forked from ukontainer/sqlite-bench
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhistogram.c
188 lines (154 loc) · 5.6 KB
/
histogram.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "bench.h"
static double percentile(Histogram*, double);
static double average(Histogram*);
static double standard_deviation(Histogram*);
const static double bucket_limit[kNumBuckets] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450,
500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000,
3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000,
16000, 18000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 60000,
70000, 80000, 90000, 100000, 120000, 140000, 160000, 180000, 200000,
250000, 300000, 350000, 400000, 450000, 500000, 600000, 700000, 800000,
900000, 1000000, 1200000, 1400000, 1600000, 1800000, 2000000, 2500000,
3000000, 3500000, 4000000, 4500000, 5000000, 6000000, 7000000, 8000000,
9000000, 10000000, 12000000, 14000000, 16000000, 18000000, 20000000,
25000000, 30000000, 35000000, 40000000, 45000000, 50000000, 60000000,
70000000, 80000000, 90000000, 100000000, 120000000, 140000000, 160000000,
180000000, 200000000, 250000000, 300000000, 350000000, 400000000,
450000000, 500000000, 600000000, 700000000, 800000000, 900000000,
1000000000, 1200000000, 1400000000, 1600000000, 1800000000, 2000000000,
2500000000.0, 3000000000.0, 3500000000.0, 4000000000.0, 4500000000.0,
5000000000.0, 6000000000.0, 7000000000.0, 8000000000.0, 9000000000.0,
1e200,
};
static double percentile(Histogram* hist_, double p) {
double threshold = hist_->num_ * (p / 100.0);
double sum = 0;
for (int b = 0; b < kNumBuckets; b++) {
sum += hist_->buckets_[b];
if (sum >= threshold) {
/* Scale linearly within this bucket */
double left_point = (b == 0) ? 0 : bucket_limit[b - 1];
double right_point = bucket_limit[b];
double left_sum = sum - hist_->buckets_[b];
double right_sum = sum;
double pos = (threshold - left_sum) / (right_sum - left_sum);
double r = left_point + (right_point - left_point) * pos;
if (r < hist_->min_) r = hist_->min_;
if (r > hist_->max_) r = hist_->max_;
return r;
}
}
return hist_->max_;
}
static double average(Histogram* hist_) {
return (hist_->num_ == 0.0) ? 0 : hist_->sum_ / hist_->num_;
}
static double standard_deviation(Histogram* hist_) {
double variance;
if (hist_->num_ == 0.0)
return 0;
variance = (hist_->sum_squares_ * hist_->num_ - hist_->sum_ * hist_->sum_) / (hist_->num_ * hist_->num_);
return sqrt(variance);
}
void histogram_clear(Histogram* hist_) {
int i;
hist_->min_ = bucket_limit[kNumBuckets - 1];
hist_->max_ = 0;
hist_->num_ = 0;
hist_->sum_ = 0;
hist_->sum_squares_ = 0;
for (i = 0; i < kNumBuckets; i++)
hist_->buckets_[i] = 0;
}
void histogram_add(Histogram* hist_, double value) {
int b;
for (b = 0; b < kNumBuckets - 1 && bucket_limit[b] <= value; b++)
;
hist_->buckets_[b] += 1.0;
if (hist_->min_ > value)
hist_->min_ = value;
if (hist_->max_ < value)
hist_->max_ = value;
hist_->num_++;
hist_->sum_ += value;
hist_->sum_squares_ += (value * value);
}
void histogram_merge(Histogram* hist_, const Histogram* other_) {
int b;
if (other_->min_ < hist_->min_)
hist_->min_ = other_->min_;
if (other_->max_ > hist_->max_)
hist_->max_ = other_->max_;
hist_->num_ += other_->num_;
hist_->sum_ += other_->sum_;
hist_->sum_squares_ += other_->sum_squares_;
for (b = 0; b < kNumBuckets; b++)
hist_->buckets_[b] += other_->buckets_[b];
}
void append_to_buffer(char **bufp, char *append, size_t *maxszp) {
char *buf = *bufp;
size_t maxsz = *maxszp;
if (maxsz < strlen(buf) + strlen(append)) {
buf = realloc(buf, maxsz * 2);
maxsz *= 2;
}
strcat(buf, append);
*bufp = buf;
*maxszp = maxsz;
}
char* histogram_to_string(Histogram* hist_) {
const double mult = 100.0 / hist_->num_;
size_t r_size = 1024;
double sum = 0;
char buf[200];
int marks;
char* r;
int b;
int i;
r = malloc(sizeof(char) * 1024);
strcpy(r, "");
snprintf(buf, sizeof(buf),
"Count: %.0f Average: %.4f StdDiv: %.2f\n",
hist_->num_, average(hist_), standard_deviation(hist_));
append_to_buffer(&r, buf, &r_size);
snprintf(buf, sizeof(buf),
"Min: %.4f Median: %.4f Max: %.4f\n",
(hist_->num_ == 0.0 ? 0.0 : hist_->min_),
percentile(hist_, 50), hist_->max_);
append_to_buffer(&r, buf, &r_size);
snprintf(buf, sizeof(buf),
"50th: %.4f 90th: %.4f 99th: %.4f\n",
percentile(hist_, 50),
percentile(hist_, 90),
percentile(hist_, 99));
append_to_buffer(&r, buf, &r_size);
strcat(r, "------------------------------------------------------\n");
for (b = 0; b < kNumBuckets; b++) {
if (hist_->buckets_[b] <= 0.0)
continue;
sum += hist_->buckets_[b];
snprintf(buf, sizeof(buf),
"[ %7.0f, %7.0f ) %7.0f %7.3f%% %7.3f%%",
((b == 0) ? 0.0 : bucket_limit[b - 1]),
bucket_limit[b],
hist_->buckets_[b],
mult * hist_->buckets_[b],
mult * sum);
append_to_buffer(&r, buf, &r_size);
/* Add hash marks based on percentage; 20 marks for 100%. */
marks = (int)(20 * (hist_->buckets_[b] / hist_->num_) + 0.5);
if (r_size < strlen(r) + marks + 1) {
r = realloc(r, r_size * 2);
r_size *= 2;
}
for (i = 0; i < marks; i++)
strcat(r, "#");
strcat(r, "\n");
}
return r;
}