-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
284 lines (253 loc) · 12.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Contains network architectures"""
import tensorflow as tf
import tensorflow.contrib as tc
import tensorflow.contrib.layers as tcl
from UCN.networks import UniversalCorrepondenceNetwork
class HomographyNet(object):
def __init__(self, dim=64, ksize=3, use_bn=True, use_dropout=True,
out_dim=9, weight_decay=0.01, use_idx=True, use_coor=False,
norm_method='norm', use_reconstruction_module=True):
self.name = "homography_net"
self.dim = dim
self.ksize = ksize
self.use_bn = use_bn
self.use_dropout = use_dropout
self.weight_decay = weight_decay
self.use_idx = use_idx
self.use_coor = use_coor
self.norm = norm_method
self.use_reconstruction_module = use_reconstruction_module
print("HomographNet Use coord:%s"%self.use_coor)
if self.use_reconstruction_module:
self.out_dim = 8
else:
self.out_dim = out_dim
def normalize_output(self, x):
if self.norm == 'norm':
print("[model]Using L2 norm to normalize the output")
return x / (tf.norm(x, axis=1, keep_dims=True) + 1e-8)
elif self.norm == 'abs':
print("[model]Using maximum absolute value to normalize the output")
return x / (tf.reduce_max(tf.abs(x), axis=1, keep_dims=True) + 1e-8)
elif self.norm == 'last':
print("[model]Using the last index to normalize the output")
return x / (tf.expand_dims(tf.reshape(x[:,-1],[-1]), axis=1) + 1e-8)
else:
raise Exception("Unrecognized normaliztion method:%s"%self.norm)
def conv2d(self, x, dim, ksizes, strides, padding, activation):
if self.weight_decay > 0:
return tf.layers.conv2d(
x, dim, ksizes, strides,
padding=padding, activation=activation,
kernel_regularizer=tc.layers.l2_regularizer(scale=self.weight_decay))
else:
return tf.layers.conv2d(
x, dim, ksizes, strides,
padding=padding, activation=activation)
def fetch_idx(self, orig_idx, new_idx):
c = new_idx.get_shape()[-1]
new_idx = tf.cast(tf.divide(new_idx, c), tf.int64)
out = tf.gather(params=tf.reshape(orig_idx, shape=[-1]), indices=new_idx)
print("Orig:%s\tNew:%s\tOut:%s"\
%(orig_idx.get_shape(), new_idx.get_shape(), out.get_shape()))
return out
def reconstruction_module(self, x):
print("Use structural output layer")
def get_rotation(rx, ry, rz):
# normalize input?
R_x = tf.stack([
[1., 0., 0.],
[0., tf.cos(rx), -tf.sin(rx)],
[0., tf.sin(rx), tf.cos(rx)]
])
R_y = tf.stack([
[tf.cos(ry), 0., -tf.sin(ry)],
[0., 1., 0.],
[tf.sin(ry), 0., tf.cos(ry)]
])
R_z = tf.stack([
[tf.cos(rz), -tf.sin(rz), 0.],
[tf.sin(rz), tf.cos(rz), 0.],
[0., 0., 1.]
])
R = tf.matmul(R_x, tf.matmul(R_y, R_z))
return R
def get_inv_intrinsic(f):
return tf.stack([
[-1/(f+1e-8), 0., 0.],
[0., -1/(f+1e-8), 0.],
[0., 0., 1.]
])
def get_translate(tx, ty, tz):
return tf.stack([
[0., -tz, ty],
[tz, 0, -tx],
[-ty, tx, 0]
])
def get_linear_comb(f0, f1, f2, f3, f4, f5, cf1, cf2):
return tf.stack([
[f0, f1, f2],
[f3, f4, f5],
[cf1*f0+cf2*f3, cf1*f1+cf2*f4, cf1*f2+cf2*f5]
])
def get_fmat(x):
# Note: only need out-dim = 8
K1_inv = get_inv_intrinsic(x[0])
K2_inv = get_inv_intrinsic(x[1])
R = get_rotation(x[2], x[3], x[4])
T = get_translate(x[5], x[6], x[7])
F = tf.matmul(K2_inv,
tf.matmul(R, tf.matmul(T, K1_inv)))
flat = tf.reshape(F, [-1])
# to get the last row as linear combination of first two rows
# new_F = get_linear_comb(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7])
# new_F = get_linear_comb(flat[0], flat[1], flat[2], flat[3], flat[4], flat[5], x[6], x[7])
# flat = tf.reshape(new_F, [-1])
print ("Using reconstruction layer")
return flat
print("Using structural F-matrix output")
out = tf.map_fn(get_fmat, x)
return out
def __call__(self, x1, x2, img_shape, is_training, reuse=False):
with tf.variable_scope(self.name) as vs:
if reuse:
vs.reuse_variables()
print(x1.get_shape())
print(tf.size(x1))
'''
# UCN model, uncomment this part for UCN model
ucn = UniversalCorrepondenceNetwork(x1, x2, img_shape)
feature1, feature2 = ucn(x1,x2, img_shape)
x = tf.concat([feature1, feature2], axis=3)
print ('feature vector: ', x.shape)
'''
# single model
x = tf.concat([x1, x2], axis=3)
# uncomment this portion to use the single stream regressor network
def get_grid(_):
ret = tf.range(x.get_shape()[1] * x.get_shape()[2])
return ret
x_idx = tf.map_fn(get_grid, tf.range(tf.shape(x)[0]))
print(x_idx.get_shape())
