-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcube.py
207 lines (184 loc) · 6.16 KB
/
cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
These functions extract all the useful information from the Gaussian CUBE file
and analize it.
"""
import sys
import numpy as np
from matplotlib.mlab import griddata
def readCube(filename):
class CubeFile:
def __init__(self,coordsx,coordsy,coordsz,x0,y0,z0,pointsx,pointsy,pointsz,voldx,voldy,voldz,isovals):
self.x0=x0
self.y0=y0
self.z0=z0
self.coords_x=coordsx
self.coords_y=coordsy
self.coords_z=coordsz
self.nx=pointsx
self.ny=pointsy
self.nz=pointsz
self.dx=voldx
self.dy=voldy
self.dz=voldz
self.dv=voldx*voldy*voldz
self.isovals=isovals
def __add__(self,other): #untested
result = self
result.isovals = self.isovals + other.isovals
return result
def __add__(self,other): #untested
result = self
result.isovals = self.isovals - other.isovals
return result
f = open(filename, "r")
bohr_to_angst = 0.529177
#skipping comment lines
f.readline()
f.readline()
#reading the number of atoms and the origin of the cube
l = f.readline().split()
n_atoms = int(l[0])
x_origin = float(l[1])
y_origin = float(l[2])
z_origin = float(l[3])
#reading number of volume elements and their volume
cubic_box = True
l = f.readline().split()
points_x = int(l[0])
vol_dx = float(l[1])
if float(l[2])!=0.0 or float(l[3])!= 0.0:
cubic_box = False
l = f.readline().split()
points_y = int(l[0])
vol_dy = float(l[2])
if float(l[1])!=0.0 or float(l[3])!= 0.0:
cubic_box = False
l = f.readline().split()
points_z = int(l[0])
vol_dz = float(l[3])
if float(l[1])!=0.0 or float(l[2])!= 0.0:
cubic_box = False
if cubic_box == False:
print "Non-cubic box, cannot continue!"
sys.exit()
# volume_element = vol_dx * vol_dy * vol_dz
#reading atomic coordinates
coords_x = []
coords_y = []
coords_z = []
for i in range(n_atoms):
co = f.readline().split()
coords_x.append(bohr_to_angst * float(co[2]))
coords_y.append(bohr_to_angst * float(co[3]))
coords_z.append(bohr_to_angst * float(co[4]))
#memory consuming but easy
isovalues = []
for line in f:
spl = line.split()
for v in spl:
isovalues.append(float(v))
return CubeFile(coords_x,coords_y,coords_z,x_origin,y_origin,z_origin,points_x,points_y,points_z,vol_dx,vol_dy,vol_dz,isovalues)
def genGrid(filename):
class Grid:
def __init__(self,x,y,z,isoval):
self.x=x
self.y=y
self.z=z
self.isovals=isoval
def __add__(self,other): #untested
result = self
result.isovals = self.isovals + other.isovals
return result
def __sub__(self,other): #untested
if self.isovals.size == other.isovals.size:
result = self
result.isovals = self.isovals - other.isovals
return result
else:
print 'Error: not equal number of isovalues, keeping first variable as output'
return self
CubeFile = readCube(filename)
Coords = np.array([CubeFile.coords_x,CubeFile.coords_y,CubeFile.coords_z])
bohr_to_angst = 0.529177
xs = []
ys = []
zs = []
for ix in range(CubeFile.nx):
for iy in range(CubeFile.ny):
for iz in range(CubeFile.nz):
x = bohr_to_angst * (CubeFile.x0 + ix * CubeFile.dx)
y = bohr_to_angst * (CubeFile.y0 + iy * CubeFile.dy)
z = bohr_to_angst * (CubeFile.z0 + iz * CubeFile.dz)
xs.append(x)
ys.append(y)
zs.append(z)
return Grid(np.array(xs),np.array(ys),np.array(zs),np.array(CubeFile.isovals)),Coords
def plotXY(CubeFile,isovalues):
class Grid:
def __init__(self,x,y,isoval):
self.x=x
self.y=y
self.isoval=isoval
bohr_to_angst = 0.529177
# isovalues=CubeFile.isovals
# aux = list(isovalues)
isovalues.reverse()
xs = []
ys = []
dens = []
for ix in range(CubeFile.nx):
for iy in range(CubeFile.ny):
x = bohr_to_angst * (CubeFile.x0 + ix * CubeFile.dx)
y = bohr_to_angst * (CubeFile.y0 + iy * CubeFile.dy)
intdens=0.
for iz in range(CubeFile.nz):
val = isovalues.pop()
intdens += val
intdens=intdens*CubeFile.dz
xs.append(x)
ys.append(y)
dens.append(intdens)
# CubeFile.isovals = aux
return Grid(xs,ys,dens)
def transDipole(CubeFile1,CubeFile2):
bohr_to_angst = 0.529177
iso1 = CubeFile1.isovals
iso1.reverse()
iso2 = CubeFile2.isovals
iso2.reverse()
transDipArr = []
for ix in range(CubeFile1.nx):
for iy in range(CubeFile1.ny):
for iz in range(CubeFile1.nz):
x = bohr_to_angst * (CubeFile1.x0 + ix * CubeFile1.dx)
y = bohr_to_angst * (CubeFile1.y0 + iy * CubeFile1.dy)
z = bohr_to_angst * (CubeFile1.z0 + iz * CubeFile1.dz)
prod = iso1.pop() * iso2.pop()
transDip = prod**2 * (x**2 + y**2 + z**2)
transDipArr.append(transDip)
return transDipArr
def writeDens(a,filein,fileout):
fmt='15.8e'
asTxtLst = map(lambda val: format(val, fmt), a)
size = len(asTxtLst)
ncol = 4
f1 = open(filein, 'r')
f2 = open(fileout, 'w+')
l = f1.readline()
f2.write(l)
l = f1.readline()
f2.write(l)
l = f1.readline()
f2.write(l)
l2 = l.split()
natoms = int(l2[0])
for n in range(natoms+3):
l = f1.readline()
f2.write(l)
for i in range(size/ncol):
f2.write(' '.join(asTxtLst[i*ncol:(i+1)*ncol])+'\n')
if ncol*(size/ncol) < size:
f2.write(' '.join(asTxtLst[ncol*(size/ncol):])+'\n')
f1.close()
f2.close()
return 0