-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmidihum_model.py
132 lines (116 loc) · 4.48 KB
/
midihum_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from pathlib import Path
from typing import List, Optional, Tuple
import click
import mido
import numpy as np
import pandas as pd
import pickle
import xgboost as xgb
import sklearn
from midi_to_df_conversion import midi_files_to_df
from prepare_midi import load_data
class MidihumModel:
"""An XGBoost model for predicting velocities of MIDI note values."""
model_cache_path = Path("model_cache")
model_path = Path(f"{model_cache_path}/midihum.json")
scaler_path = Path(f"{model_cache_path}/midihum_scaler.json")
def __init__(self):
if self.model_path.exists() and self.scaler_path.exists():
click.echo(
f"midihum_model loading model from {self.model_path} and {self.scaler_path}"
)
self.model = xgb.XGBRegressor(
booster="gbtree",
max_depth=7,
learning_rate=0.05,
n_estimators=1700,
gamma=0.1,
min_child_weight=7,
subsample=0.9,
colsample_bytree=0.6,
reg_alpha=0.2,
reg_lambda=0.4,
n_jobs=8,
enable_categorical=True,
)
self.model.load_model(self.model_path)
with open(self.scaler_path, "rb") as f:
self.scaler = pickle.load(f)
else:
click.echo(
f"midihum_model could not find model in {self.model_path} and {self.scaler_path}"
)
raise Exception()
@staticmethod
def _get_column_names_from_df(
df: pd.DataFrame,
) -> Tuple[List[str], List[str], List[str]]:
columns_to_skip = [
"velocity",
"time",
"midi_track_index",
"midi_event_index",
"name",
]
category_names = [
col
for col in df.columns
if not pd.api.types.is_numeric_dtype(df[col]) and col not in columns_to_skip
]
continuous_names = [
col for col in df.columns if col not in category_names + columns_to_skip
]
out_names = ["velocity"]
return (category_names, continuous_names, out_names)
@staticmethod
def _rescale_predictions(
scaler: sklearn.preprocessing.StandardScaler, preds: pd.Series
) -> pd.Series:
# FIXME: get velocity idx dynamically -- maybe save it with the scaler.
velocity_idx = 0
# HACK: not sure why 2, it just seems to work well ...
return np.clip(
preds * 2 * np.sqrt(scaler.var_[velocity_idx]) + scaler.mean_[velocity_idx],
1,
127,
)
def add_velocities_to_df(
self,
df: pd.DataFrame,
) -> pd.DataFrame:
cat_names, cont_names, out_names = self._get_column_names_from_df(df)
for col in cat_names:
df[col] = df[col].astype("category")
# standardize input columns
out_cols = df[out_names].copy()
df[cont_names + out_names] = self.scaler.transform(df[cont_names + out_names])
# make velocity predictions for each row (note on) of the input
df = df.drop(out_names, axis=1)
df["prediction"] = self.model.predict(
df.drop(["midi_track_index", "midi_event_index", "name"], axis=1)
)
df["prediction"] = self._rescale_predictions(self.scaler, df["prediction"])
df[out_names] = out_cols
click.echo(
f"midihum_tabular inferred {len(df)} velocities with mean {np.mean(df.prediction)} and std {np.std(df.prediction)}"
)
return df
def humanize(
self, source_path: Path, destination_path: Path, rescale: bool = True
) -> List[float]:
click.echo(f"midihum_tabular humanizing {source_path}")
df = midi_files_to_df(
midi_filepaths=[source_path], skip_suspicious=False
).copy()
# standardize input columns and add predicted velocities
df = self.add_velocities_to_df(df)
# load input midi file and, for each prediction, set the new velocity
midi_file = mido.MidiFile(source_path)
velocities = [round(row.prediction) for _, row in df.iterrows()]
for row, velocity in zip(df.itertuples(), velocities):
midi_file.tracks[row.midi_track_index][
row.midi_event_index
].velocity = velocity
click.echo(f"midihum_tabular saving humanized file to {destination_path}")
midi_file.save(destination_path)
return velocities