forked from edwardhdlu/q-trader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
53 lines (40 loc) · 1.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from agent.agent import Agent
from functions import *
import sys
if len(sys.argv) != 4:
print "Usage: python train.py [stock] [window] [episodes]"
exit()
stock_name, window_size, episode_count = sys.argv[1], int(sys.argv[2]), int(sys.argv[3])
agent = Agent(window_size)
data = getStockDataVec(stock_name)
l = len(data) - 1
batch_size = 32
for e in xrange(episode_count + 1):
print "Episode " + str(e) + "/" + str(episode_count)
state = getState(data, 0, window_size + 1)
total_profit = 0
agent.inventory = []
for t in xrange(l):
action = agent.act(state)
# sit
next_state = getState(data, t + 1, window_size + 1)
reward = 0
if action == 1: # buy
agent.inventory.append(data[t])
print "Buy: " + formatPrice(data[t])
elif action == 2 and len(agent.inventory) > 0: # sell
bought_price = agent.inventory.pop(0)
reward = max(data[t] - bought_price, 0)
total_profit += data[t] - bought_price
print "Sell: " + formatPrice(data[t]) + " | Profit: " + formatPrice(data[t] - bought_price)
done = True if t == l - 1 else False
agent.memory.append((state, action, reward, next_state, done))
state = next_state
if done:
print "--------------------------------"
print "Total Profit: " + formatPrice(total_profit)
print "--------------------------------"
if len(agent.memory) > batch_size:
agent.expReplay(batch_size)
if e % 10 == 0:
agent.model.save("models/model_ep" + str(e))