-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpull_dicoms_workflow.py
287 lines (249 loc) · 10.8 KB
/
pull_dicoms_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python3
"""A wrapper around conversion_workflow.py and cis-xget.
This workflow does the following:
1. Copy XNAT downloader Singularity image to scratch.
2. Download tarball using XNAT downloader.
3. Run protocol check on downloaded data.
4. Email project-related personnel warnings about missing data based on protocol check.
5. Submit conversion_workflow as a job.
6. Email project-related personnel update about downloaded/converted data.
Because the workflow downloads data from XNAT (which requires internet access),
it cannot be called within a SLURM job, as none of the processing nodes have
internet access. The workflow is thus called on the login or visualization
nodes, but submits the conversion_workflow step as a job to the processing
nodes.
"""
import os
import os.path as op
import json
import shutil
import tarfile
import datetime
import argparse
import pandas as pd
from utils import run
def _get_parser():
parser = argparse.ArgumentParser(
description='Initiate XNAT download and conversion workflow.')
parser.add_argument(
'-b', '--bidsdir',
required=True,
dest='bids_dir',
help='Output directory for BIDS dataset and '
'derivatives.')
parser.add_argument(
'-w', '--workdir',
required=False,
dest='work_dir',
default=None,
help='Path to a working directory. Defaults to work '
'subfolder in dset_dir.')
parser.add_argument(
'--config',
required=True,
dest='config',
help='Path to the config json file.')
parser.add_argument(
'--protocol_check',
required=False,
action='store_true',
help='Will perform a protocol check to determine if '
'the correct number of scans and TRs are present.')
parser.add_argument(
'--autocheck',
required=False,
action='store_true',
help='Will automatically download all scans from XNAT '
'that are not currently in the project folder.')
parser.add_argument(
'--xnat_experiment',
required=False,
dest='xnatexp',
default=None,
help='XNAT Experiment ID (i.e., XNAT_E*) for single '
'session download.')
return parser
def main(bids_dir, config, work_dir=None, protocol_check=False,
autocheck=False, xnatexp=None):
"""Runtime for CIS processing."""
CIS_DIR = '/scratch/cis_dataqc/'
# Check inputs
if work_dir is None:
work_dir = CIS_DIR
proj_dir = os.path.dirname(bids_dir)
if not op.isdir(proj_dir):
raise ValueError('Project directory must be an existing directory!')
if not op.isfile(config):
raise ValueError('Argument "config" must be an existing file.')
with open(config, 'r') as fo:
config_options = json.load(fo)
if 'project' not in config_options.keys():
raise Exception('Config file must be updated with project field. '
'See sample config file for more information')
proj_work_dir = op.join(work_dir, config_options['project'])
if not proj_work_dir.startswith('/scratch'):
raise ValueError('Working directory must be in scratch.')
xnatdownload_file = op.join('/home/data/cis/singularity-images/',
config_options['xnatdownload'])
# Additional checks and copying for XNAT Download file
if not op.isfile(xnatdownload_file):
raise ValueError('XNAT Download image specified in config files must '
'be an existing file.')
# Make folders/files
for out_file in ['err', 'out']:
if not op.isdir(op.join(proj_dir, 'code', out_file)):
os.makedirs(op.join(proj_dir, 'code', out_file))
if not op.isdir(proj_work_dir):
os.makedirs(proj_work_dir)
raw_dir = op.join(proj_dir, 'raw')
if not op.isdir(raw_dir):
os.makedirs(raw_dir)
fdir = op.dirname(__file__)
scans_df = pd.read_csv(op.join(raw_dir, 'scans.tsv'), sep='\t')
scans_df = scans_df['file']
scans_df.to_csv(
op.join(
proj_work_dir,
'{0}-processed.txt'.format(config_options['project'])),
sep='\t', line_terminator='\n', na_rep='n/a', index=False)
# Copy singularity images to scratch
scratch_xnatdownload = op.join(work_dir, op.basename(xnatdownload_file))
if not op.isfile(scratch_xnatdownload):
shutil.copyfile(xnatdownload_file, scratch_xnatdownload)
os.chmod(scratch_xnatdownload, 0o775)
# Run XNAT Download
if autocheck:
tar_list = op.join(
proj_work_dir,
'{0}-processed.txt'.format(config_options['project']))
cmd = ('{sing} -w {work_dir} --project {proj} --autocheck --processed '
'{tar_list}'.format(
sing=scratch_xnatdownload,
work_dir=proj_work_dir,
proj=config_options['project'],
tar_list=tar_list))
run(cmd)
elif xnatexp is not None:
tar_list = op.join(
proj_work_dir,
'{0}-processed.txt'.format(config_options['project']))
cmd = ('{sing} -w {work_dir} --project {proj} --session {xnat_exp} '
'--processed {tar_list}'.format(
sing=scratch_xnatdownload,
work_dir=proj_work_dir,
proj=config_options['project'],
xnat_exp=xnatexp,
tar_list=tar_list))
run(cmd)
else:
raise Exception('A valid XNAT Experiment session was not entered for '
'the project or you are not running autocheck.')
