-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_cls.py
206 lines (167 loc) · 6.94 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
## Code is loosely based on https://github.com/yanx27/Pointnet_Pointnet2_pytorch
import os
import logging
from pathlib import Path
import datetime
import torch
import numpy as np
from tqdm import tqdm
import model.pointtransformer_cls as pt_cls
from helper.ModelNetDataLoader import ModelNetDataLoader
from helper.optimizer import RangerVA
import helper.provider as provider
def train():
def log_string(str):
logger.info(str)
print(str)
## Hyperparameters
config = {'num_points' : 1024,
'batch_size': 11,
'use_normals': True,
'optimizer': 'RangerVA',
'lr': 0.001,
'decay_rate': 1e-06,
'epochs': 500,
'num_classes': 40,
'dropout': 0.4,
'M': 4,
'K': 64,
'd_m': 512,
}
## Create LogDir
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('classification')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath(timestr)
experiment_dir.mkdir(exist_ok=True)
with open(str(experiment_dir) + "/config.txt", "w") as f:
f.write(str(config))
f.close()
## logger
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(message)s')
file_handler = logging.FileHandler(f"{experiment_dir}/logs.txt")
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('Hyperparameters:')
log_string(config)
## Create Dataloader
# data_path = 'data/modelnet40_normal_resampled/'
# train_ds = ModelNetDataLoader(root=data_path, npoint=config['num_points'], split='train', normal_channel=config['use_normals'])
# test_ds = ModelNetDataLoader(root=data_path, npoint=config['num_points'], split='test', normal_channel=config['use_normals'])
# train_dl = torch.utils.data.DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True, num_workers=8)
# test_dl = torch.utils.data.DataLoader(test_ds, batch_size=config['batch_size'], shuffle=False, num_workers=8)
## Create Point Transformer model
model = pt_cls.Point_Transformer(config).cuda()
# model = pt_cls.SortNet(128,6, top_k=64).cuda()
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
from helper.summary import summary
#summary(model, input_data=[(1, 128, 1024),(6, 1024)])
summary(model, input_data=(6, 1024))
# from pytictoc import TicToc
# t = TicToc()
# t.tic()
# for i in range(100):
# a = torch.zeros(2, 1, 128, 1024).cuda()
# b = torch.zeros(2, 6, 1024).cuda()
# out = model(a, b)
# t.toc()
exit()
#
criterion = pt_cls.Loss().cuda()
## Create optimizer
optimizer = None
if config['optimizer'] == 'RangerVA':
optimizer = RangerVA(model.parameters(),
lr=config['lr'],
weight_decay=config['decay_rate'])
else:
optimizer = torch.optim.Adam(
model.parameters(),
lr=config['lr'],
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=config['decay_rate']
)
global_epoch = 0
global_step = 0
best_instance_acc = 0.0
best_class_acc = 0.0
mean_correct = []
## Learning Rate Scheduler
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.5)
for epoch in range(config['epochs']):
log_string(f"Epoch {epoch}/{config['epochs']}")
scheduler.step()
for data in tqdm(train_dl, total=len(train_dl), smoothing=0.9):
points, target = data
points = points.data.numpy()
points = provider.random_point_dropout(points)
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
optimizer.zero_grad()
model = model.train()
pred = model(points)
loss = criterion(pred, target.long())
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
loss.backward()
optimizer.step()
global_step += 1
train_instance_acc = np.mean(mean_correct)
log_string(f"Train Instance Accuracy: {train_instance_acc}")
with torch.no_grad():
instance_acc, class_acc = test(model.eval(), test_dl, config)
if (instance_acc >= best_instance_acc):
best_instance_acc = instance_acc
best_epoch = epoch + 1
if (class_acc >= best_class_acc):
best_class_acc = class_acc
log_string(f"Test Instance Accuracy: {instance_acc}, Class Accuracy: {class_acc}")
log_string(f"Best Instance Accuracy: {best_instance_acc}, Class Accuracy: {best_class_acc}")
if (instance_acc >= best_instance_acc):
log_string('Save model...')
savepath = str(experiment_dir) + '/best_model.pth'
log_string(f"Saving at {savepath}")
state = {
'epoch': best_epoch,
'instance_acc': instance_acc,
'class_acc': class_acc,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
global_epoch += 1
def test(model, loader, config):
mean_correct = []
class_acc = np.zeros((config['num_classes'],3))
for j, data in tqdm(enumerate(loader), total=len(loader)):
points, target = data
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = model.eval()
pred = classifier(points)
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum()
class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0])
class_acc[cat,1]+=1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item()/float(points.size()[0]))
class_acc[:,2] = class_acc[:,0]/ class_acc[:,1]
class_acc = np.mean(class_acc[:,2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
if __name__ == '__main__':
train()