
]
end
Another required field is make_precompiler_url
. It is a URL template to the artefact file.
@{artefact_filename}
in the URL template string will be replaced by corresponding artefact filenames when fetching them. For example, cc_precompiler_example-nif-2.16-x86_64-linux-gnu-0.1.0.tar.gz
.
The first optional config key for elixir_make is make_precompiler_filename
. If the name (file extension does not count) of the shared library is different from your app's name, then make_precompiler_filename
should be set. For example, if the app name is "cc_precompiler_example"
while the name shared library is "nif.so"
(or "nif.dll"
on windows), then make_precompiler_filename
should be set as "nif"
.
The second optional config key is make_precompiler_priv_paths
. For example, say the priv
directory is organised as follows in Linux, macOS and Windows respectively,
# Linux
.
├── assets
│ ├── model.onnx
│ └── data.json
├── lib
│ ├── libpriv1.so
│ ├── libpriv2.so
│ └── libpriv3.so
└── nif.so
# macOS
.
├── assets
│ ├── model.onnx
│ └── data.json
├── lib
│ ├── libpriv1.dylib
│ ├── libpriv2.dylib
│ └── libpriv3.dylib
└── nif.so
# Windows
.
├── assets
│ ├── model.onnx
│ └── data.json
├── lib
│ ├── libpriv1.dll
│ ├── libpriv2.dll
│ └── libpriv3.dll
└── nif.dll
By default, everything in priv
will be included in the precompiled tar file. However, files in assets
can be very large or platform-independent, therefore, we would like to only include the nif.so
(nif.dll
) file and everything in the lib
directory in the precompiled tar file to reduce the footprint. In this case, we can set make_precompiler_priv_paths
to ["nif.so", "nif.dll", "lib"]
.
Of course, wildcards (?
, **
, *
) are supported when specifiying files. For example, ["nif.*", "lib/*.so", "lib/*.dll", "lib/*.dylib"]
will include nif.so
(Linux/macOS) or nif.dll
(Windows), and .so
or .dll
files in the lib
directory.
Directory structures and symbolic links are preserved.
The third optional config key is make_precompiler_nif_versions
, which configures elixir_make
on how to compile and reuse precompiled binaries.
The default value for make_precompiler_nif_versions
is
[versions: ["#{:erlang.system_info(:nif_version)}"]]
There're two sub-keys for make_precompiler_nif_versions
:
versions
fallback_version
The versions
sub-key is either a list of NIF versions of a function that returns a list of NIF versions that the precompiled artefacts are available for:
make_precompiler_nif_versions: [
versions: ["2.15", "2.16"]
]
The above example tells :elixir_make
that all targets have precompiled artefacts for NIF version 2.15
and 2.16
.
For some platforms maybe we only have precompiled artefacts after a certain NIF version, say for x86_64 Windows we have precompiled artefacts available when NIF version >= 2.16
while other platforms have precompiled artefacts available from NIF version >= 2.15
.
In such case we can inform :elixir_make
that Windows targets don't have precompiled artefacts available except for NIF version 2.16
by passing a function to the availability
sub-key. This function should accept two arguments, target
and nif_version
, and returns a boolean value indicating whether the precompiled artefacts for the target and NIF version are available.
make_precompiler_nif_versions: [
versions: fn opts ->
target = opts.target
if String.contains?(target, "windows") do
["2.16"]
else
["2.15", "2.16"]
end
end
]
The default behaviour is to use the exact NIF version that is available to the current target. If one is not available, it may fallback (see fallback_version
next) to the highest matching major version prior to the current version. For example:
- if the current host is using Erlang/OTP 23 (NIF version
2.15
),elixir_make
will use the precompiled artefacts for NIF version2.15
; - if the current host is using Erlang/OTP 24 or 25 (NIF version
2.16
),elixir_make
will use the precompiled artefacts for NIF version2.16
; - if the current host is using Erlang/OTP 26 or newer (NIF version
2.17
),elixir_make
will fallback to the precompiled artefacts for NIF version2.16
;
If the current host is using Erlang/OTP with a new major Erlang NIF version (NIF version 3.0
) or anything earlier than the precompiled versions (2.14
), elixir_make
will compile from scratch.
The behaviour when elixir_make
cannot find the exact NIF version of the precompiled binary can be customized by setting the fallback_version
sub-key.
The value of the fallback_version
sub-key should be a function that accepts one argument, opts
, which is a map that include one key target
. The target
is the target triplet (or other naming format, defined by the precompiler of your choice).