# x_idx = tf.range(tf.size(x)/x.get_shape()[-1])
# Group 1 (128x128)
conv1_1 = self.conv2d(x, self.dim, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv1_1 = tf.layers.batch_normalization(conv1_1, training=is_training)
conv1_1 = tf.nn.relu(conv1_1)
conv1_2 = self.conv2d(conv1_1, self.dim, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv1_2 = tf.layers.batch_normalization(conv1_2, training=is_training)
conv1_2 = tf.nn.relu(conv1_2)
conv1, conv1_idx = tf.nn.max_pool_with_argmax(
input=conv1_2, ksize=[1,4,4,1], strides=[1,4,4,1], padding='SAME')
conv1_idx = self.fetch_idx(x_idx, conv1_idx)
# print(conv1_idx.get_shape())
# print(conv1.get_shape())
# Group 2 (64x64)
conv2_1 = self.conv2d(conv1, self.dim, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv2_1 = tf.layers.batch_normalization(conv2_1, training=is_training)
conv2_1 = tf.nn.relu(conv2_1)
conv2_2 = self.conv2d(conv2_1, self.dim, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv2_2 = tf.layers.batch_normalization(conv2_2, training=is_training)
conv2_2 = tf.nn.relu(conv2_2)
conv2, conv2_idx = tf.nn.max_pool_with_argmax(
input=conv2_2, ksize=[1,4,4,1], strides=[1,4,4,1], padding='SAME')
conv2_idx = self.fetch_idx(conv1_idx, conv2_idx)
print(conv2_idx.get_shape())
print(conv2.get_shape())
# Group 3 (32x32)
conv3_1 = self.conv2d(conv2, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv3_1 = tf.layers.batch_normalization(conv3_1, training=is_training)
conv3_1 = tf.nn.relu(conv3_1)
conv3_2 = self.conv2d(conv3_1, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv3_2 = tf.layers.batch_normalization(conv3_2, training=is_training)
conv3_2 = tf.nn.relu(conv3_2)
'''
conv3, conv3_idx = tf.nn.max_pool_with_argmax(
input=conv3_2, ksize=[1,4,4,1], strides=[1,4,4,1], padding='SAME')
conv3_idx = self.fetch_idx(conv2_idx, conv3_idx)
print(conv3_idx.get_shape())
print(conv3.get_shape())
'''
# Group 4 (16x16)
conv4_1 = self.conv2d(conv3_2, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv4_1 = tf.layers.batch_normalization(conv4_1, training=is_training)
conv4_1 = tf.nn.relu(conv4_1)
conv4_2 = self.conv2d(conv4_1, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv4_2 = tf.layers.batch_normalization(conv4_2, training=is_training)
conv4_2 = tf.nn.relu(conv4_2)
'''
conv4, conv4_idx = tf.nn.max_pool_with_argmax(
input=conv4_2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv4_idx = self.fetch_idx(conv3_idx, conv4_idx)
print(conv4_idx.get_shape())
print(conv4.get_shape())
'''
# Group 5
conv5_1 = self.conv2d(conv4_2, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv5_1 = tf.layers.batch_normalization(conv5_1, training=is_training)
conv5_1 = tf.nn.relu(conv5_1)
conv5_2 = self.conv2d(conv5_1, self.dim*2, [self.ksize, self.ksize], [1, 1],
padding='SAME', activation=None)
if self.use_bn:
conv5_2 = tf.layers.batch_normalization(conv5_2, training=is_training)
conv5_2 = tf.nn.relu(conv5_2)
'''
conv5, conv5_idx = tf.nn.max_pool_with_argmax(
input=conv5_2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv5_idx = self.fetch_idx(conv4_idx, conv5_idx)
print(conv5_idx.get_shape())
print(conv5.get_shape())
'''
conv5, conv5_idx = tf.nn.max_pool_with_argmax(
input=conv5_2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv5_idx = self.fetch_idx(conv1_idx, conv5_idx)
print(conv5_idx.get_shape())
print(conv5.get_shape())
if self.use_coor:
conv5_x = tf.cast(conv5_idx / x.get_shape()[1], tf.float32)
conv5_y = tf.cast(conv5_idx % x.get_shape()[1], tf.float32)
conv5_x = conv5_x / tf.cast(tf.shape(x)[1], tf.float32)
conv5_y = conv5_y / tf.cast(tf.shape(x)[2], tf.float32)
# TODO: normalize the indices
conv5 = tf.concat([conv5, conv5_x, conv5_y], axis=3)
print("Use corrdinate:(x,y)")
print(conv5.get_shape())
elif self.use_idx:
# TODO: normalize the indices
conv5_idx = tf.cast(conv5_idx, tf.float32)
conv5_idx = conv5_idx / tf.cast(tf.shape(x)[1] * tf.shape(x)[2], tf.float32)
conv5 = tf.concat([conv5, conv5_idx], axis=3)
print("Use idx (0,1) normalized.")
print(conv5.get_shape())
# Flatten and make decision
flat = tcl.flatten(conv5)
print(flat.get_shape())
dense1 = tf.layers.dense(flat, 1024, activation=tf.nn.relu)
if self.use_dropout:
dense1 = tf.layers.dropout(dense1, rate=0.5)
out = tf.layers.dense(dense1, self.out_dim)
if self.use_reconstruction_module:
out = self.reconstruction_module(out)
out = self.normalize_output(out)
return out
@property
def vars(self):
return [var for var in tf.global_variables() if self.name in var.name]