diff --git a/tutorial/python/8-PQFastScanRefine.py b/tutorial/python/8-PQFastScanRefine.py new file mode 100644 index 0000000000..115a036fa7 --- /dev/null +++ b/tutorial/python/8-PQFastScanRefine.py @@ -0,0 +1,38 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import faiss +import numpy as np + +d = 64 # dimension +nb = 100000 # database size +nq = 10000 # nb of queries +np.random.seed(1234) # make reproducible +xb = np.random.random((nb, d)).astype('float32') # 64-dim *nb queries +xb[:, 0] += np.arange(nb) / 1000. +xq = np.random.random((nq, d)).astype('float32') +xq[:, 0] += np.arange(nq) / 1000. + +m = 8 # 8 specifies that the number of sub-vector is 8 +k = 4 # number of dimension in etracted vector +n_bit = 4 # 4 specifies that each sub-vector is encoded as 4 bits +bbs = 32 # build block size ( bbs % 32 == 0 ) for PQ + +index = faiss.IndexPQFastScan(d, m, n_bit, faiss.METRIC_L2) +index_refine = faiss.IndexRefineFlat(index) +# construct FastScan and run index refinement + +assert not index_refine.is_trained +index_refine.train(xb) # Train vectors data index within mockup database +assert index_refine.is_trained + +index_refine.add(xb) +params = faiss.IndexRefineSearchParameters(k_factor=3) +D, I = index_refine.search(xq[:5], 10, params=params) +print(I) +print(D) +index.nprobe = 10 # make comparable with experiment above +D, I = index.search(xq[:5], k) # search +print(I[-5:])