The fallback_version
function should return the NIF version that is available and should be chosen for the current target.
To override the default configuration, please set the cc_precompile
key in project
. For example,
def project do
[
# ...
cc_precompile: [
# optional config that provides a map of available compilers
# on different systems
compilers: %{
# key (`:os.type()`)
# this allows us to provide different available targets
# on different systems
# value is a map that describes which compilers are available
#
# key == {:unix, :linux} => when compiling on Linux
{:unix, :linux} => %{
# key (target triplet) => `riscv64-linux-gnu`
# value => `PREFIX`
# - for strings, the string will be used as the prefix of
# the C and C++ compiler respectively, i.e.,
# CC=`#{prefix}gcc`
# CXX=`#{prefix}g++`
"riscv64-linux-gnu" => "riscv64-linux-gnu-",
# key (target triplet) => `armv7l-linux-gnueabihf`
# value => `{CC, CXX}`
# - for 2-tuples, the elements are the executable name of
# the C and C++ compiler respectively
"armv7l-linux-gnueabihf" => {
"arm-linux-gnueabihf-gcc",
"arm-linux-gnueabihf-g++"
},
# key (target triplet) => `armv7l-linux-gnueabihf`
# value => `{CC_EXECUTABLE, CXX_EXECUTABLE, CC_TEMPLATE, CXX_TEMPLATE}`
#
# - for 4-tuples, the first two elements are the same as in
# 2-tuple, the third and fourth elements are the template
# string for CC and CPP/CXX. for example,
#
# the last entry below shows the example of using zig as the
# crosscompiler for `aarch64-linux-musl`,
# the "CC" will be
# "zig cc -target aarch64-linux-musl",
# and "CXX" and "CPP" will be
# "zig c++ -target aarch64-linux-musl"
"aarch64-linux-musl" => {
"zig",
"zig",
"<% cc %> cc -target aarch64-linux-musl",
"<% cxx %> c++ -target aarch64-linux-musl"
}
},
# key == {:unix, :darwin} => when compiling on macOS
{:unix, :darwin} => %{
# key (target triplet) => `aarch64-apple-darwin`
# value => `{CC, CXX}`
"aarch64-apple-darwin" => {
"gcc -arch arm64", "g++ -arch arm64"
},
# key (target triplet) => `aarch64-linux-musl`
# value => `{CC_EXECUTABLE, CXX_EXECUTABLE, CC_TEMPLATE, CXX_TEMPLATE}`
"aarch64-linux-musl" => {
"zig",
"zig",
"<% cc %> cc -target aarch64-linux-musl",
"<% cxx %> c++ -target aarch64-linux-musl"
}
}
}
]
]
To test the NIF code locally, you can either set force_build
to true
or append "-dev"
to your NIF library's version string.
@version "0.1.0-dev"
def project do
[
# either append `"-dev"` to your NIF library's version string
version: @version,
# or set force_build to true
make_force_build: true,
# ...
]
end
Doing so will ask elixir_make
to only compile for the current host instead of building for all available targets.
$ mix compile
cc -shared -std=c11 -O3 -fPIC -I"/usr/local/lib/erlang/erts-13.0.3/include" -undefined dynamic_lookup -flat_namespace -undefined suppress "/Users/cocoa/git/cc_precompiler_example/c_src/cc_precompiler_example.c" -o "/Users/cocoa/Git/cc_precompiler_example/_build/dev/lib/cc_precompiler_example/priv/nif.so"
$ mix test
make: Nothing to be done for `build'.
Generated cc_precompiler_example app
.
Finished in 0.00 seconds (0.00s async, 0.00s sync)
1 test, 0 failures
Randomized with seed 102464
It's possible to either setup a CI task to do the precompilation job or precompile on a local machine and upload the precompiled artefacts.
To precompile for all targets on a local machine:
MIX_ENV=prod mix elixir_make.precompile
Environment variable ELIXIR_MAKE_CACHE_DIR
can be used to set the cache dir for the precompiled artefacts, for instance, to output precompiled artefacts in the cache directory of the current working directory, export ELIXIR_MAKE_CACHE_DIR="$(pwd)/cache"
.
