-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathErrors.tex
executable file
·62 lines (59 loc) · 2.65 KB
/
Errors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
The main goal of this Chapter is to develop rigorous numerical analysis for the
conforming FE discretization of the QGE \eqref{eqn:QGE_psi}. In particular we
focus on the use of the Argyris element, but the majority of the results apply
to any conforming FE discretization of QGE \eqref{eqn:QGE_psi}, SQGE
\eqref{eqn:SQGE_Psi}, and the two-level method applied to SQGE
\eqref{eqn:SQGE_Psi}.
In the sections that follow we rely heavily on the Young inequality, H\"older
inequality , Cauchy-Schwarz inequality, Poincar\'e-Friedrichs inequality, and
Ladyzhenskaya inequality, so for completeness we will state them here.
\begin{definition} \label{def:Young}
\textbf{Young inequality} \cite{Royden2010}:\\
For $1 < p,q < \infty$, $\dfrac{1}{p} + \dfrac{1}{q} = 1$, and any two
positive numbers $a$ and $b$,
\begin{equation}
ab \le \frac{a^p}{p} + \frac{b^q}{q}.
\label{eqn:Young}
\end{equation}
\end{definition}
\begin{definition} \label{def:Holder}
\textbf{H\"older inequality} \cite{Royden2010}:\\
Let $\Omega$ be a measurable set, $1\le p,q < \infty$, and $\dfrac{1}{p} +
\dfrac{1}{q} = 1$. If $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$, then their
product $f\, g$ is integrable over $\Omega$ and
\begin{equation}
\int_{\Omega}\! |f\, g| \, d\mathbf{x} \le \|f\|_p\, \|g\|_q.
\label{eqn:Holder}
\end{equation}
\end{definition}
\begin{definition} \label{def:Cauchy-Schwarz}
\textbf{Cauchy-Schwarz inequality} \cite{Royden2010}:\\
Let $\Omega$ be a measurable set and $f$ and $g$ be square-integrable over
$\Omega$. Then their product $f\, g$ is also over $\Omega$ and
\begin{equation}
\int_{\Omega}\! |f\,g|\, d\mathbf{x} \le \sqrt{\int_{\Omega}\! f^2 \,
d\mathbf{x}}\, \sqrt{\int_{\Omega}\! g^2 \, d\mathbf{x}}.
\label{eqn:Cauchy}
\end{equation}
\end{definition}
\begin{definition} \label{def:Poincare}
\textbf{Poincar\'e-Friedrichs inequality} \cite{Layton08}:\\
Let $\Omega$ be a measurable set and $u \in H^1_0(\Omega)$. Then there is a
positive constant $C_P = C_P(\Omega)$ such that
\begin{equation}
\|u\| \le C_P \|\nabla u\| \quad \forall u \in X.
\label{eqn:Poincare}
\end{equation}
\end{definition}
\begin{definition} \label{def:Ladyzhenskaya}
\textbf{Ladyzhenskaya inequality \cite{Layton08}:}\\
For any vector function $u\,:\, \R^2 \rightarrow \R^2$ with compact support
and with the indicated finite $L^4$ and $L^2$ norms,
\begin{equation}
\|u\|_{L^4(\R^2)} \le 2^{\nicefrac{1}{4}}
\|u\|^{\nicefrac{1}{2}}_{L^2(\R^2)}
\|\nabla u\|^{\nicefrac{1}{2}}_{L^2(\R^2)}.
\label{eqn:Ladyzhenskaya}
\end{equation}
\end{definition}
With these definitions we can now proceed with the error analysis.