os.remove(
op.join(
proj_work_dir,
'{0}-processed.txt'.format(config_options['project'])))
os.remove(scratch_xnatdownload)
# Temporary raw directory in work_dir
raw_work_dir = op.join(proj_work_dir, 'raw')
if op.isdir(raw_work_dir):
# Check if anything was downloaded
for tmp_sub in os.listdir(raw_work_dir):
ses_list = os.listdir(op.join(raw_work_dir, tmp_sub))
for tmp_ses in ses_list:
# run the protocol check if requested
if protocol_check:
cmd = ('python {fdir}/protocol_check.py -w {work_dir} '
'--bids_dir {bids_dir} '
'--sub {sub} --ses {ses}'.format(
fdir=fdir,
work_dir=raw_work_dir,
bids_dir=bids_dir,
sub=tmp_sub,
ses=tmp_ses))
run(cmd)
# tar the subject and session directory and copy to raw dir
if not op.isdir(op.join(raw_dir, tmp_sub, tmp_ses)):
os.makedirs(op.join(raw_dir, tmp_sub, tmp_ses))
tarball = op.join(
raw_dir,
'{sub}/{ses}/{sub}-{ses}.tar'.format(
sub=tmp_sub, ses=tmp_ses)
)
with tarfile.open(tarball, 'w') as tar:
tar.add(
op.join(raw_work_dir, tmp_sub),
arcname=op.basename(op.join(raw_work_dir, tmp_sub)))
shutil.rmtree(op.join(raw_work_dir, tmp_sub))
scans_df = pd.read_csv(op.join(raw_dir, 'scans.tsv'), sep='\t')
tmp_df = pd.DataFrame()
tmp_df = tmp_df.append({'sub': tmp_sub}, ignore_index=True)
tmp_df['ses'] = tmp_ses
tmp_df['file'] = '{sub}-{ses}.tar'.format(
sub=tmp_sub, ses=tmp_ses)
moddate = os.path.getmtime(tarball)
timedateobj = datetime.datetime.fromtimestamp(moddate)
tmp_df['creation'] = datetime.datetime.strftime(
timedateobj, "%m/%d/%Y, %H:%M")
scans_df = scans_df.append(tmp_df)
scans_df.to_csv(
op.join(raw_dir, 'scans.tsv'), sep='\t',
line_terminator='\n', na_rep='n/a', index=False)
# run conversion_workflow.py
err_file = op.join(
proj_dir,
'code/err/convert-{0}-{1}'.format(tmp_sub, tmp_ses)
)
out_file = op.join(
proj_dir,
'code/out/convert-{0}-{1}'.format(tmp_sub, tmp_ses)
)
cmd = ('sbatch -J convert-{proj}-{sub}-{ses} '
'-e {err_file_loc} -o {out_file_loc} '
'-c {nprocs} --qos {hpc_queue} --account {hpc_acct} '
'-p centos7 '
'--wrap="python {fdir}/conversion_workflow.py -t {tarball} '
'-b {bids_dir} -w {work_dir} --config {config} '
'--sub {sub} --ses {ses}"'.format(
fdir=fdir,
hpc_queue=config_options['hpc_queue'],
hpc_acct=config_options['hpc_account'],
proj=config_options['project'],
err_file_loc=err_file,
out_file_loc=out_file,
tarball=tarball,
bids_dir=bids_dir,
work_dir=proj_work_dir,
config=config,
sub=tmp_sub.strip('sub-'),
ses=tmp_ses.strip('ses-')))
run(cmd)
# get date and time
now = datetime.datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M")
# append the email message
message_file = op.join(
proj_work_dir,
'{0}-processed-message.txt'.format(
config_options['project']))
with open(message_file, 'a') as fo:
fo.write('Data transferred from XNAT to FIU-HPC for '
'Project: {proj} Subject: {sub} Session: {ses} '
'on {datetime}\n'.format(
proj=config_options['project'],
sub=tmp_sub,
ses=tmp_ses,
datetime=date_time))
shutil.rmtree(op.join(raw_work_dir))
cmd = ("mail -s 'FIU XNAT-HPC Data Transfer Update Project {proj}' "
"{email_list} < {message}".format(
proj=config_options['project'],
email_list=config_options['email'],
message=message_file))
run(cmd)
os.remove(message_file)
def _main(argv=None):
options = _get_parser().parse_args(argv)
kwargs = vars(options)
main(**kwargs)
if __name__ == '__main__':
_main()