To setup a CI task such as GitHub Actions, the following workflow file can be used for reference:
name: precompile
on:
push:
tags:
- 'v*'
jobs:
linux:
runs-on: ubuntu-latest
env:
MIX_ENV: "prod"
steps:
- uses: actions/checkout@v3
- uses: erlef/setup-beam@v1
with:
otp-version: "25.0.2"
elixir-version: "1.13.4"
- name: Install system dependecies
run: |
sudo apt-get update
sudo apt-get install -y build-essential automake autoconf pkg-config bc m4 unzip zip \
gcc-aarch64-linux-gnu g++-aarch64-linux-gnu \
gcc-riscv64-linux-gnu g++-riscv64-linux-gnu
- name: Mix Test
run: |
mix deps.get
MIX_ENV=test mix test
- name: Create precompiled library
run: |
export ELIXIR_MAKE_CACHE_DIR=$(pwd)/cache
mkdir -p "${ELIXIR_MAKE_CACHE_DIR}"
mix elixir_make.precompile
- uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
cache/*.tar.gz
macos:
runs-on: macos-11
env:
MIX_ENV: "prod"
steps:
- uses: actions/checkout@v3
- name: Install erlang and elixir
run: |
brew install erlang elixir
mix local.hex --force
mix local.rebar --force
- name: Mix Test
run: |
mix deps.get
MIX_ENV=test mix test
- name: Create precompiled library
run: |
export ELIXIR_MAKE_CACHE_DIR=$(pwd)/cache
mkdir -p "${ELIXIR_MAKE_CACHE_DIR}"
mix elixir_make.precompile
- uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
cache/*.tar.gz
After CI has finished, you can fetch the precompiled binaries from GitHub.
$ MIX_ENV=prod mix elixir_make.checksum --all --ignore-unavailable
Meanwhile, a checksum file will be generated. In this example, the checksum file will be named as checksum-cc_precompiler_example.exs
in current working directory.
This checksum file is extremely important in the scenario where you need to release a Hex package using precompiled NIFs. It's MANDATORY to include this file in your Hex package (by updating the files
field in the mix.exs
). Otherwise your package won't work.
defp package do
[
files: [
"lib",
"checksum.exs",
"mix.exs",
# ...
],
# ...
]
end
However, there is no need to track the checksum file in your version control system (git or other), so consider adding it to your .gitignore
.
# delete previously built binaries so that
# elixir_make will try to restore the NIF library
# from the downloaded tarball file
$ rm -rf _build/prod/lib/cc_precompiler_example
# set to prod env and test everything
$ MIX_ENV=prod mix test
==> castore
Compiling 1 file (.ex)
Generated castore app
==> elixir_make
Compiling 5 files (.ex)
Generated elixir_make app
==> cc_precompiler
Compiling 1 file (.ex)
Generated cc_precompiler app
20:47:42.262 [debug] Restore NIF for current node from: /Users/cocoa/Library/Caches/cc_precompiler_example-nif-2.16-aarch64-apple-darwin-0.1.0.tar.gz
==> cc_precompiler_example
Compiling 1 file (.ex)
Generated cc_precompiler_example app
.
Finished in 0.01 seconds (0.00s async, 0.01s sync)
1 test, 0 failures
Randomized with seed 539590
To recap, the suggested flow is the following:
- Choose an appropriate precompiler for your NIF library and set all necessary options in the
mix.exs
. - (Optional) Test if your NIF library compiles locally.
mix compile
mix test
- (Optional) Test if your NIF library can precompile to all specified targets locally.
MIX_ENV=prod mix elixir_make.precompile
- Precompile your library on CI or locally.
# locally
MIX_ENV=prod mix elixir_make.precompile
# CI
# please see the docs above
- Fetch precompiled binaries from GitHub.
# only fetch artefact for current host
MIX_ENV=prod mix elixir_make.checksum --only-local --print
# fetch all
MIX_ENV=prod mix elixir_make.checksum --all --print
# to fetch all available artefacts at the moment
MIX_ENV=prod mix elixir_make.checksum --all --print --ignore-unavailable
- (Optional) Test if the downloaded artefacts works as expected.
rm -rf _build/prod/lib/NIF_LIBRARY_NAME
MIX_ENV=prod mix test
-
Update Hex package to include the checksum file.
-
Release the package to Hex.pm (make sure your release includes the correct files).
In this section, I'll walk you through creating a simple precompiler that utilises existing crosscompilers in the system.
We start by creating a new elixir library, say cc_precompiler
.
$ mix new cc_precompiler
* creating README.md
* creating .formatter.exs
* creating .gitignore
* creating mix.exs
* creating lib
* creating lib/cc_precompiler.ex
* creating test
* creating test/test_helper.exs
* creating test/cc_precompiler_test.exs
Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:
cd cc_precompiler
mix test
Run "mix help" for more commands.
Then in the mix.exs
file, we add :elixir_make
to deps
.
defp deps do
[{:elixir_make, "~> 0.6", runtime: false}]
end
To create a precompiler module that is compatible with elixir_make
, the module (lib/cc_precompiler.ex
) need to implement a few callbacks defined in the ElixirMake.Precompiler
beheviour.
The full project of cc_precompiler
is available on cocoa-xu/cc_precompiler.
defmodule CCPrecompiler do
@moduledoc """
Precompile with existing crosscompiler in the system.
"""
require Logger
@behaviour ElixirMake.Precompiler
# This is the default configuration for this demo precompiler module
# for linux systems, it will detect for the following targets
# - x86_64-linux-gnu
# - i686-linux-gnu
# - aarch64-linux-gnu
# - armv7l-linux-gnueabihf
# - riscv64-linux-gnu
# - powerpc64le-linux-gnu
# - s390x-linux-gnu
# by trying to find the corresponding executable, i.e.,
# - x86_64-linux-gnu-gcc
# - i686-linux-gnu-gcc
# - aarch64-linux-gnu-gcc
# - arm-linux-gnueabihf-gcc
# - riscv64-linux-gnu-gcc
# - powerpc64le-linux-gnu-gcc
# - s390x-linux-gnu-gcc
# (this module will only try to find the CC executable, a step further
# will be trying to compile a simple C/C++ program using them)
@default_compilers %{
{:unix, :linux} => %{
"x86_64-linux-gnu" => "x86_64-linux-gnu-",
"i686-linux-gnu" => "i686-linux-gnu-",
"aarch64-linux-gnu" => "aarch64-linux-gnu-",
"armv7l-linux-gnueabihf" => "arm-linux-gnueabihf-",
"riscv64-linux-gnu" => "riscv64-linux-gnu-",
"powerpc64le-linux-gnu" => "powerpc64le-linux-gnu-",
"s390x-linux-gnu" => "s390x-linux-gnu-"
},
{:unix, :darwin} => %{
"x86_64-apple-darwin" => {
"gcc",
"g++",
"<%= cc %> -arch x86_64",
"<%= cxx %> -arch x86_64"
},
"aarch64-apple-darwin" => {
"gcc",
"g++",
"<%= cc %> -arch arm64",
"<%= cxx %> -arch arm64"
}
},
{:win32, :nt} => %{
"x86_64-windows-msvc" => {"cl", "cl"}
}
}
defp default_compilers, do: @default_compilers
defp user_config, do: Mix.Project.config()[:cc_precompile] || default_compilers()
defp compilers, do: Access.get(user_config(), :compilers, default_compilers())
defp compilers_current_os, do: Access.get(compilers(), :os.type(), %{})
@impl ElixirMake.Precompiler
def current_target do
current_target_from_env = current_target_from_env()
if current_target_from_env do
# overwrite current target triplet
{:ok, current_target_from_env}
else
current_target(:os.type())
end
end
defp current_target_from_env do
arch = System.get_env("TARGET_ARCH")
os = System.get_env("TARGET_OS")
abi = System.get_env("TARGET_ABI")
if !Enum.all?([arch, os, abi], &Kernel.is_nil/1) do
"#{arch}-#{os}-#{abi}"
end
end
def current_target({:win32, _}) do
processor_architecture =
String.downcase(String.trim(System.get_env("PROCESSOR_ARCHITECTURE")))
# https://docs.microsoft.com/en-gb/windows/win32/winprog64/wow64-implementation-details?redirectedfrom=MSDN
partial_triplet =
case processor_architecture do
"amd64" ->
"x86_64-windows-"
"ia64" ->
"ia64-windows-"
"arm64" ->
"aarch64-windows-"
"x86" ->
"x86-windows-"
end
{compiler, _} = :erlang.system_info(:c_compiler_used)
case compiler do
:msc ->
{:ok, partial_triplet <> "msvc"}
:gnuc ->
{:ok, partial_triplet <> "gnu"}
other ->
{:ok, partial_triplet <> Atom.to_string(other)}
end
end
def current_target({:unix, _}) do
# get current target triplet from `:erlang.system_info/1`
system_architecture = to_string(:erlang.system_info(:system_architecture))
current = String.split(system_architecture, "-", trim: true)
case length(current) do
4 ->
{:ok, "#{Enum.at(current, 0)}-#{Enum.at(current, 2)}-#{Enum.at(current, 3)}"}
3 ->
case :os.type() do
{:unix, :darwin} ->
# could be something like aarch64-apple-darwin21.0.0
# but we don't really need the last 21.0.0 part
if String.match?(Enum.at(current, 2), ~r/^darwin.*/) do
{:ok, "#{Enum.at(current, 0)}-#{Enum.at(current, 1)}-darwin"}
else
{:ok, system_architecture}
end
_ ->
{:ok, system_architecture}
end
_ ->
{:error, "cannot decide current target"}
end
end
@impl ElixirMake.Precompiler
def all_supported_targets(:compile) do
# This callback is expected to return a list of string for
# all supported targets by this precompiler. in this
# implementation, we will try to find a few crosscompilers
# available in the system.
#
# Note that this implementation is mainly used for demostration
# purpose, therefore the hardcoded compiler names are used in
# DEBIAN/Ubuntu Linux (as I only installed these ones at the
# time of writting this example)
with {:ok, current} <- current_target() do
Enum.uniq([current] ++ find_all_available_targets())
else
_ ->
[]
end
end
@impl ElixirMake.Precompiler
def all_supported_targets(:fetch) do
Enum.flat_map(compilers(), &Map.keys(elem(&1, 1)))
end
defp find_all_available_targets do
Map.keys(compilers_current_os())
|> Enum.map(&find_available_compilers(&1, Map.get(compilers_current_os(), &1)))
|> Enum.reject(&is_nil/1)
end
defp find_available_compilers(triplet, compilers) when is_tuple(compilers) do
if System.find_executable(elem(compilers, 0)) do
Logger.debug("Found compiler for #{triplet}")
triplet
else
Logger.debug("Compiler not found for #{triplet}")
nil
end
end
defp find_available_compilers(triplet, invalid) do
Mix.raise("Invalid configuration for #{triplet}, expecting a 2-tuple or 4-tuple, however, got #{inspect(invalid)}")
end
@impl ElixirMake.Precompiler
def build_native(args) do
# In this callback we just build the NIF library natively,
# and because this precompiler module is designed for NIF
# libraries that use C/C++ as the main language with Makefile,
# we can just call `ElixirMake.Precompiler.mix_compile(args)`
#
# It's also possible to forward this call to:
#
# precompile(args, elem(current_target(), 1))
#
# This could be useful when the precompiler is using a universal
# (cross-)compiler, say zig. in this way, the compiled binaries
# (`mix compile`) will be consistent as the corrsponding precompiled
# one (with `mix elixir_make.precompile`)
#
# However, if you'd prefer to having the same behaviour for `mix compile`
# then the following line is okay
ElixirMake.Precompiler.mix_compile(args)
end
@impl ElixirMake.Precompiler
def precompile(args, target) do
# Potentially clean the output directory to avoid conflicts
File.rm!(Path.join(Mix.Project.app_path(), "priv"))
saved_cc = System.get_env("CC") || ""
saved_cxx = System.get_env("CXX") || ""
saved_cpp = System.get_env("CPP") || ""
Logger.debug("Current compiling target: #{target}")
{cc, cxx} = get_cc_and_cxx(target)
System.put_env("CC", cc)
System.put_env("CXX", cxx)
System.put_env("CPP", cxx)
ElixirMake.Precompiler.mix_compile(args)
System.put_env("CC", saved_cc)
System.put_env("CXX", saved_cxx)
System.put_env("CPP", saved_cpp)
:ok
end
defp get_cc_and_cxx(triplet) do
case Access.get(compilers_current_os(), triplet, nil) do
nil ->
cc = System.get_env("CC")
cxx = System.get_env("CXX")
cpp = System.get_env("CPP")
case {cc, cxx, cpp} do
{nil, _, _} ->
{"gcc", "g++"}
{_, nil, nil} ->
{"gcc", "g++"}
{_, _, nil} ->
{cc, cxx}
{_, nil, _} ->
{cc, cpp}
{_, _, _} ->
{cc, cxx}
end
{cc, cxx} ->
{cc, cxx}
prefix when is_binary(prefix) ->
{"#{prefix}gcc", "#{prefix}g++"}
{cc, cxx, cc_args, cxx_args} ->
{"#{cc} #{cc_args}", "#{cxx} #{cxx_args}"}
end
end
@impl ElixirMake.Precompiler
def post_precompile_target(target) do
# It's possible to do some cleanup work
# in this optionall callback
# it will be called when `target` is properly archived
# so you may safely delete all target-specific files,
# like call `make clean`
Logger.debug("Post target archive")
end
@impl ElixirMake.Precompiler
def post_precompile() do
# It's possible to do some post precompilation work
# in this optionall callback
# after all precompile targets are compiled.
Logger.debug("Post precompile")
end
end